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Abstract

Recent advances in text-to-video (T2V) generation have yielded impressive1

progress in resolution, duration, and prompt fidelity, with models such as Pika,2

Gen-3, and Sora producing clips that appear compelling at first glance. Yet, in3

everyday use and public demos, generated people often “look right but move4

wrong,” exhibiting artifacts like foot sliding, joint hyperextension, and desynchro-5

nized limbs. Such failures are not cosmetic: 1) unsafe motions can be copied by6

viewers, especially juveniles, raising injury risks; 2) in clinical and sports con-7

texts, implausible kinematics corrupt analytics for angle, cadence, and phase,8

causing misdiagnosis and unsafe return-to-play; and 3) in simulation pipelines,9

non-physical motion distributions contaminate training and evaluation, degrad-10

ing sim-to-real transfer. However, existing benchmarks remain inadequate: 1)11

they lack kinematics awareness, rewarding visual resemblance while joint trajec-12

tories violate physiological ranges; 2) they lack rhythm- and body-level tempo-13

ral metrics, overlooking gait-cycle timing, symmetry, and inter-limb coordina-14

tion; and 3) they fail to disentangle camera from body motion, letting pans and15

zooms mask biomechanical errors. To address these gaps, we present Movo,16

the first kinematics-centric benchmark for T2V motion realism. Movo unifies17

three components: 1) a posture-focused dataset with camera-aware prompts that18

isolate representative upper- and lower-body actions; 2) skeletal-space metrics,19

Joint Angle Change (JAC), Dynamic Time Warping (DTW), and Motion Consis-20

tency Metric (MCM), that operationalize biomechanical plausibility across joints,21

rhythms, and constraints; and 3) human validation studies that calibrate thresh-22

olds and show strong correlation between skeletal scores and perceived realism.23

Evaluating 14 leading T2V models reveals persistent gaps: some excel in spe-24

cific motions but struggle with cross-action consistency, and performance varies25

widely between open-source and proprietary systems. Movo provides a rigorous,26

interpretable foundation for improving human motion generation and for integrat-27

ing biomechanical realism checks into model development, selection, and release28

workflows.29

1 Introduction30

Text-to-video (T2V) systems have made striking gains in resolution, duration, and prompt following31

[84, 7, 26, 62, 48, 75, 85, 73, 14, 3, 11, 95, 86, 16, 27, 22, 81, 78, 92, 96, 58, 38, 19, 10, 12]. Models32

such as Pika, Gen-3, and Sora [55, 60, 53] often produce clips that look compelling at first glance.33

Over the past year, text-to-video has moved from niche demos to mass distribution. Runway raised34

308Mat 3B valuation, while YouTube integrated Google’s Veo 3 [61] directly into Shorts, placing35

prompt-to-video generation inside a product that now averages 200 billion daily views, which is36
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Figure 1: Overview of the Movo benchmark for evaluating human motion realism in text-to-video
generation. The benchmark assesses lower- and upper-body movements (e.g., deadlift, side leg raise,
hand punch, waist twist). Videos are collected or recorded, labeled, and used to create prompts. Out-
puts from open-source and proprietary models are evaluated with Joint Angle Change (JAC), Dy-
namic Time Warping (DTW), and Motion Consistency Metric (MCM). Human validation includes
data preparation, pairwise comparison, and annotation.

such a step change in reach for synthetic video. Applications of T2V systems are already visible.37

Many creators monetize generative videos on platforms like TikTok and YouTube Shorts [29, 94],38

turning synthetic clips into ad revenue at scale. Meanwhile, researchers employ generated videos39

in simulation experiments, from robotics training to controlled behavioral studies, where synthetic40

footage offers safe and reproducible environments [57].41

In everyday use and public T2V demos, people frequently “look right but move wrong.” Typical42

artifacts include foot sliding during supposed stance, joint hyperextension, discontinuous veloci-43

ties, desynchronized upper–lower limbs, and props or body parts that break contact constraints [46].44

These are not cosmetic glitches, they carry real consequences. 1) In the short video settings, view-45

ers may copy faulty motions which raise injury risk, especially for juveniles who are pervasively46

exposed to online videos but lack the motor control and judgment to detect unsafe form [34]. 2) In47

clinical pre-screening, rehab, and sports assessment, implausible motion corrupts analytics for an-48

gle, cadence and phase. causing misclassification, poor prescriptions, delayed gait-issue detection,49

and unsafe return-to-play (e.g., masked fall risk), with downstream reinjury, unnecessary imaging,50

and liability [51, 46]. 3) In simulation and synthetic-data pipelines either in industries or labs, non-51

physical motion distributions contaminate training and evaluation, worsening sim-to-real transfer52

and negatively affecting industrial production as well as academic research [13]. 4) For platforms53

and policy, unrealistic human motion complicates quality gates and disclosure, leading to under-54

disclosure, unjustified fines and takedowns, viral misuses, likeness-rights disputes, and trust erosion55

[89, 67, 15]. Therefore, the takeaway is simple: “looking like” the action is not enough. We must56

measure whether generated people move in a biomechanically plausible way and integrate such57

checks into model selection and release workflows.58

General-purpose leaderboards emphasize breadth, overall aesthetics, text–video alignment, optical-59

flow smoothness, and sometimes action recognition, but they miss three things that matter for hu-60

man motion. 1) First, lack of kinematics awareness. Pixel or semantics metrics commonly used in61

T2V benchmarks reward clips that resemble “walking” while joint trajectories violate physiolog-62

ical ranges, exhibit abnormal angle amplitudes, or break inter-limb phase relationships. In some63

specific domains, decisions are made on joints, angles, and phases. When those are implausible,64

smooth-looking videos still produce wrong conclusions [30, 43]. 2) Second, lack of rhythm-aware65

and body-level temporal metrics. Common smoothness proxies such as optical flow consistency66

and warping error quantify frame-to-frame pixel continuity but not gait-cycle timing, symmetry or67
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cadence. Without rhythm-sensitive measures, periodic behaviors can drift in tempo or exhibit off-68

phase coordination yet still score well on flow-based metrics [40, 2]. 3) Third, lack of camera-motion69

disentanglement. Many existing T2V benchmarks operate in raw pixel space, so pans, zooms, and70

shake confound temporal signals and can mask contact errors, rigid-body violations, bone-length71

instability, and abnormal velocities or accelerations. Without body-centric stabilization or skeletal-72

space analysis, metrics are contaminated by camera motion rather than body dynamics. Methods that73

