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Abstract
Data-driven machine learning approaches are be-
ing increasingly used to solve partial differential
equations (PDEs). They have shown striking suc-
cesses when training an operator, which takes as
input a PDE in some family, and outputs its so-
lution. However, the architectural design space,
especially given structural knowledge of the PDE
family of interest, is still poorly understood. We
seek to remedy this gap by studying the bene-
fits of weight-tied neural network architectures
for steady-state PDEs. To achieve this, we first
demonstrate that the solution of most steady-state
PDEs can be expressed as a fixed point of a non-
linear operator. Motivated by this observation, we
propose FNO-DEQ, a deep equilibrium variant
of the FNO architecture that directly solves for
the solution of a steady-state PDE as the infinite-
depth fixed point of an implicit operator layer
using a black-box root solver and differentiates
analytically through this fixed point resulting in
O(1) training memory. Our experiments indicate
that FNO-DEQ-based architectures outperform
FNO-based baselines with 4× the number of pa-
rameters in predicting the solution to steady-state
PDEs such as Darcy Flow and steady-state incom-
pressible Navier-Stokes. Finally, we show FNO-
DEQ is more robust when trained with datasets
with more noisy observations than the FNO-based
baselines, demonstrating the benefits of using ap-
propriate inductive biases in architectural design
for different neural network based PDE solvers.
Further, we show a universal approximation result
that demonstrates that FNO-DEQ can approxi-
mate the solution to any steady-state PDE that
can be written as a fixed point equation.
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1. Introduction
Partial differential equations (PDEs) are used to model a
wide range of processes in science and engineering. They
define a relationship of (unknown) function and its par-
tial derivatives. Most PDEs do not admit a closed form
solution, and are solved using a variety of classical numeri-
cal methods such as finite element (LeVeque, 2007), finite
volume (Moukalled et al., 2016), and spectral methods (Ko-
priva, 2009; Boyd, 2001). These methods are often very
computationally expensive, both as the ambient dimension
grows, and as the desired accuracy increases.

This has motivated a rapidly growing area of research in
data-driven approaches to PDE solving. One promising
approach involves learning neural solution operators (Chen
and Chen, 1995; Lu et al., 2019; Bhattacharya et al., 2021;
Li et al., 2020b), which take in the coefficients of a PDE
in some family and output its solution—and are trained by
examples of coefficient-solution pairs.

While several architectures for this task have been proposed,
the design space—in particular taking into account structural
properties of the PDEs the operator is trained on—is still
largely unexplored. Most present architectures are based on
“neuralizing” a classical numerical method. For instance,
(Li et al., 2020a) take inspiration from spectral methods,
and introduce FNO: a trained composition of (parametrized)
kernels in Fourier space. (Brandstetter et al., 2022) instead
consider finite-difference methods and generalize them into
(learnable) graph neural networks using message-passing.

Our work we focus on families of PDEs that describe the
steady-state of a system (that is, there is no time variable).
Namely, we consider equations of the form:

L(a(x), u(x)) = f(x), ∀x ∈ Ω, (1)

where u : Ω → Rdu , a : Ω → Rda and f : Ω → Rdf are
functions defined over the domain Ω, and L is a (possibly
non-linear) operator. This family includes many natural
PDE families like Poisson equations, electrostatic equations,
and steady-state Navier-Stokes.

We take inspiration from classical numerical approaches of
fast-converging Newton-like iterative schemes (LeVeque,
2007; Faragó and Karátson, 2002) to solve steady-state
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PDEs, as well as recent theoretical works for elliptic (linear
and non-linear PDEs) (Marwah et al., 2021; Chen et al.,
2021; Marwah et al., 2022) to hypothesize that very deep,
but heavily weight-tied architectures would provide a useful
architectural design choice for steady-state PDEs.

In this paper, we show that for steady state equations it
is often more beneficial to weight-tie an existing neural
operator, as opposed to making the model deeper—thus
increasing its size. To this end, we introduce FNO-DEQ, a
new architecture for solving steady-state PDEs. FNO-DEQ
is a deep equilibrium model (DEQ) that utilizes weight-tied
FNO layers along with implicit differentiation and root-
solvers to approximate the solution of a steady-state PDE.
DEQs are a perfect match to the desiderata laid out above:
they can be viewed alternately as directly parameterizing
the fixed points of some iterative process; or by explicitly
expanding some iterative fixed point solver like Newton’s or
Broyden’s method as an infinitely deep, weight-tied model.

Such an architecture has a distinct computational advantage:
implicit layer models effectively backpropagate through the
infinite-depth network while using only constant memory
(equivalent to a single layer’s activations). Empirically, we
show that for steady-state PDEs, weight-tied and DEQ based
models perform better than baselines with 4× the number
of parameters, and are robust to training data noise. In
summary, we make the following contributions:

• We show the benefits of weight-tying as an effective
architectural choice for neural operators when applied
to steady-state PDEs.

• We introduce FNO-DEQ, a FNO based deep equilib-
rium model (DEQ) that uses implicit layers and root
solving to approximate the solution of a steady-state
PDE. We further attest to the empirical performance
of FNO-DEQ by showing that it performs as well as
FNO and its variants with 4× number of parameters.

• We show that FNO-DEQ and weight tied architectures
are more robust to both input and observation noise,
thus showing that weight-tying is a useful inductive
bias for architectural design for steady-state PDEs.

• By leveraging the universal approximation results of
FNO (Kovachki et al., 2021a) we show that FNO-DEQ
based architectures can universally approximate the
solution operator for a wide variety of steady-state
PDE families.

• Finally, we create a dataset of pairs of steady-state in-
compressible Navier-Stokes equations with different
forcing functions and viscosities, along with their so-
lutions, which we will make public as a community
benchmark for steady-state PDE solvers.

2. Related Work
Neural network based approaches for solving PDEs can
broadly be divided into two categories. First are hybrid
solvers (Bar-Sinai et al., 2019; Kochkov et al., 2021; Hsieh
et al., 2019) which use neural network in conjunction with
existing numerical solvers. The main motivation is to not
only improve upon the existing solvers, but also replace
the more computational inefficient parts of the solver from
a learned counter part. Second set of approaches are full
machine learning based approaches which aims at utiliz-
ing the universal approximation capabilities of neural net-
works (Hornik et al., 1989) to directly learn the dynamics
of the physical system from observations.

Hybrid solvers like Bar-Sinai et al. (2019) use neural net-
works to derive the discretizations for a given PDE, thus
enabling the use of a low-resolution grid in the numeri-
cal solver. Furthermore, Kochkov et al. (2021) use neural
networks to interpolate differential operators between grid
points of a low-resolution grid with high accuracy. This
work specifically focuses on solving Navier-Stokes equa-
tions, their method is more accurate than numerical tech-
niques like Direct Numerical Simulation (DNS) with a low-
resolution grid, and is also 80× more faster. Brandstetter
et al. (2022) introduced a message passing based hybrid
scheme to train a hybrid solver and also propose a loss term
which helps improve the stability of hybrid solvers for time
dependent PDEs. However, most of these methods are equa-
tion specific, and are not easily transferable to other PDEs
from the same family.

