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Abstract

Natural language inference (NLI) is a task to in-
fer the relationship between a premise and a hy-
pothesis (e.g. entailment, neutral, or contradic-
tion), and transformer-based models perform
well on current NLI datasets such as MNLI
and SNLI. Nevertheless, given the complex-
ity of the task, especially the complexity of
the sentences used for model evaluations, it re-
mains controversial whether these models can
truly infer the meaning of sentences or they
simply guess the answer via non-humanlike
heuristics. Here, we reduce the complexity of
the task using two approaches. The first ap-
proach simplifies the relationship between the
premise and hypothesis by making them unre-
lated. A test set, referred to as Random Pair,
is constructed by randomly pairing premises
and hypotheses in MNLI/SNLI. Models fine-
tuned on MNLI/SNLI identify a large propor-
tion (up to 77.6%) of these unrelated statements
as being contradictory. Models fine-tuned
on SICK, a dataset that included unrelated
premise-hypothesis pairs, perform well on Ran-
dom Pair. The second approach simplifies the
task by constraining the premises/hypotheses to
be syntactically/semantically simple sentences.
A new test set, referred to as Simple Pair, is
constructed using simple sentences, such as
short SVO sentences, and basic conjunction
sentences. We find that models fine-tuned on
MNLI/SNLI generally fail to understand these
simple sentences, but their performance can
be boosted by re-fine-tuning the models using
only a few hundreds of samples from SICK.
All models tested here, however, fail to un-
derstand the fundamental compositional bind-
ing relation between a subject and a predicate
(up to ~100% error rate) for basic conjunction
sentences. Taken together, the results show
that models achieving high accuracy on main-
stream datasets can still lack basic sentence
comprehension capacity, and datasets discour-
aging non-humanlike heuristics are required to
build more robust NLI models.

1 Introduction

Natural language inference (NLI), also known as
recognizing textual entailment (RTE), is a basic
task to test the semantic inference ability of natural
language processing (NLP) models (Cooper et al.,
1996; Dagan et al., 2005; Bowman et al., 2015;
Poliak, 2020). The NLI task concerns the relation-
ship between a pair of sentences, i.e., a premise
and a hypothesis (Naik et al., 2018; Ravichan-
der et al., 2019; Richardson et al., 2020; Jeretic
et al., 2020). In recent years, a number of datasets
have been developed to train models to perform
the NLI task, such as SICK (Marelli et al., 2014),
Stanford NLI (SNLI) (Bowman et al., 2015), and
Multi-genre NLI (MNLI) (Williams et al., 2018),
and transformer-based deep neural network mod-
els have achieved high accuracy on these datasets
(Nangia and Bowman, 2019; Poliak, 2020). The
high accuracy of NLI models seems to suggest
that these models already have the ability to inter-
pret the meanings of sentences and generate se-
mantic inference. Nevertheless, recent evidence
shows that NLI models may have just guessed the
answer based on statistical biases in the datasets
(Gururangan et al., 2018; Clark et al., 2019). Fur-
thermore, models can achieve high accuracy even
when the words in premise/hypothesis are shuf-
fled (Sinha et al., 2021), casting further doubts on
whether the NLI models can truly infer the mean-
ing of a sentence or simply guess the answer via
non-humanlike heuristics (Naik et al., 2018).

The goal of the current paper is two-folded. First,
we tackle the issue of potential statistical biases in
the current large-scale NLI datasets by designing
testing conditions that factor out the effect of statis-
tical biases. To achieve the goal, we extend the cur-
rent mainstream datasets, such as MNLI and SNLI,
to create test conditions in which any heuristics
originated in the original datasets (if any) are ren-
dered useless under the new test conditions. This is



done by breaking the original premise-hypothesis
pairs and randomly pairing a premises with a hy-
pothesis. Consider a situation in which an anno-
tator designs a hypothesis that is expected to stay
in a contradiction relation with a premise. The
annotator may use words that are highly sugges-
tive of a contradiction relationship, for example,
a higher likelihood of negation in the hypothesis
sentence. Instead of truly evaluating the relation-
ship between the premise and the hypothesis, a
model may simply exploit the hypothesis-internal
regularities to solve the NLI task (Naik et al., 2018;
Gururangan et al., 2018; Rudinger et al., 2017). But
when the same hypothesis is paired with a random
premise, the hypothesis-internal bias remains the
same while the relationship between the premise
and the hypothesis has been (most likely) changed
to a neutral relation. We therefore reason that if a
model truly understands the semantic relation be-
tween a premise-hypothesis pair, it should answer
"neutral” for most of our newly constructed test-
ing conditions; deviations from such a result (i.e.
identification of entailment or contradiction to a
non-trivial extent) would indicate the model does
not truly rely on semantic relations to perform the
task.

