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Can Text-to-Video Models Generate
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Abstract

Recent advances in text-to-video (T2V) generation have yielded impressive
progress in resolution, duration, and prompt fidelity, with models such as Pika,
Gen-3, and Sora producing clips that appear compelling at first glance. Yet, in
everyday use and public demos, generated people often “look right but move
wrong,” exhibiting artifacts like foot sliding, joint hyperextension, and desynchro-
nized limbs. Such failures are not cosmetic: 1) unsafe motions can be copied by
viewers, especially juveniles, raising injury risks; 2) in clinical and sports con-
texts, implausible kinematics corrupt analytics for angle, cadence, and phase,
causing misdiagnosis and unsafe return-to-play; and 3) in simulation pipelines,
non-physical motion distributions contaminate training and evaluation, degrad-
ing sim-to-real transfer. However, existing benchmarks remain inadequate: 1)
they lack kinematics awareness, rewarding visual resemblance while joint trajec-
tories violate physiological ranges; 2) they lack rhythm- and body-level tempo-
ral metrics, overlooking gait-cycle timing, symmetry, and inter-limb coordina-
tion; and 3) they fail to disentangle camera from body motion, letting pans and
zooms mask biomechanical errors. To address these gaps, we present Movo,
the first kinematics-centric benchmark for T2V motion realism. Movo unifies
three components: 1) a posture-focused dataset with camera-aware prompts that
isolate representative upper- and lower-body actions; 2) skeletal-space metrics,
Joint Angle Change (JAC), Dynamic Time Warping (DTW), and Motion Consis-
tency Metric (MCM), that operationalize biomechanical plausibility across joints,
rhythms, and constraints; and 3) human validation studies that calibrate thresh-
olds and show strong correlation between skeletal scores and perceived realism.
Evaluating 14 leading T2V models reveals persistent gaps: some excel in spe-
cific motions but struggle with cross-action consistency, and performance varies
widely between open-source and proprietary systems. Movo provides a rigorous,
interpretable foundation for improving human motion generation and for integrat-
ing biomechanical realism checks into model development, selection, and release
workflows.

1 Introduction

Text-to-video (T2V) systems have made striking gains in resolution, duration, and prompt following
(84, 17,126} 162114875} 185, 173, 114} 13, [1.1, 195} 1861 [16}, 127, 221 1811 78], 1921196, 158}, 38} [19. 10} [12]]. Models
such as Pika, Gen-3, and Sora [55, 160} 53] often produce clips that look compelling at first glance.
Over the past year, text-to-video has moved from niche demos to mass distribution. Runway raised
308 M at 3B valuation, while YouTube integrated Google’s Veo 3 [61]] directly into Shorts, placing
prompt-to-video generation inside a product that now averages 200 billion daily views, which is
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Figure 1: Overview of the Movo benchmark for evaluating human motion realism in text-to-video
generation. The benchmark assesses lower- and upper-body movements (e.g., deadlift, side leg raise,
hand punch, waist twist). Videos are collected or recorded, labeled, and used to create prompts. Out-
puts from open-source and proprietary models are evaluated with Joint Angle Change (JAC), Dy-
namic Time Warping (DTW), and Motion Consistency Metric (MCM). Human validation includes
data preparation, pairwise comparison, and annotation.

such a step change in reach for synthetic video. Applications of T2V systems are already visible.
Many creators monetize generative videos on platforms like TikTok and YouTube Shorts [29] |94],
turning synthetic clips into ad revenue at scale. Meanwhile, researchers employ generated videos
in simulation experiments, from robotics training to controlled behavioral studies, where synthetic
footage offers safe and reproducible environments [57]].

In everyday use and public T2V demos, people frequently “look right but move wrong.” Typical
artifacts include foot sliding during supposed stance, joint hyperextension, discontinuous veloci-
ties, desynchronized upper—lower limbs, and props or body parts that break contact constraints [46].
These are not cosmetic glitches, they carry real consequences. 1) In the short video settings, view-
ers may copy faulty motions which raise injury risk, especially for juveniles who are pervasively
exposed to online videos but lack the motor control and judgment to detect unsafe form [34]]. 2) In
clinical pre-screening, rehab, and sports assessment, implausible motion corrupts analytics for an-
gle, cadence and phase. causing misclassification, poor prescriptions, delayed gait-issue detection,
and unsafe return-to-play (e.g., masked fall risk), with downstream reinjury, unnecessary imaging,
and liability [51}146]. 3) In simulation and synthetic-data pipelines either in industries or labs, non-
physical motion distributions contaminate training and evaluation, worsening sim-to-real transfer
and negatively affecting industrial production as well as academic research [13]]. 4) For platforms
and policy, unrealistic human motion complicates quality gates and disclosure, leading to under-
disclosure, unjustified fines and takedowns, viral misuses, likeness-rights disputes, and trust erosion
[89. 167, 115]]. Therefore, the takeaway is simple: “looking like” the action is not enough. We must
measure whether generated people move in a biomechanically plausible way and integrate such
checks into model selection and release workflows.

