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Abstract

Recent advancements in Large Language Models (LLMs) have spurred significant
interest in their application to autonomous financial trading. This paper investigates
the efficacy of fine-tuning a small-scale LLM, Qwen2.5-3B-Instruct, for Bitcoin
(BTC) trading by framing the task as a market state prediction problem. Using daily
price data, volume, and technical indicators, we train the model with Reinforcement
Learning with Verifiable Reward (RLVR) to classify the next day’s market into one
of three states: bullish, consolidation, or bearish. Our experiments reveal a critical
paradox: the fine-tuned agent achieves significantly higher classification accuracy
compared to a zero-shot baseline, demonstrating a clear ability to learn the defined
task. However, when deployed in a simulated trading environment, this improved
predictive power results in a lower cumulative return than the baseline. We at-
tribute this divergence to a classic case of objective mismatch and reward hacking.
The agent optimizes for the simple, discrete reward of a correct classification, a
proxy objective that fails to capture the complexities of profitable trading, such as
risk management and the magnitude of price movements. This work serves as a
cautionary case study, highlighting the inherent challenges of designing effective
reward functions for LLM-based financial agents and underscoring the importance
of aligning proxy tasks with the ultimate goal of profit maximization.

1 Introduction

The advent of generative AI, particularly Large Language Models (LLMs), has opened new frontiers
for automating complex decision-making processes [Chang et al., 2024]. The financial domain, with
its vast amount of noisy and sequential data, stands as a prime candidate for LLM-driven innovation,
especially in the realm of algorithmic trading [Wang et al., 2024, Li et al., 2024, Yuksel, 2025]. The
vision is to create autonomous agents that can comprehend market dynamics, process diverse data
streams, and execute profitable trades. A popular approach to developing such agents is to simplify the
complex task of trading into a more tractable supervised or reinforcement learning problem [Kabbani
and Duman, 2022, Srivastava et al., 2025], such as predicting the direction of price movement or
classifying the overall market sentiment.

In this study, we explore this paradigm by fine-tuning a contemporary small-scale LLM, Qwen2.5-3B-
Instruct [Yang et al., 2024], to act as a trading agent in the volatile Bitcoin (BTC) market. We formulate
the trading decision process as a classification task: predicting whether the market on the following
day will be bullish, in consolidation, or bearish. The agent is trained using a Reinforcement Learning
(RL) framework on historical daily price data, trading volume, and a set of technical indicators. The
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reward function is predominantly designed to incentivize correct classification, allocating 90% of the
reward to prediction accuracy.

Our initial hypothesis is that a higher accuracy in predicting the market state directly translates into a
more effective trading strategy and, consequently, higher cumulative returns. The results, however,
present a stark contradiction. While our RL-trained agent demonstrates a marked improvement
in classification accuracy over its zero-shot counterpart, its back-tested trading performance is
unexpectedly inferior, leading to a net decrease in cumulative returns.

This counter-intuitive outcome exposes a fundamental challenge in applying AI to real-world prob-
lems: the gap between a proxy objective and the true goal. We argue that our agent, while successful
at the market state classification, falls victim to ‘reward hacking’ [Eisenstein et al., 2024, Skalse et al.,
2025]. It learns to maximize its reward by becoming an excellent classifier, but this proxy task is an
inadequate representation of the ultimate objective: maximizing profit. The simple, binary reward for
a correct prediction does not account for the nuanced realities of trading, including the magnitude of
market moves, the timing of entry and exit, transaction fees, and risk management. A correct bullish
prediction followed by a marginal price increase, for instance, can easily result in a net loss after
accounting for trading costs.

The primary contribution of this paper is to provide a clear, empirical case study of objective mismatch
in the context of LLM-based financial agents. We demonstrate that naively framing trading as a
classification problem can be misleading and counterproductive. Our findings serve as a cautionary
tale, emphasizing that for generative AI to succeed in finance, a more sophisticated approach to
reward engineering and agent alignment is imperative. This work highlights the critical need to design
objectives that holistically encapsulate the multifaceted nature of profitability, rather than relying on
simplified, intermediate proxy tasks.