Second, to probe deeper into the semantic capa-
bilities of the current NLI models, we constructed a
large number of simple and conjunction sentences
following a set of systematic design features (see
more details in Method), and tested whether NLI
models can make correct inferences on these sen-
tences. The sentences in the current mainstream
datasets are generally highly sophisticated. Train-
ing and testing models on difficult and challenging
material is valuable since this exercise pushes the
boundaries of how much NLI models can cope with
linguistic complexity (Nie et al., 2020; Ravichan-
der et al., 2019). But the complexity of the datasets
could also potentially hinder an explicit description
as to what specific features of the linguistic system
the models can learn and more importantly what
they can not learn. Furthermore, a focus on com-
plex material implicitly assumes that the current
NLP models have the capacity to understand simple
sentences and consequently perform the NLI task
accurately. The current study, however, shows that
models fine-tuned on highly challenging datasets
in fact fail on very basic sentences once we sys-
tematically probe the semantic knowledge of these
models.

MNLI/SNLI

P: So they don't deal much in cash anymore either.

H: So they don't use cash a lot anymore.

P: A wet child stands in chest deep ocean water.
H: The child is playing on the beach.

A 4

P: So they don't deal much in cash anymore either.

Random Pair

H: The child is playing on the beach.

Figure 1: Construction of the Random Pair set.

To preview, we tested 3 popular transformer-
based models, i.e., BERT (Devlin et al., 2019),
ALBERT (Lan et al., 2019), and RoBERTa (Liu
et al., 2019), which were respectively fine-tuned on
3 widely-used NLI datasets, i.e., the MNLI, SNLI,
and SICK datasets. We found that these models
were by and large inaccurate in drawing inference
relations on our datasets, and their previously re-
ported success might be due to the inherent biases
present in the datasets. More importantly, we also
identified a key problem with these models: All
the models appeared to fail in the basic semantic
composition principles.

2 Method
2.1 NLI Dataset and Pre-trained Models

We employed 3 pre-trained language models, i.e.,
BERT (Devlin et al., 2019), ALBERT (Lan et al.,
2019), and RoBERTa (Liu et al., 2019) to perform
the NLI task. For all models, we used the base ver-
sion. We built our models using Huggingface (Wolf
et al., 2020). The models were separately fine-
tuned based on 3 datasets, i.e., MNLI (Williams
et al., 2018), SNLI (Bowman et al., 2015), and
SICK (Marelli et al., 2014). For the 3 datasets
we used, the relationship between a premise and a
hypothesis could be entailment, contradiction, or
neutral. The accuracy was evaluated by the pro-
portion of premise-hypothesis pairs for which the
inference relation was correctly identified. The pa-
rameters for fine-tuning were adopted from previ-
ous studies (shown in Appendix Table 1). For each
sentence pair, the input to the models was [CLS,
premise, SEP, hypothesis, SEP]. The concatenated
sequence was encoded through the models and the
output embedding of CLS was fed into a 3-way



Templates for the simple-sentence set

N-is-A: The N, is A,. The apple is expensive.

Templates for the conjunction-sentence set
P1.P2: The N, is A,. The N, is A,.

The apple is expensive. The banana is sweet.

P1.P2: The N, is notA,. The N, is A,.
The apple is not expensive. The banana is sweet.
P1 and P2: The N, is A, and the N, is A,.

The apple is expensive and the banana is sweet.

P1 and P2: The N, is A, and the N, is not A,.
The apple is expensive and the banana is not sweet.

SVO: The S, V| the O,.

P1.P2: The S, V, O,. The S, V, O,.
P1.P2: The S, did notV, O,. The S, V, O,.
Pl and P2: The S, V, O, and the S, V, O,.

P1and P2: The S, V, O, and the S, did not V, Os.

The student saw the dog.

The student saw the dog. The professor lost the key.

The student did not see the dog. The professor lost the key.

The student did not see the dog and the professor lost the key.

The student did not see the dog and the professor lost the key.

Figure 2: Template for syntactically simple sentences

softmax classifier. The classifier calculated a score
for each class though a linear transformer matrix
and softmax function (Devlin et al., 2019).

