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Abstract

The key to Black-Box Optimization is to efficiently search through input regions
with potentially widely-varying numerical properties, to achieve low-regret descent
and fast progress toward the optima. Monte Carlo Tree Search (MCTS) methods
have recently been introduced to improve Bayesian optimization by computing
better partitioning of the search space that balances exploration and exploitation.
Extending this promising framework, we study how to further integrate sample-
based descent for faster optimization. We design novel ways of expanding Monte
Carlo search trees, with new descent methods at vertices that incorporate stochastic
search and Gaussian Processes. We propose the corresponding rules for balancing
progress and uncertainty, branch selection, tree expansion, and backpropagation.
The designed search process puts more emphasis on sampling for faster descent
and uses localized Gaussian Processes as auxiliary metrics for both exploitation
and exploration. We show empirically that the proposed algorithms can outperform
state-of-the-art methods on many challenging benchmark problems.

1 Introduction

Black-Box Optimization (BBO), also referred to as Derivative-free or Zeroth-order Optimization,
considers objective functions that are not known analytically and can only be evaluated at various
inputs, potentially at a high cost. The generality of the formulation makes BBO broadly applicable to
a wide range of challenging problems in machine learning [1, 2, 3] as well as many scientific and
engineering problems [4, 5, 6]. BBO problems over compact domains are naturally NP-hard: in the
worst case, we need to exhaustively search through the combinatorially-large number of local regions
to find high-quality solutions. Thus, the goal of BBO algorithm design is to accelerate optimization
progress with respect to the number of function evaluations.

Existing work on BBO can be categorized into model-based and model-free approaches. Most model-
based approaches, typically in the framework of Bayesian Optimization [7, 8], involve learning
a surrogate function from samples of the unknown function and optimizing the surrogate rather
than the original function. For highly nonlinear functions with high-dimensional input spaces, such
methods are known to be costly because of the need for global modeling of the objective functions.
Various Bayesian optimization approaches utilize ensembles of local surrogate models [9] to improve
performance. Model-free approaches include simulated annealing [10], cross-entropy methods [11],
search gradient [12], as well as traditional direct search methods such as Nelder-Mead [13, 14]. The
goal is to iteratively propose sampling distributions that can approach the optima. Such methods
typically do not attempt to maintain global information about the objective and are challenged
when the optimization landscape is highly non-convex [15]. In general, the lack of mechanisms
for explicitly managing the search over the combinatorially-large number of local regions, in both
standard model-based and model-free BBO methods, has been a major bottleneck of the field.

Recent advances in stochastic tree search methods [16, 17] offer new opportunities for balancing
local search and modeling with more systematic global exploration in BBO problems. In particular,
Monte Carlo Tree Search (MCTS) has recently been introduced for computing good partitioning of
the search space for BBO [3, 18, 19]. These approaches adaptively divide the input space into regions,
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balancing exploitation and exploration, to only perform Bayesian optimization at local regions and
create better model ensembles. However, because the focus is still on modeling the objective, the
ability of MCTS to quickly expand deep branches into promising search regions has not been fully
utilized. As a result, the curse of dimensionality can still quickly stall the search, while model-free
descent methods may be able to make more progress if they are also guided by MCTS.

We propose a new design of MCTS methods for BBO, with more emphasis on sample-efficient local
descent, which can benefit the most from balanced exploitation and exploration. We use Bayesian
optimization and local modeling as auxiliary metrics for guiding the search tree construction. At
each node in our search tree, we iteratively collect samples in the neighborhood of some anchor
point and also maintain a local Gaussian Process (GP) model for the neighborhood. The samples
are chosen using sampling-based descent such as Stochastic Three Points methods (STP) [20], and
they are also used to train the local GP models. These local models provide surrogate objectives to
propose future samples without querying the ground truth function, and they also provide uncertainty
metrics for exploration steps. We name our overall approach Monte Carlo Tree Descent (MCTD),
because of the focus on faster descent led by samples that are managed by tree search, rather than
using MCTS for explicit space partitioning. We evaluate the proposed methods with experiments on
challenging benchmarks such as nonlinear optimization benchmarks [21], policy search for MuJoCo
locomotion tasks [22], and neural architecture search [23]. We compare our algorithm with state-
of-the-art model-based [9] and MCTS-based methods [19], as well as model-free [24] and direct
search methods [13]. We observe clear benefits in the proposed designs for improving efficiency,
consistently outperforming existing methods on the tested benchmarks.

