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ABSTRACT

Graph neural networks (GNNs) are a powerful method of learning representa-
tions of graph-structured data. While they excel at learning class-discriminative
representations of nodes in homophilous graphs, where connecting nodes tend to
belong to the same class, many GNNs struggle with heterophilous graphs whose
inter-class connections can muddy the message passing. Inspired by this finding,
we propose a topological filtration scheme, treating graphs as 1-dimensional sim-
plicial complexes N with a filter function based on estimated edge heterophily, and
introduce two methodologies that use a backbone GNN to learn from the resulting
graph filtration. The first trains a GNN on each graph in the filtration sequence
consecutively for a portion of the total training time, using embeddings from pre-
vious graphs to initialize node embeddings in subsequent graphs. The second ap-
proach uses a novel message passing scheme to pass messages jointly within each
and between graph levels in the filtration sequence with common nodes. Both
methods enhance the influence of early birth adjacent nodes in homophilous sub-
graphs yet allow for the model to learn from the full range of heterophilous and
homophilous connections in the graph. We further extend our approach to learn
a graph filtration sequence of graphs through a learnable node filter function. In
this work, we provide a framework for multiscale learning of graph data struc-
tures for any backbone GNN, along with an approach for learning a geometrically
significant sequence of nested subgraphs obtained through a leaned topological
filtration of graph data structures. Experiments show that our heterophily-filtered
GNNs achieve superior node classification accuracy on both heterophilous and
homophilous networks.

1 INTRODUCTION

Graphical representations offer an accessible and actionable means to express and expand our under-
standing of the world, from observed phenomena to abstract notions, by providing explanations or
interpretations based on relationships and connections between elements, circumstances, and com-
plex systems. Graph Neural Networks (GNNs) have emerged as a powerful tool for learning from
graph structured data by generalizing the convolution operator to unstructured domains by leverag-
ing message passing or neighborhood aggregation schemes to harness structural information. Re-
cently, in graph machine learning, the classical task of node classification has demonstrated strong
results when employing GNNs.

Despite their potential, GNNs face several known challenges limiting their effectiveness, one in par-
ticular being graphs with high heterophily, whose edges predominantly adjoin nodes of disparate
classes. In such cases, it is not clear which parts of the graph structure are most helpful for guid-
ing the message passing and expressivity; of these obstacles, message passing networks schemes
probably can not distinguish specific topologies, such as two triangles from a 6-cycle, and a leading
known impediment to GNNs are graphs with high heterophily, namely, graphs whose edges pre-
dominantly adjoin nodes of disparate classes, which leads to oversmoothing Murphy et al. (2019);
Sato et al. (2021); Li et al. (2018). This paper introduces a graph learning methodology that ad-
dresses the limitations of conventional GNNs by offering a novel approach employing hierarchical
GNNs-leveraging topological insights from persistent homology, namely persistence filtration, to
reveal meaningful structure in graphs informed by class connectivity and allowing for a hierarchy of
multilevel graph resolutions.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To filter our graphs, we first learn class relationships between nodes by estimating edge-level het-
erophily labels using the features of their adjacent nodes. We then leverage the probability of
homophily assigned to each edge with persistent homology through a persistence filtration func-
tion defined over edge values to obtain a multilevel sequence of graphs well suited for hierarchical
GNNs. By formulating the learning problem over graph edges, integrating topological summaries,
and learning multilevel subgraph hierarchies based on persistent filtration dependent on class con-
nectivity, our approach offers an ordered sequence of graphs that captures both local and global
structural information while also addressing critical issues such as over smoothing, reducing com-
putational complexity, and a paradigm for GNNs more resilient to heterophily We argue that by
providing a more nuanced understanding of graph topology and leveraging hierarchical learning,
our proposed approach can lead to more resilient, computationally efficient, and expressive GNNs.
Using either of two hierarchical GNN training strategies we propose, a message-passing GNN can
place greater emphasis on edges that are more likely homophilous. At the same time, we retain the
ability to learn from heterophilous edges too. Empirically, our approach to topological filtration and
hierarchical graph learning compares favorably to previous learning techniques, including standard
learning models, standard GNNs, and heterophily-specific models. We also demonstrate competi-
tive results over established benchmark datasets for evaluating GNN performance in low and high
heterophily scenarios.