2.2 Construction of Test Sets
2.2.1 Random Pair

We created a Random Pair test set by randomly
pairing premises and hypotheses in MNLI or SNLI
test set, with the constraint that none of the new
premise-hypothesis pairs in our test set overlapped
with the original pairs in the original datasets (Fig-
ure 1). Specifically, 1000 premises were selected
from each of the 2 datasets and each premise
was paired with 54 hypotheses (18 from MNLI-
matched, 18 from MNLI-mismatched, and 18 hy-
potheses from SNLI). This procedure resulted in
54000 premise-hypothesis pairs (1000 premises x
54 hypotheses) for MNLI and SNLI, respectively.
Since the pairing between a premise and a hypoth-
esis is randomized, the relationship between them
should generally be neutral. Human annotation
was acquired for critical examples to confirm this
(see Section 2.3). We did not construct random
pairs based on SICK since SICK contained a lot of
semantically similar premises/hypotheses (Marelli
et al., 2014) and therefore the relationship between
random pairs is complex.

2.2.2 Simple Pair

We constructed a Simple Pair test set using only
syntactically simple sentences. The test set were
further divided into a simple-sentence set and a
conjunction-sentence set. For the simple-sentence
set, the premise was a short sentence constructed
using one of two templates (see Figure 2). One
template created N-is-A sentences, where N was a
noun and A was an adjective. The noun was from

5 categories, i.e., fruits (N = 40), animals (N = 90),
human (N = 100), names (N = 100), and objects
(N = 90), and each noun was mapped to a com-
patible adjective (N = 25, 30, 55, 55, and 28 for
nouns from the fruit, animal, human, name, and
object categories, respectively). The other template
created SVO sentences. The subject and object
were selected from the same 5 categories of nouns
used in N-is-A sentences, and they were randomly
paired with a compatible verb (N = 20). As shown
in Figure 3, each N-is-A type of premise was paired
with 6 hypotheses, and 51000 premise-hypothesis
pairs (8500 premises x 6 hypotheses) were created.
Each SVO premise was paired with 4 hypothe-
ses, and 48000 premise-hypothesis pairs (12000
premises x 4 hypotheses) were created. Premise-
hypothesis pairs containing antonyms or synonyms
were excluded in the simple-sentence set and the
relationship between all premise-hypothesis pairs
was neutral.

For conjunction-sentence set, the premise was
constructed by conjoining two simple sentences
using one of four possible templates (see Figure 2
for the details). Each premise was paired with 4
hypotheses (see Figure 3). In total, 34000 premise-
hypothesis pairs (8500 premises x 4 hypotheses)
were created for the premise constructed using each
template. Similar to the simple-sentence set, the
relationship between all premise-hypothesis pairs
were controlled as being neutral.

2.3 Human Annotation

A large number of hypotheses in Random Pair
were identified as entailment or contradiction by
the models fine-tuned on MNLI and SNLI (see Sec-
tion 3.1). To test whether most of these premise-



The N, is A} and the N, is not A,. The N, is not A,.

premise hypothesis premise hypothesis
The N, is A|.
The N, is A,. The S, V, the O,.
The N, is A,. The S, V, the O,.
The N, is A,. The S, V, the O,.
The N, isnot A . The S, V| the O,.
The N, is not A,. The O, V| the S;.
The N, is not A,.
The N, is A,. The N, is A,. The N, is A,. The S, V, O,. The S, V, O,. The S, V, the O,.
The N, is A, and the N, is A,. The N, is A,. The S, didnot V, O,. The S, V, O,. The S, V, the O,.
The N, isnot A|. The N, is A,. The N, isnot A . The S, V, O, and the S, V, O,. The S, did not V| the O,.

The S, did not V, O, and the S, V, O,. | The S, did not V, the O,.

Figure 3: Construction of the Simple Pair set.

hypothesis pairs were truly neutral, we collected
human annotation for part of the data. For each
model, we selected 100 premise-hypothesis pairs
that received the highest scores for entailment or
contradiction. Within these pairs, 40 was randomly
selected for human annotation. These premise-
hypothesis pairs were listed in Appendix Filel.
In the annotation process, human annotators (N
= 5) were presented with pairs of sentences and
asked to label the relationship between the two sen-
tences, i.e., entailment, contradiction, or neutral.
The ground truth label was obtained using a ma-
jority vote from the 5 annotators. These sentences
are largely more frequently classified as neutral
by humans. Appendix table 3 shows the summary
statistics of ground truth labels.

3 Results

3.1 Model performance on Random Pair

For the Random Pair set (see Section 2.2.1), a
premise was paired with a set of randomly cho-
sen hypotheses, and we expected the relationship
for most of these premise-hypothesis pairs to be
neutral. Table 1 showed model performance on
Random Fair. 1t appeared that only the models fine-
tuned on SICK identified the majority of premise-
hypothesis pairs, i.e., more than 95%, as being
neutral. The models fine-tuned on MNLI or SNLI,
however, identified a large proportion of premise-
hypothesis pairs, i.e., more than 32.8% and 69.3%
respectively, as contradiction. To further evalu-
ate the model performance, we acquired human
annotation of the premise-hypothesis pairs that re-

More examples are shown in Appendix Table 2.