2 Related Work

Model-based methods. Bayesian optimization [7, 25] typically uses Gaussian Processes to con-
struct surrogate models of the objective functions [8], with samples selected by acquisition functions
(e.g., confidence bounds, expected improvement, etc.) [26, 27]. Model-based methods are known
to suffer from the curse of dimensionality as the problem dimensionality and sample sizes grow
quickly [28]. Many approaches have been proposed to improve the scalability of Bayesian optimiza-
tion methods in high-dimensional problems [29, 30, 31]. For instance, TuRBO is a state-of-the-art
method that uses Thompson sampling with Expected Hypervolume Improvement (EHVI) [9]. It
samples in local trust regions and adjusts the trust regions after each sampling iteration, which has
shown major benefits in improving the efficiency of model-based approaches for BBO.

Model-free methods. Model-free approaches focus on sampling inputs, either point-wise or
population-based, that can incrementally approach optimal regions in the search space without
explicitly maintaining models of the objective. Standard approaches include stochastic methods such
as simulated annealing (SA) [10] and cross-entropy (CE) [11] and deterministic schemes such as
Nelder-Mead (NM) [13]. These methods have been successfully applied to a wide range of problems
but they typically do not aim for optimizing efficiency, i.e., reducing the number of evaluations [32].
They may still offer improvements faster than local methods that rely on gradient information [14, 32].
The Stochastic Three Points method [20] is a simple but effective way of direct search that compares
function values at the base point, in one random direction, and in the opposite direction. Each step
evaluates only two more points that lie in the opposite direction of the current point and moves
towards the one with a better value. To improve sample efficiency, we attempt to combine The
Stochastic Three Points method with model-based methods and carefully design the direction in
which the method will try in each iteration.

Tree search methods. Various tree-search methods have been proposed to improve partitioning of
the search space in BBO, such as Deterministic and Simultaneous Optimistic Optimization (DOO
and SOO) [18], and Hierarchical Optimistic Optimization (HOO) in [33]. Specifically, DOO divides
up the search domain into partitions, each of which is represented by a point within it, assuming
known Lipschitz constants for the objective function. SOO and HOO extend DDO to stochastic
versions but are mostly applicable to low-dimensional problems because of the high cost involved
in creating good partition cells. Voronoi Optimistic Optimization (VOO) [3] can be more efficient
in high dimensions by combining Voronoi partitioning and tree search. LA-MCTS [19] introduces
MCTS to manage the partitioning of the search space. It learns latent actions that define boundaries
between good and bad regions in the search space and prioritizes the expansion of the search tree
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around the boundaries. When continuing with such splitting, it sets a sampling preferential on every
node in the tree. In every iteration, the search tree is traversed from the root node to a leaf by selecting
the highest approximated value based on Upper Confidence bounds applied to Trees (UCT) algorithm.
The optimization is then performed from the subspace partition on the selected node. These methods
successfully change the objective function modeling for global space to local regions. However,
the partitioning of the state space, particularly when the space is a high dimension, becomes a very
challenging problem. The tree becomes extremely large when the optimization attempts to learn with
high accuracy in local regions.

3 Preliminaries

We consider the problem of minimizing an objective function f(x) : Ω → R where the domain
Ω ⊆ Rn is compact. We assume the ability to evaluate f(x) for arbitrary x ∈ Ω but do not have
information about the analytic form of the function or its derivatives.