2 Methods

Our LLM agent undergoes a two-stage fine-tuning process to effectively perform the complex task
of market prediction. The first stage, Supervised Fine-tuning (SFT), equips the model with the
fundamental ability to understand the given market data and generate a prediction. The second stage,
Reinforcement Learning Fine-Tuning (RFT), uses the SFT-trained model as an initial policy and
enables the agent to autonomously improve and optimize its prediction strategy by maximizing a
specific reward function. Detailed training setup can be found in the Appendix A.

2.1 Supervised Fine-tuning (SFT)

SFT serves as an initial phase of task-specific adaptation, where the LLM agent learns the nuances of
financial market prediction. The primary goal of this stage is to teach the model how to comprehend
the context of structured market data prompts and to generate responses in the predefined format of
‘Bullish’, ‘Consolidation’, or ‘Bearish’.

Mechanism The SFT process follows the standard paradigm of language model training. Each
sample in the training dataset consists of a pair (st, a∗t ), where st is the prompt containing market
data at time t, and a∗t is the ground-truth label representing the actual market state on the next day.
The model is trained to maximize the probability of generating a∗t given st. This is achieved by
minimizing the standard cross-entropy loss.

Objective Through SFT, we obtain an initial policy, πSFT, which can make reasonable predictions
based on the given data. This policy serves as a strong baseline and provides a robust starting point
for the subsequent reinforcement learning phase.

πSFT = argmax
π

E(st,a∗
t )∼D

[
log π(a∗t | st)

]
2.2 Reinforcement Fine-Tuning (RFT)

While SFT trains the model to imitate the ‘correct answers’ from a static dataset, RFT allows the
agent to learn actively from the outcomes (rewards) of its own predictions (actions) and to refine
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its policy. The goal of this stage is to further improve the agent’s policy, leveraging outcome-based
rewards.

RL Framework We optimize the agent’s policy by adopting the Reinforcement Learning with
Verifiable Reward (RLVR) [Lambert et al., 2025] framework, utilizing Guided Reward Policy Op-
timization (GRPO) [DeepSeek-AI, 2025] as the specific optimization algorithm. To perform this
fine-tuning step efficiently, we employ Low-Rank Adaptation (LoRA) [Hu et al., 2022]. In this
process, the model receives a state (st), which is a natural language prompt containing historical
market data. Given this state, the policy model, initialized from the SFT-trained policy πSFT, samples
an action (at) in the form of a market prediction. This action is then evaluated by a verifier against
ground-truth data to calculate a verifiable reward (Rt). This objective and trustworthy reward signal
allows GRPO to efficiently and stably refine the LLM’s policy.

The optimization objective is to find a policy πRFT that maximizes the expected reward while
regularizing the policy to prevent it from deviating too far from the initial πSFT, as shown below:

πRFT = argmax
π

Est∼D
[
Eat∼π(·|st)[Rt(at)]− β DKL

(
π(·|st) ||πSFT(·|st)

)]
where DKL denotes the Kullback-Leibler divergence, and β is the coefficient controlling the strength
of the KL penalty. The Rt is a weighted sum of two components: prediction accuracy (Racc) and
format accuracy (Rformat). Both components provide a binary reward of +1 for a correct outcome and
0 for an incorrect one. In our experiment, we set the format weight wformat to 0.1.

Rt = wformat ·Rformat + (1− wformat) ·Racc

3 Experiments

3.1 Implementation Details

Our experimental framework is built upon a custom data preprocessing pipeline that converts raw
time-series market data into a format suitable for instruction-tuned LLMs. Additional details can be
found in Appendix A.

Data Source and Feature Engineering We construct our dataset using daily BTCUSDT closing
prices and volume data sourced from Binance [Binance, 2025]. To enrich the input features, we
incorporate the daily Fear & Greed Index as a market sentiment indicator. For each trading day, we
engineer five key technical indicators using the TA-Lib library [Benediktsson et al., 2024]: SMA (20),
EMA (20), RSI (14), MACD, and Bollinger Bands (20-day, 2 standard deviations).

Target Variable and Data Structuring The prediction task is framed as a three-class classification
problem. We label the next day’s market state based on the percentage change from the previous
day’s closing price: Bullish for an increase greater than 1%, Bearish for a decrease greater than 1%,
and Consolidation for price changes within a ±1% range.