Our contributions are as follows:

• We propose a homophily-based topological filtration method for graphs, where het-
erophilous edges may be used for learning but given different emphasis than homophilous
edges. Our filtration preserves topological structure compared to approaches that drop het-
erophilous edges.

• We introduce two different methods for improving backbone GNN models, especially on
graphs with heterophily, by allowing them to learn from a multi-scale sequence of topolog-
ical graph filtrations based on class connectivity.

• We introduce an approach for learning a topological filtration of graphs, minimizing the
obstacle of heterophily, to obtain a nested sequence of graphs for training backbone GNNs.

• We experimentally demonstrate that our methods lead to improved node classification ac-
curacy relative to previous models.

2 BACKGROPUND AND RELATED WORK

2.1 FILTRATION FUNCTIONS AND TOPOLOGICAL FILTRATION

We now provide the necessary background on topological filtration, how it applies to graphs, and
recent advancements in learnable topological filtration schemes.

Simplicial Complexes and Topological Filtration A simplicial complex is a collection of simpler
topological objects called simplices (such as points, line segments, triangles, etc.) such that every
face of a simplex is also included in the simplicial complex, and the intersection of any two simplices
is either empty or a shared face. Let (Ki)m

i=0 be a sequence of simplicial complexes, or collections
of topological objects such that /0 = K0 ⊆ K1 ⊆ ·· · ⊆ Km = K. Then, (Ki)m

i=0. Then, (Ki)m
i=0 is called

a filtration of K. In the filtration of K, the sequence of each simplicial complex Ki is subset to the
subsequent K j>i.

Filter Functions Let E be the domain of simplices and K the set of possible simplicial complexes
over E, the filter function f : K×E→ R maps each simplicial complex K and simplex e to a real
value f (K,e). A learnable filter fε is a filter f (ε,K,e) is differentiable with respect to an additional
parameter ε .It has been shown that if pairwise simplex values are distinct, such a differentiable filter
function can be used in the context of k-persistent homology as a mapping of simplicial complexes
that is differentiable end to end Hofer et al. (2020).

Construction of Topological Filtration The filtration is constructed by including simplices in
increasing order of their filter values. Simplices are first assigned values through a filter function or

2
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a filter function for the compassion of simplices is derived. Starting with the empty set, simplices are
added consecutively in sorted order by increasing the filter function value. Simplices are added such
that the resulting simplicial complex contains the previous subset simplicial complexes for lower
filter function values. Each step corresponds to subcomplex Kp where p is the threshold value. For
filter function f (e) over simplices e ∈ E the subcomplex Kp during filtration contains all simplices
with filter value less than p. The set of simplices in Kp is then {e ∈ Kp| f (e)≤ p}. As the filtration
progresses, one can track how topological features like connected components, loops, and voids
appear and disappear. These features are summarized using tools like persistent homology.

Having now described the relevant concepts in computational topology abstractly, we give some
background on graphs and the application of computational topology to graphs.

Graphs and Homophily Let G = (N ,E ) be a graph consisting of node set v ∈ N and edge set
{e = (u,v)|e ∈ E and u,v ∈ N } where edge e = (u,v) is said to adjoin nodes u and v. We denote a
neighborhood around node v as N(v) = {u ∈ N |(u,v) ∈ E } to consist of all nodes in N that share
an incident edge with v in E . For k ≥ 1 we denote the k-hop neighborhood of node v, Nk(v), as the
set of all nodes u ∈ N such that there is a connected path of k or fewer edges adjoining u and v.
For nodes u and v with labels yu and yv and edge set Ei for graph Gi in the filtration sequence, the
homophily ratio Zhu et al. (2020) is given by hi =

1
|Ei| ∑

v∈Ei

|{u∈N (v):yu=yv}|
|N (v)| .