Gaussian Processes (GP) is commonly used in Bayesian optimization and is also used in our work to
construct a surrogate model for the local model-based optimization. For a finite collection of points
x1, ..., xk ∈ Rd, GP constructs the mean vector µ0 from the function f at each xi, and the covariance
matrix Σ0 by a kernel at each pair of (xi, xj), i, j = 1, 2, ...k. With µ0 and Σ0 the prior distribution
on f is:

f(x1, . . . xk) ∼ N (µ0(x1, . . . xk),Σ0(x1 . . . xk;x1, . . . xk)) (1)

For any new point x, we can use Bayes’ rule to compute the conditional distribution of f(x):

f(x|x1, . . . xk) ∼ N (µ0(x1, . . . xk, x),Σ0(x1, . . . xk, x;x1, . . . xk, x)) (2)

The Stochastic Three Points (STP) method is a model-free approach to BBO that uses only a small
number of samples in each iteration to identify descent directions. At each time step t with a current
sample xt, it generates a set Dt = {xt, xt + st · αt, xt − st · αt} where st is a direction and αt > 0
is the step size at step t. When αt is small enough, the relationship between f(xt + st · αt), f(xt)
and f(xt − st · αt) is monotonically non-increasing or non-decreasing if the gradient of the function
f is not zero in the direction of st. For the next step, xt+1 = argminx∈Dt

f(x). In our method, the
STP-based local descent optimization will identify the best direction st with an optimized step size
αt for improving its performance.

Monte Carlo Tree Search (MCTS) is a leading framework for balancing exploration and exploitation
in sampling-based tree search. It consists of four main steps: Selection, Expansion, Simulation, and
Backpropagation. During Selection, a search tree is traversed from the root node to a leaf node. This
traversal is made by selecting the node with the highest value based on the UCT algorithm. For a
node ni, the UCT ν is computed by:

ν(ni) = Ri/Ni + C ·
√

2 · lnNb/Ni (3)

in which Ri is the rewards on ni; Ni and Nb denote the number of visits on ni and its parent node
nb, respectively; C is a constant to balance between exploitation and exploration. At each branch
node nb, the child to select is the one with the highest ν value among all of its immediate children.
At Expansion, a new child node is then added to expand the tree. During Simulation, a random
simulation is run from the new child node until the terminal node is reached, and the simulation
reward is approximated. Finally, the simulation reward is backpropagated through the selected nodes
to update the tree. In our approach, we construct our Monte Carlo tree by assigning every leaf node
to one optimization process. During each step, we use a modified UCT algorithm to select the node
on which the optimization is launched.

4 Monte Carlo Tree Descent

Our MCTD algorithm iteratively constructs a search tree over the domain of the objective function,
and at each node of the tree we maintain a set of samples and a surrogate model learned from them.
The balancing of exploration and exploitation takes into account several factors that will be explained
in the subsequent sections. The overall algorithm is illustrated in Alg.1, and we refer Fig. 4 in the
Appendix that provides a visual illustration of the process.
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Algorithm 1 Monte Carlo Tree Descent (MCTD)
1: function MCTD(objective: f , domain: Ω)
2: x← random sample in Ω
3: n0.sample_set← (x,y) ▷ root node
4: for step = 1, ..., t do
5: n← Select(n0)
6: Optimize(n)
7: Backup(n)
8: end for
9: return y∗0

10: end function
11:
12: function EXPAND(node: ni)
13: if ni is leaf then
14: ni0 ← ni excluding parent/child
15: ni child list← ni0

16: end if
17: lv ← level of ni

18: d ∝ exp (−lv)
19: x← random sample in B(x∗

i , d)
20: nim.sample_set← {(x, f(x))};
21: ni.children.append(nim)
22: return nim

23: end function
24:
25: function BACKUP(node: ni)
26: n← ni

27: while n has parent np do
28: Update (x∗

p, y
∗
p) with Eq.5

29: Update dyp with Eq.6
30: n← np

31: end while
32: end function

1: function SELECT(node: ni)
2: nb ← ni

3: while nb has children do
4: for child node nbi do
5: Compute ν(nbi) by Eq.4
6: end for
7: Compute ν(nbx) by Eq.7
8: if maxi(ν(nbi)) < ν(nbx) then
9: return Expand(nb)

10: end if
11: b̂← argmaxi ν(nbi)
12: nb ← nb,b̂

13: end while
14: if EP (nb) in (8) is satisfied then
15: nb← Expand(nb)
16: end if
17: return nb