General-purpose leaderboards emphasize breadth, overall aesthetics, text—video alignment, optical-
flow smoothness, and sometimes action recognition, but they miss three things that matter for hu-
man motion. 1) First, lack of kinematics awareness. Pixel or semantics metrics commonly used in
T2V benchmarks reward clips that resemble “walking” while joint trajectories violate physiolog-
ical ranges, exhibit abnormal angle amplitudes, or break inter-limb phase relationships. In some
specific domains, decisions are made on joints, angles, and phases. When those are implausible,
smooth-looking videos still produce wrong conclusions [30} 43]]. 2) Second, lack of rhythm-aware
and body-level temporal metrics. Common smoothness proxies such as optical flow consistency
and warping error quantify frame-to-frame pixel continuity but not gait-cycle timing, symmetry or
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cadence. Without rhythm-sensitive measures, periodic behaviors can drift in tempo or exhibit off-
phase coordination yet still score well on flow-based metrics [40}2]. 3) Third, lack of camera-motion
disentanglement. Many existing T2V benchmarks operate in raw pixel space, so pans, zooms, and
shake confound temporal signals and can mask contact errors, rigid-body violations, bone-length
instability, and abnormal velocities or accelerations. Without body-centric stabilization or skeletal-
space analysis, metrics are contaminated by camera motion rather than body dynamics. Methods that
“pass” such tests often yield unstable pose estimates and unreliable downstream analytics [35} 88]].

To address these, we introduce Movo, a kinematics-centric benchmark that asks whether gener-
ated people move plausibly, not just look plausible. Movo directly addresses the three gaps above.
1) Posture-focused dataset with camera-aware prompts. To reduce confounds and isolate human
motion, we cover representative lower-body and upper-body actions with prompt templates that dis-
courage gratuitous camera motion and keep the mover in focus. 2) Skeletal metrics that operational-
ize biomechanical realism: JAC (Joint Angle Change) quantifies joint-angle trajectories relative to
typical ranges and checks plausible evolution over time—making the evaluation kinematics-aware.
DTW (Dynamic Time Warping) on pose dynamics measures temporal phasing and rhythm align-
ment—capturing cadence and inter-limb timing beyond pixel smoothness. MCM (Motion Con-
sistency Metric) enforces constraint-aware consistency, foot—ground contact, velocity/acceleration
continuity, and bone-length stability, so camera motion cannot hide structural violations. 3) Human
validation that calibrates thresholds. We conduct pairwise preference studies showing Movo’s skele-
tal scores correlate with perceived motion realism, enabling actionable quality gates that align with
emerging platform policies for realistic synthetic depictions. Using Movo, we extensively evaluate
14 leading T2V models, including 8 open-source and 6 propriety solutions. Our findings reveal that
while some models excel in specific tasks, such as hand rotations, they struggle to maintain con-
sistent quality across diverse motion types. Performance scores vary significantly, highlighting the
need for specialized strategies to improve human motion generation.

2 Related Work

2.1 Text-to-Video Generation Dataset

Text-to-video generation has advanced significantly, supported by various datasets. MSR-VTT
dataset[87] provides 10,000 videos paired with textual annotations, allowing open-domain video
description but not focusing on human motion. InternVid dataset [[79] scales multimodal data with
more than 7 million videos but focuses on general scenarios rather than specific human actions. Re-
cent works like the EvalCrafter dataset [42] and the VideoFactory dataset [73] aim to improve the
quality and alignment of text-to-video generation but still lack data sets centered on human motion.
The existing UCF101 dataset [64] focuses on human action recognition with 101 action classes but
lacks textual descriptions, which limits its use for generative tasks. In contrast, our proposed Movo
dataset is the first text-to-video generation dataset to focus on human motion. It offers detailed tex-
tual descriptions of dynamic movements, filling a crucial gap in generating motion-driven videos,
and enabling advances in applications like virtual reality and animation.

2.2 Text-to-Video Generation Model

In recent years, text-to-video generation has made remarkable progress, driven by advances in gen-
erative models and the increasing availability of computational resources. The early text-to-vision
methods relied primarily on Generative Adversarial Networks (GANSs) [4}163. 168l (77, 180] and Vari-
ational Autoencoders (VAEs) [69]], demonstrating the feasibility of video generation within sim-
ple closed set domains [24} |39/ 45]]. However, these methods struggle to generate videos in more
complex contexts [73]]. The latest breakthroughs in generative Al has progressed from tokenized
Transformer pipelines [28, 711 82 [83] to diffusion-based models that deliver higher fidelity under
practical compute [27, [7, 162]. Controllability has improved via structural conditioning and plan-
ning [[76,/41,184]. Scaling with Diffusion Transformers further advances quality [54} |5, 18]], inspiring
systems such as Latte and Sora [49][53]]. See Appendix [E]for an extended survey.
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Figure 2: From data to outputs: corpus statistics and model generations on a walking prompt

3 Posture Dataset

The aim of our posture dataset is to introduce a new and challenging benchmark for the action under-
standing community. In previous research, most existing fitness datasets [17, 70} 97] amalgamate
various activities without clear distinctions. A primary challenge in constructing the posture dataset
lies in developing a systematic taxonomy to organize diverse human activities. We present a more
detailed categorical lexicon that includes various possible body postures below the neck.

3.1 Taxonomy

Classification. For the first level, we adopt the approach suggested by Humman [8]], which cat-
egorizes activities based on the primary muscles involved. However, given the large number of
fine-grained muscles in the human body and the fact that a single activity can engage multiple mus-
cle groups, we consulted with kinesiologists to streamline these categories. As a result, we decided
to simplify the activity categories into two main groups: upper body activities (e.g., pressing, hand
rotation) and lower body activities (e.g., squatting, jumping), to provide a clearer classification of
different types of activity and better align with the synergistic functions of muscle groups in real
activities, as shown in Table [3] Although most physical activities engage multiple body regions
(e.g., deadlifting involves both the lower and upper body), our classification is based solely on the
primary regions responsible for the movement. This focus is particularly relevant for our bench-
mark, which evaluates whether the movements are executed correctly. For instance, some video
generation models produce outputs where, from the camera’s perspective, only the leg movements
are shown during running. By categorizing activities according to their main active body regions,
our taxonomy provides clearer guidance for evaluation.

