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Abstract

Prompt engineering is crucial for leveraging large language models (LLMs), but
existing methods often rely on a single optimization trajectory, limiting adaptability
and efficiency while suffering from narrow perspectives, gradient conflicts, and high
computational cost. We propose MAPGD (Multi-Agent Prompt Gradient De-
scent), a framework integrating multi-agent collaboration with gradient-based opti-
mization. MAPGD features specialized agents for task clarity, example selection,
format design, and stylistic refinement; semantic gradient coordination to resolve
conflicts; bandit-based candidate selection for efficient exploration-exploitation;
and theoretical convergence guarantees. Experiments on classification, generation,
and reasoning tasks show MAPGD outperforms single-agent and random base-
lines in accuracy and efficiency. Ablations confirm the benefits of gradient fusion,
agent specialization, and conflict resolution, providing a unified, gradient-inspired
multi-agent approach to robust and interpretable prompt optimization.

1 Introduction

Recent advances in large language models (LLMs) have demonstrated that while increased scale
enhances generalization, it also amplifies sensitivity to prompts. Minor variations in wording,
structure, or phrasing can induce substantial shifts in model outputs, revealing the inherent brittleness
of existing prompt-based interactions. This observation underscores the critical need for robust and
efficient prompt optimization strategies. Traditional approaches, including manual engineering and
random search, often suffer from inefficiency, inconsistency, and limited scalability. Even more
sophisticated single-agent, gradient-inspired optimization methods are constrained by their reliance
on a single trajectory, which inherently restricts their adaptability and introduces conflicts among
competing improvement signals.

To address these limitations, we introduce MAPGD (Multi-Agent Prompt Gradient Descent),
a framework that reconceptualizes prompt optimization as a collaborative, multi-agent process.
MAPGD draws inspiration from human team dynamics, where complementary expertise is dis-
tributed across specialized agents, each dedicated to refining a distinct aspect of the prompt, including
instructional clarity, example selection, format structuring, and stylistic adaptation. Operating in
parallel, these agents generate specialized gradients that collectively capture multi-faceted improve-
ment signals. To reconcile heterogeneous updates, MAPGD employs a semantic gradient coordinator
that projects textual feedback into a shared semantic embedding space, enabling systematic conflict

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: SEA.



detection, semantic clustering, and fusion of competing signals. This principled integration pre-
serves coherence while effectively guiding collaborative prompt descent.This process is illustrated in
Figure 1.

Candidate prompts are further refined through a combination of beam search with Monte Carlo
sampling and a bandit-based selection mechanism, which dynamically balances exploration and
exploitation under constrained evaluation budgets. From a theoretical perspective, MAPGD offers
provable convergence guarantees, demonstrating almost sure convergence to a local optimum at a
rate of O(1/

√
T ). Although multi-agent collaboration introduces additional computational overhead,

semantic fusion and bandit-based selection significantly reduce redundant evaluations compared
to exhaustive search or single-agent baselines. Extensive empirical studies across classification,
generation, and reasoning tasks validate MAPGD’s effectiveness, showing superior performance,
improved efficiency-per-token, and reduced evaluation cost. Beyond practical gains, MAPGD
advances the conceptual foundation of prompt optimization by bridging gradient-based learning
principles with multi-agent cooperation, establishing a scalable and robust paradigm for aligning
LLMs with complex human intentions.

Figure 1: Overview of the MAPGD framework, illustrating the multi-agent collaboration from initial
prompt to optimized prompt via specialized agents, performance signals, candidate prompts, and
fused semantic gradients.

2 Related Work

Prompt optimization lies at the intersection of several active research directions.

Prompt Learning and Optimization. The rise of large language models has spurred a surge of
interest in prompt design. Manual prompt engineering, while effective in some cases, lacks scalability.
Automated approaches, including gradient-free methods such as reinforcement learning (RLHF Deng
et al. (2022)), evolutionary search (Fernando et al., 2023), and Bayesian optimization, attempt to
navigate the discrete prompt space more systematicallySahoo et al. (2025). Meanwhile, continuous
prompt tuning methods (e.g., prefix tuning (Li, Liang, 2021), soft prompts (Lester et al., 2021))
optimize embeddings rather than natural language, which limits interpretability. MAPGD instead
focuses on interpretable natural language optimization, leveraging structured feedback to improve
both human readability and model alignment (Prasad et al., 2022).
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Multi-Agent Collaboration. Multi-agent systems have long been studied in reinforcement learning,
distributed AI, and game theory. In the context of NLP, recent works have explored multi-agent debate
(Liang et al., 2023; Du et al., 2023), cooperative reasoning, and collaborative content generation (Hong
et al., 2024). These systems demonstrate that agent specialization—assigning roles with distinct
expertise—can outperform monolithic optimization. MAPGD inherits this principle, assigning agents
to distinct prompt dimensions and coordinating their outputs via gradient fusion (Wu et al., 2023).