Topological Filtration of Graphs We can interpret a graph G as a 1-dimensional simplicial com-
plex whose vertices (0-simplices) are the graph nodes and whose edges (1-simplices) are the edges.
In the topological filtration of graphs, we can think of filtration as a growth process of a weighted
graph. As the graph grows, new edges and nodes are introduced, introducing new connected com-
ponents and neighborhood structures.

Node neighborhoods thus share this property: for each node vi ∈ Vpi ∩Vp j , e.g. Npi(vi) for vi ∈ Vpi

and Np j(vi) for vi ∈ Vp j , we have that Npi(vi)⊆Np j(vi). We give all graphs the full node set found
at the lowest threshold level of the filtration sequence, but nodes that would not otherwise exist in
the graph at a higher persistence level are disconnected. Early birth nodes, which appear for lower
value thresholds, then remain in subsequent graphs in the filtration sequence, with neighborhood
structure for each node potentially differing for each node between different graphs in the sequence.

3 METHODOLOGIES FOR FILTRATION LEARNING

3.1 ESTIMATING EDGE HOMOPHILY SCORES

We first filter graphs by the likelihood an edge adjoins nodes of disparate classes. To accomplish
this we first frame the task of node classification as an edge classification problem, where the edge
classifier serves as a filter function that prescribes filter values to edges representing the inferred
likelihood that an edge is homophilous.

Given a graph G = (N ,E ) containing labeled nodes v with labels yv and node features hu and hv
for a subset or all of node set N , we can derive binary edge labels for edge e = (u,v) as y(u,v) ={

1 if yu = yv
0 if yu ̸= yv

}
for graphs with binary or multi-class labels. Our edge filter function is a multilayer

perceptron with a single logistic output defined as MLP
(
COMBINE(hu,hv)

)
. In our where hu and hv

are the feature vectors of adjacent nodes u and v and COMBINE is implemented via concatenation
(other choices of functional operator, such as dot product, are possible).

We then train the filter function using the derived homophily edge labels yu,v on a subset of the graph
and infer values between 0 and 1 to all remaining edges of the graph, predicting whether an edge is
homophilous or not.

3.2 HOMOPHILY-BASED TOPOLOGICAL FILTRATION OF GRAPHS

We perform filtration on graphs using a sorted ordering of 1-simplices, or edges, with filter values
assigned by f (E ,e)∀e ∈ E of graph G, which correspond to the likelihood an edge is homophilous

3
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or not. Beginning at filter threshold p = 0 we then add edge e = (u,v) and its incident nodes u and
v if f (e) ≤ p and such that the expanded graph Gp at level p of the filtration sequence remains a
simplicial complex containing all e = (u,v) such that f (e)≤ p once all edges have been assigned a
filter function value.

We observe the topological filtration sequence at P levels of filtration thresholds to model multiscale
topological information. In contrast to hierarchical graph-level representation learning methods that
learn to pool each input graph Ying et al. (2018), this gives us several graph representations of the
underlying data to use as input to a graph neural network, which we denote the multi-scale sequence
of graphs or graph hierarchy. A smaller threshold value produces a more highly filtered graph
with fewer edges that are more likely to be homophilous. Thus, we obtain a hierarchy of graphs
G1, . . . ,GP where for i ∈ [1, . . . ,P],Gi−1 ⊆ Gpi : that is, Gi−1 is an induced subgraph defined on a
subset of the vertices in Gi.

3.3 GRAPH NEURAL NETWORKS WITH TOPOLOGICAL FILTRATION

We consider two methods for learning node representations for classification using GNNs, which
exploit the topological information from the nested sequence of graphs obtained through topological
filtration, referred to as the graph hierarchy, in the context of training GNNs. The first method
modifies the training of GNN over graph hierarchies, while the second modifies the architecture to
pass messages jointly between all hierarchical graph levels.

3.4 TOPOLOGICAL FILTRATION FOR HIERARCHICAL GRAPH NEURAL NETWORK

3.4.1 MULTI-SCALE SUCCESSIVE TRAINING

For our first method, we use a GraphSAGE architecture which learns node features via message
passing in the spatial domain Hamilton et al. (2017).