Physical Activity. Building on the primary body regions from the first level, the second level cate-
gorizes activities into ten specific exercise groups, encompassing the 10 common physical activities
shown in Table[3] These activities were selected because they represent typical movement patterns
found in both daily life and fitness settings, and they clearly demonstrate the distinct movement
mechanics of the upper and lower limbs. For instance, the Side Leg Raise activity primarily engages
lower body muscle groups, including the gluteus maximus, gluteus medius, and gluteus minimus
(collectively known as the glute muscles”), as well as the biceps femoris (hamstrings) and core
abdominal muscles. The classification of each activity considers not only the primary muscles in-
volved but also the functional purpose of the movement and its application context in training sce-
narios, thereby providing a more comprehensive framework for evaluating the quality of movements
generated by models.

To ensure a comprehensive dataset for evaluating human motion in text-to-video generation, we de-
veloped a structured data collection and description process, as shown in Figure 2a Our approach
emphasizes the diversity of movement types, clarity of video quality, and accuracy of motion de-



152
153

154
155

156
157
158
159
160
161
162
163
164

165

167
168

169

170

171
172
173
174
175
176

177
178
179

180
181
182
183

184
185
186
187
188

scriptions. This section outlines our methods for collecting and organizing video data, along with
the steps taken to generate high-quality descriptions that accurately reflect each recorded action.

Description Collection. We use a multi-stage strategy to collect detailed descriptions for each
video. The process involves the following steps:

Action Identification. We use Gemini-2.5 pro to locate each complete action accurately—instances
containing multiple body parts—in the video recordings and label them with the appropriate event
tags. During this stage, we discard all incomplete actions, such as those containing interruptions.
And then, the Gemini-2.5 Pro model generates a series of candidate descriptions for each qualified
video, capturing both the overall action flow and fine-grained motion details. To further refine
these descriptions into concise and effective video prompts, we employ GPT-40 to rewrite them
by aligning the textual content with the actual video context. This two-stage process ensures that
the final prompts are both semantically faithful to the videos and directly usable for downstream
text-to-video generation tasks.

Description Validation. Our team manually reviewed and corrected any inaccuracies, ambigui-
ties, or incomplete descriptions, paying special attention to unclear action orientations or imprecise
movement details. This validation process ensured that each description was both accurate and
distinctive enough to properly identify the specific movement being performed.

4 Movo Benchmarking Metrics

We propose three complementary metrics to comprehensively evaluate the similarity between mo-
tion sequences: Joint Angle Change (JAC), Dynamic Time Warping Similarity (DTW), and Mo-
tion Consistency Metric (MCM). These metrics are designed to capture different aspects of motion
similarity, from low-level joint dynamics to high-level semantic consistency. A pose estimation
model [31} 93| 132]] is used to obtain the skeletal keypoints and joint features required for these
metrics, ensuring accurate representation of human motion across frames.

Joint Angle Change (JAC). To capture joint articulation across frames, we define the Joint Angle
Change (JAC) metric. For each frame ¢, the angle 6 between selected joint vectors v; and v5 (e.g.,
upper arm and forearm) is calculated as:

o z Uz ,2
0= arccos < L ) (D
TZ NZ (19,1 1115,

where T is the total number of frames in the video, N is the total number of joint pairs for angle
calculation, ¥; 1 and ¥; » are vectors representing the joint pair 4, - denotes the dot product, and || - ||
represents the vector magnitude. To ensure consistency across frames, we calculate each joint’s
relative position 7 ; with respect to a reference joint (e.g., the hip) as:

N
1 - -
Opos = N § Var ({pi,t — Dref,t | t=1,... 7T}) 2
=1

where pj ; is the position of joint ¢ at frame ¢, Prer,+ is the position of the reference joint at frame ¢,
Var(-) denotes the variance operation over all frames. For two videos, we calculate the Euclidean
distance between their mean angle changes AO = |0, — 03|, where 0; and 0, are the mean angle
changes of the two videos, and position variances Ao = |Gpos,1 — Opos,2|, Where opos 1 and opes 2 are
the mean position variances of the two videos:

distance = /(A6)2 + (Ao)? 3)
Finally, the similarity score JAC is normalized to the range [0, 1] to indicate action similarity:

dist
JAC = 1 — —owhance (4)
max_distance



190
191

192
193
194
195
196

197
198
199
200

201
202

203

204

205
206

207
208

209
210

211
212
213
214

215

216
217

218

219
220
221

222
223

where max_distance is a threshold indicating complete dissimilarity. This normalization provides an
intuitive similarity metric, with higher scores indicating closer action resemblance.

Dynamic Time Warping Similarity (DTW). To quantify the similarity between the movements
in two videos, we compute the Dynamic Time Warping distance between their skeletal keypoint
sequences. For each video frame ¢, the positions of skeletal keypoints are extracted and represented

as vectors k;. We then compute the relative change in keypoints across consecutive frames to capture
motion dynamics:

Ak =kt — ki1 (5)

where Al% is the relative feature representing motion between frames ¢ and ¢ — 1. This process
is repeated for all frames in each video to obtain a sequence of motion dynamics. Next, we flat-
ten each frame’s relative feature vector into a one-dimensional representation to facilitate distance
computation. For a video with 7" frames, the feature vector for each frame ¢ is defined as:

flattened; = ﬂatten(AEt) (6)

where flatten(-) denotes the operation of reshaping the vector into one dimension. To compute the
similarity between two videos, we apply Dynamic Time Warping to measure the alignment cost be-
tween their sequences of flattened vectors. Given two videos with frame sequences {ﬂat'[e:nedL,:}tT;1
and {flattenedy ;}72 |, the DTW distance D is calculated as:

D= Z d(flattened, ,, , flatteneds 4,) @)
(t1,t2)€Path

where Path is the optimal alignment path minimizing cumulative Euclidean distance, and d(-, )
denotes the Euclidean distance between two frames’ flattened vectors.