“pass” such tests often yield unstable pose estimates and unreliable downstream analytics [35, 88].74

To address these, we introduce Movo, a kinematics-centric benchmark that asks whether gener-75

ated people move plausibly, not just look plausible. Movo directly addresses the three gaps above.76

1) Posture-focused dataset with camera-aware prompts. To reduce confounds and isolate human77

motion, we cover representative lower-body and upper-body actions with prompt templates that dis-78

courage gratuitous camera motion and keep the mover in focus. 2) Skeletal metrics that operational-79

ize biomechanical realism: JAC (Joint Angle Change) quantifies joint-angle trajectories relative to80

typical ranges and checks plausible evolution over time—making the evaluation kinematics-aware.81

DTW (Dynamic Time Warping) on pose dynamics measures temporal phasing and rhythm align-82

ment—capturing cadence and inter-limb timing beyond pixel smoothness. MCM (Motion Con-83

sistency Metric) enforces constraint-aware consistency, foot–ground contact, velocity/acceleration84

continuity, and bone-length stability, so camera motion cannot hide structural violations. 3) Human85

validation that calibrates thresholds. We conduct pairwise preference studies showing Movo’s skele-86

tal scores correlate with perceived motion realism, enabling actionable quality gates that align with87

emerging platform policies for realistic synthetic depictions. Using Movo, we extensively evaluate88

14 leading T2V models, including 8 open-source and 6 propriety solutions. Our findings reveal that89

while some models excel in specific tasks, such as hand rotations, they struggle to maintain con-90

sistent quality across diverse motion types. Performance scores vary significantly, highlighting the91

need for specialized strategies to improve human motion generation.92

2 Related Work93

2.1 Text-to-Video Generation Dataset94

Text-to-video generation has advanced significantly, supported by various datasets. MSR-VTT95

dataset[87] provides 10,000 videos paired with textual annotations, allowing open-domain video96

description but not focusing on human motion. InternVid dataset [79] scales multimodal data with97

more than 7 million videos but focuses on general scenarios rather than specific human actions. Re-98

cent works like the EvalCrafter dataset [42] and the VideoFactory dataset [73] aim to improve the99

quality and alignment of text-to-video generation but still lack data sets centered on human motion.100

The existing UCF101 dataset [64] focuses on human action recognition with 101 action classes but101

lacks textual descriptions, which limits its use for generative tasks. In contrast, our proposed Movo102

dataset is the first text-to-video generation dataset to focus on human motion. It offers detailed tex-103

tual descriptions of dynamic movements, filling a crucial gap in generating motion-driven videos,104

and enabling advances in applications like virtual reality and animation.105

2.2 Text-to-Video Generation Model106

In recent years, text-to-video generation has made remarkable progress, driven by advances in gen-107

erative models and the increasing availability of computational resources. The early text-to-vision108

methods relied primarily on Generative Adversarial Networks (GANs) [4, 63, 68, 77, 80] and Vari-109

ational Autoencoders (VAEs) [69], demonstrating the feasibility of video generation within sim-110

ple closed set domains [24, 39, 45]. However, these methods struggle to generate videos in more111

complex contexts [73]. The latest breakthroughs in generative AI has progressed from tokenized112

Transformer pipelines [28, 71, 82, 83] to diffusion-based models that deliver higher fidelity under113

practical compute [27, 7, 62]. Controllability has improved via structural conditioning and plan-114

ning [76, 41, 84]. Scaling with Diffusion Transformers further advances quality [54, 5, 18], inspiring115

systems such as Latte and Sora [49, 53]. See Appendix E for an extended survey.116
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2) avg. duration per movement; 3) sentence count per
category; 4) avg. words per sentence.
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Ground Truth

The individual is dressed in a black outfit, consisting of a long coat, a black top, and black pants. They 
are also wearing black boots and carrying a black handbag. The person's hair is long and appears to 
be flowing as they walk. The background shows other people walking in the same direction.

Prompt

(b) Comparison of generation results from different
models on the “black outfit walking” prompt.

Figure 2: From data to outputs: corpus statistics and model generations on a walking prompt

3 Posture Dataset117

The aim of our posture dataset is to introduce a new and challenging benchmark for the action under-118

standing community. In previous research, most existing fitness datasets [17, 70, 97] amalgamate119

various activities without clear distinctions. A primary challenge in constructing the posture dataset120

lies in developing a systematic taxonomy to organize diverse human activities. We present a more121

detailed categorical lexicon that includes various possible body postures below the neck.122

3.1 Taxonomy123

Classification. For the first level, we adopt the approach suggested by Humman [8], which cat-124

egorizes activities based on the primary muscles involved. However, given the large number of125

fine-grained muscles in the human body and the fact that a single activity can engage multiple mus-126

cle groups, we consulted with kinesiologists to streamline these categories. As a result, we decided127

to simplify the activity categories into two main groups: upper body activities (e.g., pressing, hand128

rotation) and lower body activities (e.g., squatting, jumping), to provide a clearer classification of129

different types of activity and better align with the synergistic functions of muscle groups in real130

activities, as shown in Table 3. Although most physical activities engage multiple body regions131

(e.g., deadlifting involves both the lower and upper body), our classification is based solely on the132

primary regions responsible for the movement. This focus is particularly relevant for our bench-133

mark, which evaluates whether the movements are executed correctly. For instance, some video134

generation models produce outputs where, from the camera’s perspective, only the leg movements135

are shown during running. By categorizing activities according to their main active body regions,136

our taxonomy provides clearer guidance for evaluation.137

Physical Activity. Building on the primary body regions from the first level, the second level cate-138

gorizes activities into ten specific exercise groups, encompassing the 10 common physical activities139

shown in Table 3. These activities were selected because they represent typical movement patterns140

found in both daily life and fitness settings, and they clearly demonstrate the distinct movement141

mechanics of the upper and lower limbs. For instance, the Side Leg Raise activity primarily engages142

lower body muscle groups, including the gluteus maximus, gluteus medius, and gluteus minimus143