Instead of training a GNN for N epochs on the finest graph GP, we train it for N
P epochs each on

graphs G1, . . . ,GP, using the embeddings from Gi−1 to initialize the embeddings of corresponding
nodes in Gi ∀ i ∈ [1 . . . ,P]. The MLPs and node embedding weight matrices for target and neighbor-
ing node embeddings are shared between graph hierarchies. Training begins with the smallest (most
highly filtered) graph and iteratively increases in graph size. We also successively share the learned
embedding weight matrices and matrices of the MLPs as well.

3.4.2 MULTI-SCALE JOINT TRAINING

Message

Message passing occurs during a single layer and iteration k where each node’s feature hk
v is updated

to incorporate the features associated with nodes within its neighborhood and the layer’s learnable
parameters denoted ε and W . Message passing in this way can be viewed as a representational signal
moving through adjacencies within a neighborhood. With the output of each layer serving as input to
the subsequent layer, ’farther’ serves to incorporate information from more distant nodes diffusing
throughout the network. The result is a learned target node representation based neighborhood r,
denoted N r

p (v) for node v. Messages are further aggregated, similar to pooling in standard convo-
lutional networks, in that they are functionally propagated and interlaced. In 1 node v is highlighted
in yellow within each graph of the nested filtration sequence and the dotted blue arrows denote
the messages passed to node v in each neighborhood Nr

p(v) where p denotes the graph level in the
sequence at filtration value p ∈ {0, · · · ,P} that the neighborhood being considered corresponds to.
A single node that exists within multiple graphs of the filtration sequence can have neighborhood
structures that differ but are subsets to subsequent neighborhoods later in the sequence of graphs
resulting from filtration.

hr
m(u,v) = Message(hr

u,h
r
v|v ∈ N r

p (v)))

where hu and hv are feature vectors of nodes u and nodes v.

Aggregation Within Neighborhoods Messages are then aggregated for each neighborhood Nr
p(v)

across nodes in the target node’s neighborhood. In Figure 1 this is illustrated with the regions
highlighted in blue where, for each graph, messages from each neighborhood r of v in that graph are

4
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Figure 1: A sequence of three nested graphs from topological filtration (top row) offering three lev-
els of graph resolution. Messages are shown being passed (dotted arrow) to the bottom right node
that, having survived the filtration, is common to all graphs in the multi-scale sequence, differing
in neighborhood connectivity. For each subgraph Gp of the total P graphs in the graph hierarchy
{G0, · · · ,Gp, · · · ,GP}, messages are passed from each neighborhood Nr(v) to the target node. Mes-
sages at each graph level are then aggregated within neighborhoods (highlighted in blue). Messages
from all neighborhoods within each graph are then aggregated between one another (highlighted in
purple). We introduce (highlighted in orange) across neighborhood aggregation, where messages
are passed across neighborhoods in the multi-scale sequence of graphs. The target node’s feature
representation is then updated with the aggregated embeddings.

aggregated.
hr

v,p = AGGu∈N r
p (v)(h

r
m(u,v))

Aggregation Between Neighborhoods Messages are then aggregated between all neighborhood
Nr

p(v) ∈ Np(v) of nodes in target node v’s neighborhood in subspace p

hNp
v,p = AGGN r

p ∈Np(h
r
v,p)

In Figure 1 this is illustrated with the regions highlighted in purple.

Multi-Neighborhood Aggregation Across Graph Neighborhoods This work introduces the step
highlighted in orange in Figure 1. Namely, once messages from each neighborhood have been
aggregated, messages are then aggregated across all target node neighborhoods in all graphs within
the sequence of graphs to which target node v belongs.

hN
v = AGG(hNp

v,p)

In Figure 1 this is illustrated with the regions highlighted in orange.

Update Finally, the feature representation of the target node is updated with aggregated embeddings

hv = Update(hN
vP
,ht

a)

5
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For node vi belonging to node set Vpi of subgraph Gpi , the feature representation hk
vi

at GNN layer
k ∈ {1, · · · ,K} first combines self-representations from the previous level of aggregation with ag-
gregated neighbor information:

hk
vi
=COMBINE

(
W k−1

s hk−1
v ,

AGGR
(
{W k−1

n hk−1
u : u ∈ Npi(vi)}

))
Once this is done, the resulting embedding is combined with the embedding representation from
other persistence subgraphs. As an example for two persistence levels pi and p j where vi ∈ Vpi ⊂
Gpi and v j ∈ Vp j ⊂ Gp j , we have hk

v = σ
(
COMBINE(hk

vi
,hk

v j

))
.