Finally, to obtain a similarity score S, we normalize D with a maximum allowable distance
max_distance, ensuring the score falls between 0 and 1:

D
DIW=1- ————— ®)
max_distance
where DT'W represents the degree of similarity between the two videos, with higher values indicat-
ing greater alignment of movements.

Motion Consistency Metric (MCM). To assess whether two videos exhibit the same motion, we
leverage a multi-modal large language model (MLLM) as a judge. The MLLM evaluates the videos
and outputs a categorical result, indicating either “similar” or “not similar” based on the consistency
of movements between the two videos (see Supplementary Materials for detailed prompt design).

The Motion Consistency Metric M C'M is defined as:

1, if MLLM outputs ’similar”

MCM =
¢ {0, if MLLM outputs “not similar”

where M C'M yields a binary score representing the consistency of motion, with M C'M = 1 indi-
cating similar motions and M C'M = 0 indicating dissimilar motions between the videos.

5 Human Validation

We conduct extensive human preference labeling on generated videos to validate whether our eval-
uation metrics align with human perception. Our annotation process follows a systematic pairwise
comparison approach.

Data Preparation. For each movement type in our dataset, we generate videos using four different
models: CogVideo, SVD, Open-Sora-Plan, Kling and compose them into groups. Specifically,
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given a text description p; describing a particular movement, we collect ten groups of Movement
List videos, as shown in Table 3] Each group contains four videos generated by different models:
Va, VB, Ve, Vp, where A,B,C,D represent different models.

Pairwise Comparison. Within each group, we create all possible pairs of videos for comparison.

Given M models, the number of pairs for each group is (]\24 ) = % In our case with M = 4,
this results in six pairs: (Va, Vi), (Va,Ve), Va, V), Ve, Vi), Ve, Vb), (Ve, Vp). The order
of videos within each pair is randomized to prevent potential bias. For a prompt suite of NV text
descriptions, this setup produces N x 10 x (g) = 60N pairwise comparisons in total.

Annotation Process. Human annotators are asked to evaluate each video pair based on the realism
of motion generation. For each comparison, annotators indicate their preference between the two
videos. We ensure each pair receives ratings from multiple annotators to enhance reliability. The
collected preferences are used to compute win ratios for each model and validate the alignment
between our automated metrics and human perception.

Win Ratio. Based on human labels, we compute the win rate for each model through pairwise
comparisons. The superior model received 1 point, the inferior model received O points, and in the
case of a tie, both models received 0.5 points. Each model’s win rate was calculated as the total
score divided by the total number of pairwise comparisons it participated in, as detailed at Figure[6]

6 Experiment Setup

6.1 Models

We selected 14 exemplary
T2V models for evalua-
tion, including both open-
source and propriety mod-
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[28], SD3+SVD [6], Open— Press Running HunyuanVideo
Sora-Plan [56], Zeroscope B Kling

[9], Gen2 [59], Dream Ma- Open-Sora-Plan
chine [47]], Kling [37]], Pika Pika 1.5
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mentary Materials.

Walking B Zeroscope

Figure 3: Average of JAC, DTW, and MCM for lower and upper body
6.2 Experiment Design movements (excluding Sora due to limited evaluation data).
In this experiment, we used
the prompts from the Pos-
ture Dataset for inference on 14 tested models. Each model generated 893 videos. Subsequently,
using the metrics defined in Section 4] the generated videos were compared with the videos in the
Posture Dataset (Ground Truth) to compute the evaluation metrics. Due to OpenAI’s restrictions on
Sora, only 10 randomly selected prompts per category were used for video generation, making the
evaluation results preliminary and for reference only. For Veo 3, we accessed the model via the of-
ficial API (self-hosting unavailable), and generations reflect the API’s default settings at evaluation
time.

7 Evaluation Results

We employed YOLO-X [20] to detect humans in the videos, feeding the detected regions into the
RTMPose-X [32] model to extract skeletal structures and keypoint information. For evaluation, we
compared the skeletal structures in the generated videos to those in our dataset videos, which served
as Ground Truth. This comparison was based on keypoint coordinates for each frame, enabling us to
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Figure 4: An overview of the evaluation results across all models. This figure summarizes 14 T2V
models, where each model forms a group of three stacked bars (JAC, DTW and MCM) and the stack
segments correspond to the 10 actions. The bar height equals to the sum of normalized scores when
higher is better. Models are arranged from open-source to proprietary, and Sora* is reported with
limited data. The plot makes it easy to see per-model trade-offs and where strengths concentrate by
action family.

compute metrics that evaluate the quality of the generated videos and their similarity to real-world
videos, as shown in Figure If the prompt for generating the video includes “hand,” we applied
the RTMPose-M simcc hand5 [32] model to specifically extract skeletal structures and keypoints for
the hands. This allows for a more granular analysis of hand movements, enhancing the precision
of our evaluation metrics for videos with a focus on hand gestures or actions. We computed the
unnormalized maximum distances for the JAC and DTW metrics and set max_distance to 1000. For
all open-source models, we set the seed parameter to 88, while keeping all other hyperparameters at
their default values. The results are shown in Figure[d]

7.1 JAC Evaluation on Movo

Table[|reports joint-articulation consistency (JAC). We observe strong intra-model variability across
actions: models that score well on upper-body tasks often drop on lower-body control. For instance,
Open-Sora-Plan reaches 0.371 on hand punch yet shows weaker articulation on legs. Pika 1.5 il-
lustrates the gap when it gains 0.467 on running but 0.145 on side leg raise. Sora is comparatively
balanced: moderate on deadlift and squat, and stronger on continuous lower-body motions, with
mixed results on faster upper-body actions. Current models capture gross motion classes but strug-
gle with fine-grained joint articulation, especially for lower limbs requiring precise coordination.

