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Abstract: Sim2real for robotic manipulation is difficult due to the challenges of
simulating complex contacts and generating realistic task distributions. To tackle
the latter problem, we introduce ManipGen, which leverages a new class of poli-
cies for sim2real transfer: local policies. Locality enables a variety of appealing
properties including invariances to absolute robot and object pose, skill ordering,
and global scene configuration. We combine these policies with foundation models
for vision, language and motion planning and demonstrate SOTA zero-shot per-
formance of our method to Robosuite benchmark tasks in simulation (97%). We
transfer our local policies from simulation to reality and observe they can solve
unseen long-horizon manipulation tasks with up to 8 stages with significant pose,
object and scene configuration variation. ManipGen outperforms SOTA approaches
such as SayCan, OpenVLA and LLMTrajGen across 50 real-world manipulation
tasks by 36%, 76% and 62% respectively. All code, models and datasets will be
released. Video results at manipgen.github.io
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1 Introduction
How can we develop generalist robot systems that plan, reason, and interact with the world like
humans? Tasks that humans solve during their daily lives are incredibly challenging for existing
robotics approaches. Cleaning the table, organizing the shelf, putting items away inside drawers,
etc. are complex, long-horizon problems that require the robot to act capably and consistently
over an extended period of time. Furthermore, such a generalist robot should be able to do so
without requiring task-specific engineering effort or demonstrations. Although large-scale data-driven
learning has produced generalists for vision and language [1], such models don’t yet exist in robotics
due to the challenges of scaling data collection. It often takes significant manual labor cost and years
of effort to just collect datasets on the order of 100K-1M trajectories [2, 3, 4, 5]. Consequently,
generalization is limited, often to within centimeters of an object’s pose for complex tasks [6, 7].

Instead, we seek to use a large-scale approach via simulation-to-reality (sim2real) transfer, a cost-
effective technique for generating vast datasets that has enabled training generalist policies for loco-
motion which can traverse complex, unstructured terrain [8, 9, 10, 11, 12, 13]. While sim2real transfer
has shown success in industrial manipulation tasks [14, 15, 16], including with high-dimensional
hands [17, 18, 19, 20], these efforts often involve training and testing on the same task in simulation.
Can we extend sim2real to open-world manipulation, where robots need to solve any task from
text instruction? The core bottlenecks are: 1) accurately simulating contact dynamics [21] - for
which strategies such as domain randomization [17, 22], SDF contacts [23, 14, 15], and real world
corrections [16] have shown promise, 2) generating all possible scene and task configurations to
ensure trained policies generalize and 3) acquiring long-horizon behaviors themselves, which may
require potentially intractable amounts of data for as the horizon grows.

To address points 2) and 3), our solution is to note that for many manipulation tasks of interest,
the skill can be simplified to two steps: achieving a pose near a target object, then performing
manipulation. The key idea is that of locality of interaction. Policies that observe and act in a region
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Figure 1: ManipGen Method Overview (left) Train 1000s of RL experts in simulation using PPO (middle)
Distill single-task RL experts into generalist visuomotor policies via DAgger (right) Text-conditioned long-
horizon manipulation via task decomposition (VLM), pose estimation and goal reaching (Motion Planning) and
sim2real transfer of local policies

local to the target object of interest are by construction: Absolute pose invariant: they reason over a
smaller set of relative poses between objects and robot. Skill order invariant: transition from the
termination to initiation of policies via motion planning. Scene configuration invariant: they solely
observe the local region around the point of interaction.

We propose a novel approach that leverages the strong generalization capabilities of existing founda-
tion models such as Visual Language Models (VLMs) for decomposing tasks into sub-problems [1],
processing and understanding scenes [24] and planning collision-avoidant motions [25]. Specifically,
given a text prompt, our approach outputs a plan to solve the task (using VLM), estimates where to go
and moves the robot accordingly (using motion planning) and deploys local policies for interaction.
As a result, a simple scene generation approach can produce strong transfer results across many tasks.