Random Pair

Models acc (%) MNLI SNII
BERT 61.5 | | o

MNLI  ALBERT 56.7 s | s |
RoBERTa 56.0 s | i |
BERT 22.1 i | [ —

SNLI ~ ALBERT 274 o | i —
RoBERTa 21.2 [ p— o —
BERT 99.3 | ||

SICK  ALBERT 97.4 | |
RoBERTa 99.9 ] —

Il entailment B neutral [ contradiction

Table 1: Model performance on Random Pair. The
percent of premise-hypothesis pairs identified as entail-
ment, neutral, and contradiction were shown in blue,
red, and yellow, respectively.

ceived the highest scores for contradiction under
each model, and more than 90% of these premise-
hypothesis pairs were manually annotated as neu-
tral (Appendix Table 3). These results suggested
that the transformer-based models fine-tuned on
MNLI or SNLI were inaccurate when a hypothesis
was unrelated to the premise.

3.2 Model performance on Simple Pair

Models fine-tuned on MNLI or SNLI performed
poorly on Random Pair, and one potential reason
was that the sentences in Random Pair were se-
lected from MNLI or SNLI, which were complex
and therefore challenging to interpret. In the fol-
lowing, we tried to tease apart the ability to infer
the relationship between sentences and the ability
to interpret complex sentences by testing model
performance on syntactically/semantically simple
sentences. Model performance on Simple Pair was



Premise: N; is A,

Premise: S; V, O,

Models acc (%) N,isA; NjisA;, N,isA, NynotA; NynotA, N,notA, Models acc(%) S, V, 0, S, V,0, S, V,0, O,V,S§,
BERT 204 ) @ D 0 D B BERT 114 g @D [0

MNLI ALBERT = 23.7 [ BB BT B0 BT BT MNLD ALBERT - 9.8 g BT | I— [ -
RoBERTa 18.0 [ W L ] ] I [ | RoBERTa 8.9 [T || — —
BERT  20.1 g0 O B0 0 B0 B BERT 98 mm—m mED [T 2§

SNLI ALBERT 18.8 [ BB B [0 B B SNLI ALBERT 17.2  mml [ | 1 — [~
RoBERTa 11.0 [0 HET 0 0 D BT RoBERTa 19.5 [T ] — —
BERT 424 mmmn NI BN 0 [0 D BERT 131 mmp D S S

SICK ALBERT 9049 [N [N [N D EES0 @ SICK ALBERT 916 pomm D e g
RoBERTa 96.2 (I I N I I RoBERTa 65.8 [l [ | || [

Il entailment B neutral [ contradiction

Table 2: Performance on the simple-sentence set in Simple Pair. In Simple Pair, each premise is paired with a few
hypotheses and each hypothesis is shown in a column. The relationship between all premise-hypothesis pairs, when

correctly identified, is neutral.

shown in Tables 2 and 3, for the simple-sentence
set and the conjunction-sentence set, respectively.

For the simple-sentence set, we constructed neu-
tral hypotheses by replacing at least one constituent
in the premise (e.g., [S] or [V] in an SVO sentence,
[N] or [A] in a N-is-A sentence) with a different
word. It was found that models fine-tuned on MNLI
or SNLI identified the relationship between a large
proportion of premise-hypothesis pairs as contra-
diction, especially when the subjects were different
between the hypothesis and the premise. For ex-
ample, the models judged that "The apple is expen-
sive" contradicts "The banana is expensive". Simi-
larly, the model judged that "The professor saw the
dog" contradicts "The student saw the dog".

For the conjunction-sentence set, we constructed
neutral hypotheses by breaking the compositional
binding relation between a subject and a predicate
in the hypothesis (see Figure 3). Model perfor-
mance was similar for conjunction sentences con-
structed using SVO or N-is-A sentences. The re-
sults showed that all the models tested here failed to
understand the fundamental compositional binding
relation between a subject and a predicate. The er-
ror rate of the models fine-tuned on MNLI or SNLI
was near 100%. For example, these models consis-
tently made the incorrect judgment that "The apple
is expensive and the orange is sweet" entails "The
apple is sweet". This suggests that the models are
confused as to which subject should be paired with
which predicate (i.e. the compositional binding
failure). The models also judged the same premise
to contradict "The apple is not sweet", again sug-
gesting a composition problem: after the models
have wrongly allowed the composition of "The ap-
ple is sweet" based on the premise, this inference
will now be in contradiction to the hypothesis "The
apple is not sweet", assuming that the models have

the ability to distinguish "sweet" and "not sweet"
as describing two opposite properties.