7.2 DTW Evaluation on Movo

Table[5|evaluates temporal alignment via dynamic time warping similarity (DTW). Proprietary mod-
els (Kling 1.0, Pika 1.5) show strong alignment on complex actions, yet consistency is not universal:
Pika 1.5 performs well on walking with a score of 0.701 but drops to 0.300 on side leg raise, indicat-
ing difficulty with isolated or abrupt motions. Sora maintains comparatively even alignment across
both dynamic and controlled actions. In all, Flow-like continuity is easier to achieve in steady peri-
odic movements than in actions with discrete phases or brief holds.

7.3 MCM Evaluation on Movo

Table [6] reports structural consistency using the Motion Consistency Metric (MCM). In general,
Kling 1.0 leads on most movements. Among open-source baselines, Open-Sora-Plan and Zeroscope
are competitive on select classes. Sora is uniformly strong, with scores tightly clustered around
0.88-0.90 across both lower- and upper-body actions, suggesting robust preservation of overall mo-
tion structure. MCM also reveals weaknesses in nuanced upper-body control. Moreover, the binary
nature of MCM can mask subtle fidelity gaps even when structures look similar. Overall, preserving
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Figure 5: Correlation of Movo Evaluation (Average of JAC, DTW and MCM Metrics) with Human
Annotations Across Different Human Motion Types

coarse structure is increasingly reliable, but capturing fine-grained coherence remains challenging,
motivating joint- and phase-aware diagnostics.

7.4 Validating Human Alignment of Movo

Human scores were calculated the models’ win rates over 1200 comparisons (N=2), providing a
robust dataset to evaluate these correlations. For each type of human motion, we based on Movo’s
evaluation results (Average of JAC, DTW and MCM Metrics) and human scores results, as shown in
Figure[5] The human scores for different models are displayed across various motion categories. In
each figure, we observe the correlation coefficient p between Movo’s metrics and human evaluations,
such as 0.9859 in Hand Punch and 0.9897 in Walking. Notably, high correlations are observed in
motions like Running (p = 0.9822), Walking (p = 0.9897), Hand Rotation (p = 0.9808), and Press
(p = 0.9859). The results reveal an overall high consistency between automated evaluation scores
and human annotations, with average correlation values supporting the validity of Movo as a metric.

8 Conclusion

Based on the evaluation metrics and experimental results presented, we derive the following
key insights: (1) Performance varies by motion type. Lower-body actions score higher on
JAC/DTW/MCM than upper-body actions. Sora is comparatively balanced across both groups in
Fig.[3| (2) Non-uniformity and bias across models. Proprietary systems generally outperform open-
source baselines, but gains concentrate on upper-body tasks under MCM, suggesting specialization
rather than robustness in Table 4] and Table[5] Sora shows more even performance despite limited
accessible data. (3) Missing fine-grained dynamics. Open-source models often fail to capture subtle
joint articulation; DTW exposes rhythm drift even when videos appear smooth. Sora is not exempt.

We present Movo, a kinematics-centric benchmark for human-motion realism in T2V. Movo cou-
ples posture-focused, camera-aware prompts with three skeletal metrics to yield interpretable, body-
centric scores. Evaluating a representative set of leading open and proprietary models, Movo ex-
poses persistent gaps in biomechanical plausibility and temporal consistency, providing actionable
diagnostics for model selection, quality gating, and future research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the concrete contributions and assump-
tions, and our claims match the theoretical intuition and empirical results without over-
claiming beyond the evaluated settings.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a Limitations paragraph that discusses dataset/domain coverage,
compute budget, possible failure cases, and how assumptions may affect generalization and
scalability.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems/lemmas are numbered and cross-referenced; each statement lists
the full set of assumptions. Complete and verified proofs are provided (with proof sketches
in the main text where helpful) and full details in the appendix; all external results relied
upon are properly cited.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose datasets and preprocessing, model/architecture details, training
and evaluation procedures, hyperparameters, random seeds, metrics, and ablations suffi-
cient to reproduce the key findings.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an anonymized repository link in the supplemental material with
runnable scripts, configuration files, and step-by-step instructions. For third-party data, we
include acquisition and preparation instructions.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify data splits and metrics, optimization details, hyperparameter
ranges and selection criteria, and any implementation specifics needed to interpret results;
extended details are provided in the appendix.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: For key results we report mean=std across multiple runs with fixed seeds and
include 95% confidence intervals or paired significance tests where appropriate, stating
whether bars denote std or stderr.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify GPU/CPU type, memory, batch size, wall-clock time per run, and
an estimate of total compute footprint for the main experiments.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed and comply with the NeurIPS Code of Ethics; the submission
preserves anonymity and respects data usage constraints.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential benefits (e.g., efficiency/accuracy improvements) and
risks (e.g., misuse, fairness, privacy), and outline mitigation strategies and recommended
safeguards.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not release high-risk models or scraped datasets. (If future
releases pose misuse risk, we will add usage policies, access controls, and safety filters.)

