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Abstract

Natural language inference (NLI) is a task to in-001
fer the relationship between a premise and a hy-002
pothesis (e.g. entailment, neutral, or contradic-003
tion), and transformer-based models perform004
well on current NLI datasets such as MNLI005
and SNLI. Nevertheless, given the complex-006
ity of the task, especially the complexity of007
the sentences used for model evaluations, it re-008
mains controversial whether these models can009
truly infer the meaning of sentences or they010
simply guess the answer via non-humanlike011
heuristics. Here, we reduce the complexity of012
the task using two approaches. The first ap-013
proach simplifies the relationship between the014
premise and hypothesis by making them unre-015
lated. A test set, referred to as Random Pair,016
is constructed by randomly pairing premises017
and hypotheses in MNLI/SNLI. Models fine-018
tuned on MNLI/SNLI identify a large propor-019
tion (up to 77.6%) of these unrelated statements020
as being contradictory. Models fine-tuned021
on SICK, a dataset that included unrelated022
premise-hypothesis pairs, perform well on Ran-023
dom Pair. The second approach simplifies the024
task by constraining the premises/hypotheses to025
be syntactically/semantically simple sentences.026
A new test set, referred to as Simple Pair, is027
constructed using simple sentences, such as028
short SVO sentences, and basic conjunction029
sentences. We find that models fine-tuned on030
MNLI/SNLI generally fail to understand these031
simple sentences, but their performance can032
be boosted by re-fine-tuning the models using033
only a few hundreds of samples from SICK.034
All models tested here, however, fail to un-035
derstand the fundamental compositional bind-036
ing relation between a subject and a predicate037
(up to ∼100% error rate) for basic conjunction038
sentences. Taken together, the results show039
that models achieving high accuracy on main-040
stream datasets can still lack basic sentence041
comprehension capacity, and datasets discour-042
aging non-humanlike heuristics are required to043
build more robust NLI models.044

1 Introduction 045

Natural language inference (NLI), also known as 046

recognizing textual entailment (RTE), is a basic 047

task to test the semantic inference ability of natural 048

language processing (NLP) models (Cooper et al., 049

1996; Dagan et al., 2005; Bowman et al., 2015; 050

Poliak, 2020). The NLI task concerns the relation- 051

ship between a pair of sentences, i.e., a premise 052

and a hypothesis (Naik et al., 2018; Ravichan- 053

der et al., 2019; Richardson et al., 2020; Jeretic 054

et al., 2020). In recent years, a number of datasets 055

have been developed to train models to perform 056

the NLI task, such as SICK (Marelli et al., 2014), 057

Stanford NLI (SNLI) (Bowman et al., 2015), and 058

Multi-genre NLI (MNLI) (Williams et al., 2018), 059

and transformer-based deep neural network mod- 060

els have achieved high accuracy on these datasets 061

(Nangia and Bowman, 2019; Poliak, 2020). The 062

high accuracy of NLI models seems to suggest 063

that these models already have the ability to inter- 064

pret the meanings of sentences and generate se- 065

mantic inference. Nevertheless, recent evidence 066

shows that NLI models may have just guessed the 067

answer based on statistical biases in the datasets 068

(Gururangan et al., 2018; Clark et al., 2019). Fur- 069

thermore, models can achieve high accuracy even 070

when the words in premise/hypothesis are shuf- 071

fled (Sinha et al., 2021), casting further doubts on 072

whether the NLI models can truly infer the mean- 073

ing of a sentence or simply guess the answer via 074

non-humanlike heuristics (Naik et al., 2018). 075

The goal of the current paper is two-folded. First, 076

we tackle the issue of potential statistical biases in 077

the current large-scale NLI datasets by designing 078

testing conditions that factor out the effect of statis- 079

tical biases. To achieve the goal, we extend the cur- 080

rent mainstream datasets, such as MNLI and SNLI, 081

to create test conditions in which any heuristics 082

originated in the original datasets (if any) are ren- 083

dered useless under the new test conditions. This is 084
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done by breaking the original premise-hypothesis085