18: end function
19:
20: function OPTIMIZE(node: ni)
21: αD ← 1
22: if |ni.sample_set| >= NR then
23: Θ← GP model of ni.sample_set
24: αD ← αD· correlation length in Θ
25: else
26: oracle Θ← None
27: end if
28: Descend on ni by Θ, f , αD from (x∗

i , y
∗
i )

29: ni ← Bayesian Optimize from {(x, y)}i
30: Update (x∗

i , y
∗
i ) and dyi by Eq.5 and 6

31: return
32: end function

4.1 Overall Tree Search Strategy

We initialize our algorithm at a random sample in the domain of the objective function, and the
sampled points create the root node of the entire search tree. Unlike standard MCTS that considers
finite and discrete actions at each node, for BBO over the continuous domains we can not expand
the infinitely-many possible next samples as child nodes of the root node. Consequently, already at
the root node, we need to decide between two choices. First, we could perform local descent on the
current sample at this node. Second, we could explore a different region in the space by taking a
sample that is far from the current one, which will act as a new anchor point that forms a new child
node of the tree, which expands the tree. When multiple child nodes have been expanded at a node,
there is the third option of going down the tree along the most promising branch, and then focusing
the next steps of search from there.

Consequently, in each iteration of the algorithm, we perform three operations sequentially. First, we
perform branch selection starting from the root node, and then either land at some existing node or
create a new anchor sample and node, from which we will perform local descent.

4.2 Branch Selection

In every step, we pick a leaf for optimization. To balance exploration and exploitation, our algorithm
uses UCT to determine the path between the root and the leaf, as shown in the function SELECT in
Alg.1 line 1. We modified the UCT formula for fitting our MCTD algorithm. For each child node nbi
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with the parent node nb , its UCT ν(nbi) is given by:

ν(nbi) = −y∗bi + Cd ·
J∑

j=1

dy−j
bi + Cp ·

√
logNb/Nbi (4)

Here, Cd is a weight factor controlling the importance of recent improvements during optimization,
Cp is a hyper-parameter for the extent of exploration, Nb and Nbi are the number of visits to the
branch node nb and the child node nbi, respectively. y∗bi is the current best function value in the
sample set Sbi = {(x, y)} which stores the samples during optimization on node nbi:

(x∗
bi, y

∗
bi) = argmin

y
(x, y), (x, y) ∈ Sbi (5)

and dy−j
bi is the most recent j’s improvement at nbi after calling the objective function. When

computing ν, only the last J improvements are taken into account. For every call to the objective
function during the optimization, we record the improvement in the function value from this call. If
the value from this call is worse than the optimal value before the call, we set the improvement to
zero; otherwise, we set the improvement as the absolute difference between the optimal value before
and after the call. That is, for y∗bi at the time step t as y∗bi(t),

dy−j
bi (t) = max(y∗bi(t− j)− y∗bi(t− j + 1), 0) (6)

We similarly integrate the tree expansion as the UCT algorithm. At a branch node nb, in addition to
examining the UCT of all its child nodes we add an artificial exploration node nbx that has the UCT
value ν(nbx) as following:

ν(nbx) = −
∑
i

(y∗bi)/Db + C ′
p ·

√
logNb (7)

where Db is the number of children of the node nb, C ′
p is a hyper-parameter for the extent of

exploration but may be different from Cp. This exploration node is to determine whether to optimize
in a new domain because the existing children are not performing well enough. When the exploration
node is selected, a new child node under the branch node is created and returned.

If the path selects a leaf that is not newly created, we need to determine whether it is worth optimizing
on it. On a leaf node nf , we expand the tree if the following condition is met:

EP (nf ) : −y∗f + C
′′

d ·
J

′′∑
j=1

dy−j
f < C ′′

p ·
√
logNf (8)

Here, C ′′
d is a weight factor for recent last J ′′ improvements and may be different from Cd, C ′′

p is also
a hyper-parameter for the extent of exploration different from Cp and C ′

p. In the event the condition
8 is met, we will make a leaf expansion; otherwise, we descend on the selected leaf node nf .