We also introduced negation into the premises to
test if models could bind "not" with a positive pred-
icate to form a more complex predicate. These con-
ditions again revealed the composition failure prob-
lem on the models fine-tuned on MNLI or SNLI.
For example, when the premise was "The apple is
expensive and the orange is not sweet", the mod-
els tended to judge that the premise entailed "The
apple is not sweet" but contradicted "The orange
is not expensive". This suggests that the models
can correctly combine "not" with "sweet" to form
a new predicate, but they still freely (and wrongly)
paired up the subject nouns and the predicates in
the premise. As a result, the models allowed one
subject noun in the premise "the apple" to be com-
posed with the predicate "not sweet", and also al-
lowed the other subject noun in the premise "the
orange" to be composed with "expensive".

3.3 Why do model fine-tuned on SICK
perform better?

Compared with large-scale datasets such as MNLI
and SNLI, SICK was a small dataset that was auto-
matically generated. However, models fine-tuned
on SICK performed better on our test sets com-
pared with models fine-tuned on MNLI or SNLL
Samples in SICK were constructed using eleven
expansion rules (Appendix Table 4), and we hy-
pothesized that only some expansion rules were
critical to boost model performance on our test
sets. In the following, we analyzed the impact of
each expansion rule by removing samples from
SICK corresponding to the rule. To simplify this
analysis, we only considered the ALBERT model
which achieved the best performance on most of
our test sets. We first removed the samples con-



Premise: N; is A;. N, is A,.

Premise: N;is A; and N, is A,.

Models acc (%) NpisA; NyisA, NynotA; NjnotA, Models acc (%) NyisA; NjisA, NynotA; NjpnotA,
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Table 3: Performance on the conjunction-sentence set in Simple Pair. Each hypothesis is shown in a column. The

relationship between all premise-hypothesis pairs, when correctly identified, is neutral.

sisting of unrelated premise-hypothesis pairs from
SICK, since the Random Pair set was constructed
using a similar rule. We fine-tuned ALBERT on
the remaining samples in SICK, and the model fine-
tuned this way performed worse on both Random
Pair and Simple Pair (Table 4, first row). Neverthe-
less, the performance of this model was still better
than models fine-tuned on MNLI or SNLI. We then
removed each of the remaining 10 expansion rules
at a time and fine-tune models using the rest 9 rules.
It was found that the scramble-words rule and the
replace-words rule were also important to maintain
model performance (Table 4).

We next investigated whether the 3 rules critical

to maintaining model performance, i.e., unrelated-
sentences rule, scramble-words rule, and replace-
words rule, could be used to improve the perfor-
mance of models fine-tuned on MNLI or SNLI. We
randomly selected samples corresponding to the 3
rules with the constraint that the textual entailment
labels of these samples were balanced. In total,
450 premise-hypothesis pairs (150 entailment +
150 neutral + 150 contradiction) were selected, and
we used these 450 samples to re-fine-tune the mod-
els that were already fine-tuned on MNLI or SNLI.
The parameters were shown in Appendix Table 5,
and the re-fine-tuning process did not significantly
decrease model performance on MNLI/SNLI (com-



Random Pair Simple Pair

Removed type MNLI SNLI SVO A-is-B PL.P2 Pl-and-P2 P1P2 Pl-and-P2
Unrelated sentences 76.4(118.6) 92.4(|7.4) 76.6(115.0) 93.5(11.4) 26.4(]27.0) 48.0(]7.7) 38.3(120.9) 45.6(|21.3)
Replace words 92.5(12.5) 97.712.1)  14.9(176.7) 38.4(156.5) 1.3(]52.1) 1.5(154.2)  0.5(]58.7)  0.4(]66.5)
Scramble words 99.6(14.6)  99.7(]0.1)  49.0(]42.6) 90.4(]4.5)  0.6(]52.8) 0.3(|554) 1.6(/57.6)  0.6(]66.3)
Turn adjectives into
elative clanses 99.5(14.5)  99.9(10.1)  70.6(}21.0) 92.9(]2.0)  5.8(|47.6) 10.9(|44.8) 11.8(|47.4) 19.8(]47.1)
Replace quantifiers 89.8(15.2)  97.5(]12.3)  85.4(|6.2) 84.5(]10.4) 17.9(135.5) 28.0(|27.7) 18.1(l41.1) 19.8(147.1)
Change determiners
with opposifes 90.9(|4.1)  97.9(1.9)  77.4(}14.2) 99.0(}4.1) 14.2(]39.2) 26.8(]28.9) 28.2(]31.0) 45.4(|21.5)
Add modifiers 99.9(14.9)  100.0(10.2) 89.9(]1.7) 93.9(]1.0) 12.6(]50.8) 21.5(|34.2) 26.9(]32.3) 37.2(]29.7)
Turn active sentences
into passive 99.9(14.9)  100.0(10.2) 84.8(6.6)  87.5(|7.4)  8.2(]45.2) 45.2(]10.5) 25.7(]33.5) 46.5(]20.4)
Turn compounds into
relative clauses 100.0(15.0)  100.0(10.2) 85.2(16.4)  99.5(14.6) 43.2(110.2) 56.3(10.6) 44.2(]15.0) 25.3(144.6)
Turn passive sentences
into active 99.8(14.8)  100.0(10.2) 86.9(]25.0) 98.2(13.3) 11.9(]41.5) 20.1(135.6) 65.1(15.9) 86.7(110.2)
Insert a negation 97.4(12.4)  99.1(J0.7)  77.4(|24.2) 99.6(14.7)  59.1(15.7)  61.4(15.7) 85.8(126.6) 97.8(130.9)