Learned Node Filtrations of Graphs

This work introduces a second, learnable node filter function for learning a filtration of nodes in
graphs within the graph hierarchy during training. Filtration of nodes in the graph hierarchy aims to
learn which graphs (and their respective nodes) in the nested graph sequence obtained from topologi-
cal filtration are most informative for multi-scale or hierarchical graph learning. Graph Isomorphism
Networks Xu et al. (2018), (GIN-ε) not only have theoretical expressivity benefits for distinguishing
graph substructures but have also been shown to be a viable candidate as a learnable filter function
for persistent homology when also combined with a multilayer perceptron Hofer et al. (2020). We
then use a learnable node filter function during Multi-Scale Joint Training defined as

fp(Np,u) := MLP(GINp
ε (h

p
u))→ R

.

where hp
u is the embedding representation of node u in Np in graph Gp = (Np,Ep) for graph level

p of the graph hierarchy. GIN[
ε is a GIN network which is learnable and differentiable in ε Xu et al.

(2018), and MLP is a multilayer perceptron which takes the resulting embedding from GINp
ε .The

resulting real-valued output of fp is the learned filter value, which is a scalar qp(u) for node u in
graph level Gp.

This work introduces a methodology for using the learned filter values qp(u) to filter graphs within
the graph hierarchy. To learn the importance and reduce or increase the contribution of graphs in
the graph hierarchy during multi-scale joint aggregation, we use the qp filter value for attention type
based aggregation by weighing the aggregated embedding obtained from graph Gp in the hierarchy
before multi-scale aggregation across all graphs Gi in the multi-scale filtration sequence of P graphs
G0,G1, · · · ,GP. Before the combination step of multi-scale aggregation, we then factor each node’s
resulting embedding from each graph level by its respective filter value qp In doing so, the learned
filter value can learn to eliminate or accentuate the contribution of embeddings from specific graphs
in the multi-scale graph sequence.

The learned filtration of graphs in the graph hierarchy during multi-scale joint aggregation can then
be expressed as the combined embedding from each subgraph, where each subgraph’s embedding
is obtained with a backbone GNN and a filter function fp(Np,u), unique to each graph level, for a
final embedding that is weighted by a filter value qp before global combination. For node vP in the
highest resolution graph GP in the filtration sequence, we then have:

hk
vP

=COMBINE
(

f0,ε0(h
k−1
v0

) ·W k−1
s,0 hk−1

v0

, fi,εi(h
k−1
v1

) ·Ws,ihk−1
v1

fP,εP(h
k−1
vP

) ·Ws,Phk−1
vP

)
From the original precomputed filtration sequence of graphs, we then learn a subset filtration se-
quence of graphs through the learnable node filter function fp(Np,u), which learns a weighted
attention on each node in each graph level to obtain a learned filtration sequence of graphs.

6
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4 EXPERIMENTS

Implementation We implement all models with PyTorch and all GNNs with Pytorch Geomet-
ric Paszke et al. (2019); Fey & Lenssen (2019). Topological filtration is performed with Diony-
sus Morozov (2007).

Hyperparameters and Computing Environment We train for 321 epochs and perform valida-
tion every 8. We employ early stopping based on validation scores for a deviation of 1e− 3 with
patience of 4 rounds of validation accuracy scores for the edge filter function’s training and 10 for
the multi-scale model used. For dropout, the edge filter function uses a value of 0.3, and multi-scale
models have a value of 0.65. As the size of the datasets tested varied, hidden dimensions varied to
account for the limitations of the machine being used and model overfitting. We perform a parameter
sweep for each of the following hyperparameters over the values provided here. Filtration thresh-
olds and number of graphs in graph hierarchy with early stopping:(0.5,0.7,0.9), (0.8,0.9), (0.6,0.9),
(0.6,0.9), (0.8,0.9), (0.7), (0.8), (0.9), (0.1). For all filtration sequences of graphs, the entire graph
with no thresholding was also included. Learning Rate of Multi-Scale methodology (MsST or MJT):
3e-4, 3e-3, 0.03, 1e-4, 1e-3, 1e-2 Learning rate of edge filter function: 1e-3,3e-3 ,1e-2 ,3e-2 Weight
decay: 5e-8 ,5e-6 ,5e-5 ,5e-4 ,0