pairs and randomly pairing a premises with a hy-086

pothesis. Consider a situation in which an anno-087

tator designs a hypothesis that is expected to stay088

in a contradiction relation with a premise. The089

annotator may use words that are highly sugges-090

tive of a contradiction relationship, for example,091

a higher likelihood of negation in the hypothesis092

sentence. Instead of truly evaluating the relation-093

ship between the premise and the hypothesis, a094

model may simply exploit the hypothesis-internal095

regularities to solve the NLI task (Naik et al., 2018;096

Gururangan et al., 2018; Rudinger et al., 2017). But097

when the same hypothesis is paired with a random098

premise, the hypothesis-internal bias remains the099

same while the relationship between the premise100

and the hypothesis has been (most likely) changed101

to a neutral relation. We therefore reason that if a102

model truly understands the semantic relation be-103

tween a premise-hypothesis pair, it should answer104

"neutral" for most of our newly constructed test-105

ing conditions; deviations from such a result (i.e.106

identification of entailment or contradiction to a107

non-trivial extent) would indicate the model does108

not truly rely on semantic relations to perform the109

task.110

Second, to probe deeper into the semantic capa-111

bilities of the current NLI models, we constructed a112

large number of simple and conjunction sentences113

following a set of systematic design features (see114

more details in Method), and tested whether NLI115

models can make correct inferences on these sen-116

tences. The sentences in the current mainstream117

datasets are generally highly sophisticated. Train-118

ing and testing models on difficult and challenging119

material is valuable since this exercise pushes the120

boundaries of how much NLI models can cope with121

linguistic complexity (Nie et al., 2020; Ravichan-122

der et al., 2019). But the complexity of the datasets123

could also potentially hinder an explicit description124

as to what specific features of the linguistic system125

the models can learn and more importantly what126

they can not learn. Furthermore, a focus on com-127

plex material implicitly assumes that the current128

NLP models have the capacity to understand simple129

sentences and consequently perform the NLI task130

accurately. The current study, however, shows that131

models fine-tuned on highly challenging datasets132

in fact fail on very basic sentences once we sys-133

tematically probe the semantic knowledge of these134

models.135

Figure 1: Construction of the Random Pair set.

To preview, we tested 3 popular transformer- 136

based models, i.e., BERT (Devlin et al., 2019), 137

ALBERT (Lan et al., 2019), and RoBERTa (Liu 138

et al., 2019), which were respectively fine-tuned on 139

3 widely-used NLI datasets, i.e., the MNLI, SNLI, 140

and SICK datasets. We found that these models 141

were by and large inaccurate in drawing inference 142

relations on our datasets, and their previously re- 143

ported success might be due to the inherent biases 144

present in the datasets. More importantly, we also 145

identified a key problem with these models: All 146

the models appeared to fail in the basic semantic 147

composition principles. 148

2 Method 149

2.1 NLI Dataset and Pre-trained Models 150

We employed 3 pre-trained language models, i.e., 151

BERT (Devlin et al., 2019), ALBERT (Lan et al., 152

2019), and RoBERTa (Liu et al., 2019) to perform 153

the NLI task. For all models, we used the base ver- 154

sion. We built our models using Huggingface (Wolf 155

et al., 2020). The models were separately fine- 156

tuned based on 3 datasets, i.e., MNLI (Williams 157

et al., 2018), SNLI (Bowman et al., 2015), and 158

SICK (Marelli et al., 2014). For the 3 datasets 159

we used, the relationship between a premise and a 160

hypothesis could be entailment, contradiction, or 161

neutral. The accuracy was evaluated by the pro- 162

portion of premise-hypothesis pairs for which the 163

inference relation was correctly identified. The pa- 164

rameters for fine-tuning were adopted from previ- 165

ous studies (shown in Appendix Table 1). For each 166

sentence pair, the input to the models was [CLS, 167

premise, SEP, hypothesis, SEP]. The concatenated 168

sequence was encoded through the models and the 169

output embedding of CLS was fed into a 3-way 170
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Figure 2: Template for syntactically simple sentences