The neural network based approach that has recently gar-
nered the most interest by the community is that of the
operator learning framework (Chen and Chen, 1995; Ko-
vachki et al., 2021b; Lu et al., 2019; Li et al., 2020a; Bhat-
tacharya et al., 2021), which uses a neural network to ap-
proximate and infinite dimensional operator between two
Banach spaces, thus learning an entire family of PDEs at
once. Lu et al. (2019) introduces DeepONet, which uses
two deep neural networks, referred to as the branch net
and trunk net, which are trained concurrently to learn from
data. Another line of operator learning framework is that
of neural operators (Kovachki et al., 2021b). These neu-
ral operators can be modeled using graph neural networks,
and the most popular amongst them being Fourier neural
operators (FNO) (Li et al., 2020a) which uses convolution
based integral kernels that are evaluated in the Fourier space.
Furthermore, (Tran et al., 2021) introduces architectural im-
provements that enables one to train deeper FNO networks,
thus increasing their size and improving their the perfor-
mance on a variety of (time-dependent) PDEs. Theoretical
results pertaining to the neural operators mostly include
universal approximation results (Kovachki et al., 2021a;
Lanthaler et al., 2022) which show that architectures like
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FNO and DeepONet can indeed approximate the infinite
dimension operators.

In this work, we focus on steady-state equations and show
the benefits of weight-tying in improving the performance
of FNO for steady-state equations. We show that instead of
making a network deeper and hence increasing the size of
a network, weight-tied FNO architectures can outperform
FNO and its variants 4× its size. We further introduce FNO-
DEQ, a deep equilibrium based architecture to simulate
an infinitely deep weight-tied network (by solving for a
fixed point) with O(1) training memory. Our work takes
inspiration from recent theoretical works like (Marwah et al.,
2021; Chen et al., 2021; Marwah et al., 2022) which derive
parametric rates for some-steady state equations, and in fact
prove that neural networks can approximate solutions to
some families of PDEs with just poly(d) parameters, thus
evading the curse of dimensionality.

3. Preliminaries
We now introduce some key concepts and notation.

Definition 3.1 (L2(Ω;Rd)). For a domain Ω we denote
by L2(Ω;Rd) the space of square integrable functions g :
Ω → Rd such that ∥g∥L2(Ω) < ∞, where ∥g∥L2(Ω) =(∫

Ω
∥g(x)∥2ℓ2dx

)1/2
.

3.1. Neural Operators

Neural operators (Lu et al., 2019; Li et al., 2020a; Bhat-
tacharya et al., 2021; Patel et al., 2021; Kovachki et al.,
2023) are a deep learning approach to learning solution op-
erators which map a PDE to its solution. Fourier Neural
Operator (FNO) (Li et al., 2020a) is a particularly successful
recent architecture parametrized as a sequence of kernel in-
tegral operator layers followed by non-linear activation func-
tions. Each kernel integral operator layer is a convolution-
based kernel function that is instantiated through a linear
transformation in Fourier domain, making it less sensitive to
the level of spatial discretization. Specifically, an L-layered
FNO Gθ : Rdu → Rdu with learnable parameters θ, is
defined as

Gθ := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ P (2)

where P : L2(Ω;Rdu) → L2(Rdv ;Rdv ) and Q :
L2(Rdv ;Rdv ) → L2(Rdv ;Rdu) are projection operators,
and Ll : L

2(Rdv ;Rdv ) → L2(Rdv ;Rdv ) for l ∈ [L] is the
lth FNO layer defined as,

Ll (vl) = σ (Wlvl + bl +Kl(vl))) . (3)

Here σ is a non-linear activation function, Wl, bl are the
lth layer weight matrix and bias terms. Finally Kl is the
lth integral kernel operator which is calculated using the

Fourier transform as introduced in Li et al. (2020a) defined
as follows,

Kl(vl) = F−1 (Rl · (Fvl)) (x) ∀x ∈ Ω, (4)

where F and F−1 are the Fourier transform and the in-
verse Fourier transform, with Rl representing the learnable
weight-matrix in the Fourier domain. Therefore, ultimately,
the trainable parameters θ is a collection of all the weight
matrices and biases, i.e, θ := {Wl, bl, Rl, · · · ,W1, b1, R1}.

3.2. Equilibrium Models

Equilibrium models (Liao et al., 2018; Bai et al., 2019;
Revay et al., 2020; Winston and Kolter, 2020) compute
internal representations by solving for a fixed point in their
forward pass. Specifically, consider a deep feedforward
network with L layers :

z[i+1] = f
[i]
θ

(
z[i];x

)
for i = 0, ..., L− 1 (5)

where x ∈ Rnx is the input injection, z[i] ∈ Rnz is the
hidden state of ith layer with z[0] = 0, and f

[i]
θ : Rnx×nz 7→

Rnz is the feature transformation of ith layer, parametrized
by θ. Suppose the above model is weight-tied, i.e., f [i]

θ =
fθ,∀i, and limi→∞ fθ

(
z[i];x

)
exists and its value is z⋆.

Further, assume that for this z⋆, it holds that fθ (z⋆;x) = z⋆.
Then, equilibrium models can be interpreted as the infinite-
depth limit of the above network such that f∞

θ (z⋆;x) = z⋆

Under certain conditions1, and for certain classes of fθ2,
the output z⋆ of the above weight-tied network is a fixed
point. A simple way to solve for this fixed point is to
use fixed point iterations, i.e., repeatedly apply the update
z[t+1] = fθ(z

[t];x) some fixed number of times, and back-
propagate through the network to compute gradients. How-
ever, this can be computationally expensive. Deep equilib-
rium (DEQ) models (Bai et al., 2019) explicitly solve for
z⋆ through iterative root finding methods like Broyden’s
method (Broyden, 1965), Newton’s method, Anderson ac-
celeration (Anderson, 1965). DEQs use implicit function
theorem to directly differentiate through the fixed point z⋆

at equilibrium, thus requiring constant memory to backprop-
agate through an infinite-depth network:

∂z⋆

∂θ
=

(
I − ∂fθ(z

⋆;x)

∂z⋆

)−1
∂fθ(z

⋆;x)

∂θ
(6)

Computing the inverse of Jacobian can quickly become in-
tractable as we deal with high-dimensional feature maps.

1The fixed point can be reached if the dynamical system is
globally contractive. This is usually not true in practice for most
choices of fθ , and divergence is possible.

2Bai et al. (2019) state that fθ needs to be stable and con-
strained. In general, by Banach’s fixed point theorem, global
convergence is guaranteed if fθ is contractive over its input do-
main.
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One can replace the inverse-Jacobian term with an identity
matrix i.e., Jacobian-free (Fung et al., 2022) or an approxi-
mate inverse-Jacobian (Geng et al., 2021) without affecting
the final performance. There are alternate formulations of
DEQs (Winston and Kolter, 2020) that guarantee existence
of a unique equilibrium point. However, designing fθ for
these formulations can be challenging, and in this work we
use the formulation by Bai et al. (2019).

4. Problem setting
We first formally define the system of steady-state PDEs
that we will solve for:
Definition 4.1 (Steady-State PDE). Given a bounded open
set Ω ⊂ Rd, a steady-state PDE can be written in the fol-
lowing general form:

L(a(x), u(x)) = f(x), ∀x ∈ Ω (7)

Here L is a continuous operator, the function u ∈
L2

(
Ω;Rdu

)
is the unknown function that we wish to solve

for and a ∈ L2
(
Ω;Rda

)
collects all the coefficients describ-

ing the PDE, and f ∈ L2
(
Ω;Rdf

)
is a function independent

of u. We will, for concreteness, assume periodic boundary
conditions, i.e. ∀z ∈ Zd,∀x ∈ Ω we have u(x+ z) = u(x).
(Equivalently, Ω := Td = [0, 2π]d can be identified with
the torus.) 3 Finally, we will denote u⋆ : Ω → R as the
solution to the PDE.