Our contribution is an approach to training agents at scale solely in simulation that are capable
of solving a vast set of long-horizon manipulation tasks in the real world zero-shot. Our method
generalizes to unseen objects, poses, receptacles and skill order configurations. To do so, our method,
ManipGen, 1) introduces a novel policy class for sim2real transfer 2) proposes techniques for training
policies at scale in simulation 3) and deploys policies via integration with VLMs and motion planners.
We perform a thorough, real world evaluation of ManipGen on 50 long-horizon manipulation tasks
in five environments with up to 8 stages, achieving a success rate of 76%, outperforming SayCan,
OpenVLA and LLMTrajGen by 36%, 76% and 62%.

2 Methods
To build agents capable of generalizing to a wide class of long-horizon robotic manipulation tasks,
we propose a novel approach (ManipGen) that hierarchically decomposes manipulation tasks, takes
advantage of the generalization capabilities of foundation models for vision and language and uses
large-scale learning with our proposed policy class to learn manipulation skills.

Framework We can decompose any task the robot needs to complete into a problem of learning
a set of temporally abstracted actions (skills) as well as a policy over those skills [26]. Given
a language goal g, and observation O, we can select our policy over skills, pθ(gk|g,O) to be a
pre-trained VLM, where gk is skill k. State-of-the-art VLMs can decompose robotics tasks into
language subgoals [27, 28, 29, 30] because they are trained using a vast corpus of internet-scale
data and have captured powerful, visually grounded semantic priors for what various real world
tasks look like. Any policy class can be used to define the skills, denoted as pϕk

(at|gk, Ot), which
take in the kth sub-goal gk and current observation Ot. However, note that many manipulation
skills (e.g. picking, pushing, turning, etc.) can be decomposed into a policy πreach to achieve
target poses near objects Xtarg,k followed by policy πloc for contact-rich interaction. Accordingly,
pϕk

(at|gk, Ot) = πreach(τreach|gk, Ot)πloc(a
t
loc|Ot

loc). To implement πreach, we need to interpret
language sub-goals gk to take the robot from its current configuration qk,i to some target configuration
qk,f such that Xee (the end-effector pose) is close to Xtarg,k. Thus, we structure the VLM’s sub-goal
predictions, gk, as tuples containing the following information (object, skill). We then interpret
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these plans into robot poses by pairing any language conditioned pose estimator or affordance model
(to predict Xtarg,k) with an inverse kinematics routine (to compute qk,f ). Motion planning can
predict actions τreach to achieve the target configuration qk,f while avoiding collisions. Finally, we
instantiate local policies (πloc) to be invariant to robot and object poses, order of skill execution
and scene configurations with: 1) initialization region sinit near a target region/object of interest
which has pose Xtarg,k, 2) local observations Ot

loc, independent of the absolute configuration of
the robot and scene and only observing the environment around the interaction region and 3) actions
atlocrelative to the local observations. Overall: πloc(a

t
loc|Ot

loc), sinit = {s | ||Xee −Xtarg,k||2 < ϵ}.

Training Local Policies for Sim2Real Manipulation. To train local policies, we adapt the standard
two-phase training approach [31, 12, 11, 32, 19, 16] in which we first train state-based expert
policies using RL, then distill them into visuomotor policies for transfer. Although local policies
can generalize automatically across scene arrangements, robot configurations, and object poses, they
must be trained across a wide array of objects to foster object-level generalization. To do so, we
train a vast array of single-object state-based experts and then distill them into generalist visuomotor
policies per skill. While such local policies can cover a broad set of manipulation skills (pick and
place, articulated/deformable object manipulation, assembly, etc.), in this work, we focus on training
the following skills πloc: pick, place, grasp handle, open and close as a minimal skill library to
demonstrate generalist manipulation capabilities for a specific class of tasks. Pick grasps any free
rigid objects. Place sets the object down near the initial pose. Grasp Handle grasps the handle of
any door or drawer. Open and Close pull or push doors and drawers to open or close them. We
describe details of the design in data generation, observations, actions, and rewards in B.1.