softmax classifier. The classifier calculated a score171

for each class though a linear transformer matrix172

and softmax function (Devlin et al., 2019).173

2.2 Construction of Test Sets174

2.2.1 Random Pair175

We created a Random Pair test set by randomly176

pairing premises and hypotheses in MNLI or SNLI177

test set, with the constraint that none of the new178

premise-hypothesis pairs in our test set overlapped179

with the original pairs in the original datasets (Fig-180

ure 1). Specifically, 1000 premises were selected181

from each of the 2 datasets and each premise182

was paired with 54 hypotheses (18 from MNLI-183

matched, 18 from MNLI-mismatched, and 18 hy-184

potheses from SNLI). This procedure resulted in185

54000 premise-hypothesis pairs (1000 premises ×186

54 hypotheses) for MNLI and SNLI, respectively.187

Since the pairing between a premise and a hypoth-188

esis is randomized, the relationship between them189

should generally be neutral. Human annotation190

was acquired for critical examples to confirm this191

(see Section 2.3). We did not construct random192

pairs based on SICK since SICK contained a lot of193

semantically similar premises/hypotheses (Marelli194

et al., 2014) and therefore the relationship between195

random pairs is complex.196

2.2.2 Simple Pair197

We constructed a Simple Pair test set using only198

syntactically simple sentences. The test set were199

further divided into a simple-sentence set and a200

conjunction-sentence set. For the simple-sentence201

set, the premise was a short sentence constructed202

using one of two templates (see Figure 2). One203

template created N-is-A sentences, where N was a204

noun and A was an adjective. The noun was from205

5 categories, i.e., fruits (N = 40), animals (N = 90), 206

human (N = 100), names (N = 100), and objects 207

(N = 90), and each noun was mapped to a com- 208

patible adjective (N = 25, 30, 55, 55, and 28 for 209

nouns from the fruit, animal, human, name, and 210

object categories, respectively). The other template 211

created SVO sentences. The subject and object 212

were selected from the same 5 categories of nouns 213

used in N-is-A sentences, and they were randomly 214

paired with a compatible verb (N = 20). As shown 215

in Figure 3, each N-is-A type of premise was paired 216

with 6 hypotheses, and 51000 premise-hypothesis 217

pairs (8500 premises × 6 hypotheses) were created. 218

Each SVO premise was paired with 4 hypothe- 219

ses, and 48000 premise-hypothesis pairs (12000 220

premises × 4 hypotheses) were created. Premise- 221

hypothesis pairs containing antonyms or synonyms 222

were excluded in the simple-sentence set and the 223

relationship between all premise-hypothesis pairs 224

was neutral. 225

For conjunction-sentence set, the premise was 226

constructed by conjoining two simple sentences 227

using one of four possible templates (see Figure 2 228

for the details). Each premise was paired with 4 229

hypotheses (see Figure 3). In total, 34000 premise- 230

hypothesis pairs (8500 premises × 4 hypotheses) 231

were created for the premise constructed using each 232

template. Similar to the simple-sentence set, the 233

relationship between all premise-hypothesis pairs 234

were controlled as being neutral. 235

2.3 Human Annotation 236

A large number of hypotheses in Random Pair 237

were identified as entailment or contradiction by 238

the models fine-tuned on MNLI and SNLI (see Sec- 239

tion 3.1). To test whether most of these premise- 240
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Figure 3: Construction of the Simple Pair set. More examples are shown in Appendix Table 2.

hypothesis pairs were truly neutral, we collected241

human annotation for part of the data. For each242

model, we selected 100 premise-hypothesis pairs243

that received the highest scores for entailment or244

contradiction. Within these pairs, 40 was randomly245

selected for human annotation. These premise-246

hypothesis pairs were listed in Appendix File1.247

In the annotation process, human annotators (N248

= 5) were presented with pairs of sentences and249

asked to label the relationship between the two sen-250

tences, i.e., entailment, contradiction, or neutral.251

The ground truth label was obtained using a ma-252

jority vote from the 5 annotators. These sentences253

are largely more frequently classified as neutral254

by humans. Appendix table 3 shows the summary255

statistics of ground truth labels.256

3 Results257

3.1 Model performance on Random Pair258

For the Random Pair set (see Section 2.2.1), a259

premise was paired with a set of randomly cho-260

sen hypotheses, and we expected the relationship261

for most of these premise-hypothesis pairs to be262

neutral. Table 1 showed model performance on263

Random Pair. It appeared that only the models fine-264

tuned on SICK identified the majority of premise-265

hypothesis pairs, i.e., more than 95%, as being266

neutral. The models fine-tuned on MNLI or SNLI,267

however, identified a large proportion of premise-268

hypothesis pairs, i.e., more than 32.8% and 69.3%269

respectively, as contradiction. To further evalu-270

ate the model performance, we acquired human271

annotation of the premise-hypothesis pairs that re-272

Table 1: Model performance on Random Pair. The
percent of premise-hypothesis pairs identified as entail-
ment, neutral, and contradiction were shown in blue,
red, and yellow, respectively.