Steady-state models a system at stationarity, i.e., when some
quantity of interest like temperature or velocity no longer
changes over time. Classical numerical solvers for these
PDEs include iterative methods like Newton updates or
conjugate gradient descent, typically with carefully chosen
preconditioning to ensure benign conditioning and fast con-
vergence. Furthermore, recent theoretical works (Marwah
et al., 2021; Chen et al., 2021; Marwah et al., 2022) show
that for many families of PDEs (e.g., steady-state elliptic
PDEs that admit a variational formulation), iterative algo-
rithms can be efficiently “neuralized”, that is, the iterative
algorithm can be represented by a compact neural network,
so long as the coefficients of the PDE are also representable
by a compact neural network. Moreover, the architectures
constructed in these works are heavily weight-tied.

We will operationalize these developments through the ad-
ditional observation that all these iterative schemes can
be viewed as algorithms to find a fixed point of a suit-
ably chosen operator. Namely, we can design an operator
G : L2(Ω;Rdu) × L2(Ω;Rdf ) → L2(Ω;Rdu) 4 such that
u⋆ = G(u⋆, f) and a lot of common (preconditioned) first

3This is for convenience of exposition, our methods can readily
be extended to other boundary conditions like Dirichet, Neumann
etc.

4We note that the choice of defining the operator with the

and second-order methods are natural ways to recover the
fixed points u⋆.

Before describing our architectures, we introduce two com-
ponents that we will repeatedly use.

Definition 4.2 (Projection and embedding layers). A projec-
tion and embedding layer, respectively P : L2(Ω;Rdu) ×
L2(Ω;Rdf ) → L2(Rdv ;Rdv ) × L2(Rdv ;Rdv ) and Q :
L2(Rdv ;Rdv )→ L2(Rdv ;Rdu), are defined as

P(v, f) =
(
σ
(
W

(1)
P v + b

(1)
P

)
, σ

(
W

(2)
P f + b

(2)
P

))
,

Q(v) = σ (WQv + bQ)

where W
(1)
P ∈ Rdu×dv ,W

(2)
P ∈ Rdf×dv ,WQ ∈ Rdv×du

and b
(1)
P , b

(2)
P ∈ Rdv , bQ ∈ Rdu .

Definition 4.3 (Input-injected FNO layer). An input-
injected FNO layer L : L2(Rdv ;Rdv ) × L2(Rdv ;Rdv ) →
L2(Rdv ;Rdv ) is defined as

L(v, g) := g + σ
(
Wv + b+ F−1(R(k) · (Fv)

)
. (8)

where W ∈ Rdv×dv , b ∈ Rdv and R(k) ∈ Rdv×dv for all
k ∈ [K] are learnable parameters.

Note the difference between the FNO layer specified above,
and the standard FNO layer Equation 3 is the extra input g
to the layer, which in our architecture will correspond to a
projection of (some or all) of the PDE coefficients. We also
note that this change to the FNO layer also enables us to
learn deeper FNO architectures, as shown in Section 5. With
this in mind, we can discuss the architectures we propose.

Weight-tied architecture I: Weight-tied FNO The first
architecture we consider is a weight-tied version of FNO
(introduced in Section 3), in which we repeatedly apply
(M times) the same transformation in each layer. More
precisely, we have:

Definition 4.4 (FNO Weight-Tied). We define a M times
weight-tied neural operator GM

θ as,

GM
θ = Q ◦ BL ◦ BL ◦ · · · ◦ BL︸ ︷︷ ︸

M times

◦P

such that: P,Q are projection and embedding layers as in
Definition 4.2 an BL : L2(Rdv ;Rdv ) × L2(Rdv ;Rdv ) →
L2(Rdv ;Rdv ) is an L-layer FNO block, i.e, BL = LL ◦
LL−1 ◦LL−2 ◦L1 where for all l ∈ [L], Ll(·,P(f)) 5 is an
input-injected FNO block as in Definition 4.3.

forcing function f is made for purely expository purposes the
operator G can be defined as G : L2(Ω;Rdu) × L2(Ω;Rda) →
L2(Ω;Rdu) as well.

5We are abusing the notation somewhat and denoting by P(f)
the second coordinate of P , which only depends on f .
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Weight-tied architecture II: FNO-DEQ In cases where
we believe a weight-tied GM

θ converges to some fixed point
as M →∞, unrolling GM

θ for a large M requires a lot of
hardware memory for training: training the model requires
one to store intermediate hidden units for each weight-tied
layer for backpropagation, resulting in a O(M) increase in
the amount of memory required.

To this end, we use Deep Equilibrium models (DEQs) which
enables us to implicitly train Gθ := limM→∞ GM

θ by di-
rectly solving for the fixed point by leveraging black-box
root finding algorithms like quasi-Newton methods, (Broy-
den, 1965; Anderson, 1965). Therefore we can think of this
approach as an infinite-depth (or infinitely unrolled) weight-
tied network. We refer to this architecture as FNO-DEQ.
Definition 4.5 (FNO-DEQ). Given P,Q and BL in Defini-
tion 4.4, FNO-DEQ is trained to parametrize the fixed point
equation BL (v⋆,P(f)) = v⋆ and outputs u⋆ = Q(v⋆).

Usually, it is non-trivial to differentiate through these black-
box root solvers. DEQs enable us to implicitly differentiate
through the equilibrium fixed point efficiently without any
need to backpropagate through these root solvers, therefore
resulting in O(1) training memory.

5. Experiments
Network architectures. We consider the following network
architectures in our experiments.

FNO: We closely follow the architecture proposed by Li
et al. (2020a) and construct this network by stacking four
FNO layers and four convolutional layers, separated by
GELU activation (Hendrycks and Gimpel, 2016). Note
that in our current set up, we recover the original FNO
architecture if the input to the lth layer is the output of
(l − 1)th layer i.e., vl = Bl−1(vl−1).

Improved FNO (FNO++ ): The original FNO architec-
ture suffers from vanishing gradients, which prohibits it
from being made deeper (Tran et al., 2021). We overcome
this limitation by introducing residual connections within
each block of FNO, with each FNO block Bl comprising of
three FNO layers L i.e., Bl = Ll

L1
◦ Ll

L2
◦ Ll

L3
and three

convolutional layers, where L is defined in Eq. (8).

Weight-tied network (FNO-WT): This is the weight-tied
architecture introduced in Definition 4.4, where we initialize
v0(x) = 0 for all x ∈ Ω.

FNO-DEQ: As introduced in Definition 4.5, FNO-DEQ
is a weight-tied network where we explicitly solve for the
fixed point in the forward pass with a root finding algo-
rithm. We use Anderson acceleration (Anderson, 1965) as
the root solver. For the backward pass, we use approximate
implicit gradients (Geng et al., 2021) which are light-weight
and more stable in practice, compared to implicit gradients

computed by inverting Jacobian.

Note that both weight-tied networks and FNO-DEQs lever-
age weight-tying but the two models differ in the ultimate
goal of the forward pass: DEQs explicitly solve for the fixed
point during the forward pass, while weight-tied networks
trained with backpropagation may or may-not reach a fixed
point (Anil et al., 2022). Furthermore, DEQs require O(1)
memory, as they differentiate through the fixed point implic-
itly, whereas weight-tied networks need to explicitly create
the entire computation graph for backpropagation, which
can become very large as the network depth increases. Ad-
ditionally, FNO++ serves as a non weight-tied counterpart
to a weight-tied input-injected network. Like weight-tied
networks, FNO++ does not aim to solve for a fixed point in
the forward pass.