Generalist Policies via Distillation In order to convert single-object, privileged policies into real
world deployable skills, we distill them into multi-object, generalist visuomotor policies using
DAgger [33]. For local policies to transfer effectively to the real robot, the observation space and
augmentations must be designed with transfer in mind. We use wrist camera depth maps for local
observations. Depth maps transfer well from sim2real for locomotion [10, 11, 12, 32], and wrist
views are inherently local and improve manipulation performance [34, 35, 36]. To further enforce
locality, we clamp depth values and normalize them. Since local wrist-views often get extremely close
to the object during execution, it can become difficult for the agent to understand the overall object
shape. Thus, we include the initial local observation O0

loc,depth at every step with a segmentation
mask of the target object (O0

loc,seg) so that the local policy is aware of which object to manipulate. We
transform absolute proprioception into local by computing observations relative to the first time-step
(Oloc,ee = [X0

ee,t −X0
ee]) and incorporate velocity information ( ˙Oloc,ee,t), which improves transfer.

Our observation space is Ot
loc = ⟨Ot

loc,depth, O
0
loc,seg, O

0
loc,depth, O

t
loc,ee,

˙Ot
loc,ee⟩. We also apply

data augmentation to enable robustness to noisy real world observations, which is detailed in B.2

Zero-shot Text Conditioned Manipulation To enable our system to solve long-horizon tasks,
pθ(gk|g,O), ManipGen decomposes the task into a skill chain to execute given goal g. We implement
pθ as GPT-4o. Given the task prompt g, descriptions of the pre-trained local skills and how they
operate, and images of the scene O, we prompt GPT-4o to give a plan for the task structured as
a list of (object, skill) tuples. We then need a language conditioned pose estimator (to compute
Xtarg,k) that generalizes broadly; we opt to use Grounded SAM [24] due to its strong open-set
segmentation capabilities. To estimate Xtarg,k, we can segment the object pointcloud, average it
to get a position and use its surface normals to select a collision-free orientation. For predicting
τreach, while any motion planner can be used, we select Neural MP [25] due to its fast planning
time (3s) and strong real-world planning performance. Given Xtarg,k, we compute target joint state
qk,f , plan with Neural MP open-loop and execute the predicted τreach on the robot using a PID joint
controller. We then execute the appropriate local policy (as predicted by the VLM) on the robot
to perform manipulation. We alternate between motion planning and local policies until the task
is complete. Finally, we note that the particular choice of models is orthogonal to our method.
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3 Experimental Results
3.1 Simulation Comparisons and Analysis
Robosuite Benchmark Results We first evaluate against the long-horizon manipulation tasks used
in PSL [37] from the Robosuite benchmark [38] in simulation. We compare to end-to-end RL
methods [39], hierarchical RL [40, 37], TAMP [41] and LLM planning [27]. In these experiments, we
zero-shot transfer our trained policies to Robosuite and evaluate their performance against methods
that use task specific data (Tab. 1). ManipGen outperforms or matches PSL, the SOTA method on
these tasks, across the board, achieving an average success rate of 97.33% compared to 95.83%.

Bread Can Milk Cereal CanBread CerealMilk Average

Stages 2 2 2 2 4 4

DRQ-v2 52% 32% 2% 0% 0% 0% 14%
RAPS 0% 0% 0% 0% 0% 0% 0%
TAMP 90% 100% 85% 100% 72% 71% 86%
SayCan 93% 100% 90% 63% 63% 73% 80%

PSL 100% 100% 100% 100% 90% 85% 96%

Ours 100% 100% 99% 97% 97% 91% 97%

Table 1: Robosuite Benchmark Results. ManipGen zero-shot transfers to Robosuite, outperforming end-to-
end and hierarchical RL methods as well as traditional and LLM planning methods.

ManipGen Analysis and Ablations. We provide analyses of design decisions in C.2.

3.2 Real World Evaluation
FurnitureBench Results We evaluate the sim2real capabilities of local policies on FurnitureBen-
nch [42]. ManipGen achieves an average success of 90%, matching or outperforming end-to-end
direct transfer methods (75%, 53.3%), imitation methods (55%, 82.7%, 65%, 75%, 86.7%) and
sim2real methods that leverage additional correction data [16]. Detailed analyses are available in C.3.