(collectively known as the ”glute muscles”), as well as the biceps femoris (hamstrings) and core144

abdominal muscles. The classification of each activity considers not only the primary muscles in-145

volved but also the functional purpose of the movement and its application context in training sce-146

narios, thereby providing a more comprehensive framework for evaluating the quality of movements147

generated by models.148

To ensure a comprehensive dataset for evaluating human motion in text-to-video generation, we de-149

veloped a structured data collection and description process, as shown in Figure 2a. Our approach150

emphasizes the diversity of movement types, clarity of video quality, and accuracy of motion de-151
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scriptions. This section outlines our methods for collecting and organizing video data, along with152

the steps taken to generate high-quality descriptions that accurately reflect each recorded action.153

Description Collection. We use a multi-stage strategy to collect detailed descriptions for each154

video. The process involves the following steps:155

Action Identification. We use Gemini-2.5 pro to locate each complete action accurately—instances156

containing multiple body parts—in the video recordings and label them with the appropriate event157

tags. During this stage, we discard all incomplete actions, such as those containing interruptions.158

And then, the Gemini-2.5 Pro model generates a series of candidate descriptions for each qualified159

video, capturing both the overall action flow and fine-grained motion details. To further refine160

these descriptions into concise and effective video prompts, we employ GPT-4o to rewrite them161

by aligning the textual content with the actual video context. This two-stage process ensures that162

the final prompts are both semantically faithful to the videos and directly usable for downstream163

text-to-video generation tasks.164

Description Validation. Our team manually reviewed and corrected any inaccuracies, ambigui-165

ties, or incomplete descriptions, paying special attention to unclear action orientations or imprecise166

movement details. This validation process ensured that each description was both accurate and167

distinctive enough to properly identify the specific movement being performed.168

4 Movo Benchmarking Metrics169

170

We propose three complementary metrics to comprehensively evaluate the similarity between mo-171

tion sequences: Joint Angle Change (JAC), Dynamic Time Warping Similarity (DTW), and Mo-172

tion Consistency Metric (MCM). These metrics are designed to capture different aspects of motion173

similarity, from low-level joint dynamics to high-level semantic consistency. A pose estimation174

model [31, 93, 32] is used to obtain the skeletal keypoints and joint features required for these175

metrics, ensuring accurate representation of human motion across frames.176

Joint Angle Change (JAC). To capture joint articulation across frames, we define the Joint Angle177

Change (JAC) metric. For each frame t, the angle θ between selected joint vectors v⃗1 and v⃗2 (e.g.,178

upper arm and forearm) is calculated as:179

θ̄ =
1

T

T∑
t=1

(
1

N

N∑
i=1

arccos

(
v⃗i,1 · v⃗i,2

∥v⃗i,1∥∥v⃗i,2∥

))
(1)

where T is the total number of frames in the video, N is the total number of joint pairs for angle180

calculation, v⃗i,1 and v⃗i,2 are vectors representing the joint pair i, · denotes the dot product, and ∥ · ∥181

represents the vector magnitude. To ensure consistency across frames, we calculate each joint’s182

relative position r⃗i,t with respect to a reference joint (e.g., the hip) as:183

σpos =
1

N

N∑
i=1

Var ({p⃗i,t − p⃗ref,t | t = 1, . . . , T}) (2)

where p⃗i,t is the position of joint i at frame t, p⃗ref,t is the position of the reference joint at frame t,184

Var(·) denotes the variance operation over all frames. For two videos, we calculate the Euclidean185

distance between their mean angle changes ∆θ = |θ̄1 − θ̄2|, where θ̄1 and θ̄2 are the mean angle186

changes of the two videos, and position variances ∆σ = |σpos,1−σpos,2|, where σpos,1 and σpos,2 are187

the mean position variances of the two videos:188

distance =
√

(∆θ)2 + (∆σ)2 (3)

Finally, the similarity score JAC is normalized to the range [0, 1] to indicate action similarity:189

JAC = 1− distance
max distance

(4)
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where max distance is a threshold indicating complete dissimilarity. This normalization provides an190

intuitive similarity metric, with higher scores indicating closer action resemblance.191

Dynamic Time Warping Similarity (DTW). To quantify the similarity between the movements192

in two videos, we compute the Dynamic Time Warping distance between their skeletal keypoint193

sequences. For each video frame t, the positions of skeletal keypoints are extracted and represented194

as vectors k⃗t. We then compute the relative change in keypoints across consecutive frames to capture195

motion dynamics:196

∆k⃗t = k⃗t − k⃗t−1 (5)

where ∆k⃗t is the relative feature representing motion between frames t and t − 1. This process197

is repeated for all frames in each video to obtain a sequence of motion dynamics. Next, we flat-198

ten each frame’s relative feature vector into a one-dimensional representation to facilitate distance199

computation. For a video with T frames, the feature vector for each frame t is defined as:200

flattenedt = flatten(∆k⃗t) (6)

where flatten(·) denotes the operation of reshaping the vector into one dimension. To compute the201

similarity between two videos, we apply Dynamic Time Warping to measure the alignment cost be-202

tween their sequences of flattened vectors. Given two videos with frame sequences {flattened1,t}T1
t=1203

and {flattened2,t}T2
t=1, the DTW distance D is calculated as:204

D =
∑

(t1,t2)∈Path

d(flattened1,t1 , flattened2,t2) (7)

where Path is the optimal alignment path minimizing cumulative Euclidean distance, and d(·, ·)205

denotes the Euclidean distance between two frames’ flattened vectors.206

Finally, to obtain a similarity score S, we normalize D with a maximum allowable distance207

max distance, ensuring the score falls between 0 and 1:208

DTW = 1− D

max distance
(8)

where DTW represents the degree of similarity between the two videos, with higher values indicat-209

ing greater alignment of movements.210

Motion Consistency Metric (MCM). To assess whether two videos exhibit the same motion, we211

leverage a multi-modal large language model (MLLM) as a judge. The MLLM evaluates the videos212

and outputs a categorical result, indicating either “similar” or “not similar” based on the consistency213

of movements between the two videos (see Supplementary Materials for detailed prompt design).214