Dataset Splitting To partition our data, we follow the setting of prior work [Wang et al., 2024]. To
ensure a robust evaluation and prevent data leakage, we employ a strict temporal splitting strategy.
The data is partitioned into a general training set, a validation set, and two distinct test sets designed
to evaluate performance under specific market conditions: a bullish period and a bearish period.

Trading Strategy The market state predictions generated by the LLM agent are translated into
discrete trading actions according to a simple, rule-based policy. This all-or-nothing strategy is
designed to directly test the utility of the agent’s classification accuracy. i) Bullish Prediction: The
agent allocates 100% of its capital to purchase the asset (a full long position). If already invested,
the position is held. ii) Consolidation Prediction: The agent maintains its current position without
making any new trades (i.e., holds the asset or cash). iii) Bearish Prediction: The agent liquidates
100% of its asset holdings into cash. If already in cash, no action is taken.

3.2 Experiment Results

In Table 1, we evaluate our fine-tuned trading agents against a Buy & Hold baseline across three
distinct market periods, focusing on prediction accuracy, cumulative return, and the Sharpe ratio.
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Table 1: Performance comparison of different trading strategies across various market periods,
evaluated by predictive accuracy (Acc), cumulative return (Cum. Return), and Sharpe ratio.

Strategy Validation Set Bullish Set Bearish Set
Acc Cum. Return Sharpe Acc Cum. Return Sharpe Acc Cum. Return Sharpe

Buy & Hold - +15.4% 2.03 - +78.3% 8.91 - -17.5% -5.02

Qwen2.5-3B-Instruct 25.4% +10.1% 2.30 8.3% +6.2% 3.49 38.5% -0.4% -2.65
+ SFT 44.1% +8.3% 2.03 27.1% +50.9% 8.05 23.1% -10.2% -2.76
+ RFT 64.4% +0.0% 0.0 66.7% +0.0% 0.0 75.0% +0.0% 0.0
+ SFT & RFT 45.8% +15.4% 2.03 41.7% +78.3% 8.91 44.2% -14.8% -3.09

The results empirically validate our central thesis: improving an agent’s predictive accuracy on a
proxy task does not guarantee enhanced profitability and can, paradoxically, lead to worse financial
outcomes. This illustrates a critical case of objective mismatch, where the agent becomes a ‘winner’
at classification but a ‘loser’ in the true task of trading.

The SFT-only agent demonstrates a clear improvement in task understanding over naive baselines,
with its accuracy rising substantially. While this enhancement translates into strong returns and a
solid Sharpe ratio in the bull market, it suffers severe losses in the Bearish Set. This provides an early
indication that higher accuracy does not necessarily equate to better risk management.

The most striking evidence of this paradox comes from the RFT-only agent. It achieves the highest
classification accuracy across all test sets—reaching an impressive 75.0% in the Bearish Set—yet
its cumulative return and Sharpe ratio remain consistently at zero. This outcome is a clear example
of reward hacking: to maximize its accuracy-based reward, the agent adopts an ultra-conservative
strategy of taking no risks and earning no returns. It effectively wins the prediction game while
completely failing at the financial one.

The combined SFT & RFT agent further highlights the danger of this misaligned objective. Although
SFT initialization enables it to take active positions, the subsequent RFT phase drives it to over-
optimize for classification accuracy. Consequently, while it appears balanced by matching Buy &
Hold performance in the Bullish Set, this parity merely suggests a replicated strategy rather than
a sophisticated one. The fundamental flaw becomes evident in the Bearish Set: despite achieving
higher accuracy than the SFT-only agent, it incurs even greater losses and a worse Sharpe ratio. The
agent mastered classification but ignored the magnitude of risk, resulting in confident yet financially
catastrophic decisions.

These findings reaffirm that in complex domains like finance, success hinges not on excelling at
simplified proxy tasks but on aligning with the true, multifaceted objective of risk-adjusted profit
generation.