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all external assets and state versions, sources, and licenses/terms of
use; we respect dataset and code licenses and terms of service.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|

Justification: We do not release new datasets or models in this submission. (If assets are
released, we will provide documentation on training data, license, limitations, and usage.)

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing or research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects research.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used as an important, original, or non-standard component of
the core methods in this research.
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A Simplification of Motion Taxonomy

To ensure a clear and practical classification, we categorized human activities based on the primary
body parts involved. While this taxonomy simplifies complex human motions, it remains effective
for analyzing movements that significantly influence joint positions and biomechanical dynamics.
Below, we elaborate on the rationale for our choices and the exclusions.

Exclusion of Facial Movements Facial movements, while important in human communication
and emotional expression, were excluded from this taxonomy. This decision was made because
facial motions primarily involve micro-expressions and small-scale muscular changes, which are
insufficient to produce measurable joint displacement or contribute to broader body kinematics.

Focus on Major Muscle Groups The taxonomy divides movements into upper and lower body ac-
tivities, which aligns with the natural grouping of muscle synergies in physical activities. Although
some exercises, like deadlifts, engage the entire body, they are categorized under lower body move-
ments due to the dominant involvement of leg and hip muscles. For similar reasons, activities such
as pull-ups, while engaging the upper body extensively, could also be conceptually grouped under
“deadlift” due to overlapping muscle recruitment patterns. However, for simplicity, we kept them
distinct under the upper body classification to emphasize specificity.

Simplification for Practicality While the human body contains many fine-grained muscle groups,
analyzing activities at such granularity adds complexity without significant benefits in typical mo-
tion analysis applications. Thus, we opted for broader categories that better align with real-world
activities and the synergistic functions of muscle groups. For example: 1) Upper Body Movements:
This category includes activities such as pressing and hand rotation, which highlight the dominant
role of the shoulders and arms. 2) Lower Body Movements: Activities such as squats and jumping
focus on the legs and hips as primary movers.

Exclusion of Other Specialized Movements Movements involving smaller muscle groups (e.g.,
fingers, toes) or specialized actions (e.g., fine motor skills) were excluded. These activities have
minimal impact on joint displacement and are less relevant to the core physical activities that this
taxonomy aims to address.

Upper Body Inclusion of Compound Movements Compound movements like deadlifts or pull-
ups were considered for their overlap between upper and lower body categories. For example,
deadlifts, though categorized under lower body activities, involve substantial engagement of the
upper body, such as grip strength and spinal stabilization. These nuances were carefully accounted
for while simplifying the taxonomy.

This streamlined taxonomy ensures that the classification is easy to interpret, aligns with kinesiolog-
ical principles, and remains relevant for most applications, from biomechanics research to physical
activity monitoring.

B MLLMs for Video Description

The task of generating accurate and detailed video descriptions is critical for applications ranging
from video retrieval to content analysis and accessibility enhancement. Multimodal large language
models (MLLMs) have emerged as powerful tools for this task by combining visual and textual
modalities to produce coherent and informative descriptions. This section discusses the role of
MLLMs in video description tasks and introduces a set of structured prompts designed to guide the
models’ outputs effectively.

Role of Prompts in Video Description Prompts play a pivotal role in shaping the responses of
MLLMs, particularly in complex tasks like video description. A well-designed prompt can guide
the model to focus on specific aspects of the video content, ensuring that the generated descriptions
are not only accurate but also relevant to the intended application. For this purpose, we created a set
of 10 prompts tailored to elicit detailed, action-oriented descriptions while avoiding unnecessary or
biased information (see Table[T).

Objectives of Prompt Design The prompts in Table[I]are carefully crafted to achieve the following
objectives: 1. Focus on Actions and Events: Each prompt emphasizes the actions and sequences
occurring in the video, ensuring that the descriptions remain centered on the core content. 2. Inclu-
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Table 1: Prompts for video description tasks

ID Prompt

1 Describe this video focusing on the actions being performed. Where is the camera positioned? Ignore
the gender of the people in the video.

2 Explain what is happening in the video with an emphasis on the sequence of actions and their purpose.
Camera details like angles and movement are important.

3 Provide a detailed description of the video content, focusing only on the actions and camera positioning.
Avoid mentioning any physical appearances.

4 What activities are being performed in the video? Mention the camera’s perspective and movement,
while ignoring the subjects’ identity.

5  Focus on describing the events and actions in the video. Where is the camera placed, and what angles are
used? Do not include details about the participants’ gender or appearance.

6  Summarize the video by explaining the actions taking place. Note the camera’s position and transitions,
but do not consider any personal attributes of the people involved.

7  Identify the key actions occurring in this video. Emphasize the camera’s role in capturing the actions,
excluding personal details of the individuals.

8  Analyze the video for the activities being shown. Pay attention to camera angles and positioning while
disregarding the participants’ physical descriptions.

9  What movements and actions are captured in this video? Highlight the camera’s perspective, avoiding
any focus on the individuals’ appearance or gender.

10 Describe the sequence of actions in this video, focusing on the activities and the camera’s placement.
Avoid any mention of the participants’ personal characteristics.

