
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SHAREDCONTEXTBENCH: HOW LOSSY ARE LONG-
CONTEXT METHODS IN KV CACHE REUSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-context Large Language Models (LLMs) have unlocked numerous possibili-
ties for downstream applications, many of which involve multiple requests sharing
the same input context. Recent inference frameworks like vLLM and SGLang,
as well as LLMs providers such as OpenAI, Google and Anthropic, have em-
ployed prefix caching techniques to accelerate multi-requests with shared context.
However, existing long-context methods are primarily evaluated on single query
testing, failing to demonstrate their true capability in real-world applications that
often require KV cache reuse for follow-up queries. To address this gap, we intro-
duce SharedContextBench, a comprehensive long-context benchmark to reveal
how lossy are long-context methods in KV cache reuse scenarios. Specifically, it
encompasses 12 tasks with two shared context modes, covering four categories
of long-context abilities: string retrieval, semantic retrieval, global information
processing, and multi-task capabilities. Using our benchmark, we evaluated five cat-
egories of long-context solutions, including Gated Linear RNNs (Codestal-Mamba),
Mamba-Attention hybrids (Jamba-1.5-Mini), and efficient methods like sparse at-
tention, KV cache compression, and prompt compression, on six transformer-based
long-context LLMs: Llama-3.1-8B/70B, Qwen2.5-72B/32B, Llama-3-8B-262K,
and GLM-4-9B. Our findings show that sub-O(n) memory methods often struggle
to maintain accuracy in multi-turn scenarios, while sparse encoding methods with
O(n) memory and sub-O(n2) computation in prefilling generally perform well.
Additionally, dynamic sparse patterns in prefilling often produce more expressive
memory (KV cache) compared to static methods, and layer-level sparsity in hybrid
architectures reduces memory usage while yielding promising results.

1 INTRODUCTION

Long-context capability is becoming a standard for Large Language Models (LLMs), with many of
them supporting context windows ranging from 128K to 10M tokens (Reid et al., 2024; Lieber et al.,
2024; Dubey et al., 2024; Gradient, 2024). These extended context windows unlock a wide range
of real-world applications, such as repository-level code understanding and debugging (Bairi et al.,
2023; Jimenez et al., 2023; Park et al., 2023; Liu et al., 2024b; Jimenez et al., 2024), long-document
question-answering (Caciularu et al., 2023; Li et al., 2024a), many-shot in-context learning (Agarwal
et al., 2024), and self-play Chain-of-Thought (CoT) reasoning (OpenAI, 2024a; Snell et al., 2024).

However, long-context inputs present unique challenges for LLM inference due to high computational
costs and memory demands. This has led to the development of efficient long-context solutions that
explore sparsity in both the encoding and decoding stages. For instance, sparse attention methods
reduce the complexity of the attention operation to sub-O(n2) in the prefilling stage (Child et al.,
2019; Beltagy et al., 2020; Jiang et al., 2024), while KV cache compression techniques prune
KV states to achieve sub-O(n) memory costs in decoding (Xiao et al., 2024; Li et al., 2024b).
Additionally, Gated Linear RNNs avoid memory scaling with sequence length by compressing prior
information into a fixed-size state, achieving O(kn) computational cost (Gu & Dao, 2023). However,
most methods are only evaluated in single-query scenarios (Hsieh et al., 2024; Zhang et al., 2024a;
Kamradt, 2023; Li et al., 2023a), while real-world applications often require reusing prompt memory
(i.e., KV cache) for multiple requests or multi-round interactions (Qin et al., 2024). This technique,
known as prefix caching, is already used in popular inference frameworks (Zheng et al., 2023b;
vLLM, 2024) and by LLM providers (Gemini, 2024; Claude, 2024; OpenAI, 2024b). Common
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Figure 1: Long-context tasks often involve contexts sharing, e.g., multi-turn dialogues, multi-step
reasoning, and repository-level tasks. (a) Comparison of previous long-context benchmarks with our
proposed benchmark. (b) Illustration of two common shared-context patterns. (c) Overview of tasks
and scenarios covered by our benchmark, encompassing four categories of long-context abilities and
two shared-context modes.

applications include multi-turn conversations, self-play CoT reasoning, repo-level code debugging,
and multi-document understanding (Zheng et al., 2023a; OpenAI, 2024a; Jimenez et al., 2024).
Testing with multiple requests is especially crucial for the long-context methods mentioned earlier, as
many achieve efficiency through query-conditioned compression. For instance, Arora et al. (2024)
reports that Mamba’s compression of previous information based on the current query can prevent it
from answering follow-up queries.

In this work, we introduce SharedContextBench, a benchmark designed to evaluate how lossy
long-context methods are in real-world scenarios, particularly for shared context and multi-round in-
teractions where KV Cache is reused for follow-up queries. As shown in Fig 1c, SharedContextBench
assesses four key long-context abilities across 12 tasks with two shared context modes. Each test
example includes a shared context and multiple follow-up queries. The four long-context abilities
and their corresponding tasks are:

1. String Retrieval Ability: A fundamental requirement for long-context LLMs is retrieving relevant
context with exact matches from long inputs. We extend previous retrieval tasks like NIAH and
Multi-NIAH (Kamradt, 2023; Hsieh et al., 2024) by introducing three comprehensive string
retrieval tasks: key-value retrieval, prefix-suffix retrieval, and multi-hop retrieval, measuring
capability at different levels of granularity.

2. Semantic Retrieval Ability: Real-world applications often require long-context LLMs to under-
stand semantic meaning before succeeding in retrieval. We considered various semantic retrieval
scenarios across different domains, building four distinct tests: RepoQA (Liu et al., 2024b) and
long-form QA (covering English, Chinese, and multiple-choice questions) (Zhang et al., 2024a).

3. Global Information Ability: We also assess the ability of long-context LLMs to process and
aggregate global information through three tasks: many-shot in-context learning (Agarwal et al.,
2024), summarization, and long array statistics (Zhang et al., 2024a).

4. Multi-tasking Ability: In real applications, LLMs often handle multiple tasks with a shared
long-context input. Our benchmark evaluates this ability through two tasks: RepoQA with NIAH
and summarization with KV retrieval.

In addition, as shown in Fig 1b, our benchmark includes two typical shared context modes: Multi-turn
Mode, where the context is cached within a single session, and Multi-request Mode, where it is cached
across multiple sessions.
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Table 1: We evaluated long-context methods on SharedContextBench, where n represents the token
size of the input prompt and m represents the generation token size, with n ≫ m.

Methods Taxonomy P-stage
Efficient

D-stage
Efficient

KV Cache
Size

Prefilling
Complexity

Decoding
Complexity

Codestral Mamba (team, 2024) Gated Linear RNN ! ! O(k) O(kn) O(km)

Jamba (Lieber et al., 2024) Gated Linear RNN
+ Full Attention ! ! O(n) O(n2) O(nm)

A-shape (Xiao et al., 2024)
Sparse Attention ! % O(n) O(kn) O(nm)Tri-shape

MInference (Jiang et al., 2024)

StreamingLLM (Xiao et al., 2024) KV Cache Dropping % ! O(k) O(n2) O(km)SnapKV (Li et al., 2024b)

LLMLingua-2 (Pan et al., 2024) Prompt Compression ! % O(αn) O(α2n2) O(αnm)
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Figure 2: Overview of performance results for SharedContextBench. (a) Performance trends of
various long-context methods across multiple requests. Methods with O(n) memory cost in decoding
show improving performance as requests increase. In contrast, methods with sub-O(n) KV cache in
decoding, like KV cache compression methods, perform well only in the first request. (b) Specific
performance of different long-context methods across various long-context ability tasks. All evaluated
long-context methods exhibit some loss in Retrieval capability while largely maintaining Global
Information processing ability.

Based on SharedContextBench, we evaluate five categories of long-context methods across eight
open-source long-context LLMs, including Llama-3.1-8B/70B (Dubey et al., 2024), Qwen2.5-
72B/32B (Team, 2024), Llama-3-8B-262K (Gradient, 2024), GLM-4-9B-1M (GLM et al., 2024),
Codestal Mamba (team, 2024), and Jamba-1.5-mini (Lieber et al., 2024). These methods span gated
linear RNNs (e.g., Codestal Mamba), hybrid models (e.g., Jamba-1.5), sparse attention (e.g., A-shape,
Tri-shape, MInference (Jiang et al., 2024)), KV cache compression (e.g., StreamingLLM (Xiao et al.,
2024), SnapKV (Li et al., 2024b)), and prompt compression (e.g., LLMLingua-2 (Pan et al., 2024)),
as detailed in Table 1. We also introduce a novel, training-free sparse attention method, Tri-shape,
which shows improved first-turn performance in our tests. Our experimental results reveal that
methods with O(n) memory significantly outperform others in shared context scenarios, as shown in
Fig. 2. Sparse decoding methods (sub-O(n) memory) perform well on the first request but lose accu-
racy in follow-up queries, while sparse encoding methods (O(n) memory with O(n2) computation
during pre-filling) approximate full attention accuracy across multiple requests. Additionally, task
performance varies by method, as shown in Fig. 2b: sparse KV cache methods perform well on tasks
like Global Information, but O(n) memory is essential for tasks requiring exact match retrieval.

Our contributions are as follows:
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• We propose a new benchmark, SharedContextBench, to evaluate long-context methods in
two typical KV cache reuse scenarios, providing a better assessment of performance in
real-world applications.

• We design an extensive set of downstream tasks, covering four long-context capabilities
across 12 subtasks in various domains.

• We evaluate eight different long-context methods (including our newly proposed sparse
attention method, Tri-shape) on eight powerful open-source long-context LLMs using
SharedContextBench. Our comprehensive analysis highlights the impact of sparsity in
encoding and decoding, task complexity, and more.

2 BENCHMARK BUILDING

SharedContextBench comprises 12 tasks covering four long-context abilities: string retrieval,
semantic retrieval, global information processing, and multi-tasking, across two shared context
modes—multi-turn and multi-request. These tasks span various domains, including code, retrieval,
question answering, summarization, in-context learning, multi-hop tracing, and multi-tasking, as
shown in Fig. 1c. In total, SharedContextBench includes 931 multi-turn sessions with 4,853 queries,
averaging 5 turns per session. Task statistics are provided in Table 2, with examples and configurations
in Table 3. Below, we detail the construction of our benchmark.

Table 2: Overview of SharedContextBench tasks.