Experimental setup. We test the aforementioned network
architectures on two families of steady-state PDEs: Darcy
Flow equation and steady-state Navier-Stokes equation for
incompressible fluids. For experiments with Darcy Flow, we
use the dataset provided by (Li et al., 2020a), and generate
our own dataset for steady-state Navier-Stokes. For more
details on the datasets and the data generation processes we
refer to Sections B.1 and B.2 of the Appendix. For each
family of PDE, we train networks under 3 different training
setups: clean data, noisy inputs and noisy observations. For
experiments with noisy data, both input and observations,
we add noise sampled from a sequence of standard Gaus-
sians with increasing values of variance {N (0, (σ2

k))}
M−1
k=0 ,

where M is the total number of Gaussians we sample from.
We set σ2

0 = 0 and σ2
max = σ2

M−1 ≤ 1/r, where r is the
resolution of the grid. Thus, the training data includes equal
number of PDEs with different levels of Gaussian noise
added to their input or observations. We add noise to train-
ing data, and always test on clean data. We follow prior
work (Li et al., 2020b) and report relative L2 norm between
ground truth u⋆ and prediction on test data. The total depth
of all networks besides FNO is given by 6B + 4, where B
is the number of FNO blocks. Each FNO block has 3 FNO
layers and convolutional layers. In addition, we include the
depth due to P , Q, and an additional final FNO layer and
a convolutional layer. We further elaborate upon network
architectures and loss functions in in Appendix A.

5.1. Darcy Flow

For our first set of experiments we consider stationary Darcy
Flow equations, a form of linear elliptic PDE with in two
dimensions. The PDE is defined as follows,

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2.
(9)

Note that the diffusion coefficient a ∈ L∞(Ω)(Ω;R+), i.e.,
the coefficients are always positive, and f ∈ L2(Ω;Rdf )
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is the forcing term. These PDEs are used to model the
steady-state pressure of fluids flowing through a porous
media. They can also be used to model the stationary state
of the diffusive process with u(x) modeling the temperature
distribution through the space with a defining the thermal
conductivity of the medium. The task is to learn an operator
Gθ : L2(Ω;Rdu) × L2(Ω;Rda) → L2(Ω;Rdu) such that
u⋆ = Gθ(u

⋆, a).

We report the results of our experiments on Darcy Flow in
Table 1. The original FNO architecture does not improve
its performance with increased number of FNO blocks B.
FNO++ with residual connections scales better but saturates
at around 4 FNO blocks. In contrast, FNO-WT and FNO-
DEQ with just a single FNO block outperform deeper non-
weight-tied architectures on clean data and on data with
noisy inputs. When observations are noisy, FNO-WT and
FNO-DEQ outperform FNO++ with a similar number of
parameters, and perform comparably to FNO++ with 4×
parameters.

We also report results on shallow FNO-DEQ, FNO-WT and
FNO++ architectures. An FNO block in these shallow net-
works has a single FNO layer instead of three layers. In
our experiments, shallow weight-tied networks outperform
non-weight-tied architectures including FNO++ with 7×
parameters on clean data and on data with noisy inputs,
and perform comparably to deep FNO++ on noisy observa-
tions. In case of noisy observations, we encounter training
instability issues in FNO-DEQ. We believe that this shallow
network lacks sufficient representation power and cannot
accurately solve for the fixed point during the forward pass.
These errors in fixed point estimation accumulate over time,
leading to incorrect values of implicit gradients, which in
turn result in training instability issues.

5.2. Steady-state Navier-Stokes Equations for
Incompressible Flow

We consider the steady-state Navier-Stokes equation for an
incompressible viscous fluid in the vorticity form defined
on a torus, i.e., with periodic boundary condition,

u · ∇ω = ν∆ω + f, x ∈ Ω

∇ · u = 0 x ∈ Ω
(10)

where Ω := (0, 2π)2, and u : Ω → R2 is the velocity and
ω : Ω → R where ω = ∇ × u, ν ∈ R+ is the viscosity
and f : Ω → R is the external force term. We learn an
operator Gθ : L2(Ω;Rdu) × L2(Ω;Rdf ) → L2(Ω;Rdu),
such that u⋆ = Gθ(u

⋆, f). We train all the models on data
with viscosity values ν = 0.01 and ν = 0.001, and cre-
ate a dataset for steady-state incompressible Navier-Stokes,
which we will make public as a community benchmark for
steady-state PDE solvers.

Results for Navier-Stokes equation have been reported in

Table 2 and Table 3. For both values of viscosity, FNO-WT
and FNO-DEQ outperform all non-weight-tied architectures
for all three cases: clean data, noisy inputs and noisy obser-
vations. FNO-WT and FNO-DEQ are more robust to noisy
inputs and noisy observations compared to non-weight-tied
architectures. For instance, when considering noisy inputs,
the test error of FNO++ (4 Blocks) shows 20.89% increase
compared to FNO-DEQ (1 Block), where has only 3.15%
increase in error for viscosity 0.001 and noise level 0.001 as
shown in Table 2. For noisy targets, FNO-DEQ matches the
test-error of noiseless case. We provide additional results for
noise level 0.004 in Appendix E. FNO-DEQ and FNO-WT
consistently outperform non-weight-tied architectures for
higher levels of noise as well.

In general, DEQ-based architectures are slower to train (upto
∼2.5× compared to feedforward networks of similar size)
as we solve for the fixed point in the forward pass. However,
their inductive bias provides performance gains that cannot
be achieved by simply stacking non-weight-tied FNO lay-
ers. In general, we observe diminishing returns in FNO++
beyond 4 blocks. Additionally, training the original FNO
network on more than 4 FNO blocks is challenging, with
the network often diverging during training, and therefore
we do not include these results in the paper.

6. Universal Approximation and Fast
Convergence of FNO-DEQ

Though the primary contribution of our paper is empirical,
we show (by fairly standard techniques) that FNO-DEQ is a
universal approximator, under mild conditions on the steady-
state PDEs. Moreover, we also show that in some cases, we
can hope the fixed-point solver can converge rapidly.

As noted in Definition 4.1, we have Ω := Td. We note that
all continuous function f ∈ L2(Ω;R) and

∫
Ω
|f(x)|dx <

∞ can be written as, f(x) =
∑

ω∈Zd eix
Tω f̂w. where

{f̂ω}ω∈Zd are the Fourier coefficients of the function f .
We define as L2

N (Ω) as the space of functions such that
for all fN ∈ L2

N (Ω) with Fourier coefficients that vanish
outside a bounded ball. Finally, we define an orthogonal
projection operator ΠN : L2(Ω) → L2

N (Ω), such that for
all f ∈ L2(Ω) we have,

fn = ΠN (f) = ΠN

 ∑
ω∈Zd

fωe
ixTω

 =
∑

∥ω∥∞≤N

f̂ωe
ixTω.