4.3 Tree Expansion

When we need to take an exploration step at a node, a new child node will be created. The new
child node is created at a random point lying within some distance from the selected node. The
minimum and maximum distances are set to 10% and 50% of the domain’s dimensional length, with
exponential decay according to the node level. After the newly created child node is placed, it will
be immediately selected as the node for optimization at the current step. When the selected node to
explore is a leaf node nf , a new child node nf1 is created in the same way as above, making nf a
branch node. At this time, a new node nf0, starting from the current best point at x∗

f , is also created
as the child 0 of node nf . This node nf0 inherits a batch of samples that are near its starting point x∗

f ,
as well as the latest improvement history on nf . The reduced number of samples forces the inheriting
node nf0 to focus on optimizing in the neighborhood of the starting point, while the newly expanded
node nf1 is optimizing in a distant region. Thus, the tree grows a leaf node nf1 while maintaining
the possibility of further exploiting around the best point found on nf at node nf0. These steps are in
the function EXPAND in Alg. 1 line 12, and 3 subplots in Fig.4 show an example. As in Fig.4 (c),
the expansion takes place on the root node n0. The node n01 is a new node for exploration, placed
distant from n0. Node n00 starts from x∗

0. Similarly, in 4 (d), node n010 starts from x∗
01, and node

n011 is placed away from n01, but the distance between node n01 and n010 is much smaller than the
distance between node n0 and n01 at node creation. Fig. 4 (e) shows how a new leaf node is created.
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4.4 Local Optimization.

In every iteration, we use the STP method to attempt local descent and also use TuRBO-1 [9] for
local Bayesian optimization (BO). We tightly integrate the two methods. Samples obtained from
local descent optimization are used to construct the surrogate GP regression model. The GP model
not only serves as an oracle for the local descent optimization but also provides the correlation length
according to which the local descent optimization scales its step sizes.

Local Descent. We use the STP method with the following changes. In STP, the direction st at
step t is usually selected from a sphere with uniform distribution in direct search. Instead, we use
the surrogate GP regression model to identify the point with the highest expected improvement. The
steps of local descent optimization are as follows:

1. Choose a node ni by SELECT. If the number of samples exceeds some threshold, we train a
Gaussian Process model that will be referred to as the oracle for this node.

2. Compute the step size αt. In our case, we set αt to be inversely proportional to the square root
of the product of node visits Ni and the node level in the tree. We also rescale it according to the
correlation length in the surrogate GP model when possible.

3. If the oracle is not available, get a random direction st, and use st · αt for checking ground truth.

4. If the oracle is available, generate multiple samples in the box with edge length equaling the step
size αt, and choose the best point. The direction to the best point is st · αt.

5. Start one step of STP with the selected direction of st · αt by calling the objective function.

6. Depending on the optimization progress, we may further optimize the objective function along the
same direction with tuned step sizes in a fine-grain descent approach.

The last step is used when the optimization comes to fine-tuned phase with small variations in samples,
so one can set a function threshold from which the search applies the fine-grain descent approach.

Local Bayesian Optimization. The TuRBO-1 [9] creates a hyper-rectangle Trust Region (TR)
with volume LN centered at the best sample. Afterward, it samples new candidates within the TR
and queries the objective function for ground truth data. The length of Li will either increase after
successive "successes" or decrease after consecutive "failures". We changes TuRBO-1 in three ways
to fit it into our algorithm: 1) TuRBO-1 begins with collected samples of the node. Consequently,
TuRBO-1 is compelled to optimize from the vicinity of the collected sample. 2) The trust region
length has been preserved on the same node, so the local BO can continue from the previous epoch. 3)
We do not perform restarts for TuRBO-1 in order to avoid TuRBO-1 restarting from random samples.

4.5 Back Up

In the BACKUP function, we backpropagate the updated best score found at a leaf node and propagate
it upwards to its parent nodes. This score update is important for informing future branch selections.
This backup procedure is used in every step even if the best-found sample on the selected leaf node
does not change after one iteration.

