
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOMOPHILY-BASED FILTRATION LEARNING FOR
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are a powerful method of learning representa-
tions of graph-structured data. While they excel at learning class-discriminative
representations of nodes in homophilous graphs, where connecting nodes tend to
belong to the same class, many GNNs struggle with heterophilous graphs whose
inter-class connections can muddy the message passing. Inspired by this finding,
we propose a topological filtration scheme, treating graphs as 1-dimensional sim-
plicial complexes N with a filter function based on estimated edge heterophily, and
introduce two methodologies that use a backbone GNN to learn from the resulting
graph filtration. The first trains a GNN on each graph in the filtration sequence
consecutively for a portion of the total training time, using embeddings from pre-
vious graphs to initialize node embeddings in subsequent graphs. The second ap-
proach uses a novel message passing scheme to pass messages jointly within each
and between graph levels in the filtration sequence with common nodes. Both
methods enhance the influence of early birth adjacent nodes in homophilous sub-
graphs yet allow for the model to learn from the full range of heterophilous and
homophilous connections in the graph. We further extend our approach to learn
a graph filtration sequence of graphs through a learnable node filter function. In
this work, we provide a framework for multiscale learning of graph data struc-
tures for any backbone GNN, along with an approach for learning a geometrically
significant sequence of nested subgraphs obtained through a leaned topological
filtration of graph data structures. Experiments show that our heterophily-filtered
GNNs achieve superior node classification accuracy on both heterophilous and
homophilous networks.

1 INTRODUCTION

Graphical representations offer an accessible and actionable means to express and expand our under-
standing of the world, from observed phenomena to abstract notions, by providing explanations or
interpretations based on relationships and connections between elements, circumstances, and com-
plex systems. Graph Neural Networks (GNNs) have emerged as a powerful tool for learning from
graph structured data by generalizing the convolution operator to unstructured domains by leverag-
ing message passing or neighborhood aggregation schemes to harness structural information. Re-
cently, in graph machine learning, the classical task of node classification has demonstrated strong
results when employing GNNs.

Despite their potential, GNNs face several known challenges limiting their effectiveness, one in par-
ticular being graphs with high heterophily, whose edges predominantly adjoin nodes of disparate
classes. In such cases, it is not clear which parts of the graph structure are most helpful for guid-
ing the message passing and expressivity; of these obstacles, message passing networks schemes
probably can not distinguish specific topologies, such as two triangles from a 6-cycle, and a leading
known impediment to GNNs are graphs with high heterophily, namely, graphs whose edges pre-
dominantly adjoin nodes of disparate classes, which leads to oversmoothing Murphy et al. (2019);
Sato et al. (2021); Li et al. (2018). This paper introduces a graph learning methodology that ad-
dresses the limitations of conventional GNNs by offering a novel approach employing hierarchical
GNNs-leveraging topological insights from persistent homology, namely persistence filtration, to
reveal meaningful structure in graphs informed by class connectivity and allowing for a hierarchy of
multilevel graph resolutions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To filter our graphs, we first learn class relationships between nodes by estimating edge-level het-
erophily labels using the features of their adjacent nodes. We then leverage the probability of
homophily assigned to each edge with persistent homology through a persistence filtration func-
tion defined over edge values to obtain a multilevel sequence of graphs well suited for hierarchical
GNNs. By formulating the learning problem over graph edges, integrating topological summaries,
and learning multilevel subgraph hierarchies based on persistent filtration dependent on class con-
nectivity, our approach offers an ordered sequence of graphs that captures both local and global
structural information while also addressing critical issues such as over smoothing, reducing com-
putational complexity, and a paradigm for GNNs more resilient to heterophily We argue that by
providing a more nuanced understanding of graph topology and leveraging hierarchical learning,
our proposed approach can lead to more resilient, computationally efficient, and expressive GNNs.
Using either of two hierarchical GNN training strategies we propose, a message-passing GNN can
place greater emphasis on edges that are more likely homophilous. At the same time, we retain the
ability to learn from heterophilous edges too. Empirically, our approach to topological filtration and
hierarchical graph learning compares favorably to previous learning techniques, including standard
learning models, standard GNNs, and heterophily-specific models. We also demonstrate competi-
tive results over established benchmark datasets for evaluating GNN performance in low and high
heterophily scenarios.