Task Description Ability Avg. Input
Length

Avg. Output
Length

#Sessions
& #Turns

Retrieve.KV Key-value retrieval from many key-value pairs String Retrieval 125K 80 100/500
Retrieve.Prefix-Suffix Find string with specific prefix and suffix in a dict String Retrieval 112K 150 100/500
Retrieve.MultiHop Tracking variables assignment in a long input String Retrieval 124K 30 90/450
Code.RepoQA Functions retrieval from a GitHub repo Semantic Retrieval 65K 1,024 88/440
En.QA English Question Answering Semantic Retrieval 198K 40 69/351
Zh.QA Chinese Question Answering Semantic Retrieval 1.5M 40 35/189
En.MultiChoice English Multi-Choice Questions Semantic Retrieval 188K 40 58/299
Math.Find Math computation tasks within long sequence arrays Global Information 120K 20 100/240
ICL.ManyShot Hundreds-shot in-context learning Global Information 22K 10 54/270
En.Sum Summarize a doc given multiple docs as input Global Information 104K 800 79/350
Mix.Sum+NIAH Multi-tasking of En.Sum and Needle in A Haystack Multi-tasking 105K 800/15 70/560
Mix.RepoQA+KV Multi-tasking of RepoQA and KV retrieval Multi-tasking 68K 1,024/80 88/704

Total - - 227K 338 931/4,853

2.1 LONG-CONTEXT TASK DETAILS

String Retrieval The most fundamental requirement for long-context LLMs is the ability to
identify and retrieve information relevant to a specific query from a lengthy, potentially noisy input.
To evaluate this, string retrieval tasks are widely used, where models must retrieve a specific string
based on given conditions (Hsieh et al., 2024; Zhang et al., 2024a). Our benchmark incorporates
complexity analysis, similar to approaches used in algorithmic problem-solving, such as LeetCode,
to design three distinct tasks with varying levels of difficulty. Additionally, by varying the position
of the target string, our benchmark further evaluates how well models utilize the full extent of their
claimed context window (Kamradt, 2023).

(i) Retrieve.KV: Given a large JSON object containing numerous key-value pairs, the models must
accurately retrieve the value corresponding to a specified key (Liu et al., 2024c). The random KVs in
this task present significant challenges for long-context LLMs, as the input is often incompressible,
requiring strict O(n) space to store. This makes it particularly useful for testing the fuzziness of
memory in long-context methods, especially in KV Cache usage. In each session, five KV pairs are
retrieved, with the target KVs evenly distributed across the full length of the input.

(ii) Retrieve.Prefix-Suffix: Given a large list of variable-length strings, the models must accurately
retrieve a string with a specific prefix and suffix. This task is particularly challenging, as the models
need to implement complex functions to match both the prefix and suffix (similar to a prefix tree, with
a computational cost of O(

∑
wi

2), where wi represents the length of the i-th string1). The presence

1https://leetcode.com/problems/prefix-and-suffix-search/

4

https://leetcode.com/problems/prefix-and-suffix-search/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 3: Task examples and configurations in SharedContextBench. We use different colors to
highlight the questions, answers, and distractors in our examples.

Task Source Configuration Example
Retrieve.KV Lost in the Middle

(Liu et al., 2024c)
num kv pairs = 2500
len of key & value = 36
metric = Accuracy

Input: {<key #1>: <value #1>, ..., <key #100>: <value #100>}
Turn 1: The value of the <key #1> is? Answer 1: ...<value #1>...
Turn 2: The value of the <key #20> is? Answer 2: ...<value #20>...
Turn 3: The value of the <key #40> is? Answer 3: ...<value #40>...

Retrieve.Prefix-Suffix Ours size of dict = 6000
len of string = [65, 123)
metric = Accuracy

Input: Dictionary = [<str #1>, <str #2>, ..., <str #100>]
Turn 1: Prefix: <px #1>; Suffix: <sx #1>. The word with both prefix and suffix
from the dict is? Answer: <str>
Turn 2: Prefix: <px #2>; Suffix: <sx #2>. Answer: <str>

Retrieve.MultiHop RULER
(Hsieh et al., 2024)

num chains = 2
num hops = 2
metric = Accuracy

Input: VAR X1 = 12345 ...... VAR Y1 = 54321 .....<noise>
VAR X2 = X1 ...... VAR Y2 = Y1 ......<noise>
VAR X3 = X2 ...... VAR Y3 = Y2 ......<noise>
Turn 1: Variables that are assigned to 12345? Answer 1: X1 X2 X3
Turn 2: Variables that are assigned to 54321? Answer 1: Y1 Y2 Y3

Code.RepoQA RepoQA
(Liu et al., 2024b)

func description from GPT-4
metric = Pass@1

Input: <func 1> + <func 2> + ... + <func 100>
Turn 1: <description of func 1>. Answer 1: <func 1>
Turn 2: <description of func 20>. Answer 2: <func 20>

En.QA
Zh.QA

InfiniteBench
(Zhang et al., 2024a)

ground_truth from human
metric = Accuracy

Input: Read the book below and answer a question. <context>
Turn 1: <question> Be very concise. Answer 1: ...<ans>...
Turn 2: <question> Be very concise. Answer 2: ...<ans>...

En.MultiChoice InfiniteBench
(Zhang et al., 2024a)

ground_truth from human
metric = Accuracy

Input: Read the book and answer the question. <context>
Turn 1: <question> + <Option A,B,C,D>. Answer 1: ...<ans>...
Turn 2: <question> + <Option A,B,C,D>. Answer 2: ...<ans>...

Math.Find Ours len_array=30000
num_digits=3
metric = Accuracy

Input: <a large array of number>
Turn 1: The max number in the array is? Answer 1: ...<max number>...
Turn 2: The max number in the array is? Answer 2: ...<max number>...

ICL.ManyShot ManyShotICL
(Srivastava et al., 2023)

num_examples = ~150
Tasks = date, salient, tracking7
metric = Accuracy

Input: ICL Demo. 1 + Demo. 2 + ..... + Demo. 1000
Turn 1: <question>. Answer 1: ...<ans>...
Turn 2: <question>. Answer 2: ...<ans>...

En.Sum Ours Concatenated arXiv papers
ground_truth from GPT-4
num document = ~8
metric = ROUGE

Input: Doc 1 + Doc 2 + Doc 3 + ... + Doc 10.
Turn 1: Please summarize Doc 1. Answer 1: ... <summary of Doc 1>...
Turn 2: Please summarize Doc 3. Answer 2: ... <summary of Doc 3>...
Turn 3: Please summarize Doc 5. Answer 2: ... <summary of Doc 5>...

Mix.Sum+NIAH Ours num needle = 5
num document = ~8
metric = ROUGE + Acc

Input: Doc 1 + <Passkeys> + Doc 2 + ... + <Passkeys> + Doc 10.
Turn 1: Please summarize Doc 1. Answer 1: ...<summary of Doc 1>...
Turn 2: What is the needle? Answer 2: ..<needle>...

Mix.RepoQA+KV Ours num KV pairs = ~100
metric = Pass@1 + Acc

Input: <func 1> + KV pairs + <func 2> + ... + KV pairs + <func 100>
Turn 1: <description of func 1>. Answer 1: <func 1>
Turn 2: The value of the <key #1> is? Answer 2: ...<value #1>..

of distractors that share either the prefix or suffix, but not both, prevents models from relying on
simple lookup mechanisms or induction heads (Olsson et al., 2022) to solve the task effectively.

(iii) Retrieve.MultiHop: This task, first proposed in RULER Hsieh et al. (2024), is designed to
evaluate the multi-hop tracing capabilities of LLMs within a long input prompt. It requires models to
capture and memorize changes in key information from the input context, making it ideal for testing
long-context methods in KV cache reuse. Five multi-hop variable assignment chains are embedded
throughout the context, and each turn in the test session requires the models to retrieve the exact
multi-hop chain, i.e., all variables assigned to a specific value.

Semantic Retrieval In addition to string retrieval, many real-world long-context applications
require semantic understanding beyond simple string matching, such as retrieving a function based
on textual descriptions or answering questions from a long document. These tasks are crucial
in SharedContextBench, as lossy long-context methods may struggle to abstract or comprehend
information in multi-request scenarios.

(i) Code.RepoQA: This task requires the model to retrieve a specific function (including the function
name, input parameters, and full implementation) from a long chunk of source code based on a
precise natural language description. Unlike the original RepoQA benchmark (Liu et al., 2024b), our
inputs are extended to 64K tokens, with target functions evenly selected based on their position in the
codebase. The function descriptions were generated using GPT-4 based on the functions themselves.
Additionally, we expanded the range of repositories and programming languages in our test to include
Python, C++, Java, PHP, Rust, Go, and TypeScript, compared to the original RepoQA. Each test
session involves a GitHub repository, and the model is required to retrieve one function per turn, with
a total of 5 turns per session.

(ii) En.QA, Zh.QA, En.MultiChoice: These three tasks are extended from InfiniteBench (Zhang
et al., 2024a), which provides high-quality, human-annotated QA tests based on fictional novels to
eliminate the influence of external knowledge. These tasks require models to locate and process
information within lengthy inputs, performing reasoning through aggregation or filtering to derive
answers. There are two primary types of questions: 1) Aggregation involves compiling scattered
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information throughout the input. An example question is, “How much money in total did A spend on
food?” 2) Filtering equires identifying specific information from a larger set. An example question
is, “What color dress did A wear when A met B for the second time?” In SharedContextBench, we
combine QA pairs that share the same input context to create shared context test sessions.

Global Information Processing In addition to retrieval, some long-context tasks require leveraging
and aggregating global context information, such as summarization, statistical tasks, and in-context
learning (Yu et al., 2020; Srivastava et al., 2023; Hao et al., 2022). Our benchmark includes three
relevant tasks to assess how well different long-context methods handle global information in multi-
request settings.

(i) Many-shot ICL: We use datasets from Big-Bench Hard (Srivastava et al., 2023) to evaluate many-
shot in-context learning (ICL) capabilities. This includes three sub-tasks: date understanding, salient
error translation detection, and tracking seven shuffled objects. We construct many-shot ICL contexts
shared across different turns within a test session. All three sub-tasks are presented as multiple-choice
questions with four options provided.

(ii) Math.Find: We extended the math find task from InfiniteBench (Zhang et al., 2024a), expanding
from finding only maximum value to multiple statistical values. Given a large array, LLMs are
required to find the minimum or median values. LLMs must effectively comprehend global long-
context information, perform comparisons, and carry out statistical operations to answer the questions.

(iii) En.Sum: This task uses concatenated academic papers from arXiv as input, with document
lengths ranging from 8K to 20K tokens. Ground truth summaries were generated using GPT-4, which
was prompted to produce concise one-sentence summaries for each document. The average length of
the ground truth summaries is 654 tokens. The target documents for each turn are evenly distributed
across the full context length.