4 Conclusion

This paper presents a core paradox in applying LLMs to finance: the fine-tuned agent’s predictive
accuracy increased while its trading returns decreased. The agent, optimized via Reinforcement
Learning, successfully learned its given proxy objective of market state classification, but this led
to ‘reward hacking’ by ignoring crucial factors like the magnitude of returns and risk management.
‘Losing Winner’ thus serves as a critical cautionary tale against naively framing complex financial
tasks as simple classification problems. This study underscores that the future success of generative AI
in finance depends not on perfecting proxy metrics, but on designing sophisticated reward functions
that align agents with the true, holistic goal of risk-adjusted profit maximization.

5 Limitations and Future Works

This study’s limitations highlight two critical directions for future work. First, there is a need for
sophisticated reward engineering that moves beyond simple accuracy metrics to directly optimize for
risk-adjusted returns, thus aligning the agent’s objective with true profitability. Second, as our findings
are based on a small-scale LLM, it is essential to investigate whether this “Losing Winner” paradox
persists in larger, state-of-the-art models with more advanced reasoning capabilities. Addressing
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these challenges of objective alignment and model generalizability will be paramount for developing
practical AI trading agents.
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A Detailed Experimental Setup

A.1 Dataset Specification and Date Ranges

The dataset was partitioned according to the following chronological periods to prevent any future
information from leaking into the training or validation sets [Wang et al., 2024].

• Training Set: General market data from February 1, 2018 to July 31, 2025. This set excluded
the periods designated for validation and testing.

• Validation Set: November 16, 2023 – January 15, 2024.

• Test Bullish Set: January 24, 2024 – March 13, 2024. This period was selected for its
distinct upward market trend.

• Test Bearish Set: May 21, 2024 – July 13, 2024. This period was selected for its distinct
downward market trend.

Table 2 provides a detailed summary of our dataset partitioning, including the distribution of samples
across the three market state classes. The training set, comprising 2,482 samples, is used to fine-tune
the LLM agent. The ±1% threshold for the Consolidation class was empirically chosen as it yields a
well-balanced class distribution across our historical dataset: Bullish (32.5%), Consolidation (38.3%),
and Bearish (29.2%). This balance indicates that the ±1% range effectively captures periods of low
volatility or market indecision, distinguishing them from more significant directional movements.

Table 2: Summary of dataset splits and class distribution. Each row represents a different data partition,
showing the total number of samples and the breakdown across the three target classes: Bullish,
Consolidation, and Bearish.

Split Total Samples Bullish Consolidation Bearish
Train 2,482 806 945 731
Validation 60 21 24 15
Test Bullish 49 21 24 4
Test Bearish 53 12 20 21

Total 2,644 860 1,013 771

To provide the model with a quantitative basis for its predictions, we engineered a set of five widely-
used technical indicators from the historical price and volume data. The feature set includes a 20-day
Simple Moving Average (SMA), a 20-day Exponential Moving Average (EMA), a 14-day Relative
Strength Index (RSI), the Moving Average Convergence Divergence (MACD), and Bollinger Bands
(20-day, 2 standard deviations).
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A.2 Computational Resources

All fine-tuning experiments were conducted on a single server equipped with six NVIDIA A6000
GPUs, each featuring 48 GB of VRAM. The complete fine-tuning process for the 3B-parameter
model on our training dataset required approximately 12 hours of execution time. During training,
the memory utilization on each GPU was consistently high, approaching the full 48 GB capacity.
We note that this hardware configuration represents a practical boundary for the model scale in our
experiments. Attempts to fine-tune models with 4 billion or more parameters consistently resulted in
out-of-memory (OOM) errors, preventing the training process from completing.

A.3 Prompts

The following are examples of system prompts used to assign an expert persona to the model:

You are a Bitcoin market analysis expert with expertise in technical
analysis. You are also recognized as the world’s top market timing analyst.
Based on the given market data and technical indicators, you must provide
accurate and logical price direction predictions.

The user prompt is meticulously structured to transform the time-series prediction task into a compre-
hensive, self-contained natural language instruction for the LLM. Each prompt is designed not only
to provide data but also to define the task and constraints explicitly within the context. The structure
includes several key components: 1) task directive, 2) structured data presentation (10-day lookback
of market information), 3) in-prompt class definition, 4) output format.

