friried applied
e sciences

Article

A Mongolian-Chinese Neural Machine Translation Model
Based on Soft Target Templates and Contextual Knowledge

Qing-Dao-Er-Ji Ren

check for
updates

Citation: Ren, Q.-D.-E.-].; Pang, Z.;
Lang, ]. A Mongolian-Chinese Neural
Machine Translation Model Based on
Soft Target Templates and Contextual
Knowledge. Appl. Sci. 2023, 13, 11845.
https://doi.org/10.3390/
app132111845

Academic Editor: Andrea Prati

Received: 17 October 2023
Revised: 27 October 2023
Accepted: 28 October 2023
Published: 30 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Ziyu Pang *

and Jiajun Lang

School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
rengingln@imut.edu.cn (Q.-D.-E.-].R.); langjiajun.he@ccb.com (J.L.)
* Correspondence: 20211800078@imut.edu.cn

Abstract: In recent years, Mongolian-Chinese neural machine translation (MCNMT) technology has
made substantial progress. However, the establishment of the Mongolian dataset requires a significant
amount of financial and material investment, which has become a major obstacle to the performance
of MCNMT. Pre-training and fine-tuning technology have also achieved great success in the field of
natural language processing, but how to fully exploit the potential of pre-training language models
(PLMs) in MCNMT has become an urgent problem to be solved. Therefore, this paper proposes a
novel MCNMT model based on the soft target template and contextual knowledge. Firstly, to learn
the grammatical structure of target sentences, a selection-based parsing tree is adopted to generate
candidate templates that are used as soft target templates. The template information is merged with
the encoder-decoder framework, fully utilizing the templates and source text information to guide
the translation process. Secondly, the translation model learns the contextual knowledge of sentences
from the BERT pre-training model through the dynamic fusion mechanism and knowledge extraction
paradigm, so as to improve the model’s utilization rate of language knowledge. Finally, the translation
performance of the proposed model is further improved by integrating contextual knowledge and
soft target templates by using a scaling factor. The effectiveness of the modified model is verified by
a large number of data experiments, and the calculated BLEU (BiLingual Evaluation Understudy)
value is increased by 4.032 points compared with the baseline MCNMT model of Transformers.

Keywords: neural machine translation; pre-training; contextual knowledge; soft target template

1. Introduction

Translation, as a bridge and link between different countries and national cultures,
is of great importance. With the economic and social development of the Inner Mongolia
Autonomous Region of China and the increasingly close exchanges and cooperation be-
tween Mongolia and China, human translation can no longer meet the needs of massively
accurate translation. Therefore, machine translation, with its excellent translation quality
and speed, has gradually become the mainstream of current information transmission,
which has considerable social and practical significance for improving the dissemination
and exchange of national culture and breaking down different cultural barriers.

With the advent of the world’s first electronic digital computer, the ENIAC (Electronic
Numerical Integrator and Computer), Warren first proposed the idea of document transla-
tion through computers in 1947 and officially proposed the concept of machine translation
in 1949 [1]. In 2003, Université de Montréal’s Kandola et al. [2] used neural network models
to improve the traditional n-gram model and the statistical language model to develop a
new language model that can utilize longer contexts to achieve better results in the text
corpus. In 2017, Arbi Haza Nasution et al. [3] proposed a constraint-based bilingual vocab-
ulary induction method in view of the lack of parallel corpora and comparable corpora.
This method extends the constraints of recent fulcrum-based induction techniques and
further enables multiple Symmetry assumption loops to reach more cognate words in the
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transgraph. Compared with previous methods, the constraint-based method proposed in
this paper has a statistically significant improvement in accuracy and f-score. The results
show that this approach has the potential to complement other bilingual dictionary creation
methods. In 2020, the Google team released the Reformer model on ICLR [4], which reduces
the spatial complexity by using Locality-Sensitive Hashing (LSH), blocks the feed-forward
model of Transformers with a reversible residual network (RevNet), and solves the problem
that the memory cost of the residual network is proportional to the number of network units
in this model. In 2022, Wang et al. [5] presented a template-based approach to regenerate
constraint and non-constrained tokens through templates. The generation and derivation
of templates can be learned through a sequence-to-sequence training framework to produce
high-quality translations while maintaining decoding speed. In 2022, Li et al. [6] utilized
an external parser to parse the source sentence to obtain dependency parsing data, then
converted the dependency parsing data into a parent word position vector and a child
word weight matrix, and finally integrated the dependency knowledge into the multi-head
attention mechanism of the Transformer encoder. Their experimental results indicated that
the bidirectional self-attention mechanism can provide richer dependency information to
effectively improve the translation performance of the model.

Integrating linguistic information into neural machine translation models and using
existing linguistic knowledge to alleviate the inherent difficulties faced by neural machine
translation and improve translation quality has become a hot topic in the field of neural
machine translation research. In 2022, Guarasci Raffaele et al. [7] studied the ability of
the multilingual BERT (mBERT) language model to transfer syntactic knowledge across
languages, using structural probes to reconstruct the dependency parse tree of sentences
and using context embeddings from the mBERT layer to represent the input sentences.
The results of the experimental evaluation show that the grammatical knowledge of the
mBERT model can be transferred between languages. Transferring grammatical knowledge
not only meets theoretical needs in the case of specific phenomena but also has important
practical significance in syntactic tasks (such as dependency parsing). In the same year,
Yulia Otmakhova et al. [8] used BERT as a pre-trained model to compare how three
different types of languages (English, Korean, and Russian) encode different layers of
morphological and grammatical features. The experimental results largely explain that
the layers of the model follow the so-called classic NLP pipeline principles, with lower
levels specifically processing part-of-speech and other morphological information, middle
layers responsible for more complex syntactic relationships, and higher levels dealing with
higher-level linguistic phenomena such as anaphora and reference. In 2023, AG Varda
et al. [9] studied the inner workings of mBERT and XLM-R to test the performance of single
neural units responding to precise grammatical phenomena (i.e., number agreement) in five
languages (English, German, French, Hebrew, and Russian). Cross-language consistency.
Experimental results show that there is a large overlap in the underlying dimensions
of encoding consistency in these languages and that the overlap in XLM-R short-range
consistency is larger than that of mBERT and peaks in the middle layers of the network.