Gradient-Inspired Prompt Descent. ProTeGi (Pryzant et al., 2023) and related frameworks
approximate prompt gradients through LLM self-feedback, iteratively refining prompts based on
performance errors. While effective, single-agent gradient descent struggles with signal diversity and
conflict resolution (Xiang et al., 2025). MAPGD advances this line by introducing semantic gradient
embedding, enabling conflict detection through cosine similarity and fusion through LLM-based
synthesis (Pryzant et al., 2023).

In summary, MAPGD contributes a unified framework that connects prompt learning, multi-agent
collaboration, and gradient descent principles, offering a scalable and interpretable pathway for
robust prompt optimization (Li, Liang, 2021; Lester et al., 2021; Deng et al., 2022; Liang et al., 2023;
Pryzant et al., 2023).

3 Methodology

3.1 Framework Overview

MAPGD conceptualizes prompt optimization as a hybrid discrete-continuous gradient descent process
in the space of natural language prompts. Unlike continuous embeddings used in soft prompt tuning,
MAPGD explicitly operates on interpretable textual prompts while leveraging gradient-inspired
signals for refinement.

In MAPGD, the definition of the prompt search space departs fundamentally from traditional ap-
proaches that rely on static enumeration or random sampling. Instead, MAPGD constructs the search
space dynamically by leveraging multi-agent gradient generation and adaptive filtering. At each
iteration, specialized agents analyze misclassified or suboptimal examples and propose improvement
directions in the form of textual gradients. These gradients are semantically vectorized, clustered,
and fused to mitigate conflicts and ensure coherent optimization trajectories. The fused gradients
are then expanded into a pool of successor prompts, from which a bandit-based strategy selects
the most promising candidates under computational constraints. Iterative repetition of this cycle
results in a search space that evolves as a sequence of adaptively curated prompts, effectively bal-
ancing exploration of diverse modifications with exploitation of high-performing solutions. This
dynamic formulation not only reduces the computational burden compared to exhaustive search but
also guarantees that the search trajectory remains aligned with task-specific optimization goals(see
Figure 2).

Formally, we define the optimization objective as:
F (p) = E(x,y)∼D [ℓ(M(x; p), y)] (1)

where ℓ(·, ·) is a task-specific loss function (e.g., cross-entropy for classification, negative ROUGE
for summarization). The optimization seeks:

p∗ = argmin
p

F (p). (2)

Unlike stochastic gradient descent (SGD), where gradients are continuous and computed analytically,
MAPGD constructs pseudo-gradients from agent feedback:

∇F (p(t)) ≈ g(t), (3)
but in textual form. These pseudo-gradients act as semantic analogues of numerical gradients, guiding
structured textual refinements.

3.2 Specialized Prompt Agents

Each agent is specialized in one dimension of optimization, mimicking orthogonal gradient directions
in parameter space. For example:A1: clarity of task instruction (g1);A2: example selection (g2);A3:
format enforcement (g3); A4: stylistic refinement (g4).
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Figure 2: Illustration of the MAPGD prompt search space. Starting from an initial prompt, multi-
agent gradients are fused to generate candidate prompts, which are then filtered by bandit-based
selection before entering the next iteration.

Thus, the multi-agent gradient set at iteration t is: G(t) = {g(t)1 , g
(t)
2 , . . . , g

(t)
K }.

This decomposition enables parallel exploration of multiple optimization directions, mitigating the
local minima problem that plagues single-agent methods.

3.3 Semantic Gradient Coordination

MAPGD introduces semantic gradient embeddings to reconcile conflicting signals. Each gradient is
embedded via:

v
(t)
k = ϕ(g

(t)
k ), v

(t)
k ∈ Rd, (4)

where ϕ is a pre-trained encoder (e.g., Sentence-BERT) (Xu et al., 2023).