Our contributions are as follows:

• We propose a homophily-based topological filtration method for graphs, where het-
erophilous edges may be used for learning but given different emphasis than homophilous
edges. Our filtration preserves topological structure compared to approaches that drop het-
erophilous edges.

• We introduce two different methods for improving backbone GNN models, especially on
graphs with heterophily, by allowing them to learn from a multi-scale sequence of topolog-
ical graph filtrations based on class connectivity.

• We introduce an approach for learning a topological filtration of graphs, minimizing the
obstacle of heterophily, to obtain a nested sequence of graphs for training backbone GNNs.

• We experimentally demonstrate that our methods lead to improved node classification ac-
curacy relative to previous models.

2 BACKGROPUND AND RELATED WORK

2.1 FILTRATION FUNCTIONS AND TOPOLOGICAL FILTRATION

We now provide the necessary background on topological filtration, how it applies to graphs, and
recent advancements in learnable topological filtration schemes.

Simplicial Complexes and Topological Filtration A simplicial complex is a collection of simpler
topological objects called simplices (such as points, line segments, triangles, etc.) such that every
face of a simplex is also included in the simplicial complex, and the intersection of any two simplices
is either empty or a shared face. Let (Ki)m

i=0 be a sequence of simplicial complexes, or collections
of topological objects such that /0 = K0 ⊆ K1 ⊆ ·· · ⊆ Km = K. Then, (Ki)m

i=0. Then, (Ki)m
i=0 is called

a filtration of K. In the filtration of K, the sequence of each simplicial complex Ki is subset to the
subsequent K j>i.

Filter Functions Let E be the domain of simplices and K the set of possible simplicial complexes
over E, the filter function f : K×E→ R maps each simplicial complex K and simplex e to a real
value f (K,e). A learnable filter fε is a filter f (ε,K,e) is differentiable with respect to an additional
parameter ε .It has been shown that if pairwise simplex values are distinct, such a differentiable filter
function can be used in the context of k-persistent homology as a mapping of simplicial complexes
that is differentiable end to end Hofer et al. (2020).

Construction of Topological Filtration The filtration is constructed by including simplices in
increasing order of their filter values. Simplices are first assigned values through a filter function or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a filter function for the compassion of simplices is derived. Starting with the empty set, simplices are
added consecutively in sorted order by increasing the filter function value. Simplices are added such
that the resulting simplicial complex contains the previous subset simplicial complexes for lower
filter function values. Each step corresponds to subcomplex Kp where p is the threshold value. For
filter function f (e) over simplices e ∈ E the subcomplex Kp during filtration contains all simplices
with filter value less than p. The set of simplices in Kp is then {e ∈ Kp| f (e)≤ p}. As the filtration
progresses, one can track how topological features like connected components, loops, and voids
appear and disappear. These features are summarized using tools like persistent homology.

Having now described the relevant concepts in computational topology abstractly, we give some
background on graphs and the application of computational topology to graphs.

Graphs and Homophily Let G = (N ,E) be a graph consisting of node set v ∈ N and edge set
{e = (u,v)|e ∈ E and u,v ∈ N } where edge e = (u,v) is said to adjoin nodes u and v. We denote a
neighborhood around node v as N(v) = {u ∈ N |(u,v) ∈ E } to consist of all nodes in N that share
an incident edge with v in E . For k ≥ 1 we denote the k-hop neighborhood of node v, Nk(v), as the
set of all nodes u ∈ N such that there is a connected path of k or fewer edges adjoining u and v.
For nodes u and v with labels yu and yv and edge set Ei for graph Gi in the filtration sequence, the
homophily ratio Zhu et al. (2020) is given by hi =

1
|Ei| ∑

v∈Ei

|{u∈N (v):yu=yv}|
|N (v)| .