The Motion Consistency Metric MCM is defined as:215

MCM =

{
1, if MLLM outputs ”similar”
0, if MLLM outputs ”not similar”

where MCM yields a binary score representing the consistency of motion, with MCM = 1 indi-216

cating similar motions and MCM = 0 indicating dissimilar motions between the videos.217

5 Human Validation218

We conduct extensive human preference labeling on generated videos to validate whether our eval-219

uation metrics align with human perception. Our annotation process follows a systematic pairwise220

comparison approach.221

Data Preparation. For each movement type in our dataset, we generate videos using four different222

models: CogVideo, SVD, Open-Sora-Plan, Kling and compose them into groups. Specifically,223
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given a text description pi describing a particular movement, we collect ten groups of Movement224

List videos, as shown in Table 3. Each group contains four videos generated by different models:225

VA, VB , VC , VD, where A,B,C,D represent different models.226

Pairwise Comparison. Within each group, we create all possible pairs of videos for comparison.227

Given M models, the number of pairs for each group is
(
M
2

)
= M(M−1)

2 . In our case with M = 4,228

this results in six pairs: (VA, VB), (VA, VC), (VA, VD), (VB , VC), (VB , VD), (VC , VD). The order229

of videos within each pair is randomized to prevent potential bias. For a prompt suite of N text230

descriptions, this setup produces N × 10×
(
4
2

)
= 60N pairwise comparisons in total.231

Annotation Process. Human annotators are asked to evaluate each video pair based on the realism232

of motion generation. For each comparison, annotators indicate their preference between the two233

videos. We ensure each pair receives ratings from multiple annotators to enhance reliability. The234

collected preferences are used to compute win ratios for each model and validate the alignment235

between our automated metrics and human perception.236

Win Ratio. Based on human labels, we compute the win rate for each model through pairwise237

comparisons. The superior model received 1 point, the inferior model received 0 points, and in the238

case of a tie, both models received 0.5 points. Each model’s win rate was calculated as the total239

score divided by the total number of pairwise comparisons it participated in, as detailed at Figure 6.240

6 Experiment Setup241

6.1 Models242
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Figure 3: Average of JAC, DTW, and MCM for lower and upper body
movements (excluding Sora due to limited evaluation data).

We selected 14 exemplary243

T2V models for evalua-244

tion, including both open-245

source and propriety mod-246

els, including CogVideo247

[28], SD3+SVD [6], Open-248

Sora-Plan [56], Zeroscope249

[9], Gen2 [59], Dream Ma-250

chine [47], Kling [37], Pika251

1.5 [55],Wan 2.1 [66], Wan252

2.2 [72], Veo 3 [21], Hun-253

yuanVideo [36] and Sora254

[52]. For more detailed,255

please refer to the Supple-256

mentary Materials.257

6.2 Experiment Design258

In this experiment, we used259

the prompts from the Pos-260

ture Dataset for inference on 14 tested models. Each model generated 893 videos. Subsequently,261

using the metrics defined in Section 4, the generated videos were compared with the videos in the262

Posture Dataset (Ground Truth) to compute the evaluation metrics. Due to OpenAI’s restrictions on263

Sora, only 10 randomly selected prompts per category were used for video generation, making the264

evaluation results preliminary and for reference only. For Veo 3, we accessed the model via the of-265

ficial API (self-hosting unavailable), and generations reflect the API’s default settings at evaluation266

time.267

7 Evaluation Results268

We employed YOLO-X [20] to detect humans in the videos, feeding the detected regions into the269

RTMPose-X [32] model to extract skeletal structures and keypoint information. For evaluation, we270

compared the skeletal structures in the generated videos to those in our dataset videos, which served271

as Ground Truth. This comparison was based on keypoint coordinates for each frame, enabling us to272
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Figure 4: An overview of the evaluation results across all models. This figure summarizes 14 T2V
models, where each model forms a group of three stacked bars (JAC, DTW and MCM) and the stack
segments correspond to the 10 actions. The bar height equals to the sum of normalized scores when
higher is better. Models are arranged from open-source to proprietary, and Sora* is reported with
limited data. The plot makes it easy to see per-model trade-offs and where strengths concentrate by
action family.

compute metrics that evaluate the quality of the generated videos and their similarity to real-world273

videos, as shown in Figure 2b. If the prompt for generating the video includes “hand,” we applied274

the RTMPose-M simcc hand5 [32] model to specifically extract skeletal structures and keypoints for275

the hands. This allows for a more granular analysis of hand movements, enhancing the precision276

of our evaluation metrics for videos with a focus on hand gestures or actions. We computed the277

unnormalized maximum distances for the JAC and DTW metrics and set max distance to 1000. For278

all open-source models, we set the seed parameter to 88, while keeping all other hyperparameters at279

their default values. The results are shown in Figure 4.280

7.1 JAC Evaluation on Movo281

Table 4 reports joint-articulation consistency (JAC). We observe strong intra-model variability across282

actions: models that score well on upper-body tasks often drop on lower-body control. For instance,283

Open-Sora-Plan reaches 0.371 on hand punch yet shows weaker articulation on legs. Pika 1.5 il-284

lustrates the gap when it gains 0.467 on running but 0.145 on side leg raise. Sora is comparatively285

balanced: moderate on deadlift and squat, and stronger on continuous lower-body motions, with286

mixed results on faster upper-body actions. Current models capture gross motion classes but strug-287

gle with fine-grained joint articulation, especially for lower limbs requiring precise coordination.288

7.2 DTW Evaluation on Movo289

Table 5 evaluates temporal alignment via dynamic time warping similarity (DTW). Proprietary mod-290

els (Kling 1.0, Pika 1.5) show strong alignment on complex actions, yet consistency is not universal:291

Pika 1.5 performs well on walking with a score of 0.701 but drops to 0.300 on side leg raise, indicat-292

ing difficulty with isolated or abrupt motions. Sora maintains comparatively even alignment across293

both dynamic and controlled actions. In all, Flow-like continuity is easier to achieve in steady peri-294

odic movements than in actions with discrete phases or brief holds.295

7.3 MCM Evaluation on Movo296

Table 6 reports structural consistency using the Motion Consistency Metric (MCM). In general,297