(11)
That is, the projection operator ΠN takes an infinite dimen-
sional function and projects it to a finite dimensional space.
We prove the following universal approximation result:
Theorem 6.1. Let u⋆ ∈ L2(Ω;Rdu) define the solution
to a steady-state PDE in Definition 4.1, Then there exists
an operator G : L2(Ω;Rdu)× L2(Ω;Rdf )→ L2(Ω;Rdu)
such that, u⋆ = G(u⋆, f). Furthermore, for every ϵ > 0
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Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.0080 ± 5e-4 0.0079 ± 2e-4 0.0125 ± 4e-5
FNO 4.15M 2 0.0105 ± 6e-4 0.0106 ± 4e-4 0.0136 ± 2e-5
FNO 7.71M 4 0.2550 ± 2e-8 0.2557 ± 8e-9 0.2617 ± 2e-9

FNO++ 2.37M 1 0.0075 ± 2e-4 0.0075 ± 2e-4 0.0145 ± 7e-4
FNO++ 4.15M 2 0.0065 ± 2e-4 0.0065 ± 9e-5 0.0117 ± 5e-5
FNO++ 7.71M 4 0.0064 ± 2e-4 0.0064 ± 2e-4 0.0109 ± 5e-4

S-FNO++ 1.78M 0.66 0.0093 ± 5e-4 0.0094 ± 7e-4 0.0402 ± 6e-3

FNO-WT 2.37M 1 0.0055 ± 1e-4 0.0056 ± 5e-5 0.0112 ± 4e-4
FNO-DEQ 2.37M 1 0.0055 ± 1e-4 0.0056 ± 7e-5 0.0112 ± 4e-4

S-FNO-WT 1.19M 0.33 0.0057 ± 3e-5 0.0057 ± 5e-5 0.0112 ± 1e-4
S-FNO-DEQ 1.19M 0.33 0.0056 ± 4e-5 0.0056 ± 5e-5 0.0136 ± 0.011

Table 1: Results on Darcy flow: clean data (Col 4),noisy inputs (Col 5) and noisy observations (Col 6) with max variance of
added noise being (σ2

max)
i and (σ2

max)
t, respectively. Reported test error has been averaged on three different runs with

seeds 0, 1, and 2. Here, S-FNO++, S-FNO-WT and S-FNO-DEQ are shallow versions of FNO++, FNO-WT and FNO-DEQ
respectively.

Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.179 ± 0.007 0.231 ± 0.068 0.204 ± 0.018
FNO 4.15M 2 0.157 ± 0.007 0.219 ± 0.012 0.155 ± 0.004‡

FNO++ 2.37M 1 0.225 ± 0.002 0.267 ± 0.005 0.252 ± 0.025
FNO++ 4.15M 2 0.162 ± 0.005 0.193 ± 0.003 0.161 ± 0.005
FNO++ 7.71M 4 0.158 ± 0.012 0.191 ± 0.004 0.16 ± 0.001

FNO-WT 2.37M 1 0.129 ± 0.002 0.145 ± 0.009 0.127 ± 0.003
FNO-WT 4.15M 2 0.104 ± 0.003 0.125 ± 0.014 0.108 ± 0.006

FNO-DEQ 2.37M 1 0.127 ± 0.003 0.131 ± 0.006 0.127 ± 0.004
FNO-DEQ 4.15M 2 0.106 ± 0.004 0.11 ± 0.014 0.104 ± 0.004

Table 2: Results on incompressible Navier-Stokes (viscosity=0.001): clean data (Col 4), noisy inputs (Col 5) and noisy
observations (Col 6) with max variance of added noise being (σ2

max)
i and (σ2

max)
t, respectively. Reported test error has

been averaged on three different runs with seeds 0, 1, and 2.
‡ indicates that the network diverges during training for one of the seeds.

there exists an N ∈ N such that for compact sets Ku ⊂
L2(Ω;Rdu) and Kf ⊂ L2(Ω;Rdf ) there exists a neural
network Gθ : L2

N (Ω;Rdu)× L2
N (Ω;Rdf )→ L2

N (Ω;Rdu)
with parameters θ, such that,

sup
u∈Ku,f∈Kf

∥u⋆ −Gθ(ΠNu⋆,ΠNf)∥L2(Ω) ≤ ϵ.

The proof for the above theorem is relatively straightforward
and provided in Appendix C. The proof uses the fact that u⋆

is a fixed-point of the operator G(u, f) = u− (L(u)− f),

allowing us to use the the results in Kovachki et al. (2021a)
that show a continuous operator can be approximated by a
network as defined in Equation 2. Note that the choice
of G is by no means unique: one can “universally ap-
proximate” any operator G(u, f) = u − A(L(u) − f),
for a continuous operator A. Such a G can be thought
of as a form of “preconditioned” gradient descent, for
a preconditioner A. For example, a Newton update has
the form G(u, f) = u − L′(u)−1 (L(u)− f) , where
L′ : L2(Ω;Rdu)→ L2(Ω;Rdu) is the Frechet derivative of
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Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.168 ± 0.003 0.196 ± 0.004 0.198 ± 0.005
FNO 4.15M 2 0.147 ± 0.003 0.166 ± 0.007 0.165 ± 0.009

FNO++ 2.37M 1 0.220 ± 0.007 0.243 ± 0.005 0.244 ± 0.005
FNO++ 4.15M 2 0.159 ± 0.001 0.184 ± 0.002 0.185 ± 0.002
FNO++ 7.71M 4 0.157 ± 0.013 0.194 ± 0.008 0.161 ± 0.009

FNO-WT 2.37M 1 0.106 ± 0.001 0.118 ± 0.001 0.118 ± 0.001
FNO-DEQ 2.37M 1 0.094 ± 0.007 0.101 ± 0.002 0.102 ± 0.005

Table 3: Results on incompressible Navier-Stokes (viscosity=0.01): clean data (Col 4), noisy inputs (Col 5) and noisy
observations (Col 6) with max variance of added noise being (σ2

max)
i and (σ2

max)
t, respectively. Reported test error has

been averaged on three different runs with seeds 0, 1, and 2.

the operator L.

The reason this is relevant is that the DEQ can choose to
universally approximate a fixed-point equation for which the
fixed-point solver it is trained with also converges rapidly.
As an example, the following classical result shows that un-
der Lax-Milgram-like conditions (a kind of strong convexity
condition), Newton’s method converges doubly exponen-
tially fast:

Lemma 6.2 ((Faragó and Karátson, 2002), Chapter 5).
Consider the PDE defined Definition 4.1, such that
du = dv = df = 1. such that L′(u) defines the
Frechet derivative of the operator L. If for all u, v ∈
L2(Ω;R) we have ∥L′(u)v∥L2(Ω) ≥ λ∥v∥L2(Ω) and
∥L′(u) − L′(v)∥L2(Ω) ≤ Λ∥u − v∥L2(Ω) for 0 < λ ≤
Λ < ∞, then for the Newton update, ut+1 ← ut −
L′(ut)

−1 (L(ut)− f) , with u0 ∈ L2(Ω;R), there ex-
ists an ϵ > 0, such that ∥uT − u⋆∥L2(Ω) ≤ ϵ if T ≥
log

(
log

(
1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)−f∥L2(Ω)

))
.

For completeness, we include the proof of the above lemma
in the Appendix (Section D). We note that the conditions
of the above lemma are satisfied for elliptic PDEs like
Darcy Flow, as well as many variational non-linear ellip-
tic PDEs (e.g., those considered in Marwah et al. (2022)).
Hence, we can expect FNO-DEQs to quickly converge to the
fixed point, since they employ quasi-Newton methods like
Broyden and Anderson methods (Broyden, 1965; Anderson,
1965).