The Uighur Mongolian script, which has a history of about 800 years, is the first script
mastered by the Mongolian people. However, Mongolian-Chinese machine translation
(MCMT) started late, and the parallel corpora are limited. The cutting-edge research on
this topic is relatively weak, so there is still great room for improvement.

In response to the scarcity of parallel corpus resources in MCMT, in 2021, Zhang
Zhen et al. [10] modeled machine translation by introducing three language pre-training
models. In the data pre-processing stage, they introduced two new unsupervised pre-
training methods and one supervised pre-training method for cross-border Language
modeling is used to learn cross-language representations, and the effects of three language
pre-training methods in Mongolian-Chinese translation are studied. Experimental results
show that the three cross-language pre-trained models significantly reduce the perplexity
of low-resource languages and increase the BLEU value by 20.4 compared with random
initialization parameters, improving the quality of Mongolian-Chinese translation. In 2022,
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He and Wang [11] took full advantage of agglutination and rich morphological changes
in Mongolian, as well as Mongolian grammar rules, to build a neural word segmentation
method in which the iLSTM-CNN-CRF neural network was used to filter the Mongolian
connecting vowels and unstable “N” as stop words to improve the quality of machine
translation, and the BLEU (BiLingual Evaluation Understudy) value in their obtained
translations reached 73.30%.

Mongolian is also the same as other languages. Each region has its own dialect
characteristics. Approximately 80% of Mongolia is Khalkha Mongolian, so the Mandarin in
Outer Mongolia is Khalkha Mongolian. On this basis, many Russian and English words
are borrowed. The situation in Inner Mongolia is much more complicated, and the accents
between the East and the West are quite different. But generally speaking, their mother
tongue is Mongolian (Cyrillic Mongolian: Moxrost xai1), which belongs to the Mongolian
family of the Altaic language family. It is a pinyin script. Its two writing methods—
horizontal writing and vertical writing—do not affect reading. This article is written in
Mongolian horizontally.

So far, researchers have made gratifying progress in the study of Mongolian-Chinese
machine translation. However, the research conditions are limited, and the construction of
the Mongolian-Chinese parallel corpus is not perfect, resulting in a large number of low-
frequency words. The traditional Mongolian word formation method is complex, and the
direct use of neural networks for translation has poor results. Based on the above problems,
this paper presents a Mongolian-Chinese neural machine translation (MCNMT) model
based on soft target templates and contextual knowledge and verifies the effectiveness of the
proposed algorithm through data experiments, indicating that it can alleviate the problem
of less parallel data available in the Mongolian-Chinese neural machine translation tasks.

2. BERT Pre-Training Model

Bidirectional Encoder Representation from Transformers (BERT) [12], as the name
suggests, is the Encoder representation of bidirectional Transformers that models polysemy
by learning embedding forms of each word through a large number of corpora to learn
context-independent semantic vector representations. The architecture of the BERT model is
shown in Figure 1, where Trm represents the encoder structure in the Transformer, meaning
that the BERT model is mainly composed of multiple encoder parts of Transformers.

(] [r2].[13]

Figure 1. Bert model architecture.

The BERT model differs from the ELMo [13] model and the GPT [14] model in that
the ELMo model adopts bidirectional LSTMs, while the BERT model uses bidirectional
Transformers, so that the BERT model has superior feature extracting capability; the GPT
model’s Transformers, which use Decoder models, are unidirectional, but the BERT model’s
Transformers, which use Encoder models, are bidirectional.

BERT is a context-based pre-training model, and like other pre-training models, it
has two steps: pre-training and fine-tuning. In the pre-training stage, the BERT model
requires a large amount of text for pre-training. In the fine-tuning stage, it is necessary to
modify the model structure according to different downstream tasks and readjust the model
parameters through specific task samples. In the pre-training stage, the BERT model utilizes
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two pre-training tasks, namely the Masked Language Model (MLM) and Next Sentence
Prediction (NSP), to achieve more applications. The MLM model learns word embeddings
of samples, and the NSP learns sentence embeddings of samples. In the Transformer model,
the word vector and the position vector of the input sentence are added up to obtain a
word vector to express the source language information. Inspired by this, the input vector
of the BERT model is calculated by adding the three vectors of Token Embedding learned
in the MLM task, Segment Embedding learned in the NSP task, and Position Embedding
representing sentence position information, as shown in Figure 2:

mput [ st | [0 [ |[owe | [ |[ 0 |[ e |[ w0 |[m |
Token ’ E[CLS] H El H Elove ’ EChina ‘ E[SEP] H El H Ehave ’ E## H E[SEP] ‘
Embeddlng + + + + + + + + +
Segment EA ‘ ‘ EA H EA ‘ ‘ EA ‘ ‘ EA ‘ ‘ EB ‘ ‘ EB ‘ ’ EB ‘ ‘ EB ‘
Embedding . + + + + + + +
Position | e || a || o || & || & |[ & |[ & |[ & |[ = ]
Embedding

Figure 2. Word vector of bert model.

Where the Position Embedding represents a position vector, and unlike the Trans-
former model, the position vector in BERT is determined by model learning. The Segment
Embedding is employed to distinguish between two sentences in an LSP task in the pre-
training stage. The Token Embedding can be used for subsequent classification tasks.
The [CLS] token that can be understood as a vector representation of all input features
is the first word of the Token Embedding; The [SEP] is an identifier for distinguishing
different sentences.