All experiments were run on a laptop with 3 GB GeForce GTX 970M with 1280 CUDA Cores GPU
and 3.5GHz i7-6700HQ processor running Ubuntu, Linux.

4.1 DATASETS

We use several different standard node classification benchmarks covering a range of homophily
levels.

Planetoid (CiteSeer, Cora, and PubMed): These are widely used citation networks, where nodes
represent documents, and edges represent citation links between them. The task is typically node
classification, where the goal is to predict the category of each document Yang et al. (2016). These
datasets are well known to have high homophily.

Wikipedia Network (Chameleon): is a graph derived from the page-to-page link network of
Wikipedia articles. Nodes represent Wikipedia pages, and edges represent hyperlinks between them.
The nodes are classified based on the traffic levels of the web pages. This dataset is used to study the
performance of graph learning methods designed for heterophilous networks. Rozemberczki et al.
(2021).

WebKB (Cornell, Wisconsin, and Texas): The WebKB datasets, including Cornell, Wisconsin, and
Texas, consist of webpages collected from computer science departments of various universities.
Nodes represent webpages, and edges represent hyperlinks between them. The task is to classify the
type of webpage (e.g., course, faculty, student) and these datasets are also known to have high levels
of heterophily.Peixoto & Emmert-Streib (2019).

Dataset Subdataset Nodes Edges Classes
Planetoid

Cora 2,708 5,429 7
CiteSeer 3,327 4,732 6
PubMed 19,717 44,338 3

WikipediaNetwork Chameleon 2,277 31,421 5

WebKB
Cornell 183 295 5
Wisconsin 251 499 5
Texas 183 309 5

Table 1: Summary of datasets and their characteristics.

Node Classification Results In Table 2, we report the test accuracy results of MsST and MsJT in
the context of the reported accuracies of other state-of-the-art models with equivalently proportioned
train, validation and test splits. Our methodologies excel in all except one dataset, achieving the
highest and second highest accuracies.
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Model Texas Wisconsin Chameleon Cornell CiteSeer Pubmed Cora
Homophily Ratio 0.06 0.16 0.25 0.11 0.74 0.80 0.83

MsST 96.72% 95.62% 90.12% 95.63% 88.73% 71.04% 93.17%
MsJT 89.27% 93.57% 91.25% 91.71% 93.49% 91.78% 95.39%

Geom-GCN-X 75.67% 76.47% 89.32% 66.66% 79.12% 90.11% 90.57%
Dropedge-X 83.52% N/A 64.94% N/A N/A N/A 87.36%
H 2GCN-X 84.86% 86.67% 59.39% 82.16% 77.07% 89.59% 87.81%

HMPNN N/A N/A N/A N/A N/A N/A 92.16%
X-NSD 85.95% 89.41% 68.68% 86.49% 77.14% 89.49% 87.30%
DCM 85.71% 89.33% 53.76% N/A 78.60% 88.61% 86.63%

Table 2: Test accuracy results for node classification over datasets, sorted by homophily level, for
our methodologies (MsST and MsJT), heterophily oriented model designs, and topological deep
learning (TDL) models (sorted by row). Accuracy results are reported for test sets with train, valida-
tion, and test split of 40%, 20%, and 20% in comparison to the reported optimal accuracy for similar
works with equivalently proportioned splits. The highest accuracy scores are highlighted in green,
with the second highest outlined in blue Feng et al. (2019); Huang et al. (2022); Pei et al. (2020);
Zhu et al. (2020); Bodnar et al. (2022)

5 RELATED WORK

Here, we review related works on graph neural networks, whether using similar techniques based on
filtration learning, or focused on the problem we consider of learning from graphs with heterophily.