7. Conclusion
In this work, we demonstrate that the inductive bias of deep
equilibrium models—and weight-tied networks in general—
makes them ideal architectures for approximating neural
operators for steady-state PDEs. Our experiments on steady-

state Navier-Stokes equation and Darcy flow equations show
that weight-tied models and FNO-DEQ perform outperform
FNO models with ∼ 4× the number of parameters and
depth. Our findings indicate that FNO-DEQ and weight-
tied architectures are, in general, more robust to both input
and observation noise compared to non-weight-tied archi-
tectures, including FNO. We believe that our results com-
plement any future progress in the design and development
of PDE solvers (Tran et al., 2021; Li et al., 2022) for steady-
state PDEs, and hope that our work motivates the study
of relevant inductive biases that could be used to improve
them.
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Appendix

A. Implementation Details
Training details. We train all the networks for 500 epochs with Adam optimizer. The learning rate is set to 0.001 for
Darcy flow and 0.005 for Navier-Stokes. We use learning rate weight decay of 1e-4 for both Navier-Stokes and Darcy flow.
The batch size is set to 32. In case of Darcy flow, we also use cosine annealing for learning rate scheduling. We run all our
experiments on a combination of NVIDIA RTX A6000, NVIDIA GeForce RTX 2080 Ti and 3080 Ti. All networks can
easily fit on a single NVIDIA RTX A6000, but training time varies between the networks.

For FNO-DEQ, we use Anderson solver (Anderson, 1965) to solve for the fixed point in the forward pass. The maximum
number of Anderson solver steps is kept fixed at 32 for Dary Flow, and 16 for Navier Stokes. For the backward pass, we use
phantom gradients (Geng et al., 2021) which are computed as:

u⋆ = τGθ(u
⋆, a) + (1− τ)u⋆ (12)

where τ is a tunable damping factor and u⋆ is the fixed point computed using Anderson solver in the forward pass. This step
can be repeated S times. We use τ = 0.5 and S = 1 for Darcy Flow, and τ = 0.8 and S = 3 for Navier-Stokes.

For the S-FNO-DEQ used in Table 1, we use Broyden’s method (Broyden, 1965) to solve for the fixed point in the forward
pass and use exact implicit gradients, computed through implicit function theorem as shown in Eq. (6), for the backward
pass through DEQ. The maximum number of solver steps is fixed at 32.

For weight-tied networks, we repeatedly apply the FNO block to the input 12 times for Darcy flow, and 6 times for
Navier-Stokes.

Network architecture details. The width of an FNO layer set to 32 across all the networks. Additionally, we retain
only 12 Fourier modes in FNO layer, and truncate higher Fourier modes. We use the code provided by Li et al. (2020a) to
replicate the results for FNO, and construct rest of the networks on top of this as described in Sec. 5.

B. Datasets
B.1. Darcy Flow

As mentioned in Sec. 5 we use the dataset provided by (Li et al., 2020a) for our experiments with steady-state Darcy-Flow.

All the models are trained on 1024 data samples and tested on 500 samples. The resolution of original images is 421× 421
which we downsample to 85 × 85 for our experiments. For experiments with noisy inputs/observations, the variance of
Gaussian noise that we add to PDEs are [0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3].

B.2. Steady-State Incompressible Fluid Navier-Stoke

u · ∇ω = ν∆ω + f, x ∈ Ω

∇ · u = 0 x ∈ Ω

To generate the dataset for steady-state Navier-Stokes, instead of solving the steady state PDE using steady-state solvers
like the SIMPLE algorithm (Patankar and Spalding, 1983), we first choose the solution ω⋆ := ∇× u⋆ of the PDE and then
generate the corresponding equation, i.e. calculate the corresponding force term f = u⋆ · ∇ω⋆ − ν∆ω⋆.

To generate the solutions ω⋆, we forward propagate a relatively simple initial distribution of ω0 (sampled from a Gaussian
random field) through a time-dependent Navier-Stokes equation in the vorticity form for a short period of time. This ensures
our dataset contains solutions ω∗ that are rich and complex. Precisely, recall the Navier-Stokes equations in their vorticity
form:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) + g(x) x ∈ (0, 2π)2, t ∈ [0, T ]

∇ · u(x, t) = 0 x ∈ (0, 2π)2, t ∈ [0, T ]

ω(x, 0) = ω0(x) x ∈ (0, 2π)2
(13)
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Figure 1: Samples from Darcy Flow
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where g(x) = ∇× g̃(x) and g̃(x) = sin(5x1)x̂2 is a divergence free forcing term and x = (x1, x2) are the two coordinates
of the input vector. We forward propagate the equations Equation 13 using a pseudo-spectral method using the functions
provided in JAX-CFD (Kochkov et al., 2021; Dresdner et al., 2022) package. The initial vorticity ω0 is sampled from
a Gaussian random field N (0, (53/2(I + 25∆)−2.5)), which is then made divergence free. We forward propagate the
Navier-Stokes equation in Equation 13 for time T = 0.5 with dt = 0.002 to get ω(1, x), which we choose as the solution to
the steady-state PDE in Equation 10, i.e, ω⋆ for Equation 10.

Subsequently, we use the stream function Ψ (Batchelor and Batchelor, 1967) to calculate u = (∂Ψ/∂x1, ∂Ψ/∂x2) by
solving the Poisson equation ∆Ψ = ω in the Fourier domain. Furthermore, since f = u⋆ · ∇ω⋆ − ν∆ω⋆ we use the stream
function to calculate (f1, f2), i.e., the different components of the force term.

We use 4500 training samples and 500 testing samples. The input to the network is the vector field f̃ = (f1, f2) and we learn
a map that outputs the vorticity ω⋆. The resolution of grid used to generate the dataset is 256×256 which we downsample to
128× 128 while training the models. For experiments with noisy inputs/observations, we consider two values of maximum
variance of Gaussian noise: 1e-3 and 4e-3. The variances of the Gaussian noise that we add to the PDEs for the latter case
are [0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 2e-3, 4e-3]. However, when conducting experiments with a variance of 1e-3,
we exclude the last two values of variance from this list.

C. Proof of Universal Approximation
The proof of the universal approximation essentially follows from the result on the universal approximation capabilities of
FNO layers in Kovachki et al. (2021a), applied to G(v, f) = v − (Lv − f). For the sake of completeness, we reitarate the
key steps.

For simplicity, we will assume that du = dv = df = 1. (The results straightforwardly generalize.) We will first establish
some key technical lemmas and introduce some notation and definitions useful for the proof for Theorem 6.1.
Definition C.1. An operator T : L2(Ω;R) → L2(Ω;R) is continuous at u ∈ L2(Ω;R) if for every ϵ > 0, there exists a
δ > 0, such that for all v ∈ L2(Ω) with ∥u− v∥L2(Ω) ≤ δ, we have ∥L(u)− L(v)∥L2(Ω) ≤ ϵ.

First, we approximate the infinite dimensional operator G : L2(Ω)× L2(Ω)→ L2(Ω) by projecting the functions in L2(Ω)
to a finite-dimensional approximation L2

N (Ω), and considering the action of the operator on this subspace. The linear
projection we use is the one introduced in Equation 11. More precisely we show the following result,
Lemma C.2. Given a continuous operator L : L2(Ω) → L2(Ω) as defined in Equation 1, let us define an operator
G : L2(Ω)× L2(Ω)→ L2(Ω) as G(v, f) := v − (L(v)− f). Then, for every ϵ > 0 there exists an N ∈ N such that for all
v, f in any compact set K ⊂ L2(Ω), the operator GN = ΠNG(ΠNv,ΠNf) is an ϵ-approximation of G(v, f), i.e., we have,

sup
v,f∈K

∥G(v, f)− GN (v, f)∥L2(Ω) ≤ ϵ.