Table 4: Performance on Simple Pair for models fine-tuned on part of the samples in SICK. Each row shows the
results when samples corresponding to an expansion rule are removed from the fine-tuning process. The numbers in
parenthesis show the change in performance compared with the models fine-tuned on the original SICK dataset. For
each test set, shown as a column, the largest decrease is shown in blue. The expansion rules are ordered based on
the mean decrease averaged over test sets.

Models Random Pair Simple Pair - _
MNLI SNLI SVO A-is-B P1&P2 Pl-and-P2 P1&P2 Pl-and P2

BERT 89.2 (122.1) 83.4(159.1) 16.6(15.2)  47.0(126.6) 0.1(10.1) 0.5(10.5) 0.9(10.8) 2.1(11.5)

(re—lf\‘:[i{“tfme) ALBERT  91.6(128.3) 82.6(155.0)  20.8(111.0)  56.4(132.7) 1.3(11.2) 7.4(16.2) 4.83(14.4) 6.2(15.7)
RoBERTa  89.1(130.0) 88.9(166.8)  20.3(111.4)  57.1(139.1) 8.8(18.1) 10.1(19.0) 8.6(18.0) 4.8(14.2)

BERT 63.4(17.5) 60.1(140.2)  21.8(112.0)  46.3(126.2) 0.4(10.4) 1.0(70.8) 2.5(12.1) 1.8(1.6)

(re—grlje]jtlune) ALBERT 59.1(19.1) 54.6(127.5)  26.1(18.9) 37.3(118.5) 0.2(10.2) 0.7(10.5) 0.7(10.6) 1.3(11.1)
RoBERTa 55.0(12.1) 50.0(129.7)  30.7(111.2)  26.9(115.9) 3.4(13.0) 6.5(15.0) 1.9(11.0) 5.4(14.8)

Table 5: Performance of models re-fine-tuned based on 450 samples in SICK. The numbers in parenthesis show the

change in performance compared with the models only fine-tuned on MNLI or SNLI.

paring Appendix Tables 1 and 5). Performance
of the models receiving a re-fine-tuning process
was shown in Table 5. It was found that the small
number of samples selected from SICK can indeed
significantly improve model performance on Ran-
dom Pair and the simple-sentence set in Simple
Pair. Performance on the conjunction-sentence set
in Simple Pair was not significantly improved since
models fine-tuned on the original SICK datasets
performance also performed poorly on the conjunc-
tion sentences.

4 Related work

Transformer-based models have achieved human-
level performance on many NLI datasets such as
MNLI, SNLI, and SICK (Devlin et al., 2019; Lan
et al., 2019; Liu et al., 2019; Nangia and Bow-
man, 2019). The good performance seems to sug-
gest that these models possess the ability to in-

terpret sentences in the current datasets and gen-
erate correct inferences. Accordingly, follow-up
work aimed at constructing even more challeng-
ing datasets to train and test the models (Nie et al.,
2020; Liu et al., 2021). There is also a growing
body of work that constructs datasets to test more
fine-grained linguistically motivated inference pat-
terns such as pragmatic inferences and numerical
reasoning (Ravichander et al., 2019; Jeretic et al.,
2020) or correlate model errors with well-defined
linguistic phenomena (Naik et al., 2018), with the
purpose to identify whether models have trouble
making certain types of inferences. Compared with
these studies, the current work took a different ap-
proach: by intentionally reducing the difficulty of
the test material, we aim to uncover whether mod-
els can truly infer the meaning of simple sentences.
The results show models perform poorly inferring
the meaning of basic SVO and N-is-A sentences.