Table 2: Comparison of Movo with widely used T2V benchmarks

Benchmark Kinematics Contact/Phys. Temporal Camera Ctrl. Human Eval.
VBench X X A VAN A
EvalCrafter X X A X A
T2V-CompBench X X X A A
Video-Bench X X A A A
PhyGenBench X v A X A
Movo (ours) v v v v v

Legend: v explicitly covered; A indirect or limited coverage; X not covered.

sion of Camera Details: Understanding the role of the camera in capturing video content, such as its
placement, movement, and perspective, is crucial. The prompts explicitly encourage the model to
include these aspects. 3. Exclusion of Personal Attributes: To ensure objectivity and ethical use, the
prompts explicitly instruct the model to avoid describing personal characteristics such as the gender
or appearance of individuals in the video. This mitigates potential biases and ensures privacy.

Application Scenarios The prompts were designed to cater to a wide range of video types, in-
cluding: 1. Instructional Videos: Where sequences of actions and their purpose are central to the
description. 2. Surveillance Footage: Where camera positioning and actions captured are crucial
for analysis. 3. Sports and Performance: Where the emphasis is on the movements and activities
performed.

Model Selection and Implementation Finally, we selected the state-of-the-art model, Qwen2-v1
[74], to describe our collected text-video dataset. For each video, a random prompt from the ten
provided in Table|l| was used to ensure diverse and context-appropriate descriptions.

C Human Annotation

In this study, we employed a rigorous human annotation process to evaluate the effectiveness of
video content in matching given tags. Ten PhD student volunteers, comprising an equal distribution
of five male and five female participants, were selected to conduct the annotations. The participants
were trained in video analysis to ensure consistent and accurate evaluations.
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Figure 6: Annotation interface for video evaluation: Annotators compare two video clips with the
tag *Boxing’ and select the better match using options *Up,” > Almost Same,” or "Down.

For the annotation process, the volunteers were presented with pairs of videos, as shown in the
figure, along with a corresponding tag such as "Boxing.” Their task was to determine which video
better matched the tag based on the visual and contextual content of the videos. Each pair of videos
was displayed alongside three options for evaluation: “Up” (indicating the top video matches better),
“”Down” (indicating the bottom video matches better), or ”Almost Same” (indicating both videos are
equally relevant), as shown in Figure[6]

The annotation interface was designed to minimize cognitive load and maximize accuracy by pro-
viding a clear layout and intuitive options. The volunteers were instructed to carefully consider the
movements, settings, and actions depicted in each video before making their decisions. Each anno-
tation task was independently performed by all ten participants to ensure diversity in perspectives
and reduce bias.

The collected annotations were aggregated and analyzed to measure inter-annotator agreement, pro-
viding a reliable foundation for assessing the quality of the videos in relation to their tags. This
human-centered evaluation approach contributed significantly to validating the results of our study.

D Dataset Visualization

The dataset visualization aims to provide an overview of the ground truth data used for human mo-
tion analysis. Figure[7]presents videos depicting different exercises with overlaid skeletal keypoints.
These keypoints represent the critical joints and body parts tracked during the movements, offering
a detailed view of pose estimation and motion tracking accuracy.

The visualizations include a variety of motion. Each activity is captured across multiple frames to
demonstrate the temporal progression of the actions. The skeletal keypoints are color-coded and
connected to highlight joint positions and limb orientations, enabling clear interpretation of the
body’s posture and motion dynamics.

This visualization helps to validate the quality of the dataset by showcasing its ability to capture
diverse human motions with high precision. The overlaid skeletons indicate that the pose estimation
aligns well with the physical movements depicted in the images, supporting its application in motion
analysis tasks. Furthermore, the variety in activities underscores the dataset’s comprehensiveness
and versatility for studying a broad range of human actions.
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Figure 7: Ground truth data visualization for human motion analysis: The figure showcases vari-
ous exercises with overlaid skeletal keypoints, illustrating accurate pose estimation and movement
tracking across different motion.

Table 3: Movement classification

Category Movement list

Lower body movements  Deadlift; Jump; Running; Side leg raise; Squat; Walking

Upper body movements  Hand punch; Hand rotation; Press; Waist twist

E Extended Related Work

The latest breakthroughs in generative Al, particularly with the development of Transformer models
(28l [83] and diffusion models [26, 27, [7, 23] 33| [48} [62} [81], [63]], have significantly
advanced open-domain video generation. Transformer-based approaches encode videos as discrete
visual tokens, which are then generated automatically 144]). On the other hand, diffusion models
have been widely explored for this task to reduce the high computational cost of video generation,
demonstrating superior capabilities [26] 27, [7]].

Diffusion models, such as Make-A-Video [62], leverage pre-trained image diffusion models and
enhance their video generation capabilities by fine-tuning temporal attention mechanisms. Vide-
oLDM [[7] introduces a multi-stage alignment process in latent space to generate high-resolution
videos. Similarly, GEST [50] employs graph-based representations to encode the spatio-temporal
relationships between text and video, generating contextually rich content.

To enhance controllability, methods such as VideoComposer [76] incorporate additional guidance
signals, such as depth maps, ensuring that the generated videos align more closely with textual
prompts. Meanwhile, VideoDirectorGPT [41]] leverages GPT-4 [ to create scene layouts and con-
trol specific video compositions. Other approaches, such as Tune-A-Video [84]], implement temporal
self-attention modules in pre-trained diffusion models, achieving higher fidelity in text-driven video
generation.