The principle of the MLM tasks in pre-training is to randomly replace some words with
[Mask], and then predict them through their contextual information during the training
process of the model. For the sentence “He holds a dictionary in his hand” as an example,
if the model selects “dictionary” in the sentence, the original sentence will be replaced
with “He holds a [MASK]”, and the BERT model can predict that the “[MASK]” here is a
“dictionary” by training.

The mask rule of LML is that the probability of each word being randomly replaced is
15%, and among the 15% probability, there are three [MASK] cases:

e  There is an 80% chance that the selected word will be replaced with [MASK], e.g., “He
holds [MASK] in his hand”;

e  There is a 10% chance that the selected word will be replaced with a random word,
e.g., replacing with bench: i.e., “He holds a bench in his hand”;

o  Thereis a 10% chance that the selected word will remain unchanged, e.g., “He holds a
dictionary in his hand”.

The purpose of introducing this rule is to let the model know that the token in the
replaced position can be any word and not pay too much attention to the token, so as to
promote the model to learn more contextual information. The input of the Next Sentence
Prediction task in pre-training is two sentences, and the training purpose is to enable the
BERT model to identify whether a sentence is the next sentence of the previous one so that
the model can understand the relationship between the two sentences.

3. Soft Object Templates and Contextual Knowledge Based Mongolian-Chinese
Neural Machine Translation Model

Most of the neural machine translation (NMT) models rely only on parallel sentence
pairs, whereas the performance of such models will drop dramatically in the case of
insufficient resources because they cannot mine the language of the corpus. Merging
monolingual knowledge such as grammar has proven to be effective for NMT, especially in
under-resourced conditions. However, existing methods do not fully exploit the potential
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of the NMT architecture for efficiently utilizing external prior knowledge. Therefore, in
order to increase the utilization rate of the NMT model on the grammatical knowledge of
the pre-training model and improve the translation performance of the NMT model on the
Mongolian-Chinese low-resource corpus dataset, this paper constructs soft target templates
and contextual knowledge-based MCNMT models, and the process of modeling can be
divided into three major steps. Firstly, a baseline Transformer model is used to extract soft
target templates; Secondly, the obtained soft target templates are fused by improving the
baseline model structure; Finally, the contextual knowledge of the corpus is extracted from
the pre-training model by using the dynamic fusion mechanism and knowledge extraction
paradigm and integrated into the MCMT model to construct a new MCNMT model.

3.1. Soft Target Template Extraction

The extraction process for soft target templates is divided into two steps: (1) parsing
the target language (Chinese) using a syntax parsing tree to obtain the soft template
from it; and (2) training the baseline Transformer model using parallel data composed of
source language text and the soft template obtained in the previous step to extract the soft
target template.

In this paper, the sentence-based selection parsing tree is first extracted by using the
natural language processing tool Standford CoreNLP system v4.5.3, and then the nodes
beyond the set depth are pruned off, and finally the clipped subtree is restored in the
original order to obtain the template data. The process of obtaining a template from the
parsing tree is demonstrated in Figure 3. The syntax parsing tree can display the structural
and grammatical information of the Chinese text sentence, and the template extracted
by the pruning operation consists of terminal nodes and non-terminal nodes. Taking the
sentence “There are many people running here” as an example, the tree structure generated
by the syntax parsing tree has a terminal node set S = {Here, there are, many, people,
running} and a non-terminal node set V = {S, NP, VP, EX, VBP, DT, NNS, VBG}. The final
extracted template is that “There are NP and VP here”.

Figure 3. Constituency-Based Parse Trees. The figure shows the tree structure generated by the
grammar parsing tree. Given a target sentence and a determined tree depth, we obtain subtrees by
pruning nodes. The target sentence is “There are many people running here.” The subtree can then
be converted from left to right into the soft target template “There is NP VP”.

The depth of the parsing tree based on selection areas is determined by the following
simple but effective strategy:

d = min(max(L x A,v1),v2) 1)

where L is the length of the input sentence, v, is the lower limit depth of the subtree, v,
is the upper limit depth of the subtree, and A is the ratio parameter of the length of the
source sentence.

In order to extract the soft target template, this paper uses the Transformer [15]
baseline model to train the Mongolian text and extracts the soft target template with soft
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temple parallel data obtained by the parsing tree above, with the same parameters as the
baseline model. The encoder and decoder read the Mongolian text and soft template data,
respectively, and encode them into the vector representation. During the model training
process, the soft target template is predicted by using beam search, and the top-k of beam
search is set to 1. That is, for each input of a Mongolian sentence, only one corresponding
soft target template is extracted and output as the result. The extracted data can be used as
training data for the next stage of the experiment.

Some results of the extracted soft target templates through the Transformer model are
listed in Table 1:

Table 1. Examples of Soft Target Template.

il ool ol e Wy Ol T O 968 ) Tt Bty (There are dozens

of large and small snow pits on the snow surface of Snow Lake.)
EWMINEE LA RKR/INVINISE YD (There are dozens of large

and small snow pits on the snow surface of Snow Lake.)

Mongolian text

Chinese text

Soft target template E#AR LCP H CD ADJP (Snow Lake’s LCP has CD ADJP.)
o Qoo iyl vy ot 358 eered fromiimeind Bl (A o (T
Mongolian text Environmental Protection Agency has recently established limits on

some harmful emissions.)
INERIP BRI T —%8 EHEBW IR (The Environmental
Chinese text Protection Agency has recently established limits on some harmful
emissions.)
NR 5 VP —L£EVA HEEIHIFRE (NR recently VP limits some VA

Soft target template emissions.)