Topological Filtration of Graphs We can interpret a graph G as a 1-dimensional simplicial com-
plex whose vertices (0-simplices) are the graph nodes and whose edges (1-simplices) are the edges.
In the topological filtration of graphs, we can think of filtration as a growth process of a weighted
graph. As the graph grows, new edges and nodes are introduced, introducing new connected com-
ponents and neighborhood structures.

Node neighborhoods thus share this property: for each node vi ∈ Vpi ∩Vp j , e.g. Npi(vi) for vi ∈ Vpi

and Np j(vi) for vi ∈ Vp j , we have that Npi(vi)⊆Np j(vi). We give all graphs the full node set found
at the lowest threshold level of the filtration sequence, but nodes that would not otherwise exist in
the graph at a higher persistence level are disconnected. Early birth nodes, which appear for lower
value thresholds, then remain in subsequent graphs in the filtration sequence, with neighborhood
structure for each node potentially differing for each node between different graphs in the sequence.

3 METHODOLOGIES FOR FILTRATION LEARNING

3.1 ESTIMATING EDGE HOMOPHILY SCORES

We first filter graphs by the likelihood an edge adjoins nodes of disparate classes. To accomplish
this we first frame the task of node classification as an edge classification problem, where the edge
classifier serves as a filter function that prescribes filter values to edges representing the inferred
likelihood that an edge is homophilous.

Given a graph G = (N ,E) containing labeled nodes v with labels yv and node features hu and hv
for a subset or all of node set N , we can derive binary edge labels for edge e = (u,v) as y(u,v) ={

1 if yu = yv
0 if yu ̸= yv

}
for graphs with binary or multi-class labels. Our edge filter function is a multilayer

perceptron with a single logistic output defined as MLP
(
COMBINE(hu,hv)

)
. In our where hu and hv

are the feature vectors of adjacent nodes u and v and COMBINE is implemented via concatenation
(other choices of functional operator, such as dot product, are possible).

We then train the filter function using the derived homophily edge labels yu,v on a subset of the graph
and infer values between 0 and 1 to all remaining edges of the graph, predicting whether an edge is
homophilous or not.

3.2 HOMOPHILY-BASED TOPOLOGICAL FILTRATION OF GRAPHS

We perform filtration on graphs using a sorted ordering of 1-simplices, or edges, with filter values
assigned by f (E ,e)∀e ∈ E of graph G, which correspond to the likelihood an edge is homophilous

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

or not. Beginning at filter threshold p = 0 we then add edge e = (u,v) and its incident nodes u and
v if f (e) ≤ p and such that the expanded graph Gp at level p of the filtration sequence remains a
simplicial complex containing all e = (u,v) such that f (e)≤ p once all edges have been assigned a
filter function value.

We observe the topological filtration sequence at P levels of filtration thresholds to model multiscale
topological information. In contrast to hierarchical graph-level representation learning methods that
learn to pool each input graph Ying et al. (2018), this gives us several graph representations of the
underlying data to use as input to a graph neural network, which we denote the multi-scale sequence
of graphs or graph hierarchy. A smaller threshold value produces a more highly filtered graph
with fewer edges that are more likely to be homophilous. Thus, we obtain a hierarchy of graphs
G1, . . . ,GP where for i ∈ [1, . . . ,P],Gi−1 ⊆ Gpi : that is, Gi−1 is an induced subgraph defined on a
subset of the vertices in Gi.

3.3 GRAPH NEURAL NETWORKS WITH TOPOLOGICAL FILTRATION

We consider two methods for learning node representations for classification using GNNs, which
exploit the topological information from the nested sequence of graphs obtained through topological
filtration, referred to as the graph hierarchy, in the context of training GNNs. The first method
modifies the training of GNN over graph hierarchies, while the second modifies the architecture to
pass messages jointly between all hierarchical graph levels.