Tasks Ours Transic Direct
Transfer

DR. & Data
Aug. [43] HG-Dagger [44] IWR [45] BC [46]

Stabilize 95% 100% 10% 35% 65% 65% 40%
Reach and Grasp 95% 95% 35% 60% 30% 40% 25%

Insert 80% 45% 0% 15% 35% 40% 10%

Avg 90% 80% 15% 36.7% 43.3% 48.3% 25%

Table 2: Transic Benchmark Results ManipGen achieves SOTA results in terms of task success rate without
any real world data, outperforming direct transfer, imitation learning and human-in-the-loop methods.

Zero-shot Long-horizon Manipulation To test the generalization capabilities of our method, we
propose 5 diverse long-horizon manipulation tasks which involve pick and place, obstacle avoidance
and articulated object manipulation. Detailed task descriptions and baselines are provided in C.3.

Cook Replace CabinetStore DrawerStore Tidy Avg

Stages 2 4 4 6 8 4.8

OpenVLA 0% (0.1) 0 (0.0) 0% (0.0) 0 (0.0) 0 (0.0) 0% (.02)
SayCan 80% (1.7) 10% (1.3) 70% (3.5) 20% (3.6) 20% (4.8) 40% (3.0)
LLMTrajGen 70% (1.5) 0% (0.6) 0% (0.6) 0% (1.0) 0% (2.6) 14% (1.3)
Ours 90% (1.9) 80% (3.7) 90% (3.9) 60% (4.7) 60% (7.2) 76% (4.3)

Table 3: Zero-shot Long Horizon Manipulation We report task success rate and average number of stages
completed per real world task. ManipGen outperforms all methods on each task, achieving 76% with 4.28/4.8
stages completed on average.

Across all 5 tasks (Tab. 3), we find that ManipGen outperforms all methods, achieving 76% zero-
shot success rate overall. ManipGen is able to avoid obstacles while performing manipulation of
unseen objects in arbitrary poses and configurations. Failure cases for our method resulted from
1) vision failures as open-set detection models such as Grounding Dino [47] detected the wrong
object, 2) imperfect motion planning, resulting in collisions with the environment during execution
which dropped objects sometimes and 3) local policies failing to manipulate from sub-optimal initial
poses. In general, DrawerStore and Tidy are the most challenging tasks due to their horizon, and
consequently all methods, including our own perform worse (60% for ours, 20% for best baseline).
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[57] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space. The
International Journal of Robotics Research, 32(9-10):1194–1227, 2013.

[58] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language
instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

[59] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[60] J. Zhang, J. Zhang, K. Pertsch, Z. Liu, X. Ren, M. Chang, S.-H. Sun, and J. J. Lim. Bootstrap
your own skills: Learning to solve new tasks with large language model guidance. Conference
on Robot Learning, 2023.

[61] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+ p: Empowering
large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

8

https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf


[62] T. Kwon, N. Di Palo, and E. Johns. Language models as zero-shot trajectory generators. IEEE
Robotics and Automation Letters, 2024.

[63] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao. Copa: General robotic manipulation through
spatial constraints of parts with foundation models. arXiv preprint arXiv:2403.08248, 2024.

[64] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng, Y. Weng, J. Chen, et al.
Unidexgrasp: Universal robotic dexterous grasping via learning diverse proposal generation and
goal-conditioned policy. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4737–4746, 2023.

[65] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. Partnet: A large-scale
benchmark for fine-grained and hierarchical part-level 3d object understanding. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 909–918, 2019.

[66] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438–13444. IEEE, 2021.

[67] J. T. Barron and J. Malik. Intrinsic scene properties from a single rgb-d image. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 17–24, 2013.

[68] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv: Arxiv-1707.06347, 2017.

[69] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simulation
for robot learning. arXiv preprint arXiv: Arxiv-2108.10470, 2021.

[70] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi. Learning human-to-humanoid
real-time whole-body teleoperation. arXiv preprint arXiv: Arxiv-2403.04436, 2024.

[71] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders
for visuomotor learning. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 512–519. IEEE, 2016.