5.1 GRAPH NEURAL NETWORKS FOR HETEROPHILOUS GRAPHS

For a recent overview of graph neural networks, see Zhu et al. (2023); Luan et al. (2024). Meth-
ods designed to handle graphs with heterophily usually focus on one of two challenges posed by
heterophily. The first is that in heterophilous graphs, nodes may not have relevant neighbors (e.g.
neighbors of the same class) to attend to, and one solution is to expand the receptive field of graph
neural networks to allow them to learn non-local dependencies. Such approaches include higher-
order neighborhood aggregation, proposed by Zhu et al. (2020), rewiring the graph based on other
forms of node similarity Pei et al. (2020), or introducing non-local attention Zhu et al. (2020). Such
approaches may incur a higher computational cost.

Our work falls into a second category of approaches, which recognize that heterophily also may
muddy the message passing of graph neural networks by causing messages to be aggregated from ir-
relevant neighbors. Such approaches modify the message passing to better suit heterophilous graphs,
for example by performing it over signed Yan et al. (2022) or directed ? edges, or by learning a class
compatibility matrix that may be used to control message passing ?. Other approaches include
rewiring the graph to be better suited to heterophily, by connecting nodes based on some other
measure of similarity or distance Pei et al. (2020); Bi et al. (2024); Li et al. (2023).

Most related to our work, this rewiring has been performed with a edge classifier that predicts if an
edge is heterophilous or homophilous Huang et al. (2022); Xue et al. (2024). A backbone graph
neural network is trained on a graph that has been preprocessed using the classifier to improve its ho-
mophily properties. The edge classifier may be used to filter the graph only by pruning heterophilous
edges Huang et al. (2022), or new edges may also be added that are predicted to be homophilous Xue
et al. (2024). Both methods result in a single output graph which loses any information that the het-
erophilous edges may contain. In contrast, our approach gives a model access to the input graph at
a variety of filtration levels, giving us the best of both worlds: an ability to use all the information in
the original graph, while also being able to emphasize the high-homophily connections in a more fil-
tered graph. Moreover, by using persistent homology to perform our filtration rather than arbitrarily
thresholding edges, we maintain more topological structure in the filtered graphs.
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5.2 FILTRATION LEARNING FOR GRAPH NEURAL NETWORKS

Graph filtration learning using persistent homology has been used for graph-level representation
learning Hofer et al. (2020). For node classification, persistent homology has also been used to guide
message passing in graph neural networks Zhao et al. (2020). More related to our work, Leventhal
et al. (2023) has used graph neural networks to classify topological objects in image data, learning
successively or jointly from hierarchical levels of a topological filtration. Here, we show how to
derive such a hierarchical filtration for graphs specifically based on homophily, and we develop a
node-level filtration that allows us to attend to different levels of filtered graphs.

6 CONCLUSION

We propose graph neural network methods that learn from hierarchies of graphs representing a se-
quence of nested graphs obtained from topological filtration. Treating graphs from the perspective
of 1-D simplicial complexes, our filtration is defined as being over 1-cells (graph edges). We obtain
a sequence of simplicial complexes, where each complex in the series is subset to the subsequent,
from a sorted ordering of 1-cells, thresholded by filtration values prescribed to simplexes through
a filter function defined as a learning model trained to infer if edges are homophilous, akin to a
class similarity measure between 0-cells (graph nodes). The proposed approach is generalizable
to any edge based classification task or graph with weighted edges that afford an ordering. We
then present two methods for hierarchical graph learning. The former, achievable for any standard
GNN model, performs message passing across subsequent graphs in the graph hierarchy, aggregat-
ing node embeddings sequentially moving up the graph filtration sequence. the ladder introduces
a novel multi-scale message passing scheme with aggregation performed jointly across graphs in
the filtration sequence, with learned attention based aggregation or learned topological filtration of
subset graph nodes, effectively learning the degree of contribution graphs within the hierarchy con-
tribute to learned aggregated node embeddings. Our results demonstrate promise for increased node
classification accuracy on heterophilous networks compared to conventional GNNs.
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