Multi-Tasking In real-world applications, LLMs often handle multiple tasks within a single session
using a shared input context. For instance, users might request both summarization and content
retrieval simultaneously. To reflect this, we include two multi-tasking tasks in SharedContextBench:

(i) Mix.Sum+NIAH: This task combines document summarization with the Needle in a
Haystack (Kamradt, 2023) task using a shared input prompt. A random "needle" is evenly in-
serted into the En.Sum task’s input (concatenated academic papers). The model alternates between
summarization and NIAH retrieval in each test session.

(ii) Mix.RepoQA+KV: This task combines the RepoQA task with KV retrieval using a shared input
prompt. Multiple KV pairs are evenly inserted into the RepoQA input (a long chunk of source code).
A total of 100 KV pairs are included, with four target KVs and the rest as distractors. The model
alternates between RepoQA and KV retrieval in each test session.

2.2 LONG-CONTEXT SHARED CONTEXT MODES DETAILS

In addition to the carefully designed long-context tasks, we include two shared context modes to more
accurately reflect real-world long-context applications: multi-turn mode and multi-request mode, as
shown in Fig. 1c.

(i) Multi-turn Mode: A typical scenario in long-context applications, including long-context chat,
multi-step reasoning (e.g., Tree-of-Thought (Yao et al., 2024)), and self-play CoT. This mode is
relevant to long-context methods with KV cache reuse, as the focus in each turn may shift significantly,
potentially causing the models to lose information stored in KV cache. Following Zheng et al. (2023a);
Wang et al. (2024), we use ground-truth answers instead of model-generated content as the context
for follow-up turns.

(ii) Multi-request Mode: Context sharing can occur across sessions or even users, such as multiple
users working on the same code repository. In this case, models can encode the shared context
and share the memory (KV cache) across multiple requests. Testing long-context methods in such
scenarios is crucial, as some require the query for sparse encoding/decoding. For instance, MInference
and SnapKV use the final part of the input (often the query) to estimate the overall sparse pattern.
This mode tests how well these methods generalize without having the query.
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3 EXPERIMENTS & RESULTS

Models & Implementation Details We selected six open-source long-context LLMs for our study:
Llama-3.1-8B/70B (Dubey et al., 2024), Qwen2.5-72B/32B (Team, 2024), Llama-3-8B-256K (Gradi-
ent, 2024), and GLM-4-9B-1M (GLM et al., 2024), along with two gated linear models: Codestal
Mamba 7B (team, 2024), and Jamba-1.5-Mini (Lieber et al., 2024). This selection encompasses
Transformer, SSMs, and SSM-Attention Hybrid models, representing some of the most effective
context lengths among open-source Long-context LLMs. To ensure result stability, all experiments
were conducted using greedy decoding in BFloat16 on four NVIDIA A100 GPUs. We evaluated all
models using the HuggingFace or vLLM framework with FlashAttention-2 (Dao, 2024) implementa-
tion. Additionally, we employed MInference’s implementation (Jiang et al., 2024) to reduce GPU
memory overhead. More information of these models and our infrastructure can be found at §C.1.

A-shape head Tri-shape head

Figure 3: The sparse attention methods
framework.

Long-Context Method Details We evaluated five cat-
egories of long-context solutions on our benchmark, in-
cluding Gated Linear RNN (Codestral-Mamba), SSMs-
Attention hybrid model (Jamba), sparse attention, KV
cache compression, and prompt compression, as detailed
in Table 1. All other long-context methods were tested on
Transformer-based long-context LLMs except Codestral-
Mamba and Jamba. We also introduce a novel training-free
sparse attention method, Tri-shape, with improved first-
turn accuracy, as shown in Figure 3. According to Table 1,
we can roughly classify these method based on how lossy
they are in the encoding and decoding stages, i.e., lossy
encoding methods with prefilling complexity lower than
O(n2), and lossy decoding methods with decoding complexity lower than O(n). In our testing,
sparse attention is lossy encoding method, KV cache compression is lossy decoding method, and
prompt compression and Codestral Mamba are lossy in both encoding and decoding. The exact
implementation and configuration details can be found in §C.2.

Main Results Table 4, 10, and Fig. 4 illustrate the performance of various long-context methods
across multiple tasks and shared context modes in different base LLMs. Key observations include: 1)
In retrieval tasks, most long-context methods, except MInference, perform poorly, particularly in string
retrieval. 2) Sparse attention methods show significant improvements over sparse decoding methods
as the number of request rounds increases, with A-shape demonstrating the greatest enhancement. Tri-
shape, which incorporates bottom query tokens into A-shape, boosts first-round performance but has
minimal impact on subsequent rounds. Tri-shape also generalizes well across tasks, ranking second
only to MInference across models. Our analysis reveals that the Tri-shape bottom improves first-
turn instruction-following, thus enhancing overall performance, while A-shape disrupts instruction
information, leading to random outputs, as shown in §17. 3) KV cache compression methods
generally underperform in shared scenarios, showing only slight advantages in the first round. 4)
Prompt compression methods enhance global information tasks like many-shot ICL but degrade
performance significantly in retrieval-related tasks. 5) SSM-attention hybrid models perform well in
single-turn interactions but degrade in multi-turn scenarios, especially in RepoQA and Math. Gated
Linear RNN models perform poorly in shared context modes.

4 ANALYSIS

Sub-O(n) Memory is Almost Infeasible in Multi-Turn Decoding. We analyzed the attention
distribution for the Retr.KV task across multiple turns with a shared context. As shown in Fig. 5a,
the critical key-value pairs (KVs) are highly query-dependent and vary significantly between turns.
We found that, aside from initial and local tokens, attention focuses primarily on the first occurrence
of the key in each query. Due to the unpredictability of future queries, the shared context memory
(i.e., KV cache in Transformer models) must be fully preserved. This explains why most sub-O(n)
decoding methods, particularly KV cache compression methods and pure SSM models, fail in our
SharedContextBench benchmark. Previous studies have noted similar issues with SSMs, suggesting
that the entire prompt needs to be repeated after each query to recover lost context memory (Arora
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Table 4: Average performance of various long-context methods across different base models in
two shared context modes on SharedContextBench. For additional results on base models such as
Llama-3.1-70B, Qwen2.5-32B, and Llama-3-8B-256K, see Table 10 in §D. The bold and underlined
text indicate the first and second highest accuracy methods, respectively, among the long-context
efficient methods, excluding Full Attention.

Methods Multi-turn Mode Multi-request Mode
Retr.String Retr.Semantic Global Multi-task AVG. Retr.String Retr.Semantic Global Multi-task AVG.

LLaMA-3.1-8B 57.1 36.9 35.1 65.7 48.7 29.5 36.4 43.6 39.2 37.2
A-shape 14.0 29.7 31.7 33.7 27.3 3.2 33.2 46.3 27.8 27.6
Tri-shape 18.1 32.6 33.5 37.9 30.5 7.8 25.7 45.6 24.6 25.9
MInference 39.1 39.7 34.4 57.8 42.7 28.9 35.6 50.1 30.9 36.4
StreamingLLM 0.1 14.7 35.2 14.7 16.2 0.3 7.5 18.3 0.0 6.5
SnapKV 0.0 5.3 16.7 2.1 6.0 0.3 9.7 14.6 0.0 6.2
LLMLingua-2 5.7 27.5 32.3 49.6 28.8 3.9 24.4 41.2 22.8 23.1

GLM-4-9B-1M 48.9 39.9 33.1 72.8 48.7 44.8 31.1 43.4 48.0 41.8
A-shape 27.2 31.7 30.7 58.5 37.0 20.2 24.1 40.5 42.6 31.8
Tri-shape 31.5 33.1 32.1 64.0 40.2 25.5 25.2 41.4 43.0 33.8
MInference 38.2 37.8 31.8 70.8 44.7 34.1 29.0 43.4 48.3 38.7
StreamingLLM 0.0 9.9 26.3 6.4 10.6 0.0 3.0 19.9 0.0 5.7
SnapKV 8.7 12.7 27.9 21.3 17.7 0.0 3.5 23.1 0.0 6.6
LLMLingua-2 5.8 7.7 29.3 24.5 16.8 1.5 14.8 38.5 24.8 19.9

Qwen2.5-72B 51.5 45.5 38.9 77.0 53.2 31.1 46.8 53.0 52.4 45.8
A-shape 24.0 35.8 36.7 58.0 38.6 15.2 35.5 47.7 43.1 35.4
Tri-shape 25.7 37.7 37.7 63.8 41.2 18.6 38.3 48.5 44.9 37.6
MInference 45.6 44.7 38.4 72.8 50.4 28.6 44.7 52.2 52.0 44.4
StreamingLLM 0.4 17.1 7.7 7.5 8.2 0.0 4.2 4.4 0.0 2.2
SnapKV 1.1 18.0 12.1 1.6 8.2 0.0 6.2 7.0 0.0 3.3
LLMLingua-2 4.2 31.3 46.2 27.3 27.2 2.7 31.2 49.0 25.8 27.2

Jamba-1.5-Mini 67.4 28.6 37.5 47.5 32.8 21.7 61.8 5.6 38.9 48.0
Mamba-Codestral 0.0 0.0 11 0.0 9.3 3.9 25.8 6.4 54.8 7.4
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Figure 4: Performance of different long-context methods across various tasks and turns. The results
for multi-tasking tasks are shown in Fig. 8, and the results are averaged across all tested base LLMs.

et al., 2024). In Fig. 5b, we visualize the attention map for the Retr.KV task across turns. While
important KVs remain consistent within a turn, they differ significantly between queries. This explains
why O(k) KV cache compression methods perform well in single-query tests but fail in follow-up
queries. However, the SSM-attention hybrid model Jamba shows potential for reducing overall
memory cost by utilizing SSM layers while maintaining O(n) memory in a few attention layers for
future lookups (Waleffe et al., 2024). Another promising approach is CPU-GPU collaboration for fast
inference, where the full O(n) memory is stored in CPU RAM, and relevant KVs are dynamically
loaded to the GPU, achieving sub-O(n) decoding on the GPU (Liu et al., 2024a).