3.2. Dynamic Fusion Mechanism

In the dynamic fusion mechanism proposed in this paper, all layers in the BERT
pre-training model are represented by using a multilayer perceptron (Gi(-)). Let the
source language sequence be x = (xq,Xp,...,x1) and the target language sequence be

y = (yl, Vorees y]) , where I and ] denote the lengths of x and y respectively.
In the Transformer model, the encoder encodes the source language sequence as
Rg, which consists of a series of <r1%,1, rELZ, el rﬁu, e, rﬁ’l) , where N is the depth of the

encoder. RE can be calculated by:

HE = Att(QE Kk, VE,

RE = LN(HE + FNN(RE_, ) ) @

In the BERT pre-training model, the source language sequence is encoded as RY, with
RP = (RP,. LR RE), where L represents the number of layers of the pre-training

model. The representation R} of the I-th layer is given by the following multilayer perceptron:

Rl =G (R}’), 3)

On the encoder end of the Transformer model, since the attention to information
of each layer is different, specific contextual knowledge from all layer representations is
obtained through the layer perception attention mechanism, and its calculation formula is
as follows:

I 7 1¢
e; = FFN <12 My rf;,i> )

___exp(e) 5)
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L
Ch=Y aRf (6)
1=1

The layer perception attention mechanism can determine the importance of informa-
tion in the pre-training model to the current layer, so as to obtain contextual knowledge that
is more suitable for the current layer through C[. Similarly, the attention to information
of each hidden state in the same layer is different from each other. Therefore, a context
gating mechanism is adopted to control the fusion rate of each hidden state, that is, the rep-
resentation c! ; from C[ is fused into the corresponding state rf, of RE, and the calculation
formulas are as follows: ’

Yn,i = sigmoid (FFN (rE,i'CE,J ) (7)
fE,i = rE,i + Yn,i*cg,i (8)

The conceptual diagram of the dynamic fusion mechanism at the encoder end of the
transformer model is shown in Figure 4:

n.1 Va2 n3
)t lém o
r1+1,l 1+1.2/ 47,33/ .-
a;,
T T T a,
HE@ @ - () (52 (52
T T T 21 The n-th layer of encoder
rl—],] i—1.2/ X]13/ -+

Specific task representation

Figure 4. Dynamic Fusion Mechanism at encoder end.

3.3. Knowledge Extraction Paradigm

In our proposed translation model, the contextual knowledge extracted during BERT
pre-training is integrated through the dynamic fusion mechanism on the encoder end. In
addition, the knowledge extraction paradigm is also added on the decoder end to facilitate
the translation model in learning the specific task representation in the pre-training process.

In the decoding stage, the model generates the j-th word by maximizing the conditional
probability using the following formulas:

CRr = Att(QR, KE, VE
R = LN(FFN (S +CF) ) )
p (yj ‘y < x) = softmax (FFN (rBL]-) )
where, D represents the decoder, M is the number of layers of the decoder, QB[ is from the

output SY; of the previous layer of the decoder, S is calculated by Equation (2), with K, Q,
and V being from the R} _; of the previous layer of the decoder, and K and V¥ are from

the output RE; of the encoder.
The final optimization function of the translation model is:

Lr= }élogP(yj‘y<j,x; or) (10)

where 07 is a parameter of NMT.



Appl. Sci. 2023,13, 11845

8 of 19

In terms of word-level granularity, the knowledge extraction paradigm mainly learns
the output distribution of the model from the pre-training model, and the training function
can be represented by:

y; 6p> -log (P (yj =k XY s GT)) (11)

where ] is the length of the given target sentence y, and V is the vocabulary. P (yj =k

XYy eT)
is calculated by Equation (9).

In terms of sentence-level granularity, the contextual knowledge of the sentence is
learned by direct fitting, and the training function is written as:

1 D P 2 1 J D P 2
£ = | [R% - RE[], = 1o ek — o 12
J 2 ]33 2

where M represents the output layer of the decoder, and rI\D/Lj and I{,j are from the decoder
and the pre-training model, respectively.
Finally, the translation model is optimized for training by fitting three loss functions
through Formula (13):
L=Lr+nLs+ BLw (13)

where 1 and (3 are hyperparameters for balancing the fusion granularity of the word-
level and sentence-level knowledge extraction paradigms, and they both are set to 0.5 in
this work.

The conceptual diagram of the knowledge extraction paradigm adopted by the Trans-
former model on the decoder end is presented in Figure 5:

To learn output distribution

-

To learn contextual knowledge |

The L-th layer of the pre-training model The M-th layer of the decoder

Figure 5. Knowledge Extraction Paradigms at the decoder end.

3.4. MCNMT Model Based on Soft Target Templates and Contextual Knowledge

The concept of the MCNMT model based on soft target templates and contextual
knowledge is inspired by the guided translation model, that is, the source language data
and the template with the target language grammar information are fused by the decoder,
and the template is used to guide the model to improve the utilization rate of grammar
knowledge. The contextual knowledge of the target language extracted from the BERT
pre-training model is integrated into the model to improve the translation performance.

An example of the template-guided model translation is shown in Figure 6:
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Source language Template

e

N\ '

Target language =R

Figure 6. Example of Template-Guided Model Translation. The Mongolian language in the picture
means “I like playing basketball”. Through the guidance of the template, the target Chinese language
is finally obtained. S represents the subject and VP represents the verb phrase.

On the basis of the baseline Transformer model, an additional Transformer encoder
structure named soft target template is introduced on the encoder end. It has the same
composition structure as the Transformer encoder of the source language and is used to
encode soft target template data and convert it into hidden layer vectors. At the same
time, the dynamic fusion mechanism and knowledge extraction paradigm are integrated
into the model in a fusion manner to improve the utilization of contextual knowledge.
Figure 7 clearly illustrates the use of integrating various contextual knowledge from the
BERT pre-training model into the NMT model.

Layer perception

I attention I

Dynamic fusion
mechanism

Context gating

BERT pre-training,
model

MCNMT
model

sentence-level

Knowledge extraction
extraction »
paradigm —>
word-level

extraction

Figure 7. Obtaining Contextual Knowledge Using the BERT Pre-training Model.