Please analyze the following Bitcoin market data and technical indicators to
predict the future price direction:

Market Data and Technical Indicators for the Past 10 Days:
10 days ago: Closing Price $10,437.60, Volume 68,113.82, Fear & Greed Index:
54 (Neutral), SMA(20): $9139.11, EMA(20): $9979.45, RSI(14): 52.12, MACD:
13.6733, BB Upper: $11645.83, BB Lower: $6632.39
(...)
1 days ago: Closing Price $11,039.00, Volume 23,910.71, Fear & Greed Index:
47 (Neutral), SMA(20): $10086.84, EMA(20): $10214.65, RSI(14): 56.52, MACD:
151.0302, BB Upper: $11773.72, BB Lower: $8399.96

Based on the historical market data, technical indicators, and fear & greed
index above, please predict whether the Bitcoin price will be bullish,
bearish, or consolidate today.
**Price Movement Classification Criteria:**
- **Bullish**: Price increase > 1% from previous day’s closing price
- **Bearish**: Price decrease > 1% from previous day’s closing price
- **Consolidation**: Price change within ±1% from previous day’s closing price
Please analyze the market data and technical indicators when you make
a decision.
Format your answer as:

### final answer: [bullish/bearish/consolidation]

To elaborate on the data presentation, the 10-day lookback mentioned above consists of the most
recent market data formatted directly into the main text of the prompt. In addition to this, a longer-
term context is provided as auxiliary input, which contains a preceding 30-day window of historical
data. This supplementary data stream includes the daily closing price, volume, and the Fear & Greed
Index (the technical indicators are not included).

A.4 Technical Stack and Dependencies

The data processing and analysis are conducted using the following primary Python libraries:
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• Technical Analysis: TA-Lib [Benediktsson et al., 2024]3

• Data Sources: Binance-public-data [Binance, 2025]4, Fear and Greed Index5

• Train Framework: Volcano Engine Reinforcement Learning for LLMs [Sheng
et al., 2024]

A.5 Training Setup

We mainly followed the training setup from Zhou et al. [2025]. In detail, we used lr = 10−5, β =
10−3, with 5 epochs for SFT. For RFT, we used lr = 3× 10−5, β = 4× 10−2, with 5 epochs. We
also set the temperature to 1.0, top-p to 1.0, and top-k to 0.0 for generation parameters, while we set
the LoRA rank and alpha to 8. During the evaluation stage, we set the temperature to 0.0.

B Related Works

Large Language Models as Financial Trading Agents The recent success of LLMs has introduced
a new paradigm for creating autonomous financial agents. Unlike specialized models, LLMs can
process and reason over a mixture of quantitative data and qualitative text, making them well-suited for
financial tasks. Several studies have demonstrated the potential of LLMs in finance, framing trading
as a prediction or classification problem based on market news, sentiment analysis, and numerical
indicators [Wang et al., 2024, Li et al., 2024]. For instance, Yuksel [2025] used an LLM to generate
and refine financial metrics for portfolio optimization. A common methodology, which we also adopt,
is to utilize or fine-tune a pre-trained LLM on historical market data to predict future market states.
These works primarily focus on the capabilities of LLMs to achieve profitable outcomes.

Reinforcement Learning for Financial Markets To enable agents to learn from the conse-
quences of their actions, Reinforcement Learning (RL) has become a popular training paradigm in
finance [Huang, 2018, Zhang et al., 2019, Briola et al., 2021, Kabbani and Duman, 2022]. RL allows
an agent to develop a policy by interacting with an environment and receiving rewards, moving
beyond the static imitation of a dataset. However, the effectiveness of RL is critically dependent on
the design of the reward function. A poorly specified reward can lead to unintended agent behavior, a
phenomenon known as ‘reward hacking’ [Skalse et al., 2025]. Our work directly contributes to this
critical area of research. While many studies focus on developing RL agents that succeed, our paper
presents a cautionary case study of failure due to objective mismatch.

3https://github.com/ta-lib/ta-lib-python
4https://data.binance.vision/?prefix=data/spot/monthly/klines/BTCUSDT/1d/
5https://alternative.me/crypto/fear-and-greed-index/
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