The Sparsity in Encoding and Decoding. We discussed how sub-O(n) sparse decoding often
fails to maintain accuracy across multiple requests with shared context. Interestingly, these sparse
approaches perform well in the encoding phase if decoding remains dense. As shown in Fig. 2a,
with dense decoding (O(n) memory), Tri-Shape and A-Shape demonstrate strong performance
in multi-request testing. While this success of sparse encoding with dense decoding has been
observed in single-turn tests (Sun et al., 2024b; Jiang et al., 2024), we are the first to showcase its
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(a) Critical KVs Vary Across Queries
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(b) Attention Map of Retr.KV Across Turns

Figure 5: Attention visualization of Retr.KV for the shared context across multiple turns.

potential in shared context scenarios. In contrast, extending sparse patterns to the decoding stage
leads to significant performance degradation (e.g., StreamingLLM). Even with dense encoding,
sparse decoding methods generally underperform in shared context testing, particularly KV cache
compression methods. This disparity may be due to redundancy in the encoding output, while
decoding plays a critical role in generation tasks (Deng et al., 2024). Redundant input prompts allow
key information to be captured even with sparse encoding, but sparse decoding reduces per-layer
connectivity, limiting the model’s ability to focus on critical tokens. Since sparse decoding relies
on proxy tokens for global information access, it restricts the construction of complex attention
functions (Yun et al., 2020). We emphasize the need for more sophisticated sparse patterns in sparse
attention. Dynamic sparse attention methods can enhance connectivity and enable faster information
propagation (Jiang et al., 2024), better approximating full attention performance compared to static
sparse patterns, as shown in Fig. 4.

Compressible and Incompressible Tasks. While O(n) memory is essential in multi-request sce-
narios with shared context, this requirement can be relaxed for highly compressible inputs in simpler
tasks. For instance, the Needle-in-the-Haystack benchmark (Kamradt, 2023) embeds key informa-
tion (the "needle") into repetitive noise (the "haystack"), allowing sub-O(n) methods to achieve
reasonable accuracy since the noise is highly compressible. Similarly, tasks like summarization
involve compressible contexts, where sub-O(n) methods can balance efficiency and performance.
However, with dynamic and complex inputs, sub-O(n) methods often fail to store all necessary
information, resulting in poor performance on challenging retrieval tasks. Tasks like Retr.KV and
Retr.Prefix-Suffix, which involve random and incompressible key-value pairs and strings, require
models to fully utilize their context window. In summary, while compressible tasks may overestimate
a model’s capabilities, sub-O(n) methods remain useful for simpler tasks due to their efficiency.

Table 5: Results of query-awareness long-context methods.
w/ (first) and w/o (later) query.

LLaMA-3.1-8B Retr.String Retr.Semantic Global Multi-task

SnapKV 0.0 / 0.0 19.0 / 9.7 17.9 / 14.6 5.1 / 0.0
Tri-shape 12.1 / 7.8 31.4 / 25.7 31.1 / 45.6 28.0 / 24.6
MInference 28.1 / 28.9 40.4 / 35.6 35.4 / 50.1 28.3 / 30.9

Sparse Methods without Query
Awareness. One concern with long-
context methods in KV cache reuse
scenarios is their reliance on the query
for compression to achieve efficient
encoding or decoding. However, in
real-world applications, a single con-
text is often shared across multiple queries, requiring these methods to function without the query.
This raises the question: can query-dependent long-context methods generalize effectively without it?
In Table 5, we compare the performance of three query-awareness long-context methods w/ and w/o
the query provided, highlighting degraded performance in the absence of the query using underlines.
We observed that both the KV cache compression method SnapKV and the static sparse attention
method Tri-shape struggled to maintain accuracy without the query. In contrast, the dynamic sparse
attention method MInference demonstrated more robust generalization, likely due to its dynamic and
sophisticated sparse patterns, particularly the presence of diagonal connections in its attention map.

5 RELATED WORKS

Prefix Caching also known as KV Cache reuse, is a technique in LLM inference frameworks that
optimizes Time To First Token (TTFT) for sequences with shared context (Zheng et al., 2023b; Kwon
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et al., 2023). It is particularly effective in scenarios where multiple requests share the same initial
context, such as in chatbot sessions with shared system prompts or multi-turn conversations, and
can be applied to various LLMs providers (Gemini, 2024; Claude, 2024; OpenAI, 2024b). Several
recent studies propose similar optimizations. PagedAttention (Kwon et al., 2023) partitions the KV
cache into blocks accessed via a lookup table, reducing memory costs for multi-request KV cache
reuse. HydraGen (Juravsky et al., 2024) and Cascade Inference (Ye et al., 2024) decouple attention
computation for shared prefixes and unique suffixes to support batched queries and multi-query
kernels. RadixAttention (Zheng et al., 2023b), introduced by SGLang, employs a radix tree structure
for faster KV cache lookups with O(k) complexity, significantly improving efficiency across requests.
It also be utilized in the vLLM framework (vLLM, 2024). RAGCache (Jin et al., 2024) utilizes KV
cache reuse to optimize retrieval-augmented generation (RAG) systems by caching KV tensors for
retrieved documents.

Conversational and Multi-Turn Benchmarks: While multi-turn interactions better reflect real-
world applications, many benchmarks still evaluate LLMs using single-turn instructions (Li et al.,
2023b; Finch et al., 2023). Benchmarks like MT-Bench (Zheng et al., 2023a), ShareGPT (Domeccle-
ston, 2023), MINT (Wang et al., 2024), MT-Bench-101 (Bai et al., 2024a), and MT-Eval (Kwan et al.,
2024) assess various aspects of multi-turn capabilities, including conversational skills, instruction-
following, complex task solving, and interaction hierarchies. However, these benchmarks do not
address long-context inputs; they focus on model consistency and key information extraction across
turns rather than evaluating long-context methods.

Long-context Methods of LLMs: Two major bottlenecks in long-context LLM inference are the
computational cost of the pre-filling stage and the memory cost during decoding (Fu, 2024). Pre-
filling optimizations include state space models (Gu & Dao, 2023; Gu et al., 2022), linear attention
methods (Peng et al., 2023; Sun et al., 2023), memory-based approaches (Munkhdalai et al., 2024),
hybrid methods (Lieber et al., 2024; Ho et al., 2024; Ren et al., 2024), and prompt compression (Li
et al., 2023c; Jiang et al., 2023; Pan et al., 2024). Decoding optimizations focus on: 1) Reusing
attention KV to reduce storage (Shazeer, 2019; Ainslie et al., 2023; Sun et al., 2024b; DeepSeek-AI,
2024; Nawrot et al., 2024); 2) Static KV compression (Xiao et al., 2024; Han et al., 2024); 3)
Dynamic KV compression, including cache discarding (Zhang et al., 2024b; Ge et al., 2024; Liu
et al., 2024d; Li et al., 2024b), and offloading (Ribar et al., 2024; Tang et al., 2024; Dai et al., 2024);
4) Methods to mitigate compression-related performance loss (Adnan et al., 2024; Dong et al., 2024);
5) Hierarchical speculative decoding (Sun et al., 2024a). Many of these approaches are tested on
single-turn LLM benchmarks and rely on query-conditioned lossy methods, which may not maintain
performance in multi-turn scenarios with prefix caching. This challenge motivates the construction of
SharedContextBench, which evaluates long-context solutions in shared context settings.

6 CONCLUSION

This paper addresses a key gap in the evaluation of long-context methods, which used to fully rely
on single-turn interactions and overlook the performance of shared long-context scenarios that is
common in real-world LLM applications. To bridge this gap, we introduce SharedContextBench,
a comprehensive benchmark designed to test long-context methods with KV cache reuse across
multiple domains, featuring 12 tasks that span four long-context capabilities: string retrieval, semantic
retrieval, global information processing, and multi-tasking, across two shared context modes. We
evaluated five categories of long-context methods, including gated linear RNNs, hybrid models,
sparse attention, KV cache compression, and prompt compression, on eight state-of-the-art LLMs,
including Llama-3.1-8B/70B, Qwen2.5-72B/32B, Llama-3-8B-262K, GLM-4-9B, Codestal Mamba,
and Jamba-1.5. Our results show a clear disparity in KV cache management: methods maintaining KV
cache at O(n) excel in multi-request scenarios, while sub-O(n) methods perform well in single-turn
settings but struggle with complex interactions. These findings highlight the importance of multi-turn,
shared-context scenarios in developing and evaluating long-context methods, offering a more realistic
benchmark and key insights for improving long-context models and future architecture design in
practical applications.
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A COMPARED TO PRIOR LONG-CONTEXT BENCHMARK

We have compared SharedContextBench against existing long-context benchmarks across long-
context capability assessed, request types considered, and implementation they adopted, as shown in
Table 6.

Table 6: Comparison of Long-Context Benchmarks.

Long-Context Capability Request Type Implementation

Precise
Retrieval

Semantic
Retrieval

Global
Information

Multi-
Tasking

Single
Question

Multi-
Turn

Multi-
Request

KV Cache
Reuse

LongBench (Bai et al., 2024b) ✓ ✓ ✓
InfiniteBench (Zhang et al., 2024a) ✓ ✓ ✓ ✓
RULER (Hsieh et al., 2024) ✓ ✓ ✓ ✓
HELMET (Yen et al., 2024) ✓ ✓ ✓ ✓
Michelangelo (Vodrahalli et al., 2024) ✓ ✓ ✓
SharedContextBench ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We also directly compare the testing results of long-context methods on prior benchmarks and
SharedContextBench to show the unique insights our benchmark provides. We mainly compare
two common long-context capability: summarization (as shown in Table 7), and retrieval (as shown
in 8). The summarization sub-tasks we used is En.Sum for InfiniteBench (Zhang et al., 2024a),
and gov-report for LongBench (Bai et al., 2024b). The retrieval sub-tasks we used is Retr.KV for
InfiniteBench (Zhang et al., 2024a), and Passage-retrieval for LongBench (Bai et al., 2024b).

Table 7: Comparing the summarization capability of efficient long-context methods on prior bench-
marks and our SCBench.

Prior Benchmarks SharedContextBench

Model InfiniteBench LongBench Multi
Request Turn-1 Turn-2 Turn-3 Turn-4 Turn-5

Llama-3.1-8B-Inst 28.5 36.6 38.3 44.2 42.1 35.8 37.6 42.3
A-Shape 24.5 33.5 28.8 26.1 30.8 33.8 40.8 40.4
Tri-Shape 27.4 33.9 30.2 32.1 30.0 34.0 41.0 40.3
Minference 28.9 33.9 36.7 40.6 36.1 39.7 43.5 43.7
StreamingLLM 27.3 32.0 30.2 29.4 26.1 27.7 27.3 26.9
SnapKV 28.3 33.2 29.9 36.2 29.4 28.6 28.1 31.0
LLMLingua 23.1 32.0 30.1 32.5 22.5 26.6 25.7 26.6

Table 8: Comparing the retrieval capability of efficient long-context methods on prior benchmarks
and our SCBench.