From Figure 7, the dynamic fusion mechanism uses the layer perception attention
mechanism and context gating mechanism to respectively extract attentions between
different layers and the same layer in the pre-training model and applies them to the
encoder end; the knowledge extraction paradigm employs word-level extraction and
sentence-level extraction to obtain the output distribution and contextual knowledge of the
pre-training model, respectively, and applies them to the decoder end.

The overall structure of the model is presented in Figure 8:

Linear & Softmax

Target Decoder

Add & Norm
Feed Forword

Add & Norm
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

[

oo | | D

»‘ Add & Norm ‘ > Add&Norm ‘

i i

Feed Forword ‘ Feed Forword ‘

NX| —1 NX —T NX

—b‘ Add & Norm —>‘ Add & Norm ‘

Multi-Head
Attention

Multi-Head
Attention

AT 4 A T4 L1
e ) A8 4
Position Position Position
Encoding G ; % Enwd\ngé Q 7 Encoding 6 Q 7
( Source Embedding ) (TemplateEmbedding) ( Target Embedding )

Figure 8. Model Architecture of a Mongolian-Chinese Neural Machine Translation Model Fused with
Soft Target Templates.
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The formula for generating Chinese text from Mongolian text with soft templates is
as follows:

P(Y|X) = Po, _(TX)Pg, _,, (Y|X,T) (14)

XT->Y

where, 0x_- 1 is the parameter of the prediction soft target template Transformer model,
and 0 x t_~vy) is the parameter of the fusion soft target template model.

The generation of Chinese translation by the Transformer decoder is based on the
hidden state of the source language encoder and the soft target template encoder. Two
different sets of attention parameters are used in the decoder’s Encoder-Decoder multi-
head attention to process two different encoders, respectively, and the hidden layer vectors
containing the source language information and these having the soft target template
information are fused through the gating unit. The formulas are as follows:

B = o(WyZ¥Y + UrZT) (15)

Z=pZ" +(1-p)z"Y (16)

where, Wy and Uy are the parameter matrices, o is the Sigmoid activation function, Z is
the hidden state of the decoder, and (3 is the control parameter of the fusion degree of
Mongolian text and templates.

In this paper, the model parameters are updated using the maximum likelihood
estimation algorithm. When the translation model is trained without a soft target template,
the optimization formula for the loss function is:

LeX—>\( (D) = Z 1OgPGX—>\( (Y|X) (17)
X,YeD

When the translation model is trained with a soft target template, the optimization
formula for the loss function is:

Loyr oy(D) = ) logPo,. _ (Y|XT) (18)
X,YeD

Since low-quality soft templates are inevitable when constructing soft target template
data, and their noise will affect model training and reduce the translation quality, a parame-
ter called scale factor is introduced into the training process of the model to optimize these
two loss functions at the same time. The soft target template is used in part (1 — «) while
contextual knowledge is applied in part o, which makes the model stable, and the formula
is as follows:

Lo(D) = a(Lay_y (D) +1Ls(D) + BLw(D)) + (1 - w)Loyy, (D) (19)

oy
where, « is the fusion ratio of soft target template and contextual knowledge, taken as 0.5;
1 and 3 are the proportion of word-level context and sentence-level context in contextual
knowledge, and they both are taken as 0.5; Lg(D) and Ly (D) are given by Equations (11)
and (12), respectively.

The strategy of the MCNMT model based on soft target templates and contextual
knowledge is demonstrated in Figure 9:

Contextual
knowledge

Soft target templates a
and contextual
knowledge based

MCNMT model

Soft target templates

Figure 9. Integration Strategy of the Mongolian-Chinese Neural Machine Translation System.



Appl. Sci. 2023,13, 11845

11 0f 19

4. Experiments and Analysis
4.1. Experimental Procedure

The experimental process of this work is shown in Figure 10:

Chinese
corpus

STRAT

M-C
parallel corpus

Syntactic structure
analysis &
extraction template

Source language
Transformer

ongolian
corpus

encoder

Dynamic fusion
mechanism

¥

Transformer

BERT pre-
training model

baseline

model Soft target
template Transformer Knowledge
extraction paradigm
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Figure 10. Experiment Flow Chart.

4.2. Evaluation Indexes

The Bilingual Evaluation Understudy (BLEU) method proposed by IBM is used to
evaluate machine translation models. BELU is an accuracy calculation model based on N-
garm that uses the cumulative BLEU values as the final reference to calculate the weighted
average value of BLEU-1, BLEU-2, ..., BLEU-N. The larger N and the bigger the BLEU
value, the higher the accuracy of the translation model. The BLEU value is calculated by:

N
BLEU = BP x exp ( ) wnloan> (20)
n=1
1 [ifc>r
BP = {el_i <ifc < r> @)

where wy, is the weight corresponding to different n-grams; P, is the probability calculated
after parsing the sentence using different n-grams; c is the length of the candidate sentence;
and r is the length of the reference translation.

To facilitate observation, the BLEU value is generally expanded by 100 times. The
BLEU value of 4 g is used as the evaluation index in this paper.

4.3. Data Pre-Processing
4.3.1. Data Cleaning

This work uses the home-made 1.26-million-line Mongolian-Chinese parallel corpus by
the Artificial Intelligence and Pattern Recognition Laboratory of Inner Mongolia University
of Technology in China, which covers a wide range of fields, including news records,
medical reports, proper nouns or phrases, two-part allegorical sayings, daily conversations
or online chats, excerpts of literary works, terms and nouns related to the computer field,
etc. Many of these bilingual parallel sentence pairs are irregular sentence pairs that need
to be modified or deleted. After cleaning and processing, including data denoising, text
standardization, and text deduplication, a total of about 20,000 sentence pairs that are
irregular and difficult to meet the requirements of the specification are deleted, leaving
1,244,139 lines.
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4.3.2. Word Segmentation