[72] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation MIT-Press,
1997.

[73] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[74] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024.

[75] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations for
robot manipulation. arXiv preprint arXiv: Arxiv-2108.03298, 2021.

[76] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv: Arxiv-2110.06169, 2021.

[77] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

9



Appendix

A Related Work

Long-horizon Robotic Manipulation Sense-Plan-Act (SPA) has been explored extensively over the
past 50 years [48, 49, 50, 51, 52, 53]. Traditionally, SPA assumes access to accurate state estimation,
a well-defined model of the environment and low-level control primitives. SPA, while capable of
generalizing to a broad set of tasks, can require manual engineering and systems effort to set up [54],
struggles with contact-rich interactions [55, 56] and fails due to state-estimation errors [57]. By
contrast, our method can be deployed to new tasks using generalist models which have minimal setup
cost, train polices for contact-rich interactions and handle state-estimation issues by training with
significant local randomization.

Zero/Few-shot Manipulation Using Foundation Models The robotics community has begun to
investigate VLM’s capabilities for controlling robots in a zero/few-shot manner [27, 28, 29, 30, 58,
59, 60, 61, 37]. Work such as SayCan [27] and TidyBot [30] are similar to our own. They behavior
clone / design a library of skills and use LLMs to perform task planning over the set of skills. Our
work focuses primarily on designing the structure of skills for low-level control, decomposing them
into motion planning and sim2real local policies. On the other hand, works such as LLMTrajGen [62]
and CoPa [63] directly prompt VLMs to output sequences of end-effector poses, but are limited to
short horizon tasks. Finally, PSL [37] and Boss [60] use LLMs to accelerate the RL training process
for long-horizon tasks, yet must train on the test task, unlike our method which can solve a wide array
of manipulation tasks zero-shot.

Sim2real approaches in robotics Transfer of RL policies trained with procedural scene generation
has produced generalist robot policies for locomotion [8, 9, 11, 10, 12]. However, the robot is
often trained for a single skill, such as walking, or a limited set of similar skills, such as walking at
different velocities or headings. Sim2real transfer has also been explored for transferring dexterous
manipulation skills [17, 22, 18, 31, 19] and contact-rich manipulation [14, 15, 16]. In our work,
we train a variety of skills for manipulation and demonstrate zero-shot capabilities on a large set
of unseen tasks. We outperform methods that use end-to-end sim2real transfer [43] as well as real
world corrections [16], ManipGen is orthogonal to human correction approaches, and can benefit
from real-world data as well.

B Method Details

B.1 Training Local Policies for Sim2Real Manipulation

Data Generation For pick/place, we train on 3.5K objects from UnidexGrasp [64], randomly
spawning them on a table with clutter and obstacles to teach local policies obstacle avoidance and
constrained manipulation. We sample initial poses in a half-sphere, with the gripper oriented toward
the object (picking) or near the placement site (placing). For local articulated object manipulation, the
region of interaction only contains the handle (2.6K objects of Partnet [65]) and door/drawer surface
(designed as cuboids). We randomize the size, shape, position, orientation, joint range, friction
and damping coefficients, covering a wide set of real world articulated objects. We sample initial
poses in a half-sphere around the handle (for grasp handle) and a randomly sampled initial joint
pose (open/close). Finally we collect valid pre-grasp poses (antipodal sampling [66]) for picking and
grasping handles and rest poses (from UnidexGrasp) for learning placing.

Observations We use a single observation space for all RL experts, accelerating learning by in-
corporating significant amounts of privileged information. We propose to use a low-dimensional
representation of the object shape by performing Farthest Point Sampling (FPS) on the object
mesh with a small set number of desired key-points K (16). Furthermore, to ease the bur-
den of credit assignment and thereby accelerate learning, we incorporate the individual reward
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components {r} and an indicator for the final observation 1{t = T}. RL observations are
Ot = ⟨Xt

ee, ˙Xee
t
, Xt

obj , {FPSt
obj}Kk=1, {r}t,1{t = T}⟩

Actions We use the action space from Industreal [14] which has been shown to successfully transfer
manipulation policies from sim2real for precise assembly tasks. Our policies predict delta pose
targets for a Task Space Impedance (TSI) controller, where a = [∆x; ∆θ], where ∆x is a position
error and ∆θ is a axis-angle orientation error.