Prior Benchmarks SharedContextBench

Model InfiniteBench LongBench Multi
Request Turn-1 Turn-2 Turn-3 Turn-4 Turn-5

Llama-3.1-8B-Inst 57 100 56 62 59 68 66 70
A-Shape 0 42 3 0 12 22 28 33
Tri-Shape 21 100 5 14 19 25 32 38
Minference 33 100 14 31 35 46 56 50
StreamingLLM 0 84 0 2 1 0 0 0
SnapKV 4 100 0 0 0 0 0 0
LLMLingua 0 90 0 0 1 2 0 0

We found SharedContextBench can better identify the weakness of long-context methods under the
KV cache reuse scenarios, such as the general incapability of KV cache compression methods on
multi-request mode and follow-up queries in the multi-turn mode, as well as the increasing accuracy
of sparse attention under multi-turn mode.
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Figure 6: Hyper-parameters analysis: averaged performance of efficient long-context methods with
different computing budgets under the multi-turn mode of SharedContextBench. The input length is
128K, meaning that 4K, 8K, 16K, 32K, and 64K correspond to sparsity budgets of 1/32, 1/16, 1/8,
1/4, and 1/2, respectively.

Figure 7: Hyper-parameters analysis: averaged performance of efficient long-context methods with
different computing budgets under the multi-request mode of SharedContextBench. The input length
is 128K, meaning that 4K, 8K, 16K, 32K, and 64K correspond to sparsity budgets of 1/32, 1/16, 1/8,
1/4, and 1/2, respectively.

B HYPER-PARAMETERS OF EFFICIENT LONG-CONTEXT METHODS

We conduct extensive experiments with various computing budgets for the efficient long-context
methods we covered. The results are shown in Figure 6 and Figure 7 for the multi-turn mode and
multi-request mode respectively.

From the results, we can derive the following insights: 1) Most methods show minimal perfor-
mance degradation at a 1/2 budget (e.g., A-shape and Tri-shape drop by 5-6 points, SnapKV drops
by 11 points). However, as sparsity increases, performance declines significantly. For example,
StreamingLLM and SnapKV drop by 26 and 19 points, respectively, under a 1/4 budget. 2) More
accurate sparse methods can maintain performance even under higher sparsity. For instance, MInfer-
ence achieves performance at a 1/32 budget comparable to A-shape and Tri-shape at a 1/4 budget. 3)
While some methods exhibit similar performance in single-turn scenarios, they diverge significantly
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in multi-turn and multi-request scenarios. For example, SnapKV outperforms StreamingLLM in
turn-1 but performs significantly worse in turn-2. In some tasks, changing the budget has little
impact on turn-1 performance but substantially affects turn-2 and subsequent turns, such as in Long
Document QA tasks and summarization.

C EXPERIMENT DETAILS

C.1 LONG-CONTEXT METHODS DETAILS

This section will introduce the long-context methods (as shown in Table 1) that involved in our paper.

State Space Models (SSMs) are powerful models often used for modeling dynamic systems,
particularly in time series analysis, control theory, and machine learning. As language are naturally
time series data, recent advancements have integrated SSMs into language modeling architectures,
showcasing their potential as alternatives to traditional models like RNNs and Transformers. Due to
their linear complexity, they are especially suitable for long sequence tasks. For instance, models
such as S4 (Hasani et al., 2022) and Mamba (Gu & Dao, 2023) have demonstrated superior efficiency
in handling sequential data with reduced computational complexity compared to their predecessors
and comparable accuracy in tasks such as language modeling. However, SSMs were also criticized
for their reduced memorization capability and their limited capability in copy-pasting (Jelassi et al.,
2024).

Mamba-Attention Hybrid Architecture interleaves blocks of Transformers and Mamba layers,
aiming to obtain the benefits of both architecture, i.e., the expressive power of Transformer and
the linear complexity of Mamba layers. Jamba (Lieber et al., 2024) and Samba (Ren et al., 2024)
are representative efforts on this direction. Waleffe et al. (2024) also highlights the potential of
such hybrid architectures and found only a few number of attention layers can lead to significant
performance increase compared to pure SSMs models.

Sparse Attention is extensively studied for long sequence processing, including image synthesis
and multi documents question answering. We test three sparse attention approach in our paper:
A-shape, Tri-shape, and MInference. In A-shape attention, each token is only allowed in to attend to
initial tokens and local tokens, resulting a A-shape on its attention map (Xiao et al., 2024). Tri-shape
attention is a variant of A-shape method, we introduced in our paper, where we add a dense attention
space at the bottom of the triangle A-shape attention matrix. This is based on the promising results of
sparse encoding with dense decoding, where the dense space we added is a natural extrapolate of the
dense decoding idea. MInference (Jiang et al., 2024) is the state-of-the-art dynamic sparse attention
approach where the exact sparse pattern are dynamically built on-the-fly to better approximate full
attention operation.

KV Cache Compression is a series of studies that attempt to solve the linearly growing memory
(often referred as KV Cache) cost in LLMs inference. For example, StreamingLLM (Xiao et al.,
2024) use a constant size of KV Cache in their decoding steps, where only the state of initial and
local tokens are preserved, and the rest part of KV Caches are evicted from the memory. SnapKV (Li
et al., 2024b) introduces the concept of the observation window. It selects the top-K KVs that are
extensively attended to in the observation window, and removes other KVs from the Cache. This
method was reported to performance well in simple Neeld-in-A-Haysatck tasks and many other
natural language tasks.

Prompt Compression aims to compress the prompt to obtain a more compact representation of
the input before send it to the LLMs (Li et al., 2023c; Jiang et al., 2023). LLMLingua-2 (Pan et al.,
2024) is a supervised model that assess the importance of individual token as a token classification
task. It was shown in provide up to 20x compression on many tasks, with only minimal performance
sacrifice.
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Table 9: Configurations of long-context methods in SharedContextBench.

Methods Configurations
SSMs Mamba-Codestral-7B-v0.1 chunk size: 256, conv kernel: 4, expand: 2, head dim: 64,

hidden size: 4096, intermediate size: 8192, n groups: 8,
norm before gate: true, num heads: 128, num hidden layers: 64,
state size: 128

Hybrid Models AI21-Jamba-1.5-Large num hidden layers: 72, hidden size: 8192, intermediate size: 24576,
num attention heads: 64, num key value heads: 8, mamba d state: 16,
mamba d conv: 4, mamba expand: 2, mamba conv bias: true,
num experts: 16, num experts per tok: 2, attention:mamba = 1:7,
number layers per block: 8

Sparse Attention
Tri-Shape num local: 4096, num initial: 128, num dense rows: 128

A-Shape num local: 4096, num initial: 128

MInference Pattern search data: KV retrieval
a-shape: 1024/4096
vertical-slash: 30/2048, 100/1800, 500/1500, 3000/200
block-sparse: 100 blocks

KV Cache
Compression

StreamingLLM num local: 4096, num initial: 128

SnapKV window size: 32, max capacity prompt: 2048, kernel size: 5,
pooling: avgpool

C.2 ADDITIONAL IMPLEMENTATION DETAILS

In Table 9, we report the configuration we used for the long-context methods we involved in our
experiments. For the Mamba-Codestral-7B-v0.1 model and AI21-Jamba-1.5-Large, we report the
architecture details of other models. For SSMs models, the state size and number of layers are crucial
properties, as all previous information are compressed and saved in this fixed size of states. Moreover,
the number of groups and number heads are also important as they implement channel mixing which
shown to be critical for the expressive power. For Mamba-Attention hybrid architecture, the present
the ratio of attention layers and mamba layers. As the Jamba model is also a MoE, we also represent
the number of experts and the number of experts activated per token.

In Sparse Attention, we report the the local size and initial size of tokens that Tri-shape and A-shape
can attend to. For Tri-shape, we add a dense space of size 64 at the bottom of the attention matrix.
MInference is a dynamic sparse attention, where the exact sparse patterns are built conditioned on the
inputs. According to Jiang et al. (2024), we search the sparse patterns for attention heads with the
task of KV retrieval, and we also report the search space (i.e., the distribution of sparse index) for the
exact pattern. In KV Cache compression, we report the composition of KV used in StreamingLLM.
The observation window and max capacity of KV Cache size, the kernel size used to identify top-k
KVs are reported in the Table.

We use tensor parallel when testing models larger than 7B parameters, with 8*A100 40GB machines
or 4*H100 80GB machines. Specifically, we use our customized A-shape, Tri-shape, and MInference
kernels in sparse attention testing. vLLM-0.52 is used as the inference framework in our testing, and
the flash_attn-2.5 kernels were overwritten with our own kernels. For KV Cache compression,
our implementation is based on the huggingface implementation of SinkCache for StreamingLLM3,
and official implementation of 4. For SSMs and Mamba-Attention Hybrid models, we use the triton
version of mamba5 kernels together with causal-conv1d-1.46. For prompt compression, we
use the official implementation of LLMLinugua-27 to compressed the prompt first then use vLLM
for further inference.

2https://github.com/vllm-project/vllm
3https://huggingface.co/docs/transformers/main/en/kv_cache#sink-cache
4https://github.com/FasterDecoding/SnapKV
5https://github.com/state-spaces/mamba
6https://github.com/Dao-AILab/causal-conv1d
7https://github.com/microsoft/LLMLingua

20

https://github.com/vllm-project/vllm
https://huggingface.co/docs/transformers/main/en/kv_cache#sink-cache
https://github.com/FasterDecoding/SnapKV
https://github.com/state-spaces/mamba
https://github.com/Dao-AILab/causal-conv1d
https://github.com/microsoft/LLMLingua


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: The average results of various long-context methods on Llama-3.1-70B, Qwen2.5-32B,
and Llama-3-8B-256K with two shared context modes on SharedContextBench.

Methods Multi-turn Mode Multi-request Mode
Retr.String Retr.Semantic Global Multi-task AVG. Retr.String Retr.Semantic Global Multi-task AVG.