The NMT model is limited by objective conditions such as video memory capacity
during training, and its model size is usually controlled. Hyperparameters directly related
to the model scale include word embedding dimensions, sentence length, corpus dictionary
size, the constituent units and number of layers of the encoder and decoder, etc. Take a
dictionary as an example. Before construction, a smaller frequency of occurrence of a word
is usually set as a limit. Words with a frequency lower than the limit are marked with UNK.
The size of the dictionary is generally limited to about 30,000 to 50,000 words. Between
them, the translation model cannot recognize the “UNK” information during the training
process. If unregistered words—words that occur less frequently—are entered during
the testing or validation phase of the model; the model cannot solve this problem. What
follows is the difficulty of the NMT model in processing these words, which is reflected in
the fact that words marked as UNK cannot participate in model training, which reduces
the ability of the NMT model to completely capture the semantic information of the source
language and target language, and if certain sentences The first half is the same, but the
second half is replaced by UNK, which will also cause ambiguity. The main solutions are:
1. Use an external dictionary or expand the vocabulary. 2. Use fine-grained grammatical
units at the character (Character) level and sub-word (Sub-word) level.

The morphological form of Mongolian is similar to that of English. There are roots and
affixes, and the same root with different affixes can form words with different meanings,
which leads to the rare Mongolian words. Therefore, this article uses the BPE-Dropout
algorithm to perform fine-grained segmentation of the Mongolian-Chinese bilingual par-
allel corpus. In 2016, Sennrich et al. [16] introduced the BPE algorithm into the field of
natural language processing to effectively alleviate the problem of unregistered words. The
Algorithm 1 [16] process is as follows:

Algorithm 1 BPE word segmentation

Input: corpus data
Output: Multi granularity fusion dictionary Vgpg
Translate corpus data into the most basic characters
Count the frequency of occurrence of the characters
For MON (merge operand):
Merge the character pairs with the highest frequency of occurrence, denoted as
Symbol
Update multi granularity fusion dictionary, Vgpg U Symbol
End

Return Multi granularity fusion dictionary Vgpg

In this algorithm, only the unique hyperparameter, the merge operand, is controlled.
The size of the vocabulary list can be controlled by artificially setting the merge operand.
In this work, the merge operand is set to 20,000. Words are separated by using @@, the
Mongolian text is divided into words or subwords with different granularities; and the
Chinese text is segmented into single words.

Examples of Mongolian-Chinese bilingual word segmentation are shown in
Figures 11 and 12 respectively:

=Q@"@@*"H@Q~QQ@"@O*@@*~*@@~@A@*@@* @@
~@@+@@-@Q*@@*@@~'@Q"~@Q*' @Q@).
=/@Q@'QQ* @@~*Q@A@* Q@' @Q*@@=Q@Q~~Q@@
*@@'QQ*Q@Q@*Q@Q*@Q@ @@~ Q@@Q@" .

Figure 11. Mongolian word segmentation results through BPE. Mongolian is divided into syllables

” //I/

and phrases. The sentence meanings in the figure are “The streets are very lively now.”, “I'll rest at
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your house for a while before leaving.”, “The environment in which people come to survive.”, and
“Please check if the program exists.” respectively.

N@@%@@E@@ie@ - @@F@@#@@it@a@i.
Re@EQQFQEIQEFQQHQQ - @Q2Q@@HQ@ -
\@@X@@H@@YU@atea@ana@afaa.
HeerEEQE%QEHEQQTFQERQQ QAT @@L -

Figure 12. Chinese word segmentation results through BPE. Chinese is divided into single characters.
The sentence meanings in the figure are “The streets are very lively now.”, “I'll rest at your house for

a while before leaving.”, “The environment in which people come to survive.”, and “Please check if
the program exists.” respectively.

After word segmentation, the Mongolian-Chinese parallel corpus still has a total of
625,697 sentence pairs.

4.4. Experimental Environment and Parameter Configuration

Server system configuration: The server system used is Linux version 3.10.514.el7.x86_64;
The CPU processor is an Intel Core i7-6700 CPU@3.40 GHz * 8; The GPU processor is a
Nvidia Tesla P100-PCIE.

Transformer model parameter settings: The learning rate of the Adam W optimizer is
set to 0.0001, B1 = 0.9, B, =0.999, € =1 x 1078, and A = 0.02; The I, of learning rate adjust-
ment strategies use a Warm Up strategy of Transformers, with warm_step = 3000; The Word
vector dimension Embedding_dim = 256, the number of feedforward neural network layers
is 2048, the number of heads for multi head attention is set to 8, and dropout_rate = 0.2; The
batch size batch_size = 120; The maximum sentence length max_length = 100; The number
of layers for both encoders and decoders is 6.

After a series of pre-processing, the remaining 625,697 sentence pairs in the Mongolian
Chinese parallel corpus were randomly shuffled and divided into different datasets, as
depicted in Table 2:

Table 2. Dataset division.

Total Sentence Training Set Validation Set Testing Set
1,625,697 605,697 10,000 10,000

4.5. Experimental Results and Analysis
4.5.1. Comparative Tests

In this paper, the symbol of the baseline model was defined as Transformer_Base, and
that of the proposed MCNMT model was defined as Transformer_Temp_Kno. To reduce
the uncertainty due to a single test, three tests were performed on the conditions of the
random seeds of S; = 125, S, = 1234, S3 = 4096, as well as the corresponding initialization
network parameters. The number of training rounds per session Epoch = 40.

The training times for the Transformer_Base and Transformer_Temp_Kno are listed in
Table 3:

Table 3. Model parameters and training time.

Total Parameter Average
Model Number $1 $2 53 Time (Min)
Transformer_Base 48,791,375 1536 1531 1518 1528.3

Transformer_Temp_Kno 49,451,601 12,078 2086 2072 2076.8
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The changes of BLEU values for each model are shown in Table 4:

Table 4. Comparison of BLEU values of different models.