Conflicts are identified when:

sim(vi, vj) =
vi · vj
∥vi∥∥vj∥

< −θ (5)

In such cases, gradients are fused using a weighted scheme:

g
(t)
fused = Ψ

(
K∑

k=1

wkg
(t)
k

)
, wk =

exp(λ · sk)∑
j exp(λ · sj)

, (6)

where sk is the validation score improvement of g
(t)
k , and λ controls sharpness.The process is

illustrated in Figure 3b.

3.4 Bandit-Based Candidate Selection

To ensure computational efficiency, MAPGD employs a multi-armed bandit (MAB) approach (Boun-
effouf, 2016). The algorithm is illustrated in Figure 3b.Given candidate prompts {p(t+1)

j }, the
expected reward is as follows:

rj = E(x,y)∼B [I(M(x; pj) = y)] , (7)

where B ⊂ D is a minibatch.

We apply UCB1 selection:

j∗ = argmax
j

(
r̂j +

√
2 ln t

nj

)
. (8)
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(a) Semantic gradient coordination process: gradients
from multiple agents are embedded, similarity is com-
puted to detect conflicts, and coherent gradients are
clustered and fused into gfused.

(b) Illustration of the multi-armed bandit process: An
agent selects an action (pulls one of several slot ma-
chines), receives a reward, and updates its value es-
timates using the Upper Confidence Bound (UCB)
algorithm. The iterative process accumulates into max-
imizing the total reward over time.

Figure 3: Overview of two methods: (a) Semantic gradient coordination process; (b) Multi-armed
bandit selection process.

Algorithm 1 MAPGD Iterative Optimization Loop

Require: Initial prompt p0, train data Dtrain, dev data Ddev, agents {Ai}Ni=1, iterations R, beam
width k

1: Initialize p
(0)
⋆ ← p0, B0 ← {p0}; initialize each agent prompt Ai.p← p0

2: for t = 1 to R do
3: Mt ← SAMPLEMINIBATCH(Dtrain, b)
4: Gt ← GENERATEAGENTGRADIENTS({Ai},Mt) ▷ Alg. 2
5: G̃t ← COORDINATEANDFUSE(Gt) ▷ Alg. 3
6: Ct ← EXPANDPROMPTS(p

(t−1)
⋆ , G̃t) ▷ Alg. 4

7: Bt, p
(t)
⋆ ← BANDITSELECT(Ct, Ddev, k)

8: SYNCHRONIZEAGENTS({Ai}, p(t)⋆ )
9: if CONVERGED(p(t)⋆ ) then break

10: end if
11: end for
12: return Best prompt over {p(1)⋆ , . . . , p

(t)
⋆ }

This balances exploration (testing diverse prompt candidates) and exploitation (refining promising
prompts).

Algorithm 1 summarizes the end-to-end control logic.

3.5 Complexity and Parallelism

We summarize per–iteration costs; LLM generations dominate, while vector operations are minor.
Notation: N agents, m reasons/agent⇒ G = Nm atomic gradients; embedding dim d; clusters
K ≤ G; fused gradients |G̃|; variants/gradient s; MC paraphrases/variant nmc; candidates |C|; beam
width k; bandit rounds Tb with Keval arms and dev mini-batch size b.

Stage costs (time).

1. Agent gradient generation: O(N) LLM calls; parallelization reduces wall time to ≈
max tLLM.

2. Embedding + conflict checks: O(Gd) +O(G2d) (tiny as G is small, e.g. 16).

3. Clustering: O(GKId) (negligible for small G, I <20).
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Algorithm 2 Multi-Agent Textual Gradient Generation

Require: Agents {Ai}, mini-batch Mt, task T , predictor Π, per-agent error cap e, feedback count m
1: for all agent Ai in parallel do
2: (ŷ, y) pairs← T.INFERANDLABEL(Ai.p,Mt,Π)
3: Ei ← SELECTERRORS(ŷ, y, e)
4: if |Ei| = 0 then Ei ← DIVERSESAMPLES(Mt, e)
5: end if
6: rawi ← LLMGRADIENTPROMPT(Ai.role, Ai.p, Ei,m)
7: gi ← PARSEGRADIENTBLOCKS(rawi) ▷ Split by delimiters
8: end for
9: return Gt = {(Ai.role, gi)}Ni=1