Proof. Note that for an ϵ > 0 there exists an N = N(ϵ, d) such that for all v ∈ K we have

sup
v∈K
∥v −ΠNv∥L2(Ω) ≤ ϵ.

Therefore, using the definition of GN we can bound the L2(Ω) norm of the difference between G and GN as follows,

∥G(v, f)−ΠNG(vn, fn)∥L2(Ω)

≤ ∥G(v, f)−ΠNG(v, f)∥L2(Ω) + ∥ΠNG(v, f)−ΠNG(ΠNv,ΠNf)∥L2(Ω)

≤ ∥G(v, f)−ΠNG(v, f)∥L2(Ω)︸ ︷︷ ︸
I

+ ∥G(v, f)− G(ΠNv,ΠNf)∥L2(Ω)︸ ︷︷ ︸
II

We first bound the term I as follows:

∥G(v, f)−ΠNG(v, f)∥L2(Ω)

= ∥v − (L(v)− f)−ΠN (v − (L(v)− f))∥L2(Ω)

= ∥v −ΠNv∥L2(Ω) + ∥f −ΠNf∥L2(Ω) + ∥L(v)−ΠNL(v)∥L2(Ω)

= ϵ+ ϵ+ ∥L(v)−ΠNL(v)∥L2(Ω) (14)
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Figure 2: Samples from Steady-state Navier-Stokes dataset with viscosity 0.001. Each triplet visualizes the inputs f1, f2
and the ground truth output i.e. ω⋆.
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Figure 3: Samples from Steady-state Navier-Stokes dataset with viscosity 0.01. Each triplet visualizes the inputs f1, f2 and
the ground truth output i.e. ω⋆.
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Since L is continuous, for all compact sets K ⊂ L2(Ω), L(K) is compact as well. This is because: (1) for any u ∈ K,
∥L(u)∥L2(Ω) is finite; (2) for any v ∈ K, ∥L(v)∥L2(Ω) ≤ ∥L(u)∥L2(Ω) +C∥u− v∥L2(Ω). Therefore, for every ϵ > 0, there
exists an N ∈ N such that

sup
v∈K
∥L(v)−ΠNL(v)∥L2(Ω) ≤ ϵ.

Substituting the above result in Equation 14, we have

∥G(v, f)−ΠNG(v, f)∥L2(Ω) ≤ 3ϵ. (15)

Similarly, for all v ∈ K where K is compact, we can bound Term II as following,

∥G(v, f)− G(ΠNv,ΠNf)∥L2(Ω)

≤ ∥v − (L(v)− f)−ΠNv − (L(ΠNv)−ΠNf)∥L2(Ω)

≤ ∥v −ΠNv∥L2(Ω) + ∥f −ΠNf∥L2(Ω) + ∥L(v)− L(ΠNv)∥L2(Ω)

≤ ϵ+ ϵ+ ∥L(v)− L(ΠNv)∥L2(Ω). (16)

Now, since v ∈ K and L : L2(Ω)→ L2(Ω) is a continuous operator, there exists a modulus of continuity (an increasing
real valued function) α ∈ [0,∞), such that for all v ∈ K, we have

∥L(v)− L(ΠNv)∥L2(Ω) ≤ α
(
∥v −ΠNv∥L2(Ω)

)
Hence for every ϵ > 0 there exists an N ∈ N such that,

α(∥v −ΠNv∥L2(Ω)) ≤ ϵ.

Plugging these bounds in Equation 16, we get,

∥G(v, f)− G(ΠNv,ΠNf)∥L2(Ω) ≤ 3ϵ. (17)

Therefore, combining Equation 15 and Equation 17 then for ϵ > 0, there exists an N ∈ N, such that for all v, f ∈ K we
have

sup
v,f∈K

∥G(v, f)−ΠNG(vn, fn)∥L2(Ω) ≤ 6ϵ. (18)

Taking ϵ′ = 6ϵ proves the claim.

Proof of Theorem 6.1. For Lemma C.2 we know that there exists a finite dimensional projection for the operator G, defined
as GN (v, f) such that for all v, f ∈ L2(Ω) we have

∥G(v, f)− GN (v, f)∥L2(Ω) ≤ ϵ.

Now using the definition of GN (v, f) we have

GN (v, f) = ΠNG(ΠNv,ΠNf)

= ΠNv − (ΠNL(ΠNv)−ΠNf)

From Kovachki et al. (2021a), Theorem 2.4 we know that there exists an FNO network GθL of the form defined in Equation 2
such that for all v ∈ K, where K is a compact set, there exists an ϵL we have

sup
v∈K
∥ΠNL(ΠNv)−GθL∥L2(Ω) ≤ ϵL (19)

Finally, note that from Lemma D.1 in (Kovachki et al., 2021a), we have that for any v ∈ K, there exists an FNO layers
Gθf ∈ L2(Ω) and Gθv ∈ L2(Ω) defined in Equation 3 such that

sup
v∈K
∥ΠNv −Gθv∥L2(Ω) ≤ ϵv (20)
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and
sup
f∈K
∥ΠNf −Gθf ∥L2(Ω) ≤ ϵf (21)

for ϵv > 0 and ϵf > 0.

Therefore there exists an ϵ̃ > such that there is an FNO network Gθ : L2(Ω)× L2(Ω)→ L2(Ω) where θ := {θL, θv, θf}
such that

sup
v∈K,f∈L2(Ω)

∥GN (v, f)−Gθ(v, f)∥L2(Ω) ≤ ϵ̃ (22)

Now, since we know that u⋆ is the fixed point of the operator G we have from Lemma C.2 and Equation 22,

∥G(u⋆, f)−Gθ(u
⋆, f)∥L2(Ω) ≤ ∥u⋆ − GN (u⋆, f)∥L2(Ω) + ∥GN (u⋆, f)−Gθ(u

⋆, f)∥L2(Ω)

≤ ϵ̃+ ϵ.

D. Fast Convergence for Newton Method
Definition D.1 (Frechet Derivative in L2(Ω)). For a continuous operator F : L2(Ω)→ L2(Ω), the Frechet derivative at
u ∈ L2(Ω) is a linear operator F ′(u) : L2(Ω)→ L2(Ω) such that for all v ∈ L2(Ω) we have

lim
∥v∥L2(Ω)→0

∥F (u+ v)− F (u)− F ′(u)(v)∥L2(Ω)

∥v∥L2(Ω)
= 0.

Lemma D.2. Given the operator L : L2(Ω)→ L2(Ω) with Frechet derivative L′, such that for all u, v ∈ L2(Ω), we have
∥L′(u)(v)∥L2(Ω) ≥ λ∥v∥L2(Ω), then L′(u)−1 exists and we have, for all v1, v2 ∈ L2(Ω):

1. ∥L′(u)−1(v1)∥L2(Ω) ≤ 1
λ∥v1∥L2(Ω).

2. ∥v1 − v2∥L2(Ω) ≤ 1
λ∥L(v1)− L(v2)∥L2(Ω)

Proof. Note that for all u, v′ ∈ L2(Ω) we have,

∥L′(u)v′∥L2(Ω) ≥ λ∥v′∥L2(Ω)

Taking v = L′(u)−1(v′), we have

∥L′(u)
(
L′(u)−1(v)

)
∥L2(Ω) ≥ λ∥L−1(u)(v)∥L2(Ω)

=⇒ 1

λ
∥v∥L2(Ω) ≥ ∥L−1(u)(v)∥L2(Ω).