BLEU Value i
Model Averag.e Time
S S, S5 (Min)
Transformer_Base 39.735 39.614 39.153 39.501
Transformer_Temp_Kno 43.593 43.144 43.861 43.533

As can be seen from Table 4, compared with the baseline model, our proposed Trans-
former_Temp_Kno model has a higher BLEU value, with an increase of 4.032. Although
the training speed of our model has decreased, its overall translation quality and stability
have been improved to a certain extent.

Figures 13 and 14 show the loss function curves and accuracy curves of the Trans-
former_Temp_Kno model on the training and validation sets, respectively, which were
obtained with the aforementioned three seeds.

35
—_—125

— 1234
3.0 1 — 4096

Train_loss
Valid_loss

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch

Figure 13. Loss function curves of the Transformer_Temp_Kno model with various seeds on the

training set and validation set.

0.7 4

o
Y

o

3

=1
1

Train_acc

s o

= o

L
o
>
&
i

Valid

5
o
1

— 25 0454 — 125
— 1234 e 1234
— 4096 040 —d4096

e

0 5 10 15 20 25 30 35 40 6 5 10 15 20 25 30 35 40
Epoch Epoch
Figure 14. Accuracy curves of the Transformer_Temp_Kno model with various seeds on the training

set and validation set.

Table 5 presents the comparison of several translation examples obtained through
testing on the test set with the random seed of Ss3.

From each translation example in Table 5, due to the limited scale of the Mongolian-
Chinese parallel corpus, the baseline model often has the problem of insufficient grammati-
cal information in the translation process, and when translating some long sentences, it can
only translate word by word, resulting in the semantics of the translated Chinese script.
The integration of soft target templates and contextual knowledge into the model can help
the model learn semantic knowledge and guide the translation so that the translated text is
richer and more fluent.
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Table 5. Translation examples.

Source language sentence
Reference translation
Transformer_Base

Transformer_Temp_Kno

o/ S o ey oy B oAt (s oK s e S sty iy 87 0 ol ol (Gt Tived
assion is worthless, only lasting passion is profitable.)

p
FEEE R MERE, RERARMIEA ZMER - (Short-lived passion is worthless, only
lasting passion is profitable.)
FE BRI, AR ARG R A EL - (There is no money in short-lived passion, only
lasting passion can make money.
HEEERNMERE, A ARBIEA BB - (Short-lived passion is worthless, only

lasting passion can make money:.)

Source language sentence

Reference translation

Transformer_Base

Transformer_Temp_Kno

ey Il st WA 9 St ot 66 WM Bl o8 W o el (o o W e oo el By (The

round moon is like a big mirror hanging in the dark sky, and the stars in the distance are twinkling

like beautiful pearls.)
B A Femt G0t — RS AR B RE S, mAMEE—N— N2 E . (The

round moon is like a big mirror hanging in the dark sky, and the stars in the distance are twinkling

like beautiful pearls.)

moon is like a mirror hanging in the dark sky, and the stars in the distance are shining like beautiful

pearls.)
I A st — KB PR N RE S, mA 2R RN AR ETIEZER . (The round
moon is like a big mirror hanging in the black sky, and the stars in the distance are shining like
beautiful pearls.)

Source language sentence
Reference translation
Transformer_Base

Transformer_Temp_Kno

W Gl %o ol Towery K A o e Ao W Bty K o ol B ¢ v e o W K oed 6K (A person’s

value should depend on what he has contributed, not what he has achieved.)

— D AHIHE, BOZEMTIEN T4, AN SEMBUE T4 - (A person’s value should depend

on what he has contributed, not what he has achieved.)
— AN ERME T2 TTE, NREHA T 28EE - (A person’s value is based on what he has
contributed, not what he has achieved.)

— M ANRINE, AROZABMBIG T4, BEBMTIE T T2 - (The value of a person should not

only depend on what he has achieved, but also what he has contributed.)

4.5.2. Ablation Tests

To investigate the impact of different module modifications on model detection perfor-
mance and verify the effectiveness of the proposed method, the impact of different fusion
methods on model performance was studied by conducting comparative experiments using
the random seed of Ss.

The calculated BLEU values are summarized in Tables 3-5:

By comparing the BLEU values of different models in Table 6, it can also be concluded
that our MCNMT model can improve the translation quality, and its BLEU value is 2.58
higher than that of the baseline model.

Table 6. Ablation tests.

Model Fusion Method BLEU Value
Transformer None 39.50
Dynamic fusion mechanism 40.89
Encoder Kngwledge extractiqn paradigm 40.26
Dynamic fusion mechanism, Knowledge
. . 40.53
extraction paradigm
Dynamic fusion mechanism 39.16
Decoder Kngwleq ge extractiqn paradigm 40.62
Dynamic fusion mechanism, Knowledge 39.77
extraction paradigm '
Transformer_Temp_Kno Encoder: Dynamic fusion mechanism 108

Encoder: Knowledge extraction paradigm
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Different fusion strategies applied on the encoder end are shown in the
Transformer_Encoder section in Table 6. Although knowledge extraction can improve
the translation quality of the model, it is not as effective as the dynamic fusion mechanism,
and the use of both methods together does not improve the performance of the algorithm,
indicating that the dynamic fusion method on the encoder end covers the effectiveness
of knowledge extraction. In addition, different fusion strategies used on the decoder end
are presented in the Transformer_Decoder section in Table 6. Under the same settings,
the BLEU value is 0.34 lower than that of the baseline model, indicating that the dynamic
fusion mechanism is ineffective at the encoder end.

The comparative experimental results show that it is correct to use different context
extraction methods on the encoder and decoder ends separately because the responsibilities
of the encoder and decoder are different. Since the encoder obtains contextual information
by modeling input sentences, the use of external contextual information can improve its
modeling performance. Therefore, even though sentence-level knowledge extraction can
be applied on the encoder end, the effect is not as good as that of the dynamic fusion
mechanism. The main responsibility of the decoder is to generate the target sentence
through the input source representation, which involves the transformation problem of
semantic spaces. Therefore, using a knowledge extraction paradigm that can learn the
output distribution is more suitable for the decoder, which helps the model generate
better sentences.