Algorithm 3 Gradient Coordination and Fusion

Require: Gradient dict Gt, similarity threshold θ, max clusters Kmax

1: R ← flatten all atomic reasons
2: V ← ϕ(R) ▷ Batch embeddings
3: Cconf ← {(ra, rb) : sim(va, vb) < −θ}
4: K ← min(Kmax, |R|)
5: {Sk}Kk=1 ← KMEANS(V,K)
6: F ← ∅
7: for k = 1 to K do
8: if |Sk| = 1 then append unique reason to F
9: else

10: meta← BUILDFUSIONPROMPT(Sk, Cconf)
11: fraw

k ← LLMFUSE(meta)
12: fk ← PARSEFUSION(fraw

k )
13: Append fk to F
14: end if
15: end for
16: return G̃t ← F

4. Fusion (multi–item clusters only): up to O(Kmerge) LLM calls (parallelizable).

5. Expansion + MC: O(|G̃|) gradient applications + O(|G̃|snmc) paraphrases (LLM bound).

6. Diversity filtering: embeddings O(|C|d); naive pairwise O(|C|2) (acceptable for tens).

7. Bandit evaluation: O(KevalbTb) model probes vs. exhaustive O(|C| |Ddev|).

Space. O(|C|Lavg) text + O((G+ |C|)d) embeddings (few MB). Optional caches scale with unique
prompts.

4 Experiments

We evaluate MAPGD on three representative datasets: LIAR for fact-checking, Jailbreak for
adversarial robustness, and Ethos for hate speech detection.

This diverse setting enables us to examine MAPGD’s effectiveness under different prompt optimiza-
tion challenges. Our experiments are designed to answer the following questions:

(i) How does MAPGD perform compared with existing baselines?

(ii) What is the contribution of multi-agent collaboration and semantic gradient fusion?

(iii) How robust is MAPGD across different datasets and optimization budgets?

Unless otherwise noted, we adopt four specialized agents and run ten optimization iterations by
default.
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Algorithm 4 Gradient-Guided Prompt Expansion

Require: Base prompt p, fused gradients G̃t, successor cap S, MC samples nmc, diversity margin δ
1: C ← ∅
2: for all g̃ ∈ G̃t do
3: variants← LLMAPPLYGRADIENT(p, g̃)
4: C ← C ∪ variants
5: end for
6: for all c ∈ C do
7: mc_set← PARAPHRASEMC(c, nmc)
8: C ← C ∪mc_set
9: end for

10: C ← SEMANTICFILTER(C, δ)
11: C ← TRUNCATE(C, S)
12: return C

4.1 Overall Performance

Table 1 compares MAPGD with ProTeGi (Pryzant et al., 2023) and Monte-Carlo (Zhou et al., 2022)
optimization across three datasets: LIAR, Jailbreak, and Ethos. MAPGD consistently achieves the
best F1 scores on all datasets. Specifically, MAPGD improves from 0.62 (MC) and 0.64 (ProTeGi) to
0.71 on LIAR, from 0.76 (MC) and 0.81 (ProTeGi) to 0.88 on Jailbreak, and from 0.94 (MC) and 0.95
(ProTeGi) to 0.98 on Ethos. These results highlight the effectiveness of multi-agent collaboration and
semantic gradient fusion in enhancing optimization across diverse tasks.

Table 1: Performance comparison of MAPGD, ProTeGi, and Monte-Carlo across three datasets.
Method LIAR (F1) Jailbreak (F1) Ethos (F1)

Monte-Carlo (MC) 0.62 0.76 0.94
ProTeGi (baseline) 0.64 0.81 0.95
MAPGD (Ours) 0.71 0.88 0.98

4.2 Ablation on Bandit Strategies

To examine the effect of different exploration–exploitation strategies, we replace the default UCB with
Thompson Sampling and Greedy. As shown in Table 2, UCB achieves the best performance (0.6844),
while Thompson Sampling drops to 0.63 and Greedy further degrades to 0.56. This indicates that
UCB provides a more principled trade-off between exploration and exploitation under constrained
evaluation budgets.