3.4 TOPOLOGICAL FILTRATION FOR HIERARCHICAL GRAPH NEURAL NETWORK

3.4.1 MULTI-SCALE SUCCESSIVE TRAINING

For our first method, we use a GraphSAGE architecture which learns node features via message
passing in the spatial domain Hamilton et al. (2017).

Instead of training a GNN for N epochs on the finest graph GP, we train it for N
P epochs each on

graphs G1, . . . ,GP, using the embeddings from Gi−1 to initialize the embeddings of corresponding
nodes in Gi ∀ i ∈ [1 . . . ,P]. The MLPs and node embedding weight matrices for target and neighbor-
ing node embeddings are shared between graph hierarchies. Training begins with the smallest (most
highly filtered) graph and iteratively increases in graph size. We also successively share the learned
embedding weight matrices and matrices of the MLPs as well.

3.4.2 MULTI-SCALE JOINT TRAINING

Message

Message passing occurs during a single layer and iteration k where each node’s feature hk
v is updated

to incorporate the features associated with nodes within its neighborhood and the layer’s learnable
parameters denoted ε and W . Message passing in this way can be viewed as a representational signal
moving through adjacencies within a neighborhood. With the output of each layer serving as input to
the subsequent layer, ’farther’ serves to incorporate information from more distant nodes diffusing
throughout the network. The result is a learned target node representation based neighborhood r,
denoted N r

p (v) for node v. Messages are further aggregated, similar to pooling in standard convo-
lutional networks, in that they are functionally propagated and interlaced. In 1 node v is highlighted
in yellow within each graph of the nested filtration sequence and the dotted blue arrows denote
the messages passed to node v in each neighborhood Nr

p(v) where p denotes the graph level in the
sequence at filtration value p ∈ {0, · · · ,P} that the neighborhood being considered corresponds to.
A single node that exists within multiple graphs of the filtration sequence can have neighborhood
structures that differ but are subsets to subsequent neighborhoods later in the sequence of graphs
resulting from filtration.

hr
m(u,v) = Message(hr

u,h
r
v|v ∈ N r

p (v)))

where hu and hv are feature vectors of nodes u and nodes v.

Aggregation Within Neighborhoods Messages are then aggregated for each neighborhood Nr
p(v)

across nodes in the target node’s neighborhood. In Figure 1 this is illustrated with the regions
highlighted in blue where, for each graph, messages from each neighborhood r of v in that graph are

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: A sequence of three nested graphs from topological filtration (top row) offering three lev-
els of graph resolution. Messages are shown being passed (dotted arrow) to the bottom right node
that, having survived the filtration, is common to all graphs in the multi-scale sequence, differing
in neighborhood connectivity. For each subgraph Gp of the total P graphs in the graph hierarchy
{G0, · · · ,Gp, · · · ,GP}, messages are passed from each neighborhood Nr(v) to the target node. Mes-
sages at each graph level are then aggregated within neighborhoods (highlighted in blue). Messages
from all neighborhoods within each graph are then aggregated between one another (highlighted in
purple). We introduce (highlighted in orange) across neighborhood aggregation, where messages
are passed across neighborhoods in the multi-scale sequence of graphs. The target node’s feature
representation is then updated with the aggregated embeddings.

aggregated.
hr

v,p = AGGu∈N r
p (v)(h

r
m(u,v))

Aggregation Between Neighborhoods Messages are then aggregated between all neighborhood
Nr

p(v) ∈ Np(v) of nodes in target node v’s neighborhood in subspace p

hNp
v,p = AGGN r

p ∈Np(h
r
v,p)

In Figure 1 this is illustrated with the regions highlighted in purple.

Multi-Neighborhood Aggregation Across Graph Neighborhoods This work introduces the step
highlighted in orange in Figure 1. Namely, once messages from each neighborhood have been
aggregated, messages are then aggregated across all target node neighborhoods in all graphs within
the sequence of graphs to which target node v belongs.

hN
v = AGG(hNp

v,p)

In Figure 1 this is illustrated with the regions highlighted in orange.