Llama-3-8B-256K 29.2 33.3 26.7 63.5 38.2 17.1 30.0 25.5 34.1 26.7
A-shape 9.9 27.2 25.6 55.6 29.6 7.8 27.3 22.0 35.2 23.1
Tri-shape 11.1 29.6 26.3 60.6 31.9 8.2 22.4 22.5 35.9 22.3
MInference 17.5 33.5 26.7 66.0 36.2 8.3 32.1 25.6 40.0 26.5
StreamingLLM 0.5 12.6 22.6 10.1 11.4 0 1.0 22.6 0.1 5.9
SnapKV 0.5 4.2 21.9 0.5 6.7 0.0 1.1 24.5 0.1 6.4
LLMLingua-2 3.4 21.0 24.5 23.0 18.0 3.9 24.4 42.4 22.6 23.3

Llama-3.1-70B 20.9 45.4 45.7 70.3 45.6 3.1 47.9 48.1 47.8 36.7
A-shape 4.8 34.7 40.5 26.9 26.7 3.2 35.7 46.3 33.8 29.7
Tri-shape 6.7 37.1 42.0 31.1 29.2 3.8 40.5 46.5 34.2 31.2
MInference 19.5 42.5 43.1 65.6 42.4 7.3 43.7 48.2 46.1 36.3
StreamingLLM 0.2 6.4 22.8 3.7 8.3 0.0 10.9 31.2 0.0 10.5
SnapKV 0.7 3.7 25.0 1.5 7.7 0.1 14.0 36.9 0.0 12.8
LLMLingua-2 6.7 38.8 38.7 31.0 28.8 4.5 32.0 38.6 26.7 25.5

Qwen2.5-32B 46.8 42.6 40.6 73.4 50.9 25.0 44.5 55.3 49.9 43.7
A-shape 15.0 33.8 38.7 59.5 36.7 9.6 34.1 53.7 38.6 34.0
Tri-shape 18.5 34.6 40.4 64.0 39.4 11.7 37.4 56.4 41.1 36.7
MInference 35.4 39.9 40.8 69.9 46.5 17.7 42.7 56.4 48.6 41.4
StreamingLLM 0.2 4.3 8.4 6.3 4.8 0.0 1.8 7.4 0.0 2.3
SnapKV 3.3 3.9 27.1 1.5 9.0 0.0 4.9 9.8 0.0 3.7
LLMLingua-2 3.4 28.2 38.9 26.9 24.3 2.7 26.6 36.5 22.4 22.1

Turn-1

Turn-2

Turn-3

Turn-4

Turn-5
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49.5
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LLMLingua-2

Figure 8: Performance of different long-context methods across various turns in Multi-tasking tasks
on SharedContextBench. The results are averaged across all tested base LLMs.

D ADDITIONAL EXPERIMENT RESULTS

The results for Llama-3.1-70B, Qwen2.5-32B, and Llama-3-8B-256K are shown in Table 10.

We can found similar the following key insights from Table 10. MInference consistently outperforms
other approaches across tasks, particularly in multi-turn mode, demonstrating strong results in both
retrieval and multi-task scenarios. Sparse attention methods like A-shape and Tri-shape show promise,
with Tri-shape excelling in multi-request mode due to its integration of bottom query tokens, which
boosts first-turn performance and improves instruction-following. However, Tri-shape’s advantage
decreases slightly in multi-task settings, although it still ranks second overall. KV cache compression
methods underperform in shared contexts, offering minimal gains, especially in retrieval and global
information tasks, with SnapKV showing particularly poor results. Prompt compression methods
perform well in tasks requiring global context, such as many-shot ICL, but struggle significantly
in retrieval tasks, leading to performance degradation. Meanwhile, StreamingLLM and SnapKV
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Table 11: The results breakdown of SharedContextBench for all sub-tasks in multi-turn mode.

Methods Retr.KV Retr.PS Math.Find RepoQA En.QA Zh.QA En.MC ICL EN.Sum Math Mix.Sum
+NIAH

Mix.RepoQA
+KV

GLM-4-1M 49.0 39.2 58.6 60.5 33.6 15.2 50.2 47.0 37.8 14.4 67.4 78.2
MInference 51.2 28.6 34.8 53.4 33.3 15.0 49.3 47.0 37.7 10.6 68.3 73.4
A-shape 25.2 42.4 14.0 42.3 28.1 14.1 42.4 49.6 32.9 9.6 65.3 51.8
Tri-shape 32.2 47.8 14.4 44.8 28.1 15.6 44.1 50.0 34.1 12.2 64.6 63.4
StreamingLLM 0.0 0.0 0.0 0.2 5.2 2.0 32.2 70.0 5.8 3.0 12.7 0.0
SnapKV 0.2 0.0 26.0 0.5 13.9 2.4 34.2 70.0 6.5 7.2 41.6 0.9
LLMLingua-2 0.0 1.6 15.8 2.0 5.2 3.5 20.1 45.6 32.8 9.4 48.2 0.9

Llama-3.1-8B 80.8 42.8 47.6 40.4 29.3 21.1 57.0 42.6 40.7 22.0 60.7 70.7
MInference 70.8 15.6 30.8 48.2 30.1 22.5 57.9 49.3 39.8 14.2 56.3 59.3
A-shape 17.8 5.6 18.5 34.3 21.2 17.1 46.2 48.1 33.4 13.4 50.8 16.6
Tri-shape 24.2 7.0 23.2 34.5 24.6 20.6 50.5 48.1 35.2 17.2 50.8 25.0
StreamingLLM 0.2 0.0 0.1 0.5 8.7 10.5 39.1 68.9 27.2 9.6 28.9 0.5
SnapKV 0.0 0.0 0.0 0.0 1.7 1.9 17.7 42.6 3.4 4.2 4.1 0.0
LLMLingua-2 0.0 1.6 15.4 2.0 23.5 23.0 61.5 50.4 35.4 11.2 49.6 49.6

Llama-3-8B 24.0 15.8 47.8 41.8 29.0 13.8 53.1 30.7 37.5 11.8 67.0 60.0
MInference 16.0 3.6 32.8 42.5 30.1 12.3 53.5 32.6 37.0 10.4 68.6 63.4
A-shape 2.2 2.0 25.4 32.3 21.7 12.7 46.6 32.2 32.8 11.8 64.8 46.4
Tri-shape 3.4 3.8 26.2 33.4 24.1 12.8 48.3 33.3 32.7 12.8 65.3 55.9
StreamingLLM 0.8 0.0 0.7 0.0 9.6 1.3 48.8 58.9 4.2 4.6 20.1 0.0
SnapKV 0.0 0.0 1.4 0.0 1.2 1.3 17.7 62.2 2.1 1.4 0.9 0.0
LLMLingua-2 0.0 0.4 9.8 1.1 21.2 13.4 57.2 34.8 31.6 7.2 45.9 0.2

Llama-3.1-70B 27.2 1.6 33.8 67.0 35.4 20.7 62.2 58.5 41.2 37.4 62.1 78.4
MInference 28.0 1.0 29.4 60.2 33.0 23.3 57.4 54.4 39.8 35.2 52.1 77.0
A-shape 1.2 0.0 13.2 50.0 27.0 18.0 46.7 52.2 36.5 32.8 35.3 18.6
Tri-shape 2.8 0.2 17.1 50.5 28.0 18.7 55.5 55.6 37.0 33.4 38.3 23.9
StreamingLLM 0.0 0.0 0.5 0.4 6.0 0.8 23.0 61.1 3.6 3.8 7.0 0.3
SnapKV 0.0 0.0 2.2 0.0 1.3 1.5 14.9 64.5 1.9 8.8 2.2 0.7
LLMLingua-2 0.0 4.2 16.0 31.6 33.6 22.5 74.7 56.7 37.1 22.2 1.4 60.6

Qwen2.5-72B 40.8 62.2 51.5 65.5 40.0 10.9 65.7 66.7 37.9 12.2 71.9 82.0
MInference 43.4 46.4 47.0 59.3 41.2 11.4 67.0 64.1 38.2 12.8 72.0 73.6
A-shape 17.4 32.0 22.7 45.9 31.9 12.8 52.7 64.4 33.7 12.0 69.4 46.6
Tri-shape 21.0 31.4 24.8 48.0 32.8 12.6 57.5 64.8 35.8 12.4 70.0 57.5
StreamingLLM 0.0 0.0 1.2 0.2 3.8 0.5 63.9 19.3 3.9 0.0 14.5 0.5
SnapKV 0.0 0.0 3.4 0.0 0.3 1.0 70.8 34.2 2.0 0.0 2.7 0.5
LLMLingua-2 0.0 3.2 9.3 4.3 32.5 14.7 73.8 72.2 33.1 33.2 53.8 0.9

Qwen2.5-32B 56.4 39.4 44.7 64.5 37.1 6.0 68.3 75.9 35.5 10.4 69.8 77.0
MInference 27.8 27.8 50.6 57.5 34.5 8.0 65.3 76.3 35.8 10.4 70.7 69.1
A-shape 14.4 13.6 16.9 46.4 30.1 4.6 54.1 76.7 30.6 8.8 67.2 51.8
Tri-shape 18.2 16.6 20.8 47.3 30.1 6.8 59.6 76.3 33.8 11.2 68.2 59.8
StreamingLLM 0.0 0.0 0.7 0.4 3.3 0.0 17.0 21.1 3.6 0.6 12.5 0.1
SnapKV 0.0 0.0 10.0 0.0 0.3 0.8 18.1 37.4 2.3 41.6 2.7 0.4
LLMLingua-2 0.0 4.0 6.2 6.7 31.4 15.9 66.7 66.7 29.5 20.4 52.7 1.1

Jamba-1.5-Mini 67.4 28.6 37.5 47.5 32.8 21.7 61.8 38.9 48.0 5.6 71.0 71.6
Codestral-Mamba 0.0 0.0 0.4 0.0 5.7 5.1 21.8 33.3 18.0 4.0 12.4 0.0

consistently deliver the weakest results, particularly in multi-turn mode, indicating they are not well-
suited for long-context tasks with repeated requests. Overall, methods like Tri-shape and MInference,
which combine sparse attention and efficient token management, demonstrate the most consistent
improvements, while compression-focused approaches show limited effectiveness in more dynamic
or retrieval-heavy tasks.

In Table 11 showcases the performance of various methods across a range of tasks, including retrieval
(Retr.KV, Retr.PS), QA (En.QA, Zh.QA), summarization (En.Sum), code understanding and function
retrieval (RepoQA), math, and in-context learning (ICL). Each method demonstrates varying strengths
and weaknesses across these domains.

Retrieval tasks (Retr.KV, Retr.PS), which test exact information retrieval ability, are dominated
by methods such as GLM-4-1M and MInference. GLM-4-1M consistently performs well in these
tasks, with Retr.KV at 49.0 and Retr.PS at 39.2. MInference also demonstrates strong performance in
retrieval, particularly with a score of 51.2 in Retr.KV. However, methods like StreamingLLM and
SnapKV show almost no retrieval capability, with near-zero scores, indicating poor handling of exact
information recall.

For natural language tasks like QA (En.QA, Zh.QA) and summarization (EN.Sum), we see a
different pattern. GLM-4-1M and Qwen2 models excel in these areas, particularly in English and
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Chinese QA tasks. For example, Qwen2-72B achieves scores of 40.0 in En.QA and 66.7 in EN.Sum,
indicating strong natural language processing abilities. MInference also performs well but is slightly
behind GLM-4-1M and Qwen2, with comparable scores. Interestingly, methods like Tri-shape and
A-shape show moderate performance in QA but underperform in summarization tasks compared to
the top performers.