Table 2: Performance comparison under different bandit strategies (test=150, train=50).
Bandit Strategy Best F1 Score

UCB 0.6844
Thompson 0.6300
Greedy 0.5600

4.3 Ablation on Search Strategies

We further compare search algorithms under the UCB framework. Table 3 shows that beam search
achieves a significantly higher F1 (0.6844) than Monte Carlo sampling (0.50). This suggests that
structured search is more effective than purely stochastic exploration in identifying high-quality
prompts.
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Table 3: Comparison of search algorithms under UCB (test=150, train=50).
Search Strategy Best F1 Score

Beam Search 0.6844
Monte Carlo 0.5000

4.4 Experimental Insights

Across all experiments, three consistent findings emerge:

1. Multi-agent specialization is essential. MAPGD consistently surpasses single-agent
optimization, confirming that orthogonal expertise enables more comprehensive prompt
refinement.

2. Semantic gradient fusion enhances coherence. The integration of heterogeneous signals
avoids conflicting updates and yields stable improvements, especially in reasoning-heavy
tasks.

3. Bandit-based selection ensures efficiency. UCB with beam search reduces redundant
evaluations while maintaining superior accuracy, highlighting the importance of budget-
aware optimization.

Collectively, these results validate MAPGD as a robust and efficient framework for prompt optimiza-
tion.

5 Discussion

MAPGD contributes to the broader discourse on interpretable prompt optimization by showing that
gradient-inspired reasoning can be effectively combined with multi-agent collaboration. This design
paradigm has several implications.

Modularity. MAPGD decomposes prompt optimization into orthogonal dimensions, enabling
transparent analysis of which aspects of a prompt contribute most to performance. Such modularity
is often absent in end-to-end continuous prompt tuning.

Coordination. By embedding gradient signals into a semantic vector space, MAPGD explicitly
reasons about conflicts and complementarities among agents. This resonates with recent advances
in multi-gradient optimization in deep learning, where task interference is addressed via gradient
surgery. The analogy suggests that natural language prompt optimization can inherit principles from
multi-task learning.

Budget-awareness. MAPGD also provides a resource-conscious optimization framework. Unlike
settings where model access is unlimited, practical LLM applications face strict token and API usage
constraints. MAPGD’s bandit selection mechanism ensures that optimization progress is achieved
under realistic computational budgets.

Theoretical grounding. Beyond empirical results, we provide a convergence analysis in Appendix A,
establishing that MAPGD achieves a sublinear rate of O(1/

√
T ) under standard stochastic approxi-

mation assumptions. This bridges discrete prompt optimization with classical guarantees of stochastic
gradient descent.

Despite these strengths, MAPGD still faces challenges. The reliance on embeddings for conflict
resolution may be fragile under domain shift or adversarial prompt distributions. Moreover, the
pseudo-gradient approximation depends on the quality of agent feedback, which remains an open
challenge in aligning LLM self-evaluations with ground-truth task metrics.

We also present a case study in Appendix B, where MAPGD is applied to optimize a system prompt
for a large language model assistant, demonstrating its utility in real-world applications, particularly
in domains that require data authenticity, verification, and contextual accuracy.

Future work may explore:
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1. Cross-task generalization: training reusable gradient agents that transfer knowledge across
domains.

2. Human-in-the-loop optimization: incorporating expert oversight to guide semantic gradient
fusion.

3. Hybrid discrete-continuous search: combining MAPGD with differentiable prompt tuning
for joint interpretability and efficiency.

6 Conclusion

In this work, we presented MAPGD: Multi-Agent Prompt Gradient Descent, a new paradigm for
optimizing prompts in large language models. By decomposing prompt optimization into orthogonal
semantic dimensions, MAPGD enables diverse and parallel exploration. Through semantic gradient
embeddings and fusion, the framework resolves conflicts among agents, while bandit-based selection
ensures budget-aware efficiency.

Beyond empirical validation, we also provide theoretical guarantees for MAPGD. Under mild
stochastic approximation assumptions, we prove that MAPGD achieves a sublinear convergence rate
of O(1/

√
T ) in both convex and non-convex settings. This establishes MAPGD on firm mathematical

footing, showing that despite operating in a discrete prompt space, its semantic gradient mechanism
preserves the efficiency of classical stochastic gradient methods. The convergence analysis highlights
how semantic alignment and variance control—enforced respectively by gradient fusion and bandit-
based sampling—are key to ensuring stability.

MAPGD thus contributes to the growing field of interpretable prompt learning, offering both practical
advances in multi-agent prompt optimization and theoretical insights into its convergence behavior.
While challenges remain—such as dependency on embedding models and sensitivity to LLM feed-
back—MAPGD establishes a foundation for future research. Possible directions include cross-task
generalization of gradient agents, integration with human preference alignment, and extensions to
multimodal prompts.