Update Finally, the feature representation of the target node is updated with aggregated embeddings

hv = Update(hN
vP
,ht

a)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For node vi belonging to node set Vpi of subgraph Gpi , the feature representation hk
vi

at GNN layer
k ∈ {1, · · · ,K} first combines self-representations from the previous level of aggregation with ag-
gregated neighbor information:

hk
vi
=COMBINE

(
W k−1

s hk−1
v ,

AGGR
(
{W k−1

n hk−1
u : u ∈ Npi(vi)}

))
Once this is done, the resulting embedding is combined with the embedding representation from
other persistence subgraphs. As an example for two persistence levels pi and p j where vi ∈ Vpi ⊂
Gpi and v j ∈ Vp j ⊂ Gp j , we have hk

v = σ
(
COMBINE(hk

vi
,hk

v j

))
.

Learned Node Filtrations of Graphs

This work introduces a second, learnable node filter function for learning a filtration of nodes in
graphs within the graph hierarchy during training. Filtration of nodes in the graph hierarchy aims to
learn which graphs (and their respective nodes) in the nested graph sequence obtained from topologi-
cal filtration are most informative for multi-scale or hierarchical graph learning. Graph Isomorphism
Networks Xu et al. (2018), (GIN-ε) not only have theoretical expressivity benefits for distinguishing
graph substructures but have also been shown to be a viable candidate as a learnable filter function
for persistent homology when also combined with a multilayer perceptron Hofer et al. (2020). We
then use a learnable node filter function during Multi-Scale Joint Training defined as

fp(Np,u) := MLP(GINp
ε (h

p
u))→ R

.

where hp
u is the embedding representation of node u in Np in graph Gp = (Np,Ep) for graph level

p of the graph hierarchy. GIN[
ε is a GIN network which is learnable and differentiable in ε Xu et al.

(2018), and MLP is a multilayer perceptron which takes the resulting embedding from GINp
ε .The

resulting real-valued output of fp is the learned filter value, which is a scalar qp(u) for node u in
graph level Gp.

This work introduces a methodology for using the learned filter values qp(u) to filter graphs within
the graph hierarchy. To learn the importance and reduce or increase the contribution of graphs in
the graph hierarchy during multi-scale joint aggregation, we use the qp filter value for attention type
based aggregation by weighing the aggregated embedding obtained from graph Gp in the hierarchy
before multi-scale aggregation across all graphs Gi in the multi-scale filtration sequence of P graphs
G0,G1, · · · ,GP. Before the combination step of multi-scale aggregation, we then factor each node’s
resulting embedding from each graph level by its respective filter value qp In doing so, the learned
filter value can learn to eliminate or accentuate the contribution of embeddings from specific graphs
in the multi-scale graph sequence.

The learned filtration of graphs in the graph hierarchy during multi-scale joint aggregation can then
be expressed as the combined embedding from each subgraph, where each subgraph’s embedding
is obtained with a backbone GNN and a filter function fp(Np,u), unique to each graph level, for a
final embedding that is weighted by a filter value qp before global combination. For node vP in the
highest resolution graph GP in the filtration sequence, we then have:

hk
vP

=COMBINE
(

f0,ε0(h
k−1
v0

) ·W k−1
s,0 hk−1

v0

, fi,εi(h
k−1
v1

) ·Ws,ihk−1
v1

fP,εP(h
k−1
vP

) ·Ws,Phk−1
vP

)
From the original precomputed filtration sequence of graphs, we then learn a subset filtration se-
quence of graphs through the learnable node filter function fp(Np,u), which learns a weighted
attention on each node in each graph level to obtain a learned filtration sequence of graphs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

Implementation We implement all models with PyTorch and all GNNs with Pytorch Geomet-
ric Paszke et al. (2019); Fey & Lenssen (2019). Topological filtration is performed with Diony-
sus Morozov (2007).