In the meantime, many studies have discussed
the potential danger of overfitting on benchmark
datasets, and emphasized the need to more accu-
rately evaluate the true language capacity of various
models (Smith, 2012; Talman and Chatzikyriakidis,
2019; Sinha et al., 2021; Poliak, 2020). For ex-
ample, it has been shown that models can guess
the relationship between a premise and a hypoth-
esis with the accuracy higher than chance level,
even when just considering the hypothesis (Gu-
rurangan et al., 2018). A recent study has also
shown that the current models fail to generalize
across different datasets (Talman and Chatzikyri-
akidis, 2019). The concern of overfitting also arises
for other NLP tasks (Jia and Liang, 2017; Wal-
lace et al., 2019; Sugawara et al., 2020; Lin et al.,
2021). For example, it has been found that models
can give the correct answer reading comprehen-
sion questions even when crucial information is
removed so that the questions are no longer answer-
able (Poliak et al., 2018; Gururangan et al., 2018;
Si et al., 2019; Berzak et al., 2020; Kaushik and
Lipton, 2018). Here, by randomly shuffling the
premises and hypotheses in MNLI and SNLI, we
provide additional evidence that existing models
are severely over-fitted and tend to judge the rela-
tionship between two randomly paired sentences
to be contradictory.

The current work differs from previous stud-
ies in two major aspects. First, we propose a
new method to extend existing datasets to create
new samples that are minimally affected by non-
humanlike heuristics. Relatedly, the study in Wang
et al. (2019) switched the premise and hypothesis
and used the switched pairs to test NLI models; but
by randomly pairing premises and hypotheses, we
were able to generate a much larger dataset. Our
method can be combined with the method by Wang
et al. (2019) to further increase the size of datasets
and reduce the inherent statistical biases. Second,
we constructed a large set of simple sentences to
test models. Most current datasets are composed of
syntactically complicated sentences and it is usu-
ally difficult to isolate specific linguistic constructs
from these sentences (Naik et al., 2018). In our
study, the sentences are simple enough so that the
mechanisms to understand (or fail to understand)
them are relatively transparent.

Related to the Simple Pair set, a recent study
constructs a test set, i.e., HANS, based on 3 rules
so that the hypothesis overlaps with the premise

in terms of words, subsequences, or constituents
(McCoy et al., 2019). All our test samples belong
to the word overlapping case defined by McCoy
et al. (2019), but the results clearly differ, e.g., be-
tween simple and conjunction sentences, suggest-
ing that word overlap cannot fully explain model
performance. Some samples in HANS are simi-
lar to the samples in Simple Pair, e.g., when the
subject and object of a sentence are swapped. Mc-
Coy et al. (2019) found that BERT fine-tuned on
MNLI predicts that the original sentence entails the
subject-object swapped sentence, and the current
study replicates this phenomenon (Table 2, upper
right), but we also show that the results strongly
depend on the model and training set. Furthermore,
we show that incorporating a small number of sam-
ples from SICK can improve model performance.
Finally, a new and important finding of the current
results is that current models have substantial dif-
ficulty solving the compositional binding problem
for conjunction sentences.

5 Conclusion

In summary, since existing models seem to have
shown good performance on mainstream NLI
datasets such as MNLI and SNLI, the received
wisdom is that these models are capable of doing
at least some sophisticated inferences, and more
progress can be made by evaluating them on even
more challenging datasets (Nie et al., 2020; Liu
et al., 2021). The current study, however, shows
that models achieving good performance on main-
stream datasets do not necessarily generalize to
simpler datasets. In fact, models fine-tuned on
MNLI/SNLI generally have lower than chance
level performance when predicting the relationship
between simple sentences. The results here show
that combining part of the automatically generated
samples with large-scale human-created datasets
such as MNLI and SNLI can potentially increase
model’s ability to generalize to simpler test sam-
ples while largely maintaining the performance on
challenging samples. Nevertheless, even with the
current approach to combine datasets, all the mod-
els still could not bind the subject noun with the
correct predicate in conjunctive sentences. Future
studies should develop both the design properties
of these models and the properties of the training
datasets to achieve more robust NLI performance.
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A Appendices

Train data MNLI/SNLI/SICK MNLI/SNLI/SICK MNLI/SNLI/SICK
Train model BERT-base ALBERT-base RoBERTa-base
Learning rate 2e-5/3e-5/2e-5 2e-5/2e-5/2e-5 2e-5/2e-5/2e-5
Train epochs 3/2/5 3/2/5 3/3/5
Batch size 32/32/32 32/32/32 32/32/32
Weight decay 0.01/0.1/0.1 0/0.01/0.1 0.1/0.01/0.1
84.04/83.93 (-m/-mm) 85.04/85.12 (-m/-mm) 87.84/87.62 (-m/-mm)

Test accuracy

89.44/86.63 90.05/89.45 91.03/89.35

Appendix Table 1: Hyper-parameters for fine-tuning models. The performance of models on MNLI, SNLI, and
SICK test sets is shown in the last row.