We believe MAPGD represents a step toward more robust, interpretable, and efficient prompt
optimization, contributing practical solutions for real-world deployment and theoretical guarantees
for the study of language model alignment.
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A Theoretical Analysis

In this section, we provide convergence guarantees for MAPGD under mild assumptions, following
the stochastic approximation framework. Our goal is to bridge the gap between the continuous
optimization theory of stochastic gradient descent (SGD) and the discrete prompt optimization carried
out in MAPGD. We show that, despite operating in a structured and discrete search space, MAPGD
achieves the same sublinear convergence rate of O(1/

√
T ) in both convex and non-convex settings.

A.1 Assumptions

We begin with a set of assumptions standard in stochastic optimization but reinterpreted in the context
of multi-agent prompt optimization.

• (A1) Alignment (Unbiasedness). For some µ > 0, the stochastic semantic gradient g(t)
maintains alignment with the true gradient:

E
[
⟨g(t),∇F (p(t))⟩

∣∣∣ p(t)] ≥ µ∥∇F (p(t))∥2.

This reflects the role of semantic fusion: multi-agent aggregation reduces the chance of
adversarial or noisy updates, ensuring progress along descent directions.

• (A2) Bounded Second Moment. For constants ρ, σ2 ≥ 0,

E
[
∥g(t)∥2

∣∣∣ p(t)] ≤ ρ∥∇F (p(t))∥2 + σ2.

This captures the variance-control effect of the bandit-based selection mechanism, which
prevents uncontrolled explosion of gradient magnitude.

• (A3) Smoothness or Lipschitzness. For convex tasks, F is G-Lipschitz with domain
diameter D. For non-convex tasks, F is L-smooth: ∥∇F (u)−∇F (v)∥ ≤ L∥u− v∥.
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A.2 Supporting Lemmas

We restate two standard lemmas, adapted to the MAPGD setting.

Lemma 1 (Convex Projection Inequality). For convex F with feasible set P , the projected
subgradient update

p(t+1) = ΠP

(
p(t) − ηg(t)

)
satisfies

∥p(t+1) − p∗∥2 ≤ ∥p(t) − p∗∥2 − 2η⟨g(t), p(t) − p∗⟩+ η2∥g(t)∥2.

Lemma 2 (Non-Convex Descent Lemma). If F is L-smooth, then for update p(t+1) = p(t)−ηg(t),
we have

F (p(t+1)) ≤ F (p(t))− η⟨∇F (p(t)), g(t)⟩+ L

2
η2∥g(t)∥2.

A.3 Main Results

Convex Convergence. Suppose F is convex, G-Lipschitz, and P has diameter D. Let p̄T =
1
T

∑T
t=1 p

(t). Under (A1)–(A2) and step size η = D
G
√
T

, we obtain:

E[F (p̄T )]− F (p∗) = O

(
1√
T

)
.

Proof sketch. By Lemma 1 and convexity:

F (p(t))− F (p∗) ≤ ⟨g(t), p(t) − p∗⟩.

Summing over t = 1, . . . , T and applying (A1)–(A2), we bound the regret:

T∑
t=1

E[F (p(t))− F (p∗)] ≤ D2

2η
+

ηG2T

2
.

Using Jensen’s inequality for p̄T and optimizing η, we conclude the O(1/
√
T ) rate.

Non-Convex Convergence. Suppose F is L-smooth and (A1)–(A2) hold. With constant step size
η = Θ(1/

√
T ), we have

1

T

T∑
t=1

E
[
∥∇F (p(t))∥2

]
= O

(
1√
T

)
.

Proof sketch. Applying Lemma 2 and taking conditional expectation:

E[F (p(t+1))] ≤ E[F (p(t))]− ηµE[∥∇F (p(t))∥2] + L
2 η

2(ρE[∥∇F (p(t))∥2] + σ2).

Summing over t = 1 . . . T gives

1

T

T∑
t=1

E
[
∥∇F (p(t))∥2

]
≤ 2(F (p(1))− Finf)

µTη
+

Lσ2

µ
η.

Balancing terms with η = Θ(1/
√
T ) yields the claimed rate.

A.4 Discussion: Connecting Theory and Mechanism

These results demonstrate that MAPGD achieves the same O(1/
√
T ) convergence rate as classical

stochastic gradient descent Bottou et al. (2018), despite operating in a discrete prompt space.