Hyperparameters and Computing Environment We train for 321 epochs and perform valida-
tion every 8. We employ early stopping based on validation scores for a deviation of 1e− 3 with
patience of 4 rounds of validation accuracy scores for the edge filter function’s training and 10 for
the multi-scale model used. For dropout, the edge filter function uses a value of 0.3, and multi-scale
models have a value of 0.65. As the size of the datasets tested varied, hidden dimensions varied to
account for the limitations of the machine being used and model overfitting. We perform a parameter
sweep for each of the following hyperparameters over the values provided here. Filtration thresh-
olds and number of graphs in graph hierarchy with early stopping:(0.5,0.7,0.9), (0.8,0.9), (0.6,0.9),
(0.6,0.9), (0.8,0.9), (0.7), (0.8), (0.9), (0.1). For all filtration sequences of graphs, the entire graph
with no thresholding was also included. Learning Rate of Multi-Scale methodology (MsST or MJT):
3e-4, 3e-3, 0.03, 1e-4, 1e-3, 1e-2 Learning rate of edge filter function: 1e-3,3e-3 ,1e-2 ,3e-2 Weight
decay: 5e-8 ,5e-6 ,5e-5 ,5e-4 ,0

All experiments were run on a laptop with 3 GB GeForce GTX 970M with 1280 CUDA Cores GPU
and 3.5GHz i7-6700HQ processor running Ubuntu, Linux.

4.1 DATASETS

We use several different standard node classification benchmarks covering a range of homophily
levels.

Planetoid (CiteSeer, Cora, and PubMed): These are widely used citation networks, where nodes
represent documents, and edges represent citation links between them. The task is typically node
classification, where the goal is to predict the category of each document Yang et al. (2016). These
datasets are well known to have high homophily.

Wikipedia Network (Chameleon): is a graph derived from the page-to-page link network of
Wikipedia articles. Nodes represent Wikipedia pages, and edges represent hyperlinks between them.
The nodes are classified based on the traffic levels of the web pages. This dataset is used to study the
performance of graph learning methods designed for heterophilous networks. Rozemberczki et al.
(2021).

WebKB (Cornell, Wisconsin, and Texas): The WebKB datasets, including Cornell, Wisconsin, and
Texas, consist of webpages collected from computer science departments of various universities.
Nodes represent webpages, and edges represent hyperlinks between them. The task is to classify the
type of webpage (e.g., course, faculty, student) and these datasets are also known to have high levels
of heterophily.Peixoto & Emmert-Streib (2019).

Dataset Subdataset Nodes Edges Classes
Planetoid

Cora 2,708 5,429 7
CiteSeer 3,327 4,732 6
PubMed 19,717 44,338 3

WikipediaNetwork Chameleon 2,277 31,421 5

WebKB
Cornell 183 295 5
Wisconsin 251 499 5
Texas 183 309 5

Table 1: Summary of datasets and their characteristics.

Node Classification Results In Table 2, we report the test accuracy results of MsST and MsJT in
the context of the reported accuracies of other state-of-the-art models with equivalently proportioned
train, validation and test splits. Our methodologies excel in all except one dataset, achieving the
highest and second highest accuracies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Texas Wisconsin Chameleon Cornell CiteSeer Pubmed Cora
Homophily Ratio 0.06 0.16 0.25 0.11 0.74 0.80 0.83

MsST 96.72% 95.62% 90.12% 95.63% 88.73% 71.04% 93.17%
MsJT 89.27% 93.57% 91.25% 91.71% 93.49% 91.78% 95.39%

Geom-GCN-X 75.67% 76.47% 89.32% 66.66% 79.12% 90.11% 90.57%
Dropedge-X 83.52% N/A 64.94% N/A N/A N/A 87.36%
H 2GCN-X 84.86% 86.67% 59.39% 82.16% 77.07% 89.59% 87.81%

HMPNN N/A N/A N/A N/A N/A N/A 92.16%
X-NSD 85.95% 89.41% 68.68% 86.49% 77.14% 89.49% 87.30%
DCM 85.71% 89.33% 53.76% N/A 78.60% 88.61% 86.63%

Table 2: Test accuracy results for node classification over datasets, sorted by homophily level, for
our methodologies (MsST and MsJT), heterophily oriented model designs, and topological deep
learning (TDL) models (sorted by row). Accuracy results are reported for test sets with train, valida-
tion, and test split of 40%, 20%, and 20% in comparison to the reported optimal accuracy for similar
works with equivalently proportioned splits. The highest accuracy scores are highlighted in green,
with the second highest outlined in blue Feng et al. (2019); Huang et al. (2022); Pei et al. (2020);
Zhu et al. (2020); Bodnar et al. (2022)

5 RELATED WORK

Here, we review related works on graph neural networks, whether using similar techniques based on
filtration learning, or focused on the problem we consider of learning from graphs with heterophily.