5 Experiments and Evaluation

5.1 Experiment Setup

Benchmarks We use several standard benchmark sets for testing BBO algorithms, from three
categories: synthetic functions for nonlinear optimization, reinforcement learning problems in
MuJoCo locomotion environments, and optimization problems in Neural Architecture Search (NAS).
Synthetic functions are widely-used in nonlinear optimization benchmarks [21]. These functions
usually have numerous local minima, valleys, and ridges in their landscapes which is hard for normal
optimization algorithms. MuJoCo locomotion environments [22] are popular for reinforcement
learning tasks. NAS problems have practical significance, since many fields are using deep learning
models, but implementing efficient neural networks requires a substantial amount of time and effort.
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(a) Ackley-50d (b) Ackley-100d (c) Michalewicz-100d

(d) Hopper-33d (e) Walker-102d (f) Walker-204d

(g) HalfCheetah-102d (h) CIFAR-10 (i) CIFAR-100

Figure 1: Overall performance of the baselines and our method. For Ackley and Michalewicz in (a),
(b), and (c), the goal is to optimize for the lowest function values; in MuJoCo tasks (d), (e), (f), and
(g), we aim to maximize the rewards; and for CIFAR-10 in (h) and CIFAR-100 in (i) we want to find
the architecture with the highest accuracy as quickly as possible

We select multiple problems from each set, and their input dimensions range from 33d to 204d.
Details of benchmark problems can be found in section B in the appendix.

Baselines We selected TuRBO [9] as one baseline from the BO algorithms. La-MCTS [19] is
chosen as a major comparator since this algorithm also constructs trees in a similar manner. Moreover,
CMA-ES [24] from the Evolutionary Algorithm category, Nelder-Mead [13] from Direct Search
algorithms, as well as the Random Search algorithm are selected for comparison as baselines.

For CMA optimization, fmin2 from the CMA-ES package [24] is used with its default parameters.
We implement our own version of the Nelder-Mead algorithm as in [13], and set its expansion
coefficient, contraction inside the simplex, contraction outside the simplex, and shrink coefficient as
2.0, 0.5, 0.5, and 0.5, respectively. TuRBO [9] is initialized with 20 random samples selected using
Latin Hypercube sampling, and its Automatic Relevance Determination (ARD) is set to True. For
La-MCTS [19], we use different settings and include them in the supplementary material, as well as
our MCTD approach. Benchmarks are made mainly on Google Colab with a Tesla P100 graphic card.
Across all experiments, we set the number of evaluation calls to 3000.

5.2 Overall Performance

Evaluation Metrics For each benchmark function, we run baselines and our algorithm by at least
five different random seeds. Due to the limit on the computational power available to us, we set
the number of calls to the objective function to 3000. Our study evaluates the best-found value at
every step and computes the mean and standard deviation of all runs. As a result, we can compare
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(a) Optimization by different budget ratio (b) Queried value from local optimizers

Figure 2: (a) illustrates the optimization curves for Ackley-100d when the computational budget is
divided between local descent and local BO in the ratio of 1:2, 5:1, and 1:10; (b) shows the values of
Michalewicz-100d from local descent and local BO at each query.

the best-found value at the end of the run as well as the speed at which each algorithm is capable of
reaching the most optimal result. There is a possibility that some algorithms will find the optimal
value before 3000 calls, which will result in an early stop.

Efficiency Fig. 1 illustrates the comparison between our model and baselines on benchmark sets. It
was found that in general, random search, CMA, and NM methods performed poorly in these cases
since they do not cooperate with any approach that may potentially improve the efficiency of the
sample.

According to Fig. 1 (a), (b), and (c), MCTD significantly improves the speed of finding better
results for the set of synthetic functions compared to TuRBO and La-MCTS. In particular, the Ackley
synthetic function exhibits a noticeable improvement when we balance local optimization exploitation
and state space exploration. Michalewicz is improved moderately through descent optimization, and
MCTS helps improve the optimization consistently.

The Mujoco benchmark problems are very difficult for global optimization. Our approach is com-
petitive with TuRBO and La-MCTS on this set and has moderate improvement over the average
value on functions Hopper-33d, Walker-204d, and Cheetah-102d. In particular, the combination of
local BO and local descent optimization speeds up the optimization during its early stages. It is,
however, difficult to balance local exploitation and space exploration by picking the correct weights
to bring recent improvements, exploration terms, and objective function values into the same order of
magnitude. This is because we use the absolute value of the objective function that varies significantly
at different optimization steps. In light of this, we see a large variation from different runs in this set,
as in Fig.1 (d), (e), (f), and (g).