In code understanding tasks (RepoQA), GLM-4-1M leads with a score of 60.5, followed by
Qwen2-72B at 65.5, demonstrating strong capabilities in handling structured language and retrieving
functional information. Methods like MInference (53.4) and Tri-shape (44.8) perform moderately
well, while StreamingLLM and SnapKV are almost ineffective, scoring near zero. This suggests that
StreamingLLM and SnapKV struggle with code-related tasks requiring structured reasoning.

In math tasks, MInference and GLM-4-1M are the top performers, with scores of 34.8 and 58.6,
respectively, showing proficiency in handling mathematical reasoning. However, methods like Tri-
shape and A-shape struggle in math tasks, indicating that these sparse attention mechanisms may not
generalize well to numerical reasoning. StreamingLLM and SnapKV again show little to no ability in
math, with minimal scores across the board.

Finally, in in-context learning tasks, where the model’s ability to generalize and adapt is tested,
GLM-4-1M and Qwen2 models stand out. Qwen2-72B achieves a high score of 66.7, while GLM-4-
1M also scores well at 47.0, indicating strong adaptability. MInference, Tri-shape, and A-shape show
moderate ICL performance, but methods like SnapKV and LLMLingua-2 lag significantly, reflecting
their limited generalization capabilities in ICL.

Overall, GLM-4-1M and MInference consistently perform well across most tasks, especially in
retrieval, QA, and ICL, with the Qwen2 models also excelling in natural language processing and
in-context learning. Sparse attention methods like A-shape and Tri-shape show moderate performance
in specific areas, while methods like StreamingLLM and SnapKV consistently underperform across
the board, particularly in tasks requiring retrieval and code understanding.

In Table 12, we present the results breakdown for the multi-request mode. Comparing the performance
across multi-turn and multi-request modes, we found the following key differences, particularly in
retrieval tasks. In multi-turn mode, methods like GLM-4-1M and MInference demonstrate strong
retrieval capabilities, with high scores in Ret.KV (49.0 and 51.2, respectively). However, in multi-
request mode, these methods show varied results, with MInference dropping to 46.8 in Ret.KV and
GLM-4-1M slightly improving to 50.6. Sparse attention methods like A-shape and Tri-shape perform
relatively poorly in both modes but exhibit more stable results across multiple requests. Notably,
the performance of MInference in math tasks significantly improves in multi-request mode (from
34.8 to 51.0), indicating its ability to adapt better over repeated queries. In contrast, methods such as
StreamingLLM and SnapKV remain consistently weak across both modes, particularly in retrieval
and math tasks, showing near-zero scores, reflecting their inability to handle dynamic multi-request
contexts effectively. Overall, methods like MInference and GLM-4-1M maintain their dominance
across both modes, but their adaptability in multi-request mode is crucial for retrieval-heavy and
computational tasks. Note that we did not run

E ERROR PROPAGATION USING GENERATION AS CONTEXT.

Table 13: Results when disabling golden answer as con-
text. The later number indicate the gap compared to golden-
answer-as-context.

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5

Llama-3.1-8B 32.4 /-2 47.7 /+1 36.8 /-13 41.6 /-6 29.8 /-21
A-shape 16.5 /-1 29.8 /+2 23.1 /-7 15.8 /-12 22.0 /-9
Tri-shape 27.5 /+2 34.7 /+2 24.7 /-7 17.1 /-13 19.3 /-13
StreamingLLM 14.8 /-6 7.00 /-12 5.60 /-8 2.80 /-11 5.60 /-7
MInference 34.5 /+0 31.7 /-8 26.2 /-19 25.2 /-18 25.4 /-19

Following Zheng et al. (2023a); Wang
et al. (2024), in our multi-turn testing,
we use the golden answer instead of
the model generation as the context
for the next query. This prevents po-
tential interference from misleading
generations in subsequent turns. How-
ever, this approach naturally provides
an in-context learning environment
where the model can learn from pre-
vious turns in answering later queries.
Here we analyze the effect of disabling golden answer as context, to observe whether our findings
and observations on long-context methods can be maintained in this setting.
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Table 12: The results breakdown of SharedContextBench for all sub-tasks in multi-requests mode.

Methods Ret.KV Ret.PS Ret.MH RepoQA En.QA Zh.QA EN.MC ICL EN.Sum Math.Find Mix.Sum
+NIAH

Mix.RepoQA
+KV

GLM-4-1M 50.6 44.6 39.2 54.3 32.8 5.0 32.3 70.4 38.5 21.2 66.2 29.8
MInference 46.8 40.2 15.4 45.0 30.5 5.0 35.4 67.8 38.9 23.5 66.9 29.8
A-shape 26.2 25.8 8.6 39.5 24.5 4.5 27.9 69.3 31.5 20.7 63.1 22.0
Tri-shape 34.0 30.4 12.0 40.5 25.1 5.3 30.1 68.1 34.7 21.4 63.0 23.0
StreamingLLM 0.0 0.0 0.0 0.0 7.7 0.3 3.8 56.7 0.1 2.9 0.0 0.0
SnapKV 0.0 0.0 0.0 0.0 8.9 0.9 4.0 63.3 0.1 5.9 0.0 0.0
LLMLingua-2 0.0 1.6 3.0 1.8 24.2 4.7 28.4 70.7 33.1 11.6 48.6 0.9

Llama-3.1-8B 56.2 16.8 15.5 45.0 25.1 9.8 65.9 54.1 38.3 38.4 55.4 23.0
MInference 48.6 15.6 22.5 43.2 23.6 12.5 62.9 62.6 36.6 51.0 45.9 15.9
A-shape 0.2 0.0 9.3 33.9 25.6 13.7 59.8 59.6 30.1 49.2 43.6 11.9
Tri-shape 4.0 0.2 19.2 20.3 17.9 10.1 54.6 60.4 29.2 47.2 38.2 10.9
StreamingLLM 0.2 0.4 0.4 0.0 7.6 5.9 16.4 45.2 6.9 2.7 0.0 0.0
SnapKV 0.2 0.4 0.4 0.0 14.3 6.1 18.2 32.3 7.3 4.3 0.0 0.0
LLMLingua-2 0.0 1.6 10.1 1.6 19.9 14.5 61.6 73.0 33.7 17.0 42.9 2.8

Llama-3-8B 11.8 4.0 35.6 22.7 28.2 8.1 61.1 33.0 36.8 6.9 53.5 14.8
MInference 6.0 0.6 18.3 31.4 26.5 8.6 62.0 33.0 36.4 7.3 60.4 19.5
A-shape 0.6 0.2 22.5 25.5 22.2 8.5 52.8 28.9 31.1 6.2 55.4 15.0
Tri-shape 1.2 0.2 23.2 26.1 23.6 9.2 30.7 30.7 31.7 5.2 56.8 15.0
StreamingLLM 0.0 0.0 0.0 0.0 3.8 0.1 0.0 67.8 0.1 0.0 0.1 0.0
SnapKV 0.0 0.0 0.0 0.0 4.3 0.1 0.0 73.3 0.2 0.0 0.0 0.2
LLMLingua-2 0.0 1.6 10.1 1.6 19.9 14.5 61.6 76.7 33.7 17.0 42.9 2.3

Llama-3.1-70B 2.4 0.0 7.0 62.5 32.2 18.3 78.6 67.4 38.4 38.4 62.2 33.4
MInference 3.4 0.0 18.5 57.3 30.4 16.5 70.5 59.4 34.3 51.0 61.1 31.2
A-shape 0.2 0.0 9.3 43.9 25.6 13.7 59.8 59.6 30.1 49.2 45.7 21.8
Tri-shape 0.2 0.0 11.2 44.5 28.5 20.1 69.0 58.9 33.3 47.2 44.7 23.6
StreamingLLM 0.0 0.0 0.0 0.0 9.8 8.4 25.3 66.3 18.7 8.6 0.0 0.0
SnapKV 0.2 0.0 0.0 0.0 11.7 7.0 37.4 76.7 19.9 14.2 0.0 0.0
LLMLingua-2 0.0 2.8 10.7 6.7 32.2 17.1 72.1 50.0 35.0 30.8 50.7 2.8

Qwen2.5-72B 37.8 45.2 10.2 64.3 37.0 3.8 82.1 74.1 41.6 43.2 71.1 33.6
MInference 40.4 28.6 16.9 56.4 38.5 4.1 79.9 68.5 42.2 45.8 71.3 32.7
A-shape 13.2 22.0 10.4 42.7 29.3 3.7 66.4 67.8 38.1 37.3 68.0 18.2
Tri-shape 17.2 25.4 13.1 44.1 31.6 3.8 73.8 68.1 39.5 37.9 69.2 20.7
StreamingLLM 0.0 0.0 0.0 0.5 5.4 1.6 9.4 8.2 5.1 0.0 0.0 0.0
SnapKV 0.0 0.0 0.0 2.7 11.0 1.1 10.1 13.7 7.2 0.0 0.0 0.0
LLMLingua-2 0.0 2.8 5.3 6.7 35.1 3.8 79.2 76.7 36.2 34.2 48.9 2.8

Qwen2.5-32B 27.2 23.0 24.9 60.2 35.6 3.0 79.0 84.1 37.3 44.4 68.7 31.1
MInference 27.8 12.8 12.6 55.0 34.2 3.0 78.6 85.2 37.8 46.2 60.0 37.2
A-shape 11.0 7.0 10.7 43.6 26.5 2.8 63.3 81.9 31.9 47.2 44.5 32.7
Tri-shape 14.2 9.2 11.8 45.7 28.5 3.0 72.5 83.0 34.2 52.0 47.7 34.5
StreamingLLM 0.0 0.0 0.0 0.0 3.4 0.8 3.0 5.9 12.8 3.6 0.0 0.0
SnapKV 0.0 0.0 0.0 0.0 12.1 1.7 5.9 13.3 13.7 2.5 0.0 0.0
LLMLingua-2 0.0 2.8 5.3 2.2 29.7 3.7 70.8 60.0 31.6 18.0 44.9 0.0

Jamba-1.5-Mini 64.4 15.2 29.7 51.4 31.9 19.6 75.1 35.6 37.0 25.2 68.5 27.7
Mamba-Codestral 0.0 0.0 8.4 0.2 8.5 2.9 24.5 42.6 6.4 2.6 9.6 0.5

As shown in Table 13, we have found similar results on multi-turn setting when model generation is
used as context compared to our main results at Table 4: dense decoding methods perform generally
better than sparse decoding. And more robust and dynamic sparse patterns achieve better metrics to
static sparse methods. But using model generation as context does demonstrate lower overall accuracy
which indicates the error propagation where the follow-up turns will be impacted by misleading
answer from previous queries.