Premise The N, is A|. The apple is expensive.
Hypothesis
The N, is A,. The N, is A,. The N, is A,. The N, isnot A . The N, is not A,. The N, is not A,.
The pear is expensive. The apple is sweet.  The pear is sweet.  The pear is not expensive. The apple is not sweet.  The pear is not sweef.
Premise The S, V, the O,.  The student saw the dog.
Hypothesis
The S, V, the O,. The S, V, the O,. The S, V, the O,. The O, V, the S,.
The professor saw the dog. The student lost the dog. The student lost the key. The dog saw the student.
Premise The N, is A,. The N, is A,. The apple is expensive. The pear is sweet.
The N, isnot A,. The N, is A.. The apple is not expensive and the pear is sweet.
The N, is A, and the N, is A,. The apple is expensive and the pear is sweet.
The N, is not A, and the N, is not A,. The apple is expensive and the pear is not sweet.
Hypothesis
The N, is A, The N, is A,. The N, is not A;. The N| is not A,.
The pear is expensive. The apple is sweet. The pear is not expensive. The apple is not sweet.
Premise The S, V,0,.The S, V, O,. The student saw the dog. The professor lost the key.
The S, didnotV, O,. The S, V, O.. The student did not see the dog. The professor lost the key.
The S, V, O, and the S, V, O,. The student saw the dog and the professor lost the key.
The S, V, O, and the S, did not V, O,. The student saw the dog and the professor did not lose the key.
Hypothesis
The S, V, the O,. The S, V, the O,. The S, didnot V, the O,. The S, did not V, the O,.
The professor saw the dog. The student lost the key. The professor did not see the dog. The student did not lose the key.

Appendix Table 2: Examples of the Simple Pair set.
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Random Pair

Samples
MNLI SNLI
samples receive high | | [
contradiction scores 55, 900/25 25/97.5/0
samples receive high | | |
entailment scores 10.0/90.0/0 42.5/57.5/0

Bl entailment MM neutral @ contradiction
Appendix Table 3: Human classification for premise-hypothesis pairs that received the highest scores for
entailment or contradiction under each model. The percent of premise-hypothesis pairs classified as entailment,
neutral, and contradiction were shown in blue, red, and yellow, respectively.

Rule Size Example

Premise: The man is dancing.

Unrelated sent 1197 K
frelated sentences Hypothesis: Three women are standing still.

Premise: An old man is sitting in a field.

Add modifiers 290 Hypothesis: A man is sitting in a field.
Soramble words 377 Premise: A pan is bem/_gr dro_pped over rh? meat.
Hypothesis: The meat is being dropped into a pan.
Insert a negation 419 Premise: T he person is n_ot si.zc_mg onions.
Hypothesis: The person is slicing onions.
Replace words 1791 Premise: A man in a cap is p_]aymg.a harp.
Hypothesis: A man in a hat is playing a harp.
Replace quantifiers 267 Premise: A few people are dancing.

Hypothesis: A group of people are dancing.

Change determiners with Premise: There is no group of people dancing.

opposites 608 Hypothesis: A group of people are dancing.
Turn passive sentences into 34 Premise: A woman is peeling the potato.
active Hypothesis: The potato is being peeled by a woman.
Turn active septences into 209 Premise: 47/ interview is being granted by the man.
passive Hypothesis: The man is granting an interview.
Turn compounds into 56 Premise: A woman is using a machine made for sewing.
relative clauses Hypothesis: 4 woman is using a sewing machine.
Turn adjectives into relative 139 Premise: A girl, who is little, is playing the piano.
clauses Hypothesis: A little girl is playing the piano.

Appendix Table 4: The types of premise-hypothesis pairs in SICK.

Train model MNLI / SNLI MNLI / SNLI MNLI / SNLI
BERT-base ALBERT-base RoBERTa-base
Learning rate 2e-6/2e-6 2e-6/2e-6 2e-6/2e-6
Train epochs 3/3 3/3 3/3
Batch size 16/16 16/16 16/16
Weight decay 0.01/0.01 0.01/0.01 0.01/0.01
Test accuracy 80.67 /81.02 (-m/-mm) 82.02/82.60 (-m/-mm) 84.65/84.54 (-m/-mm)
/88.97 /88.63 /89.88

Appendix Table 5: Hyper-parameters for re-fine-tuning models. The performance of models on MNLI, and SNLI
test sets is shown in the last row.
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