5.1 GRAPH NEURAL NETWORKS FOR HETEROPHILOUS GRAPHS

For a recent overview of graph neural networks, see Zhu et al. (2023); Luan et al. (2024). Meth-
ods designed to handle graphs with heterophily usually focus on one of two challenges posed by
heterophily. The first is that in heterophilous graphs, nodes may not have relevant neighbors (e.g.
neighbors of the same class) to attend to, and one solution is to expand the receptive field of graph
neural networks to allow them to learn non-local dependencies. Such approaches include higher-
order neighborhood aggregation, proposed by Zhu et al. (2020), rewiring the graph based on other
forms of node similarity Pei et al. (2020), or introducing non-local attention Zhu et al. (2020). Such
approaches may incur a higher computational cost.

Our work falls into a second category of approaches, which recognize that heterophily also may
muddy the message passing of graph neural networks by causing messages to be aggregated from ir-
relevant neighbors. Such approaches modify the message passing to better suit heterophilous graphs,
for example by performing it over signed Yan et al. (2022) or directed ? edges, or by learning a class
compatibility matrix that may be used to control message passing ?. Other approaches include
rewiring the graph to be better suited to heterophily, by connecting nodes based on some other
measure of similarity or distance Pei et al. (2020); Bi et al. (2024); Li et al. (2023).

Most related to our work, this rewiring has been performed with a edge classifier that predicts if an
edge is heterophilous or homophilous Huang et al. (2022); Xue et al. (2024). A backbone graph
neural network is trained on a graph that has been preprocessed using the classifier to improve its ho-
mophily properties. The edge classifier may be used to filter the graph only by pruning heterophilous
edges Huang et al. (2022), or new edges may also be added that are predicted to be homophilous Xue
et al. (2024). Both methods result in a single output graph which loses any information that the het-
erophilous edges may contain. In contrast, our approach gives a model access to the input graph at
a variety of filtration levels, giving us the best of both worlds: an ability to use all the information in
the original graph, while also being able to emphasize the high-homophily connections in a more fil-
tered graph. Moreover, by using persistent homology to perform our filtration rather than arbitrarily
thresholding edges, we maintain more topological structure in the filtered graphs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 FILTRATION LEARNING FOR GRAPH NEURAL NETWORKS

Graph filtration learning using persistent homology has been used for graph-level representation
learning Hofer et al. (2020). For node classification, persistent homology has also been used to guide
message passing in graph neural networks Zhao et al. (2020). More related to our work, Leventhal
et al. (2023) has used graph neural networks to classify topological objects in image data, learning
successively or jointly from hierarchical levels of a topological filtration. Here, we show how to
derive such a hierarchical filtration for graphs specifically based on homophily, and we develop a
node-level filtration that allows us to attend to different levels of filtered graphs.