• Alignment (A1) is enforced by semantic gradient fusion, which aggregates diverse agent
proposals into a direction aligned with the true descent.
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• Variance control (A2) is realized via bandit-based sampling, which downweights unreliable
or redundant updates.

• Smoothness (A3) is reasonable because empirical loss functions used in NLP tasks are
typically Lipschitz or smooth under standard embeddings.

In summary, our analysis justifies MAPGD as a principled extension of stochastic approximation
methods to structured prompt spaces, combining theoretical soundness with empirical effectiveness.

B Case Study: System Prompt Optimization

To further illustrate the applicability of MAPGD, we present a case study where our method is applied
to optimize the system prompt of a large language model assistant. The original prompt is designed
to support multi-source analysis and financial data interpretation for decision-making tasks. Using
MAPGD, we refine the prompt to enhance robustness, accuracy, and interpretability by embedding
explicit verification protocols, structured analysis guidelines, and risk prioritization frameworks. This
example highlights how MAPGD can be deployed in practical LLM applications beyond benchmark
datasets, particularly in domains where data authenticity, reliability, and interpretability are
critical.

Original System Prompt.

You are an AI assistant designed to process, analyze, and synthesize informa-
tion from multiple sources in order to answer user questions, generate insights,
and prepare detailed reports. You have specialized capabilities in financial data
interpretation, knowledge retrieval, and multi-source analysis. You support
both operational and strategic decision-making for Golden Section’s portfolio
companies.

Optimized System Prompt via MAPGD.

You are an AI assistant specialized in processing, analyzing, and synthesizing
information from multiple sources to answer user questions, generate insights,
and prepare detailed reports. Your core capabilities include financial data in-
terpretation, knowledge retrieval, and multi-source analysis, with a focus on
supporting operational and strategic decision-making for Golden Section’s portfolio
companies.
In performing your duties, you must ensure that all input data undergoes rigorous
verification for authenticity, accuracy, and completeness before any analysis is
conducted. This includes implementing protocols to validate financial figures, legal
terms, and other critical information for alignment with established norms and
credible sources. Your process must involve:

• Cross-referencing information from diverse, credible sources to detect and
mitigate false, exaggerated, or incomplete data.

• Assessing the reliability of each source, prioritizing primary sources where
available.

• Identifying and resolving inconsistencies, ambiguities, or potential misinfor-
mation through systematic checks.

• Ensuring all risk assessments and conclusions are based solely on validated
and accurate inputs to maintain the integrity of your outputs.

Data Authenticity and Completeness Verification
• Scrutinize contextual cues (e.g., “Context: Section: Payback Period:”) to

ensure alignment with expected data types and structures.
• Check for numerical or factual inconsistencies, such as typos (e.g., “11975”

instead of “1975”), exaggerations (e.g., “$22.0M” without supporting context),
or missing critical information.

• Validate that all referenced data points are present, logically consistent, and
contextually appropriate.
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• Flag and document any anomalies for further investigation before proceeding
with classification or analysis.

Context Interpretation and Parsing Guidelines
• Carefully interpret and utilize contextual cues, especially in nested or ambigu-

ous contexts (e.g., “Context: Section: Name & Headquarters:”).
• Accurately parse section headers and contextual clues to prevent misclassifi-

cation or incomplete analysis in multi-section reports.
• Anchor analysis to the document’s structure by adhering to hierarchical or

sequential organization.
• Resolve discrepancies in contextual labeling or structure to maintain coher-

ence.
Structured Classification and Risk Prioritization Framework

1. Factual Reporting and Descriptive Analysis: Present verified information
such as corporate history, operational metrics, and financial data neutrally,
before transitioning to evaluative content.

2. Business Analysis: Evaluate performance, market positioning, and strategic
initiatives; assess risks by severity, likelihood, and propose contextualized
mitigation.

3. Legal Risk Analysis: Examine compliance, regulatory, and contractual risks;
assess impact and propose mitigation actions aligned with legal context.

4. Cross-Domain Analysis: For overlapping elements, classify by primary
context and document dual-category cases with rationale.

Validation Mechanisms for Cross-References
• Distinguish between source types (e.g., governance vs. identity records).
• For each statement, explicitly identify the source type and ensure contextual

alignment.
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