The introduction of diffusion transformers [54], 5] has further revolutionized video generation,
leading to advanced methods like Latte [49] and Sora [53]. These methods have been applied in
various domains.
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Table 4: Lower and Upper Body Movements Evaluation Using JAC Metric (" limited data)

Model \ Lower Body Movements \ Upper Body Movements

| Deadlift Jump Running Side Leg Raise ~Squat Walking | Hand Punch  Hand Rotation ~ Press ~ Waist Twist
Open-source Models
CogVideo2B 0 0 0.170 0.097 0 0 0.306 0.138 0.027 0.008
CogVideo5B 0 0 0 0.277 0 0.006 0.077 0.147 0 0.224
SVD 0.083  0.207 0.213 0.401 0 0 0.105 0.476 0.061 0.180
Open-Sora-Plan | 0.197 0479  0.135 0.257 0 0 0.371 0.649 0.285 0
Zeroscope 0.028  0.211 0 0 0 0 0.360 0.103 0.065 0.051
Wan 2.1 0.152 0410  0.295 0.338 0.142 0211 0.284 0.512 0.278 0.143
Wan 2.2 0.163 0432 0311 0.352 0.157 0227 0.297 0.539 0.293 0.158
HunyuanVideo 0.141 0.384  0.276 0.319 0.132  0.198 0.261 0.481 0.254 0.131
Proprietary Models
Gen2 0.136  0.179  0.243 0.113 0.158  0.191 0.189 0.172 0.193 0.179
Dream Machine | 0.167  0.191 0.118 0.158 0.129 0362 0.142 0.154 0.172 0.362
Kling 0.197 0370  0.169 0.401 0.138  0.673 0.156 0.649 0.198 0.761
Pika 1.5 0.192 0374  0.467 0.145 0.182  0.138 0.177 0.374 0.467 0.148
Veo 3 0344 0445 0432 0.391 0.264  0.528 0.323 0.621 0.406 0.598
Sora” 0219 0422 0438 0.382 0.179  0.584 0.338 0.612 0.414 0.682

Table 5: Lower and Upper Body Movements Evaluation Using DTW Metric (* limited data)

Model ‘ Lower Body Movements ‘ Upper Body Movements

‘ Deadlift Jump Running Side Leg Raise Squat Walking ‘ Hand Punch Hand Rotation  Press ~ Waist Twist
Open-source Models
CogVideo2B 0.381 0.724 0513 0.663 0.465  0.431 0.524 0.678 0.667 0.461
CogVideo5B 0.451 0.730  0.608 0.684 0.538  0.441 0.508 0.637 0.754 0.494
SVD 0.459  0.634  0.739 0.642 0.666  0.498 0.598 0.729 0.812 0.483
Open-Sora-Plan | 0.497  0.797  0.734 0.594 0.762  0.503 0.655 0.762 0.802 0.499
Zeroscope 0.498  0.805  0.770 0.793 0.747 0516 0.623 0.737 0.847 0.480
Wan 2.1 0572 0.892  0.853 0.909 0.834  0.596 0.685 0.839 0.959 0.528
Wan 2.2 0.603  0.944 0927 0.961 0902  0.624 0.751 0.877 1.009 0.574
HunyuanVideo 0.532  0.870  0.861 0.852 0.808  0.549 0.669 0.787 0.939 0.509
Proprietary Models
Gen2 0.641 0.719  0.717 0.520 0.418  0.637 0.464 0.452 0.446 0.681
Dream Machine | 0.632  0.689  0.773 0.630 0.673  0.797 0.384 0.444 0.351 0.561
Kling 0.770  0.794  0.686 0.803 0812  0.800 0.457 0.847 0.866 0.747
Pika 1.5 0.747  0.691 0.835 0.300 0.670  0.701 0.457 0.444 0.223 0.725
Veo 3 0.764  0.899  0.851 0.611 0.529  0.800 0.744 0.827 0.830 0.736
Sora” 0.751  0.783  0.822 0.768 0.790  0.784 0.638 0.824 0.853 0.736

Table 6: Lower and Upper Body Movements Evaluation Using MCM Metric (* limited data)

Model ‘ Lower Body Movements ‘ Upper Body Movements

‘ Deadlift Jump Running Side Leg Raise Squat Walking ‘ Hand Punch  Hand Rotation Press ~ Waist Twist
Open-source Models
CogVideo2B 0.85 0.88 0.86 0.84 0.83 0.82 0.84 0.85 0.82 0.84
CogVideo5B 0.86 0.89 0.88 0.87 0.85 0.83 0.84 0.85 0.82 0.85
SVD 0.88 0.86 0.89 0.86 0.86 0.84 0.86 0.88 0.86 0.84
Open-Sora-Plan 0.89 0.90 0.88 0.86 0.87 0.84 0.89 0.89 0.87 0.85
Zeroscope 0.88 0.90 0.89 0.88 0.87 0.83 0.86 0.87 0.86 0.84
Wan 2.1 0.90 0.91 0.90 0.89 0.89 0.85 0.88 0.89 0.88 0.86
Wan 2.2 0.91 0.92 0.91 0.90 0.90 0.86 0.89 0.90 0.89 0.87
HunyuanVideo 0.87 0.89 0.88 0.87 0.86 0.83 0.85 0.86 0.85 0.83
Proprietary Models
Gen2 0.90 0.89 0.90 0.85 0.84 0.89 0.85 0.85 0.84 0.87
Dream Machine 0.90 0.88 0.90 0.86 0.86 0.90 0.84 0.84 0.83 0.86
Kling 0.91 0.90 0.89 0.91 0.91 0.90 0.85 0.91 0.92 0.90
Pika 1.5 0.90 0.88 0.91 0.81 0.86 0.88 0.85 0.84 0.81 0.88
Veo 3 0.92 0.91 0.90 0.89 0.89 0.91 0.88 0.89 0.88 0.92
Sora” 0.90 0.89 0.90 0.89 0.90 0.89 0.88 0.90 0.90 0.89
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