6 CONCLUSION

We propose graph neural network methods that learn from hierarchies of graphs representing a se-
quence of nested graphs obtained from topological filtration. Treating graphs from the perspective
of 1-D simplicial complexes, our filtration is defined as being over 1-cells (graph edges). We obtain
a sequence of simplicial complexes, where each complex in the series is subset to the subsequent,
from a sorted ordering of 1-cells, thresholded by filtration values prescribed to simplexes through
a filter function defined as a learning model trained to infer if edges are homophilous, akin to a
class similarity measure between 0-cells (graph nodes). The proposed approach is generalizable
to any edge based classification task or graph with weighted edges that afford an ordering. We
then present two methods for hierarchical graph learning. The former, achievable for any standard
GNN model, performs message passing across subsequent graphs in the graph hierarchy, aggregat-
ing node embeddings sequentially moving up the graph filtration sequence. the ladder introduces
a novel multi-scale message passing scheme with aggregation performed jointly across graphs in
the filtration sequence, with learned attention based aggregation or learned topological filtration of
subset graph nodes, effectively learning the degree of contribution graphs within the hierarchy con-
tribute to learned aggregated node embeddings. Our results demonstrate promise for increased node
classification accuracy on heterophilous networks compared to conventional GNNs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophilic
graphs better fit gnn: A graph rewiring approach. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Cristian Bodnar, Alexandru T Vasilache, Michael Rüttgers, Mohsen Afshar, Michael Bronstein,
Markus Böhm, and Federico Monti. Neural sheaf diffusion: A topological perspective on het-
erophily and oversmoothing in gnns. arXiv preprint arXiv:2202.04579, 2022.

Yifan Feng, Haoxuan You, Zeyang Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3558–3565,
2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. URL https:
//arxiv.org/abs/1903.02428.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In International Conference on Machine Learning, pp. 4314–4323. PMLR, 2020.

Minhao Huang, Chen Cai, Yuyu Liang, Jun Wang, and Le Song. Revisiting the role of heterophily
in graph representation learning: An edge classification perspective. In Advances in Neural In-
formation Processing Systems, 2022.

Samuel Leventhal, Attila Gyulassy, Valerio Pascucci, and Mark Heimann. Modeling hierarchical
topological structure in scientific images with graph neural networks. In 2023 IEEE International
Conference on Image Processing (ICIP), pp. 2995–2999. IEEE, 2023.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Shouheng Li, Dongwoo Kim, and Qing Wang. Restructuring graph for higher homophily via adap-
tive spectral clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, pp. 8622–8630, 2023.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning hand-
book: Benchmarks, models, theoretical analysis, applications and challenges. arXiv preprint
arXiv:2407.09618, 2024.

Dmitriy Morozov. Dionysus - a library for computing persistent homology. http://www.mrzv.
org/software/dionysus/, 2007. Accessed: 2024-08-10.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32, pp.
8024–8035, 2019.

Hongwei Pei, Bingzhe Wei, Kevin Chang, Yuxiao Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In International Conference on Learning Representations, 2020.

10

https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tiago P Peixoto and Frank Emmert-Streib. Network cartography of university websites: A compar-
ative analysis. In Proceedings of the 30th International Conference on Computer Networks, pp.
1–11, 2019.

Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. Multi-scale attributed node
embedding. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 1235–1243, 2021.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM), pp.
333–341. SIAM, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yanfeng Xue, Zhen Jin, and Wenlian Gao. A data-centric graph neural network for node classifica-
tion of heterophilic networks. International Journal of Machine Learning and Cybernetics, pp.
1–11, 2024.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022
IEEE International Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In International Conference on Machine Learning, pp. 40–48. PMLR,
2016.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
International Conference on Artificial Intelligence and Statistics, pp. 2896–2906. PMLR, 2020.

Jiong Zhu, Yujun Yan, Lingfei Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804, 2020.

Jiong Zhu, Yujun Yan, Mark Heimann, Lingxiao Zhao, Leman Akoglu, and Danai Koutra. Het-
erophily and graph neural networks: Past, present and future. IEEE Data Engineering Bulletin,
2023.

11

	Introduction
	Backgropund and Related Work
	Filtration Functions and Topological Filtration

	Methodologies for Filtration Learning
	Estimating Edge Homophily Scores
	Homophily-based Topological Filtration of Graphs
	 Graph Neural Networks with Topological Filtration
	Topological Filtration for Hierarchical Graph Neural Network
	Multi-Scale Successive Training
	Multi-Scale Joint Training

	Experiments
	Datasets

	Related Work
	Graph Neural Networks for Heterophilous Graphs
	Filtration Learning for Graph Neural Networks

	Conclusion