ceived the highest scores for contradiction under 273

each model, and more than 90% of these premise- 274

hypothesis pairs were manually annotated as neu- 275

tral (Appendix Table 3). These results suggested 276

that the transformer-based models fine-tuned on 277

MNLI or SNLI were inaccurate when a hypothesis 278

was unrelated to the premise. 279

3.2 Model performance on Simple Pair 280

Models fine-tuned on MNLI or SNLI performed 281

poorly on Random Pair, and one potential reason 282

was that the sentences in Random Pair were se- 283

lected from MNLI or SNLI, which were complex 284

and therefore challenging to interpret. In the fol- 285

lowing, we tried to tease apart the ability to infer 286

the relationship between sentences and the ability 287

to interpret complex sentences by testing model 288

performance on syntactically/semantically simple 289

sentences. Model performance on Simple Pair was 290
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Table 2: Performance on the simple-sentence set in Simple Pair. In Simple Pair, each premise is paired with a few
hypotheses and each hypothesis is shown in a column. The relationship between all premise-hypothesis pairs, when
correctly identified, is neutral.

shown in Tables 2 and 3, for the simple-sentence291

set and the conjunction-sentence set, respectively.292

For the simple-sentence set, we constructed neu-293

tral hypotheses by replacing at least one constituent294

in the premise (e.g., [S] or [V] in an SVO sentence,295

[N] or [A] in a N-is-A sentence) with a different296

word. It was found that models fine-tuned on MNLI297

or SNLI identified the relationship between a large298

proportion of premise-hypothesis pairs as contra-299

diction, especially when the subjects were different300

between the hypothesis and the premise. For ex-301

ample, the models judged that "The apple is expen-302

sive" contradicts "The banana is expensive". Simi-303

larly, the model judged that "The professor saw the304

dog" contradicts "The student saw the dog".305

For the conjunction-sentence set, we constructed306

neutral hypotheses by breaking the compositional307

binding relation between a subject and a predicate308

in the hypothesis (see Figure 3). Model perfor-309

mance was similar for conjunction sentences con-310

structed using SVO or N-is-A sentences. The re-311

sults showed that all the models tested here failed to312

understand the fundamental compositional binding313

relation between a subject and a predicate. The er-314

ror rate of the models fine-tuned on MNLI or SNLI315

was near 100%. For example, these models consis-316

tently made the incorrect judgment that "The apple317

is expensive and the orange is sweet" entails "The318

apple is sweet". This suggests that the models are319

confused as to which subject should be paired with320

which predicate (i.e. the compositional binding321

failure). The models also judged the same premise322

to contradict "The apple is not sweet", again sug-323

gesting a composition problem: after the models324

have wrongly allowed the composition of "The ap-325

ple is sweet" based on the premise, this inference326

will now be in contradiction to the hypothesis "The327

apple is not sweet", assuming that the models have328

the ability to distinguish "sweet" and "not sweet" 329

as describing two opposite properties. 330

We also introduced negation into the premises to 331

test if models could bind "not" with a positive pred- 332

icate to form a more complex predicate. These con- 333

ditions again revealed the composition failure prob- 334

lem on the models fine-tuned on MNLI or SNLI. 335

For example, when the premise was "The apple is 336

expensive and the orange is not sweet", the mod- 337

els tended to judge that the premise entailed "The 338

apple is not sweet" but contradicted "The orange 339

is not expensive". This suggests that the models 340

can correctly combine "not" with "sweet" to form 341

a new predicate, but they still freely (and wrongly) 342

paired up the subject nouns and the predicates in 343

the premise. As a result, the models allowed one 344

subject noun in the premise "the apple" to be com- 345

posed with the predicate "not sweet", and also al- 346

lowed the other subject noun in the premise "the 347

orange" to be composed with "expensive". 348

3.3 Why do model fine-tuned on SICK 349

perform better? 350

Compared with large-scale datasets such as MNLI 351

and SNLI, SICK was a small dataset that was auto- 352

matically generated. However, models fine-tuned 353

on SICK performed better on our test sets com- 354

pared with models fine-tuned on MNLI or SNLI. 355

Samples in SICK were constructed using eleven 356

expansion rules (Appendix Table 4), and we hy- 357

pothesized that only some expansion rules were 358

critical to boost model performance on our test 359

sets. In the following, we analyzed the impact of 360

each expansion rule by removing samples from 361

SICK corresponding to the rule. To simplify this 362

analysis, we only considered the ALBERT model 363

which achieved the best performance on most of 364

our test sets. We first removed the samples con- 365
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Table 3: Performance on the conjunction-sentence set in Simple Pair. Each hypothesis is shown in a column. The
relationship between all premise-hypothesis pairs, when correctly identified, is neutral.