In CIFAR-10/CIFAR-100, MCTD reaches the optimal solution by a small number of samples, which
is critical for NAS searches. The combination of descent and modeling approaches facilitates the
search for the optimal solution more quickly than if only one method was used.

Descent Optimizer and Bayesian Optimizer We examine the performance of our approach when
the computational budget is divided between a local descent model and a local Bayesian optimizer
TuRBO. Fig. 2(a) illustrates the optimization history of Ackley-100d when budget ratios are 1:2, 5:1,
and 1:10. It is demonstrated that a model with a high budget for local descent suffers from a low
optimization rate. In contrast, the model with a high budget in the local Bayesian optimizer may have
difficulty escaping the local optimal point.

As shown in the case of Fig.2(a), when we use the budget that emphasizes local descent (budget
5:1), the performance is less compared with that of emphasizing local BO (budget 1:20) in term of
optimization speed. Based on the budget ratio for every function in supplementary material Tab.2, it
is generally advantageous to use at least the same (or even more) amount of computational budget
on local BO as on local descent. This may be one challenge for the local descent approach, since
this indicates that local descent may require local BO as the oracle when the function landscape is
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Figure 3: Ablation studies on function Michalewicz-100d with hyper parameters (a) Cp, (c) Cd,
(e) C ′

p, (g) C ′′
p , (i) C ′′

d and (k) switching to fine-grain STP at function value; ablation studies on
function Walker-102d with hyper parameters (b) Cp, (d) Cd, (f) C ′

p, (h) C ′′
p , (j) C ′′

d and (l) switching
to fine-grain STP at function value.

difficult, such as for the complicated functions in MoJoCo locomotion and non-continuous functions
in NAS sets.

However, the local descent approach still proves beneficial despite these factors. From Fig.2(b) we
can see the optimization improvement of the local BO becomes insignificant when the process is
close to the local optimum. Local descent, on the other hand, can contribute steadily to the discovery
of a superior solution. To conclude, using a balanced approach can yield better results than using
each approach separately.

5.3 Ablation Studies

We also perform ablation studies to understand the effect of the hyperparameters used in the algorithm,
in three categories. The first category includes C ′

p (the weight in uctexp) C ′′
p , and C ′′

d (the weights on
leaf exploration in Eq.8) that control the expansion of the tree. The second set of values, Cd and Cp

in Eq.4, balance local exploitation and space exploration. Lastly, the threshold value determines when
fine-grain descent is required. We use the synthetic function Michalewicz-100d and the locomotion
Walker-102d for the ablation study, and each case runs with at least 3 different seeds. Please note that
hyperparameters in results may be different than those presented in Section 5.2. We found that a wise
choice on Cp, C ′

p, and C ′′
p is critical to improving performance, while Cd and C ′′

d are less significant.
The switching threshold value is highly dependent upon the objective function’s properties.

State Space Exploration The parameters Cd and Cp balance exploration and exploitation of the
existing tree. As shown in Fig.3(a), the moderate choice on Cp improves the overall performance
slightly; however, this is not clearly observed in Fig.3(b). From Fig.3(c) and 3(d), we can see a
variation in Cd may not help significant changes in the overall performance. Even so, we can observe
a contribution from Cd and Cp: from Fig. 3(b) and Fig.3(d), we can see that path selection with low
values of Cd and Cp leads to little variation between runs since the path selection tends to select the
node where the current best-known value resides, thus limiting the path selection.
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Tree Expansion The hyperparameters C ′
p, C ′′

p and C ′′
d are important for expanding the current tree.

As a result of setting the parameters C ′
p, C ′′

p to large values and C ′′
d to a small value, it is likely that

a new sibling leaf will be created at the selected node to explore the state space. Alternatively, the
path will tend to select the node that has the current optimal value. Since a leaf always has zero
children, even though C ′′

d and C ′′
p have the same functionality as C ′

p, the criteria for tree exploration
are different for branch and leaf nodes. According to Fig.3(f) and Fig.3(h), it is evident that a good
choice on C ′

p and C ′′
p can improve the optimization performance by exploring new state space distant

from the local optimal value. Conversely, when their values are set either too large (orange lines
in Fig.3(f) and Fig.3(g)) or too small (blue line in Fig.3(h)), this would adversely affect the overall
performance of the optimization process. The effect of C ′′

d is less noticeable. However, a small C ′′
d

results in a small variation between different runs - a similar behavior as Cd.