Kling 1.0 leads on most movements. Among open-source baselines, Open-Sora-Plan and Zeroscope298

are competitive on select classes. Sora is uniformly strong, with scores tightly clustered around299

0.88–0.90 across both lower- and upper-body actions, suggesting robust preservation of overall mo-300

tion structure. MCM also reveals weaknesses in nuanced upper-body control. Moreover, the binary301

nature of MCM can mask subtle fidelity gaps even when structures look similar. Overall, preserving302

8
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Annotations Across Different Human Motion Types

coarse structure is increasingly reliable, but capturing fine-grained coherence remains challenging,303

motivating joint- and phase-aware diagnostics.304

7.4 Validating Human Alignment of Movo305

Human scores were calculated the models’ win rates over 1200 comparisons (N=2), providing a306

robust dataset to evaluate these correlations. For each type of human motion, we based on Movo’s307

evaluation results (Average of JAC, DTW and MCM Metrics) and human scores results, as shown in308

Figure 5. The human scores for different models are displayed across various motion categories. In309

each figure, we observe the correlation coefficient ρ between Movo’s metrics and human evaluations,310

such as 0.9859 in Hand Punch and 0.9897 in Walking. Notably, high correlations are observed in311

motions like Running (ρ = 0.9822), Walking (ρ = 0.9897), Hand Rotation (ρ = 0.9808), and Press312

(ρ = 0.9859). The results reveal an overall high consistency between automated evaluation scores313

and human annotations, with average correlation values supporting the validity of Movo as a metric.314

8 Conclusion315

Based on the evaluation metrics and experimental results presented, we derive the following316

key insights: (1) Performance varies by motion type. Lower-body actions score higher on317

JAC/DTW/MCM than upper-body actions. Sora is comparatively balanced across both groups in318

Fig. 3. (2) Non-uniformity and bias across models. Proprietary systems generally outperform open-319

source baselines, but gains concentrate on upper-body tasks under MCM, suggesting specialization320

rather than robustness in Table 4 and Table 5. Sora shows more even performance despite limited321

accessible data. (3) Missing fine-grained dynamics. Open-source models often fail to capture subtle322

joint articulation; DTW exposes rhythm drift even when videos appear smooth. Sora is not exempt.323

We present Movo, a kinematics-centric benchmark for human-motion realism in T2V. Movo cou-324

ples posture-focused, camera-aware prompts with three skeletal metrics to yield interpretable, body-325

centric scores. Evaluating a representative set of leading open and proprietary models, Movo ex-326

poses persistent gaps in biomechanical plausibility and temporal consistency, providing actionable327

diagnostics for model selection, quality gating, and future research.328
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NeurIPS Paper Checklist615

1. Claims616

Question: Do the main claims made in the abstract and introduction accurately reflect the617

paper’s contributions and scope?618

Answer: [Yes]619

Justification: The abstract and introduction state the concrete contributions and assump-620

tions, and our claims match the theoretical intuition and empirical results without over-621

claiming beyond the evaluated settings.622

2. Limitations623

Question: Does the paper discuss the limitations of the work performed by the authors?624

Answer: [Yes]625

Justification: We include a Limitations paragraph that discusses dataset/domain coverage,626

compute budget, possible failure cases, and how assumptions may affect generalization and627

scalability.628

3. Theory assumptions and proofs629

Question: For each theoretical result, does the paper provide the full set of assumptions and630

a complete (and correct) proof?631

Answer: [Yes]632

Justification: All theorems/lemmas are numbered and cross-referenced; each statement lists633

the full set of assumptions. Complete and verified proofs are provided (with proof sketches634

in the main text where helpful) and full details in the appendix; all external results relied635

upon are properly cited.636

4. Experimental result reproducibility637

Question: Does the paper fully disclose all the information needed to reproduce the main638

experimental results of the paper to the extent that it affects the main claims and/or conclu-639

sions of the paper (regardless of whether the code and data are provided or not)?640

Answer: [Yes]641

Justification: We disclose datasets and preprocessing, model/architecture details, training642

and evaluation procedures, hyperparameters, random seeds, metrics, and ablations suffi-643

cient to reproduce the key findings.644

5. Open access to data and code645

Question: Does the paper provide open access to the data and code, with sufficient instruc-646

tions to faithfully reproduce the main experimental results, as described in supplemental647

material?648

Answer: [Yes]649

Justification: We provide an anonymized repository link in the supplemental material with650

runnable scripts, configuration files, and step-by-step instructions. For third-party data, we651

include acquisition and preparation instructions.652

6. Experimental setting/details653

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-654

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the655

results?656

Answer: [Yes]657

Justification: We specify data splits and metrics, optimization details, hyperparameter658

ranges and selection criteria, and any implementation specifics needed to interpret results;659

extended details are provided in the appendix.660

7. Experiment statistical significance661

Question: Does the paper report error bars suitably and correctly defined or other appropri-662

ate information about the statistical significance of the experiments?663
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Answer: [Yes]664

Justification: For key results we report mean±std across multiple runs with fixed seeds and665

include 95% confidence intervals or paired significance tests where appropriate, stating666

whether bars denote std or stderr.667

8. Experiments compute resources668

Question: For each experiment, does the paper provide sufficient information on the com-669

puter resources (type of compute workers, memory, time of execution) needed to reproduce670

the experiments?671

Answer: [Yes]672

Justification: We specify GPU/CPU type, memory, batch size, wall-clock time per run, and673

an estimate of total compute footprint for the main experiments.674

9. Code of ethics675

Question: Does the research conducted in the paper conform, in every respect, with the676

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?677

Answer: [Yes]678

Justification: We reviewed and comply with the NeurIPS Code of Ethics; the submission679

preserves anonymity and respects data usage constraints.680

10. Broader impacts681

Question: Does the paper discuss both potential positive societal impacts and negative682

societal impacts of the work performed?683

Answer: [Yes]684

Justification: We discuss potential benefits (e.g., efficiency/accuracy improvements) and685

risks (e.g., misuse, fairness, privacy), and outline mitigation strategies and recommended686

safeguards.687

11. Safeguards688

Question: Does the paper describe safeguards that have been put in place for responsible689

release of data or models that have a high risk for misuse (e.g., pretrained language models,690

image generators, or scraped datasets)?691

Answer: [NA]692

Justification: The work does not release high-risk models or scraped datasets. (If future693

releases pose misuse risk, we will add usage policies, access controls, and safety filters.)694