sisting of unrelated premise-hypothesis pairs from366

SICK, since the Random Pair set was constructed367

using a similar rule. We fine-tuned ALBERT on368

the remaining samples in SICK, and the model fine-369

tuned this way performed worse on both Random370

Pair and Simple Pair (Table 4, first row). Neverthe-371

less, the performance of this model was still better372

than models fine-tuned on MNLI or SNLI. We then373

removed each of the remaining 10 expansion rules374

at a time and fine-tune models using the rest 9 rules.375

It was found that the scramble-words rule and the376

replace-words rule were also important to maintain377

model performance (Table 4).378

We next investigated whether the 3 rules critical379

to maintaining model performance, i.e., unrelated- 380

sentences rule, scramble-words rule, and replace- 381

words rule, could be used to improve the perfor- 382

mance of models fine-tuned on MNLI or SNLI. We 383

randomly selected samples corresponding to the 3 384

rules with the constraint that the textual entailment 385

labels of these samples were balanced. In total, 386

450 premise-hypothesis pairs (150 entailment + 387

150 neutral + 150 contradiction) were selected, and 388

we used these 450 samples to re-fine-tune the mod- 389

els that were already fine-tuned on MNLI or SNLI. 390

The parameters were shown in Appendix Table 5, 391

and the re-fine-tuning process did not significantly 392

decrease model performance on MNLI/SNLI (com- 393
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Table 4: Performance on Simple Pair for models fine-tuned on part of the samples in SICK. Each row shows the
results when samples corresponding to an expansion rule are removed from the fine-tuning process. The numbers in
parenthesis show the change in performance compared with the models fine-tuned on the original SICK dataset. For
each test set, shown as a column, the largest decrease is shown in blue. The expansion rules are ordered based on
the mean decrease averaged over test sets.

Table 5: Performance of models re-fine-tuned based on 450 samples in SICK. The numbers in parenthesis show the
change in performance compared with the models only fine-tuned on MNLI or SNLI.

paring Appendix Tables 1 and 5). Performance394

of the models receiving a re-fine-tuning process395

was shown in Table 5. It was found that the small396

number of samples selected from SICK can indeed397

significantly improve model performance on Ran-398

dom Pair and the simple-sentence set in Simple399

Pair. Performance on the conjunction-sentence set400

in Simple Pair was not significantly improved since401

models fine-tuned on the original SICK datasets402

performance also performed poorly on the conjunc-403

tion sentences.404

4 Related work405

Transformer-based models have achieved human-406

level performance on many NLI datasets such as407

MNLI, SNLI, and SICK (Devlin et al., 2019; Lan408

et al., 2019; Liu et al., 2019; Nangia and Bow-409

man, 2019). The good performance seems to sug-410

gest that these models possess the ability to in-411

terpret sentences in the current datasets and gen- 412

erate correct inferences. Accordingly, follow-up 413

work aimed at constructing even more challeng- 414

ing datasets to train and test the models (Nie et al., 415

2020; Liu et al., 2021). There is also a growing 416

body of work that constructs datasets to test more 417

fine-grained linguistically motivated inference pat- 418

terns such as pragmatic inferences and numerical 419

reasoning (Ravichander et al., 2019; Jeretic et al., 420

2020) or correlate model errors with well-defined 421

linguistic phenomena (Naik et al., 2018), with the 422

purpose to identify whether models have trouble 423

making certain types of inferences. Compared with 424

these studies, the current work took a different ap- 425

proach: by intentionally reducing the difficulty of 426

the test material, we aim to uncover whether mod- 427

els can truly infer the meaning of simple sentences. 428

The results show models perform poorly inferring 429

the meaning of basic SVO and N-is-A sentences. 430
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In the meantime, many studies have discussed431