Figures 13 and 14 show the loss function and accuracy curves of the models with six
different fusion methods on the training and validation sets, respectively. (Encoder_Dy rep-
resents using the dynamic fusion mechanism on the encoder end; Encoder_Dis represents
using the knowledge extraction paradigm on the encoder end; Encoder_Dy_Dis represents
using both the dynamic fusion mechanism and the knowledge extraction paradigm on the
encoder end; Decoder_Dy represents using the dynamic fusion mechanism on the decoder
end; Decoder_Dis represents using the knowledge extraction paradigm on the decoder end;
Decoder_Dy_Dis represents using both the dynamic fusion mechanism and the knowledge
extraction paradigm on the decoder end. Each model represent an improvement based on
the Transformer baseline model).

From Figures 15 and 16, for both the training and validation sets, the loss function and
accuracy of Decoder_Dis curves and Encoder_Dy curves are optimal and similar, while
Decoder_Dy curves show the worst performance. This also demonstrates that using the
dynamic fusion mechanism on the encoder end and the knowledge extraction paradigm
on the decoder end is an optimal fusion strategy.

5.0 ——Decoder_Dy —— Decoder_Dy .
’ ——Decoder_Dy_Dis 1 — Decoder_Dy_Dis
4.5 Encoder_Dis Encoder_Dis

Encoder_Dy_Dis | Encoderﬁ[)yiDis
4.0+ —— Decoder_Dis 35| —— Decoder_Dis
—— Encoder_Dy

—— Encoder_Dy

140 fF— |
F——— ]
—

—
FE Emmmes

Valid_loss

s 36 37 38 39 40 536 37 38 39 40

Figure 15. Loss function curves on training set and verification set.
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Figure 16. Accuracy curves on training set and verification set.

5. Conclusions

In order to improve the translation quality of Mongolian-Chinese NMT on low-
resource corpora, we explored a method to enhance syntactic learning capabilities using
soft templates and pre-trained models. By adding an additional soft target encoder on the
encoder side to fuse the source language data and the template with the target language
grammatical information, the template is used to guide the model. At the same time, in
order to improve the utilization of grammatical knowledge, the model will be pre-trained
by Bert. The contextual knowledge of the target language is extracted and integrated
into the model to further improve the translation effect of the model. Experiments were
conducted on the initialization network parameters corresponding to the three random
seeds. The BLEU value of Transformer_Temp_Kno was 4.032 points higher than that of
Transformer_Base, and the translation quality was significantly improved.

Since each layer of encoder in the Transformer model pays different attention to infor-
mation, we adopt a dynamic fusion mechanism, which extracts the differences between
different layers and the same layer in the pre-training model through the layer-aware
attention mechanism and the context gating mechanism. attention. The knowledge ex-
traction paradigm is also added to the decoder side to extract the output distribution of
the pre-trained model, allowing it to assist the translation model in learning the specific
task representation in the pre-training during the training process. We used ablation ex-
periments to study the impact of different modules on model performance. Finally, by
comparing the BLEU values of Encoder_Dy, Encoder_Dis, Encoder_Dy_Dis, Decoder_Dy,
Decoder_Dis, and Decoder_Dy_Dis, we found that the BLEU score using the dynamic
fusion mechanism on the encoder side is the highest, which is The BLEU score of using the
knowledge extraction paradigm on the decoder side is the highest at 40.89, which is 40.62.
From the above, it can be seen that the integration strategy of using the dynamic fusion
mechanism on the encoder side and the knowledge extraction paradigm on the decoder
side is optimal.

Although this study’s Mongolian-Chinese neural machine translation model based on
soft target templates and contextual knowledge has achieved remarkable achievements
in many aspects, there are some obvious limitations that need to be considered in the
interpretation of the research results and the planning of future work. First, although the
soft target template used in this study improves the accuracy of the translation model, its
performance may still be limited in some cases. The effectiveness of soft target templates
may vary between language pairs, domains, or contexts, so in some special cases, the
translation quality may not be as good as expected. This means that more research is
needed to improve model performance in various translation tasks, especially in domain-
specific or dialect translation. Moreover, this study is limited to the Mongolian-Chinese
translation task. Although this is a challenging translation task, it also limits the application
of the model to other language pairs. Future research should explore the performance of
this model in different language pairs to understand its generalizability and adaptability.

The pre-training model in this article uses the BERT model, which was chosen for
several important reasons. First of all, BERT has achieved significant success in the field
of natural language processing and is widely recognized as a high-performance natural
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language processing model. Its bidirectional encoding capabilities allow it to better capture
contextual information in text, which is particularly important in machine translation
tasks. By leveraging pre-training on large-scale text corpora, BERT can learn rich language
representations to excel in a variety of natural language processing tasks. Although our
research focuses on the Mongolian-to-Chinese translation task, the BERT model has demon-
strated its adaptability in multi-language translation and other natural language processing
tasks. Second, BERTs open-source nature and widely available pre-trained models make
it ideal for research and experimentation. We can easily obtain and utilize BERT models
without having to build a completely new neural network model from scratch. This sig-
nificantly saves research resources and time, allowing research to focus on deeper tasks
and questions. We are fully aware that BERT represents only one of many natural language
models, which means that we cannot only use BERT as a pre-training model. In future
research, we plan to explore the possibility of testing with other NLMs. This includes,
but is not limited to, the GPT series, XLNet, T5, and other natural language models. This
multi-model testing approach will allow us to more fully understand the performance
of different models in the Mongolian to Chinese translation task and will also facilitate
cross-model performance comparisons to reveal the differences between various natural
language models adaptability.
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