Rewards We train RL policies (πlock ) in simulation using reward functions we design to elicit the
desired behavior per skill k. We propose a reward framework that encompasses our local skills:
r = c1ree + c2robj + c3ree,obj + c4raction + c5rsucc. r specifies behavior for a broad range of
manipulation tasks which involve moving the end-effector to specific poses (often right before contact)
as well as a target object to desired poses and need to do so while maintaining certain constraints on
the relative motion between the end-effector and the object as well as pruning out undesirable actions.
ree encourages reaching/maintaining specific end-effector poses, robj restricts/encourages specific
object poses or joint configurations, ree,obj constrains the end-effector motion relative to the object(s)
in the scene, raction restricts or penalizes undesirable actions and rsucc is a binary success reward.
Please see the website for detailed descriptions of the task specific reward functions.

B.2 Generalist Policies via Distillation

Augmentations To enable robustness to noisy real world observations, namely edge artifacts and
irregular holes, we augment the clean depth maps we obtain in simulation. For edge artifacts, in which
we observe dropped pixels and noisiness along edges, we use the correlated depth noise via bi-linear
interpolation of shifted depth from [67] which tends to model this effect well. We also observe
that real world depth maps tend to have randomly placed irregular holes (pixels with depth 0). As a
result, we compute random pixel-level masks and Gaussian blur them to obtain irregularly shaped
masks that we then apply to the depth image. We also use random camera cropping augmentations
which has been shown to improve visuomotor learning performance [36]. Finally, we augment the
proprioceptive observations to ensure robustness to exact measurements, adding uniformly random
noise to the translation and rotation.

C Experiment Details

C.1 Training and Deployment Details

Architecture and Training We train all RL policies at scale using PPO [68] in GPU-parallelized
simulation [69] (Fig. 2). We train for 500 epochs, with an environment batch size of 8192 and max
episode length of 120 steps per skill. To learn visuomotor policies to perform high-frequency (60
Hz) end-effector control, we pair Resnet-18 [70] and Spatial Soft-max [71] with a two layer MLP
decoder (4096 hidden units). Finally, for training, minimizing Mean Squared Error loss is sufficient
for learning multitask policies via DAgger. In early experiments, we found that our architecture
performs comparably to using LSTMs [72], Transformers [73], and ACT [6] and is faster to train
(5-10x) and deploy (2x).

Hardware Setup We use the Franka Panda robot arm with the UMI [74] gripper fingertips and a
wrist-mounted Intel Realsense d405 camera for obtaining local observations (84x84 resolution). We
perform hole-filling and smoothing to clean the depth maps. For real world control, we use a TSI
end-effector controller at 60 Hz with (Leaky) Policy Level Action Integration (PLAI) [14]. We use
Leaky PLAI with .001 position action scale, .05 rotation action scale for pick and .005 rotation action
scale for all other skills. Finally, we use 4 calibrated Intel Realsense d455 cameras for global view
observations (640x480).
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Figure 2: Training Environments We train local policies (left to right) on picking, placing, handle grasping,
opening and closing.

Figure 3: Zero-shot Long-horizon Manipulation Our approach trains a library of generalist manipulation skills
in simulation and transfers them zero-shot to long-horizon manipulation tasks. We show a single, text-conditioned
agent can manipulate unseen objects, in arbitrary poses and scene configurations, across long-horizons in the
real world, solving challenging manipulation tasks with complex obstacles.

C.2 Simulation Analysis

ManipGen Analysis and Ablations. We perform four ablations to study our core design decisions
for training local policies. We study design decisions proposed in our method by training single
object pick policies on 5 objects (remote, can, bowl, bottle, camera) and testing on out held out
poses. We begin with our observation space design choices: ManipGen achieves 97.44% success
rate in comparison to (94.33%, 96.64%, 97.25%) for removing key-point observations, success
observation and reward observations respectively. Incorporating key-point observations is the most
impactful change, enabling the agent to perceive the shape of the target object. Next, we evaluate
how the level of locality (the size of the region around the target object that we initialize over)
affects learning performance. At convergence, we find that ManipGen (8cm max distance from
target) achieves 97.44% success rate while performance diminishes with increasing distance (95.65%,
89.55%, 72.52%) for 16cm, 32cm and 64cm respectively.