For part 2, note that there exists a c ∈ [0, 1] such that

∥L(v1)− L(v2)∥L2(Ω) ≥ inf
c∈[0,1]

∥L′(cv1 + (1− c)v2)∥2∥v1 − v2∥L2(Ω) ≥ λ∥v1 − v2∥L2(Ω).

We now show the proof for Lemma D.3. The proof is standard and can be found in (Faragó and Karátson, 2002), however
we include the complete proof here for the sake of completeness.

We restate the Lemma here for the convenience of the reader.

Lemma D.3 ((Faragó and Karátson, 2002), Chapter 5). Consider the PDE defined Definition 4.1, such that du =
dv = df = 1. such that L′(u) defines the Frechet derivative of the operator L. If for all u, v ∈ L2(Ω;R) we have
∥L′(u)v∥L2(Ω) ≥ λ∥v∥L2(Ω) and ∥L′(u) − L′(v)∥L2(Ω) ≤ Λ∥u − v∥L2(Ω) for 0 < λ ≤ Λ < ∞, then for the Newton
update, ut+1 ← ut − L′(ut)

−1 (L(ut)− f) , with u0 ∈ L2(Ω;R), there exists an ϵ > 0, such that ∥uT − u⋆∥L2(Ω) ≤ ϵ if

T ≥ log
(
log

(
1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)−f∥L2(Ω)

))
.
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Proof of Lemma D.3. Re-writing the updates in Lemma D.3 as,

ut+1 = ut + pt (23)
L′(ut)pt = −(L(ut)− f) (24)

Now, upper bounding L(ut+1)− f for all x ∈ Ω we have,

L(ut+1(x))− f(x)

= L(ut(x))− f(x) +

∫ 1

0

(L′(ut(x) + t(ut+1(x)− ut(x)))) (ut+1(x)− ut(x))dt

= L(ut(x))− f(x) + L′(ut(x))pt(x) +

∫ 1

0

(L′(ut(x) + t(ut+1(x)− ut(x)))− L′(ut(x))) pt(x)dt

=

∫ 1

0

(L′(ut(x) + t(ut+1(x)− ut(x)))− L′(ut(x))) pt(x)dt

where we use Equation 24 in the final step.

Taking L2(Ω) norm on both sides and using the fact that ∥L′(u)− L′(v)∥L2(Ω) ≤ Λ∥u− v∥L2(Ω), we have

∥L(ut+1)− f∥L2(Ω) ≤
∫ 1

0

Λt∥ut+1 − ut∥L2(Ω)∥pt∥L2(Ω)dt

Noting that for all x ∈ Ω, we have ut+1 − ut = pt, and using the fact that for all u, v ∥L′(u)−1v∥L2(Ω) ≤ 1
λ∥v∥L2(Ω) we

have, ∥L′(ut)pt∥L2(Ω) ≤ 1
λ∥pt∥L2(Ω)

∥L(ut+1)− f∥L2(Ω) ≤
∫ 1

0

Λt∥ut+1 − u∥L2(Ω)∥pt∥L2(Ω)dt

≤ Λ/2∥pt∥2L2(Ω)

≤ Λ/2∥ − L′(ut)
−1(L(ut)− f)∥2L2(Ω)

≤ Λ

2λ2
∥L(ut)− f)∥2L2(Ω)

where we use the result from Lemma D.2 in the last step.

Therefore we have

∥L(ut+1)− f∥L2(Ω) ≤
(

Λ

2λ2

)2t−1

(L(u0)− f)
2t

=⇒ ∥L(ut+1)− f∥L2(Ω) ≤
(

Λ

2λ2

)2t−1

(L(u0)− L(u⋆))
2t

=⇒ ∥ut+1 − u⋆∥L2(Ω) ≤
1

λ

(
Λ

2λ2

)2t−1

∥L(u0)− L(u⋆)∥2
t

L2(Ω) .

Therefore, if
Λ

2λ2
∥L(u0)− L(u⋆)∥L2(Ω) ≤ 1,

then we have

∥ut+1 − u⋆∥L2(Ω) ≤ ϵ,

for

T ≥ log

(
log

(
1

ϵ

)
/ log

(
2λ2

Λ∥L(u0)− f∥L2(Ω)

))
.
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E. Additional experimental results
We provide additional results for Navier-Stokes equation for noisy inputs and observations in Table 4 and Table 5. For
these experiments, the maximum variance of Gaussian noise added to inputs and observations is 0.004. We observe that
weight-tied FNO and FNO-DEQ outperform non-weight-tied architectures.

Architecture Parameters #Blocks
Test error ↓

σmax = 0 (σ2
max)

i = 0.004 (σ2
max)

t = 0.004

FNO 2.37M 1 0.179 ± 0.007 0.244 ± 0.015 0.176 ± 0.007
FNO 4.15M 2 0.157 ± 0.007 0.246 ± 0.084 0.179 ± 0.042

FNO++ 2.37M 1 0.225 ± 0.002 0.291 ± 0.006 0.225 ± 0.002
FNO++ 4.15M 2 0.162 ± 0.005 0.217 ± 0.001 0.162 ± 0.005
FNO++ 7.71M 4 0.158 ± 0.012 0.219 ± 0.009 0.163 ± 0.003

FNO-WT 2.37M 1 0.129 ± 0.002 0.17 ± 0.014 0.130 ± 0.001
FNO-DEQ 2.37M 1 0.127 ± 0.003 0.158 ± 0.005 0.129 ± 0.007

Table 4: Results on incompressible Navier-Stokes (viscosity=0.001): clean data (Col 4), noisy inputs (Col 5) and noisy
observations (Col 6) with max variance of added noise being (σ2

max)
i and (σ2

max)
t, respectively. Reported test error has

been averaged on three different runs with seeds 0, 1, and 2.
‡ indicates that the network diverges during training for one of the seeds.

Architecture Parameters #Blocks
Test error ↓

σ2
max = 0 (σ2

max)
i = 0.004 (σ2

max)
t = 0.004

FNO 2.37M 1 0.168 ± 0.003 0.217 ± 0.007 0.166 ± 0.003
FNO 4.15M 2 0.147 ± 0.003 0.212 ± 0.037 0.144 ± 0.001

FNO++ 2.37M 1 0.220 ± 0.007 0.257 ± 0.004 0.218 ± 0.006
FNO++ 4.15M 2 0.159 ± 0.001 0.203 ± 0.003 0.158 ± 0.001
FNO++ 7.71M 4 0.157 ± 0.013 0.187 ± 0.009 0.149 ± 0.008

FNO-WT 2.37M 1 0.106 ± 0.001 0.142 ± 0.009 0.105 ± 0.004
FNO-DEQ 2.37M 1 0.094 ± 0.007 0.114 ± 0.012 0.095 ± 0.004

Table 5: Results on incompressible Navier-Stokes (viscosity=0.01): clean data (Col 4), noisy inputs (Col 5) and noisy
observations (Col 6) with max variance of added noise being (σ2

max)
i and (σ2

max)
t, respectively. Reported test error has

been averaged on three different runs with seeds 0, 1, and 2.
‡ indicates that the network diverges during training for one of the seeds.