the potential danger of overfitting on benchmark432

datasets, and emphasized the need to more accu-433

rately evaluate the true language capacity of various434

models (Smith, 2012; Talman and Chatzikyriakidis,435

2019; Sinha et al., 2021; Poliak, 2020). For ex-436

ample, it has been shown that models can guess437

the relationship between a premise and a hypoth-438

esis with the accuracy higher than chance level,439

even when just considering the hypothesis (Gu-440

rurangan et al., 2018). A recent study has also441

shown that the current models fail to generalize442

across different datasets (Talman and Chatzikyri-443

akidis, 2019). The concern of overfitting also arises444

for other NLP tasks (Jia and Liang, 2017; Wal-445

lace et al., 2019; Sugawara et al., 2020; Lin et al.,446

2021). For example, it has been found that models447

can give the correct answer reading comprehen-448

sion questions even when crucial information is449

removed so that the questions are no longer answer-450

able (Poliak et al., 2018; Gururangan et al., 2018;451

Si et al., 2019; Berzak et al., 2020; Kaushik and452

Lipton, 2018). Here, by randomly shuffling the453

premises and hypotheses in MNLI and SNLI, we454

provide additional evidence that existing models455

are severely over-fitted and tend to judge the rela-456

tionship between two randomly paired sentences457

to be contradictory.458

The current work differs from previous stud-459

ies in two major aspects. First, we propose a460

new method to extend existing datasets to create461

new samples that are minimally affected by non-462

humanlike heuristics. Relatedly, the study in Wang463

et al. (2019) switched the premise and hypothesis464

and used the switched pairs to test NLI models; but465

by randomly pairing premises and hypotheses, we466

were able to generate a much larger dataset. Our467

method can be combined with the method by Wang468

et al. (2019) to further increase the size of datasets469

and reduce the inherent statistical biases. Second,470

we constructed a large set of simple sentences to471

test models. Most current datasets are composed of472

syntactically complicated sentences and it is usu-473

ally difficult to isolate specific linguistic constructs474

from these sentences (Naik et al., 2018). In our475

study, the sentences are simple enough so that the476

mechanisms to understand (or fail to understand)477

them are relatively transparent.478

Related to the Simple Pair set, a recent study479

constructs a test set, i.e., HANS, based on 3 rules480

so that the hypothesis overlaps with the premise481

in terms of words, subsequences, or constituents 482

(McCoy et al., 2019). All our test samples belong 483

to the word overlapping case defined by McCoy 484

et al. (2019), but the results clearly differ, e.g., be- 485

tween simple and conjunction sentences, suggest- 486

ing that word overlap cannot fully explain model 487

performance. Some samples in HANS are simi- 488

lar to the samples in Simple Pair, e.g., when the 489

subject and object of a sentence are swapped. Mc- 490

Coy et al. (2019) found that BERT fine-tuned on 491

MNLI predicts that the original sentence entails the 492

subject-object swapped sentence, and the current 493

study replicates this phenomenon (Table 2, upper 494

right), but we also show that the results strongly 495

depend on the model and training set. Furthermore, 496

we show that incorporating a small number of sam- 497

ples from SICK can improve model performance. 498

Finally, a new and important finding of the current 499

results is that current models have substantial dif- 500

ficulty solving the compositional binding problem 501

for conjunction sentences. 502

5 Conclusion 503

In summary, since existing models seem to have 504

shown good performance on mainstream NLI 505

datasets such as MNLI and SNLI, the received 506

wisdom is that these models are capable of doing 507

at least some sophisticated inferences, and more 508

progress can be made by evaluating them on even 509

more challenging datasets (Nie et al., 2020; Liu 510

et al., 2021). The current study, however, shows 511

that models achieving good performance on main- 512

stream datasets do not necessarily generalize to 513

simpler datasets. In fact, models fine-tuned on 514

MNLI/SNLI generally have lower than chance 515

level performance when predicting the relationship 516

between simple sentences. The results here show 517

that combining part of the automatically generated 518

samples with large-scale human-created datasets 519

such as MNLI and SNLI can potentially increase 520

model’s ability to generalize to simpler test sam- 521

ples while largely maintaining the performance on 522

challenging samples. Nevertheless, even with the 523

current approach to combine datasets, all the mod- 524

els still could not bind the subject noun with the 525

correct predicate in conjunctive sentences. Future 526

studies should develop both the design properties 527

of these models and the properties of the training 528

datasets to achieve more robust NLI performance. 529
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A Appendices 

   

Appendix Table 2: Examples of the Simple Pair set.  

Appendix Table 1: Hyper-parameters for fine-tuning models. The performance of models on MNLI, SNLI, and 
SICK test sets is shown in the last row. 
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Appendix Table 3: Human classification for premise-hypothesis pairs that received the highest scores for 
entailment or contradiction under each model. The percent of premise-hypothesis pairs classified as entailment, 
neutral, and contradiction were shown in blue, red, and yellow, respectively. 

Appendix Table 5: Hyper-parameters for re-fine-tuning models. The performance of models on MNLI, and SNLI 
test sets is shown in the last row. 

Appendix Table 4: The types of premise-hypothesis pairs in SICK. 
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