12. Licenses for existing assets695

Question: Are the creators or original owners of assets (e.g., code, data, models), used in696

the paper, properly credited and are the license and terms of use explicitly mentioned and697

properly respected?698

Answer: [Yes]699

Justification: We cite all external assets and state versions, sources, and licenses/terms of700

use; we respect dataset and code licenses and terms of service.701

13. New assets702

Question: Are new assets introduced in the paper well documented and is the documenta-703

tion provided alongside the assets?704

Answer: [NA]705

Justification: We do not release new datasets or models in this submission. (If assets are706

released, we will provide documentation on training data, license, limitations, and usage.)707

14. Crowdsourcing and research with human subjects708

Question: For crowdsourcing experiments and research with human subjects, does the pa-709

per include the full text of instructions given to participants and screenshots, if applicable,710

as well as details about compensation (if any)?711

Answer: [NA]712
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Justification: The paper does not involve crowdsourcing or research with human subjects.713

15. Institutional review board (IRB) approvals or equivalent for research with human714

subjects715

Question: Does the paper describe potential risks incurred by study participants, whether716

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)717

approvals (or an equivalent approval/review based on the requirements of your country or718

institution) were obtained?719

Answer: [NA]720

Justification: The paper does not involve human subjects research.721

16. Declaration of LLM usage722

Question: Does the paper describe the usage of LLMs if it is an important, original, or723

non-standard component of the core methods in this research? Note that if the LLM is used724

only for writing, editing, or formatting purposes and does not impact the core methodology,725

scientific rigorousness, or originality of the research, declaration is not required.726

Answer: [NA]727

Justification: LLMs are not used as an important, original, or non-standard component of728

the core methods in this research.729
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A Simplification of Motion Taxonomy730

To ensure a clear and practical classification, we categorized human activities based on the primary731

body parts involved. While this taxonomy simplifies complex human motions, it remains effective732

for analyzing movements that significantly influence joint positions and biomechanical dynamics.733

Below, we elaborate on the rationale for our choices and the exclusions.734

Exclusion of Facial Movements Facial movements, while important in human communication735

and emotional expression, were excluded from this taxonomy. This decision was made because736

facial motions primarily involve micro-expressions and small-scale muscular changes, which are737

insufficient to produce measurable joint displacement or contribute to broader body kinematics.738

Focus on Major Muscle Groups The taxonomy divides movements into upper and lower body ac-739

tivities, which aligns with the natural grouping of muscle synergies in physical activities. Although740

some exercises, like deadlifts, engage the entire body, they are categorized under lower body move-741

ments due to the dominant involvement of leg and hip muscles. For similar reasons, activities such742

as pull-ups, while engaging the upper body extensively, could also be conceptually grouped under743

”deadlift” due to overlapping muscle recruitment patterns. However, for simplicity, we kept them744

distinct under the upper body classification to emphasize specificity.745

Simplification for Practicality While the human body contains many fine-grained muscle groups,746

analyzing activities at such granularity adds complexity without significant benefits in typical mo-747

tion analysis applications. Thus, we opted for broader categories that better align with real-world748

activities and the synergistic functions of muscle groups. For example: 1) Upper Body Movements:749

This category includes activities such as pressing and hand rotation, which highlight the dominant750

role of the shoulders and arms. 2) Lower Body Movements: Activities such as squats and jumping751

focus on the legs and hips as primary movers.752

Exclusion of Other Specialized Movements Movements involving smaller muscle groups (e.g.,753

fingers, toes) or specialized actions (e.g., fine motor skills) were excluded. These activities have754

minimal impact on joint displacement and are less relevant to the core physical activities that this755

taxonomy aims to address.756

Upper Body Inclusion of Compound Movements Compound movements like deadlifts or pull-757

ups were considered for their overlap between upper and lower body categories. For example,758

deadlifts, though categorized under lower body activities, involve substantial engagement of the759

upper body, such as grip strength and spinal stabilization. These nuances were carefully accounted760

for while simplifying the taxonomy.761

This streamlined taxonomy ensures that the classification is easy to interpret, aligns with kinesiolog-762

ical principles, and remains relevant for most applications, from biomechanics research to physical763

activity monitoring.764

B MLLMs for Video Description765

The task of generating accurate and detailed video descriptions is critical for applications ranging766

from video retrieval to content analysis and accessibility enhancement. Multimodal large language767

models (MLLMs) have emerged as powerful tools for this task by combining visual and textual768

modalities to produce coherent and informative descriptions. This section discusses the role of769

MLLMs in video description tasks and introduces a set of structured prompts designed to guide the770

models’ outputs effectively.771

Role of Prompts in Video Description Prompts play a pivotal role in shaping the responses of772

MLLMs, particularly in complex tasks like video description. A well-designed prompt can guide773

the model to focus on specific aspects of the video content, ensuring that the generated descriptions774

are not only accurate but also relevant to the intended application. For this purpose, we created a set775

of 10 prompts tailored to elicit detailed, action-oriented descriptions while avoiding unnecessary or776

biased information (see Table 1).777

Objectives of Prompt Design The prompts in Table 1 are carefully crafted to achieve the following778

objectives: 1. Focus on Actions and Events: Each prompt emphasizes the actions and sequences779

occurring in the video, ensuring that the descriptions remain centered on the core content. 2. Inclu-780
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Table 1: Prompts for video description tasks
ID Prompt

1 Describe this video focusing on the actions being performed. Where is the camera positioned? Ignore
the gender of the people in the video.

2 Explain what is happening in the video with an emphasis on the sequence of actions and their purpose.
Camera details like angles and movement are important.

3 Provide a detailed description of the video content, focusing only on the actions and camera positioning.
Avoid mentioning any physical appearances.

4 What activities are being performed in the video? Mention the camera’s perspective and movement,
while ignoring the subjects’ identity.

5 Focus on describing the events and actions in the video. Where is the camera placed, and what angles are
used? Do not include details about the participants’ gender or appearance.