For DAgger, we analyze our observation design choices and find that including velocity information,
the first observation, and changing proprioception to be relative to the first frame are crucial to the
success of our method. While ManipGen gets 94.3% success, removing velocity info and using
absolute proprioception hurt significantly (89.92% and 90.94%) while removing the first observation
drops performance to 93.13%. We also vary the DAgger buffer size, from 1 (on-policy), 10, 100, and
1000 (off-policy) for multitask training (with 3.5K objects, not 5). We find that 100 performs best,
achieving 85% in simulation averaged across 100 held out objects, out performing (78%, 82% and
75%) for 1, 10 and 1000 respectively.
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C.3 Real World Evaluation

FurnitureBench Results To evaluate the sim2real capabilities of local policies (Tab. 2), we deploy
ManipGen on FurnitureBench [42], comparing against a wide array of direct-transfer [43], imitation
learning [46, 75], offline RL [76] and human-in-the-loop methods [16, 44, 45] from Transic [16].
These tasks are single stage; we train local policies to perform pushing (Stabilize), picking (Reach
and Grasp) and insertion (Insert). We predict a start pose to initialize the local policy from and
deploy the simulation-trained policies. ManipGen matches or outperforms end-to-end direct transfer
methods (75%, 53.3%), imitation methods (55%, 82.7%, 65%, 75%, 86.7%) and sim2real methods
that leverage additional correction data [16]. For Insert, local policies are able to outperform Transic
without using any real world data, achieving 80% while Transic achieves 45%. These experiments
demonstrate ManipGen improves over end-to-end learning and is capable of handling challenging
initial states, contact-rich interaction and precise motions.

Zero-shot Long-horizon Manipulation We evaluate our method and baselines under 5 scenes.
Cook: put food into a pot on a stove (2 stages), Replace: take a pantry item out of the shelf, put it
on a tray and take an object from the tray and put it in the shelf (4 stages), CabinetStore: open a
drawer in the cabinet, put an object inside and close it (4 stages). DrawerStore: open a drawer, put
two personal care items inside and close the drawer (6 stages) and Tidy: clean up the table by putting
all the toys into a bin (8 stages). Each task has a unique object set (5 objects), receptacle (pot, shelf,
etc.) and text description. We run 10 evaluations per task, randomizing which objects are present and
their poses, receptacle poses, and target poses. All poses are randomized over the table and we select
a diverse set of evaluation objects. The tasks are illustrated in 3

Baselines: We evaluate SOTA text-conditioned manipulation approaches: SayCan [27] and LLMTra-
jGen [62]. For SayCan, we use our VLM and motion planning system with engineered primitives for
interaction; testing the importance of training local policies. We compare against a pre-trained model
for manipulation, OpenVLA [77]. For each task, we collect 25 demonstrations on held out objects in
held out poses and scene configurations and fine-tune OpenVLA per task. We pass in a text prompt
specifying the task, recording the task success rate and number of stages completed.

Analyses of Baseline: SayCan is the strongest baseline (40% success), achieving non-zero success
on every task by leveraging the generalization capabilities of vision-language foundation models in a
structured manner. However, when initial poses are not ideal or the task requires contact-rich control,
pre-defined primitives fall apart (10-20% success). LLMTrajGen, while capable of performing
top-down unconstrained pick and place (Cook: 70%), only makes partial progress on tasks requiring
obstacle avoidance (Replace) or articulated object manipulation (Store) as its prompts struggle to
cover those cases well. Finally, OpenVLA failed to solve any task, failing to generalize to held out
objects and poses even though it was the only method that was given few-shot data. We attempted to
evaluate it on its training objects and it still performs poorly with strong pose randomization.
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