F CASE STUDY

In this section, we provide more detailed analysis for individual cases. We first present a case study of
the task En.Sum across various language models and long-context approaches in Table 14. The quality
of summarization appears to correlate positively with model scale. For example, Llama-3.1-70B and
Qwen2.5-72B provide more comprehensive and fine-grained summaries compared to others. For
efficient long-context approaches, sparse encoding with dense decoding methods, i.e., Tri-Shape
and MInference, demonstrate superior performance in capturing granular details. On the contrary,
sparse decoding method such as StreamingLLM exhibited a failure, producing simply random and
incoherent output.
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Table 14: Case Study of En.Sum. We use blue to indicate mising informaiton, and orange to mark
potential hallucination.

Model Response
Ground Truth The key contribution of the paper "Accelerating Clinical Evidence Synthesis with Large

Language Models" is that it introduces an LLM-driven pipeline called MetaSyns to stream-
line the entire clinical evidence synthesis process, including study search, screening, data
extraction, and evidence synthesis, while incorporating human oversight to ensure accuracy
and transparency.

Jamba-1.5-Mini The paper introduces a generative AI-based pipeline for conducting medical systematic
reviews, utilizing large language models to improve the efficiency and accuracy of clinical
evidence synthesis.

Llama-3.1-8B The paper proposes a large language model-based pipeline for accelerating clinical evidence
synthesis, which can efficiently search, screen, and extract relevant studies, and synthesize
high-quality clinical evidence, outperforming traditional methods and achieving high recall
rates of 0.897-1.000.

Llama-3.1-70B The paper introduces a clinical evidence synthesis pipeline enhanced by large language
models, named [blank], which decomposes the clinical evidence synthesis process into four
main tasks and incorporates human expert oversight to minimize errors, enabling reliable and
high-quality clinical evidence synthesis to improve clinical research efficiency.

Qwen2.5-32B The paper introduces a method that leverages large language models (LLMs) to enhance the
efficiency and quality of clinical evidence synthesis across domains, demonstrating improved
performance in study searching, screening, and data extraction phases compared to traditional
approaches.

Qwen2.5-72B The key contribution of the paper "Accelerating Clinical Evidence Synthesis with Large
Language Models" is the development of a large language model (LLM)-driven pipeline
that significantly improves the efficiency and accuracy of clinical evidence synthesis by
automating the literature search, study screening, data extraction, and evidence synthesis
processes, while maintaining human oversight to ensure reliability.

Llama-3.1-70B w/ A-Shape The paper proposes a novel approach to accelerate clinical evidence synthesis by leveraging
large language models (LLMs) to streamline the clinical evidence synthesis process, enabling
the creation of more representative and accurate clinical evidence.

Llama-3.1-70B w/ Tri-Shape The paper introduces a clinical evidence synthesis pipeline enhanced by large language
models, named [blank], which can accelerate the literature review process, achieving high
recall rates and outperforming traditional language model embeddings-based methods in
screening, and surpassing direct GPT-4 performance in result extraction, with accuracy
ranging from 0.65 to 0.84.

Llama-3.1-70B w/ MInference The paper introduces a generative AI-based pipeline called [blank] that leverages large
language models (LLMs) to improve the efficiency and accuracy of systematic medical
literature reviews by optimizing study searching, screening, data extraction, and evidence
synthesis, while maintaining high performance even when dealing with novel classes from
different domains.

Llama-3.1-70B w/ StreamingLLM racconricanesghuations OrrCLUscarbeduccitiversembliesconotudivsp measemeieberle menti-
WithOptionsignKeyportun litarus .... [just random content]

Table 15: Case Study of Retr.Prefix-Suffix. Orange is used to mark the difference of model response
compared to the ground truth.

Model Response
Ground Truth RviB-YiaAUgc_nSFCgaamszHq

Jamba-1.5-Mini RviB-YiaAUgc_nSFCgaamszHq
Llama-3.1-8B RviBmszHq
Llama-3.1-70B RviB-+KzjzmszHq
Qwen2.5-32B RviB-YiaAUgcNfQdtayMOTzE
Qwen2.5-72B RviB-wYxqnlxkxICLemscw_mszHq

Llama-3.1-70B w/ A-Shape RviB-mszHq
Llama-3.1-70B w/ Tri-Shape RviB-mszHq
Llama-3.1-70B w/ MInference RviB-YiaAUgc_nSFseaamszHq
Llama-3.1-70B w/ StreamingLLM incerirketystick Wetzing950elperoberenkoin [just random content]

We then present the results of Retr.Prefix-Suffix task in Table 15. Interestingly, Mmaba-Attention
hybrid architecture Jamba achieve the most accuracy performance. This is non-trivial as Retr.Prefix-
Suffix task require an rather large space and time complex and Mamba layers are reported to perform
poorly on such dimensions. On the contrary, full attention LLMs such as Llama and Qwen series
models all failed in this task. Although many models can still remember a variable length of prefix,
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Table 16: Case Study of Mix.RepoQA + KV. Orange indicate the potential model hallucination.

Model Response
Ground Truth 2b0ebd59-2c68-48b7-82a9-6bdfad08be0e

def _can_omit_closing_paren(line: Line, *, last: Leaf,
line_length: int) -> bool:
"""See ‘can_omit_invisible_parens‘."""
length = 4 * line.depth
seen_other_brackets = False
for _index, leaf, leaf_length in line.enumerate_with_length():
length += leaf_length
if leaf is last.opening_bracket:
if seen_other_brackets or length <= line_length:
return True
elif leaf.type in OPENING_BRACKETS:
# There are brackets we can further split on.
seen_other_brackets = True
return False

Llama-3.1-70B 2b0ebd59-2c68-48b7-82a9-6bdfad08be0e
def can_omit_closing_paren(line: Line, *, last: Leaf,
line_length: int) -> bool:
"""See ‘can_omit_invisible_parens‘."""
remainder = False
length = 4 * line.depth
_index = -1
for _index, leaf, leaf_length in line.enumerate_with_length():
if leaf.type in CLOSING_BRACKETS and leaf.opening_bracket
is last:
remainder = True
if remainder:
length += leaf_length
if length > line_length:
break
if leaf.type in OPENING_BRACKETS:
# There are brackets we can further split on.
remainder = False
else:
# checked the entire string and line length wasn’t
exceeded
if len(line.leaves) == _index + 1:
return True

Llama-3.1-70B w/ MInference 2b0ebd59-2c68-48b7-82a9-6bdfad08be0e
python“‘ def can_omit_closing_paren(line: Line, *, last:
Leaf, line_length: int) -> bool:
"""See ‘can_omit_invisible_parens‘."""
remainder = False
length = 4 * line.depth
_index = -1
for _index, leaf, leaf_length in line.enumerate_with_length():
if leaf.type in CLOSING_BRACKETS and leaf.opening_bracket
is last:
remainder = True
if remainder:
length += leaf_length
if length > line_length:
break
if leaf.type in OPENING_BRACKETS:
# There are brackets we can further split on.
remainder = False
else:
if len(line.leaves) == _index + 1:
return True

but they often fail reproduce the entire string. For example, Llama-70B with MInference can almost
retrieve the entire string, but misspell several characters in the middle. This can be attribute to the
weakness of induction head (Olsson et al., 2022) in the Transformer attention heads, it can also result
from the sparse input for these efficient long-context methods.

In addition, we present result for some long-context methods in the multi-tasking test, i.e.,
Mix.RepoQA+KV in Table 16. The ground truth provides an answer from KV retrieval and one
answer from reporqa. Both Llama-3.1-70B and its variant with MInference accurately retrieved the
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Table 17: Case Study of Retr.KV to compare A-shape and Tri-shape.

Model Response
Ground Truth Turn 1: cb59052b-9128-4979-9c0e-e1de4adcf73b

Turn 2: a9ee6345-2331-4914-b32b-25a780931d45

Llama-3.1-70B Turn 1: 798c2306-5ad1-42a3-a8d7-3f5867f260c9: 5e369d13-ce48-40f9-824d-a55ef5748e9e,
5e257563-f131-4583-b72e-bd43b07a4e09: d768cb61-186a-4a56-bbbc-1c94f2d2597e, ff8fd84d-
b1f8-4e94-b3a3-cf5f252541f9: 45e9039a-01ec-4fd3-a22e-098d1c3a2
Turn 2: e69af07e-d786-43ea-8cc4-74c452b3d66793c5c 4a0d0b3 d2e72f0c2e0b7b2a4e7f5e0d0
b7b2a4e7f5e0d0 b7b2a4e7f5e0d0b7b2a4 e7f5e0d0b7b2 a4e7f5e0d0b7b2a4e 7f5e0d0b7b
2a4e7f5e0d0b7b2a4e7f

Llama-3.1-70B w/ A-Shape Turn 1: assistant<|end_header_id|>assistant<|end_header_id|> assistant<|end_header_id|>
assistant<|end_header_id|>assistant <|end_header_id|>assistant<|end_header_id|> assis-
tant<|end_header_id|>assistant<|end_header_id|>assistant
Turn 2: 3ebf05c3-35af-483b-b46e-1bf3c67f3682 : a4a5d7a3-8a3c-4b3a-8c6d-7c0d1a4a4a

Llama-3.1-70B w/ Tri-Shape Turn 1: 6a6e0b3e-3d7c-4f33-ba46-7f42bb75b03f: 1f5eba0d-5ccf-4262-aa76-d7fbabdc0b9a
Turn 2: 3ebf05c3-35af-483b-b46e-1bf3c67f3682: 1f5eba0d-5ccf-4262-aa76-d7fbabdc0b9a

value, demonstrating a good performance on the key-value retrieval. However, their reproduction of
the Python function reveals interesting differences. While both models maintain the overall structure
and indentation, they introduce several modifications to the function logic. Llama-3.1-70B reproduced
the wrong function name and implements a brand new algorithm, yet preserves only limited original
elements. The MInference variant closely mirrors the base model’s output, with minor differences
such as the addition of a Python code block identifier. Notably, neither model exactly replicates the
ground truth function, suggesting challenges in precise function reproduction. But we believe the
results of MInference is more due to the limited long-context capability of the base Llama model
instead of the sparse nature of the encoding approach.

In Table 17, we also highlights the performance of A-shape and Tri-shape models in Retr.KV.
Notably, Tri-shape demonstrates strong performance even in the first turn, effectively maintaining
the instruction-following capabilities of the model. In contrast, A-shape significantly disrupts the
model’s ability to follow instructions, leading to incomplete and erroneous outputs. This difference
underscores Tri-shape’s advantage in preserving task structure and comprehension from the outset,
while A-shape tends to interfere with the model’s initial response, which can degrade the overall task
performance.
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