6 Summarize the video by explaining the actions taking place. Note the camera’s position and transitions,
but do not consider any personal attributes of the people involved.

7 Identify the key actions occurring in this video. Emphasize the camera’s role in capturing the actions,
excluding personal details of the individuals.

8 Analyze the video for the activities being shown. Pay attention to camera angles and positioning while
disregarding the participants’ physical descriptions.

9 What movements and actions are captured in this video? Highlight the camera’s perspective, avoiding
any focus on the individuals’ appearance or gender.

10 Describe the sequence of actions in this video, focusing on the activities and the camera’s placement.
Avoid any mention of the participants’ personal characteristics.

Table 2: Comparison of Movo with widely used T2V benchmarks
Benchmark Kinematics Contact/Phys. Temporal Camera Ctrl. Human Eval.

VBench ✗ ✗ △ △ △
EvalCrafter ✗ ✗ △ ✗ △
T2V-CompBench ✗ ✗ ✗ △ △
Video-Bench ✗ ✗ △ △ △
PhyGenBench ✗ ✓ △ ✗ △
Movo (ours) ✓ ✓ ✓ ✓ ✓

Legend: ✓ explicitly covered; △ indirect or limited coverage; ✗ not covered.

sion of Camera Details: Understanding the role of the camera in capturing video content, such as its781

placement, movement, and perspective, is crucial. The prompts explicitly encourage the model to782

include these aspects. 3. Exclusion of Personal Attributes: To ensure objectivity and ethical use, the783

prompts explicitly instruct the model to avoid describing personal characteristics such as the gender784

or appearance of individuals in the video. This mitigates potential biases and ensures privacy.785

Application Scenarios The prompts were designed to cater to a wide range of video types, in-786

cluding: 1. Instructional Videos: Where sequences of actions and their purpose are central to the787

description. 2. Surveillance Footage: Where camera positioning and actions captured are crucial788

for analysis. 3. Sports and Performance: Where the emphasis is on the movements and activities789

performed.790

Model Selection and Implementation Finally, we selected the state-of-the-art model, Qwen2-vl791

[74], to describe our collected text-video dataset. For each video, a random prompt from the ten792

provided in Table 1 was used to ensure diverse and context-appropriate descriptions.793

C Human Annotation794

In this study, we employed a rigorous human annotation process to evaluate the effectiveness of795

video content in matching given tags. Ten PhD student volunteers, comprising an equal distribution796

of five male and five female participants, were selected to conduct the annotations. The participants797

were trained in video analysis to ensure consistent and accurate evaluations.798
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Tag: Boxing
Question: Which one 
better match the tag?

Figure 6: Annotation interface for video evaluation: Annotators compare two video clips with the
tag ’Boxing’ and select the better match using options ’Up,’ ’Almost Same,’ or ’Down.

For the annotation process, the volunteers were presented with pairs of videos, as shown in the799

figure, along with a corresponding tag such as ”Boxing.” Their task was to determine which video800

better matched the tag based on the visual and contextual content of the videos. Each pair of videos801

was displayed alongside three options for evaluation: ”Up” (indicating the top video matches better),802

”Down” (indicating the bottom video matches better), or ”Almost Same” (indicating both videos are803

equally relevant), as shown in Figure 6.804

The annotation interface was designed to minimize cognitive load and maximize accuracy by pro-805

viding a clear layout and intuitive options. The volunteers were instructed to carefully consider the806

movements, settings, and actions depicted in each video before making their decisions. Each anno-807

tation task was independently performed by all ten participants to ensure diversity in perspectives808

and reduce bias.809

The collected annotations were aggregated and analyzed to measure inter-annotator agreement, pro-810

viding a reliable foundation for assessing the quality of the videos in relation to their tags. This811

human-centered evaluation approach contributed significantly to validating the results of our study.812

D Dataset Visualization813

The dataset visualization aims to provide an overview of the ground truth data used for human mo-814

tion analysis. Figure 7 presents videos depicting different exercises with overlaid skeletal keypoints.815

These keypoints represent the critical joints and body parts tracked during the movements, offering816

a detailed view of pose estimation and motion tracking accuracy.817

The visualizations include a variety of motion. Each activity is captured across multiple frames to818

demonstrate the temporal progression of the actions. The skeletal keypoints are color-coded and819

connected to highlight joint positions and limb orientations, enabling clear interpretation of the820

body’s posture and motion dynamics.821

This visualization helps to validate the quality of the dataset by showcasing its ability to capture822

diverse human motions with high precision. The overlaid skeletons indicate that the pose estimation823

aligns well with the physical movements depicted in the images, supporting its application in motion824

analysis tasks. Furthermore, the variety in activities underscores the dataset’s comprehensiveness825

and versatility for studying a broad range of human actions.826
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Figure 7: Ground truth data visualization for human motion analysis: The figure showcases vari-
ous exercises with overlaid skeletal keypoints, illustrating accurate pose estimation and movement
tracking across different motion.

Table 3: Movement classification
Category Movement list

Lower body movements Deadlift; Jump; Running; Side leg raise; Squat; Walking

Upper body movements Hand punch; Hand rotation; Press; Waist twist

E Extended Related Work827

The latest breakthroughs in generative AI, particularly with the development of Transformer models828

[28, 71, 82, 83, 23, 90] and diffusion models [26, 27, 7, 25, 33, 48, 62, 81, 65], have significantly829

advanced open-domain video generation. Transformer-based approaches encode videos as discrete830

visual tokens, which are then generated automatically [91, 44]. On the other hand, diffusion models831

have been widely explored for this task to reduce the high computational cost of video generation,832

demonstrating superior capabilities [26, 27, 7].833

Diffusion models, such as Make-A-Video [62], leverage pre-trained image diffusion models and834

enhance their video generation capabilities by fine-tuning temporal attention mechanisms. Vide-835

oLDM [7] introduces a multi-stage alignment process in latent space to generate high-resolution836

videos. Similarly, GEST [50] employs graph-based representations to encode the spatio-temporal837

relationships between text and video, generating contextually rich content.838

To enhance controllability, methods such as VideoComposer [76] incorporate additional guidance839

signals, such as depth maps, ensuring that the generated videos align more closely with textual840

prompts. Meanwhile, VideoDirectorGPT [41] leverages GPT-4 [1] to create scene layouts and con-841

trol specific video compositions. Other approaches, such as Tune-A-Video [84], implement temporal842

self-attention modules in pre-trained diffusion models, achieving higher fidelity in text-driven video843

generation.844

The introduction of diffusion transformers [54, 5, 18] has further revolutionized video generation,845

leading to advanced methods like Latte [49] and Sora [53]. These methods have been applied in846

various domains.847
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Table 4: Lower and Upper Body Movements Evaluation Using JAC Metric (* limited data)