Switching at Function Value The fine-grain STP can be beneficial in certain cases, as the orange
lines show in Fig.3(k) and Fig.3(l). In these two lines, switching takes place at a late stage of
optimization, which results in excessive use of normal STP. Generally, fine-grain STP can be used as
soon as possible. However, in some experiments, the fine-grain STP exploits too much in a small
neighborhood at an early stage of optimization and led to low-quality GP models.

6 Conclusion

In this paper, we proposed novel designs for using the MCTS framework in BBO problems, with more
emphasis on sample-efficient local descent, instead of using MCTS for explicit space partitioning.
We design new descent methods at vertices of the search tree that incorporate stochastic search and
Gaussian Processes. The local models provide surrogate objectives to propose future samples without
querying the ground truth function, and they also provide uncertainty metrics for exploration steps.
We propose the corresponding rules for balancing progress and uncertainty, branch selection, tree
expansion, and backpropagation. We evaluated the proposed methods on challenging benchmarks
and observed clear benefits in improving the efficiency of BBO methods.
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Appendix A Tree expansion illustration

Figure 4: Top: Illustration of the nodes in the input domain; Bottom: Illustration of the tree expansion.
(a) The root n0 begins with a random sample. (b) Optimization is carried out on the root n0. (c) Leaf
exploration on the root N0 creates two nodes n00 and n01. n00 starts from x∗

0, and n01 starts from a
point distant from x∗

0. (d) Leaf exploration on the node n01, generating two new node n010 and n011.
n010 starts from x∗

01 while n011 starts at a point away from x∗
01. (e) Branch exploration at root n0

creates a new child node n02.

Appendix B Benchmark Sets

Synthetic Functions We chose Ackley and Michalewicz from the synthetic function set in the
nonlinear optimization benchmark [21]. Ackley is a function with multiple local minima, and
Michalewicz has steep valleys and many ridges. We use Ackley-50d, Ackley-100d, and Michalewicz-
100d as our benchmark.

MuJoCo Locomotion For reinforcement learning problems from MuJoCo locomotion environ-
ments [22], we chose Hopper, Walker, and HalfCheetah for tests. Hopper has 3 dimensions in action
space a and 11 in observation s. We choose a linear policy a = Ws in which W is the weighting
matrix to search for maximizing the reward, therefore, the search space for Hopper-33d is in the
dimension of 3 ·11 = 33. Similarly, we set linear policies in both Walker-102d and HalfCheetah-102d.
In addition to the above linear policy, we double the weighting matrix space dimension in Walker
from 102 to 204, such that a = W1s+W2s where W1 and W2 are matrices in the dimension of 102.
In this case, the optimization problem is Walker-204d. Since our approach considers deterministic
results, we set the noise scale to zero in all MuJoCo environments to avoid randomness in rewards.

Neural Architecture Search For the NAS benchmark, we use two datasets CIFAR-10 and CIFAR-
100 from NAS-Bench-201 [23]. Each network in the datasets consists of three stacks of searching
cells, and each cell has six positions where one can select one type of layer from five different types:
(1) zeroize, (2) skip connection, (3) 1-by-1 convolution, (4) 3-by-3 convolution, and (5) 3-by-3
average pooling layer. Overall, there are 56 = 15625 different types of architectures, and each
architecture is trained and evaluated on both CIFAR-10 and CIFAR-100. The accuracy of training
and evaluation is recorded. To benchmark this set, we created the following functions in the real
domain: we replace each of the five types of layers with an integer, and the real-valued input is
rounded up to the nearest integer. The evaluation accuracy of the architecture is set as the function
value. As an example, we set the input domain to {[0.5, 5.5]6}, and f([1.1]6) = f([1]6), where each
1− 5 corresponds to one type of the layers. It should be noted that in this method different inputs
may refer to the same network architecture; therefore, the number of unique architectures examined
is less than the number of functions called.
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