Model Lower Body Movements Upper Body Movements

Deadlift Jump Running Side Leg Raise Squat Walking Hand Punch Hand Rotation Press Waist Twist

Open-source Models
CogVideo2B 0 0 0.170 0.097 0 0 0.306 0.138 0.027 0.008
CogVideo5B 0 0 0 0.277 0 0.006 0.077 0.147 0 0.224
SVD 0.083 0.207 0.213 0.401 0 0 0.105 0.476 0.061 0.180
Open-Sora-Plan 0.197 0.479 0.135 0.257 0 0 0.371 0.649 0.285 0
Zeroscope 0.028 0.211 0 0 0 0 0.360 0.103 0.065 0.051
Wan 2.1 0.152 0.410 0.295 0.338 0.142 0.211 0.284 0.512 0.278 0.143
Wan 2.2 0.163 0.432 0.311 0.352 0.157 0.227 0.297 0.539 0.293 0.158
HunyuanVideo 0.141 0.384 0.276 0.319 0.132 0.198 0.261 0.481 0.254 0.131

Proprietary Models
Gen2 0.136 0.179 0.243 0.113 0.158 0.191 0.189 0.172 0.193 0.179
Dream Machine 0.167 0.191 0.118 0.158 0.129 0.362 0.142 0.154 0.172 0.362
Kling 0.197 0.370 0.169 0.401 0.138 0.673 0.156 0.649 0.198 0.761
Pika 1.5 0.192 0.374 0.467 0.145 0.182 0.138 0.177 0.374 0.467 0.148
Veo 3 0.344 0.445 0.432 0.391 0.264 0.528 0.323 0.621 0.406 0.598
Sora* 0.219 0.422 0.438 0.382 0.179 0.584 0.338 0.612 0.414 0.682

Table 5: Lower and Upper Body Movements Evaluation Using DTW Metric (* limited data)

Model Lower Body Movements Upper Body Movements

Deadlift Jump Running Side Leg Raise Squat Walking Hand Punch Hand Rotation Press Waist Twist

Open-source Models
CogVideo2B 0.381 0.724 0.513 0.663 0.465 0.431 0.524 0.678 0.667 0.461
CogVideo5B 0.451 0.730 0.608 0.684 0.538 0.441 0.508 0.637 0.754 0.494
SVD 0.459 0.634 0.739 0.642 0.666 0.498 0.598 0.729 0.812 0.483
Open-Sora-Plan 0.497 0.797 0.734 0.594 0.762 0.503 0.655 0.762 0.802 0.499
Zeroscope 0.498 0.805 0.770 0.793 0.747 0.516 0.623 0.737 0.847 0.480
Wan 2.1 0.572 0.892 0.853 0.909 0.834 0.596 0.685 0.839 0.959 0.528
Wan 2.2 0.603 0.944 0.927 0.961 0.902 0.624 0.751 0.877 1.009 0.574
HunyuanVideo 0.532 0.870 0.861 0.852 0.808 0.549 0.669 0.787 0.939 0.509

Proprietary Models
Gen2 0.641 0.719 0.717 0.520 0.418 0.637 0.464 0.452 0.446 0.681
Dream Machine 0.632 0.689 0.773 0.630 0.673 0.797 0.384 0.444 0.351 0.561
Kling 0.770 0.794 0.686 0.803 0.812 0.800 0.457 0.847 0.866 0.747
Pika 1.5 0.747 0.691 0.835 0.300 0.670 0.701 0.457 0.444 0.223 0.725
Veo 3 0.764 0.899 0.851 0.611 0.529 0.800 0.744 0.827 0.830 0.736
Sora* 0.751 0.783 0.822 0.768 0.790 0.784 0.638 0.824 0.853 0.736

Table 6: Lower and Upper Body Movements Evaluation Using MCM Metric (* limited data)

Model Lower Body Movements Upper Body Movements

Deadlift Jump Running Side Leg Raise Squat Walking Hand Punch Hand Rotation Press Waist Twist

Open-source Models
CogVideo2B 0.85 0.88 0.86 0.84 0.83 0.82 0.84 0.85 0.82 0.84
CogVideo5B 0.86 0.89 0.88 0.87 0.85 0.83 0.84 0.85 0.82 0.85
SVD 0.88 0.86 0.89 0.86 0.86 0.84 0.86 0.88 0.86 0.84
Open-Sora-Plan 0.89 0.90 0.88 0.86 0.87 0.84 0.89 0.89 0.87 0.85
Zeroscope 0.88 0.90 0.89 0.88 0.87 0.83 0.86 0.87 0.86 0.84
Wan 2.1 0.90 0.91 0.90 0.89 0.89 0.85 0.88 0.89 0.88 0.86
Wan 2.2 0.91 0.92 0.91 0.90 0.90 0.86 0.89 0.90 0.89 0.87
HunyuanVideo 0.87 0.89 0.88 0.87 0.86 0.83 0.85 0.86 0.85 0.83

Proprietary Models
Gen2 0.90 0.89 0.90 0.85 0.84 0.89 0.85 0.85 0.84 0.87
Dream Machine 0.90 0.88 0.90 0.86 0.86 0.90 0.84 0.84 0.83 0.86
Kling 0.91 0.90 0.89 0.91 0.91 0.90 0.85 0.91 0.92 0.90
Pika 1.5 0.90 0.88 0.91 0.81 0.86 0.88 0.85 0.84 0.81 0.88
Veo 3 0.92 0.91 0.90 0.89 0.89 0.91 0.88 0.89 0.88 0.92
Sora* 0.90 0.89 0.90 0.89 0.90 0.89 0.88 0.90 0.90 0.89
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