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Abstract

Foundational world models must be both interactive and preserve spatiotemporal
coherence for effective future planning with action choices. However, present mod-
els for long video generation have limited inherent world modeling capabilities due
to two main challenges: compounding errors and insufficient memory mechanisms.
We enhance image-to-video models with interactive capabilities through additional
action conditioning and autoregressive framework, and reveal that compounding
error is inherently irreducible in autoregressive video generation, while insufficient
memory mechanism leads to incoherence of world models. We propose video
retrieval augmented generation (VRAG) with explicit global state conditioning,
which significantly reduces long-term compounding errors and increases spatiotem-
poral consistency of world models. In contrast, naive autoregressive generation
with extended context windows and retrieval-augmented generation prove less
effective for video generation, primarily due to the limited in-context learning capa-
bilities of current video models. Our work illuminates the fundamental challenges
in video world models and establishes a comprehensive benchmark for improving
video generation models with internal world modeling capabilities.

Project page: https://sites.google.com/view/vrag,

1 Introduction

Foundational world models capable of simulat-
ing future outcomes based on different actions
are crucial for effective planning and decision-
making [1 12, 13]. To achieve this, these mod-
els must exhibit both interactivity, allowing for
action conditioning, and spatiotemporal consis-
tency over long horizons. While recent advance-
ments in video generation, particularly diffu-
sion models [4, 5, 16, [7]], have shown promise,
extending them to generate long, interactive,
and consistent videos remains a significant chal-
lenge (8} 9} 10

Autoregressive approaches [11, [12} 13 [14],
which generate videos frame by frame or chunk
by chunk conditioned on previous outputs, are a
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Figure 1: A world model possesses memory capa-
bilities and enables faithful long-term future predic-
tion by maintaining awareness of its environment
and generating predictions based on the current
state and actions. Example is in Minecraft game.
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natural fit for modeling long temporal dependencies and incorporating interactivity. However, these
methods face significant challenges stemming from two fundamental, often coupled, limitations:
compounding errors and insufficient memory mechanisms. Compounding errors arise as small
inaccuracies in early predictions accumulate over time, leading to significant divergence from plau-
sible future states. Our analysis suggests this may be inherent to current autoregressive paradigms.
Insufficient memory mechanisms hinder the models’ ability to maintain consistent object identities,
spatial layouts, and world states over extended durations, resulting in inconsistent world models.
These two issues often exacerbate one another, making long-term consistent generation difficult.

Inspired by the success of large language models (LLMs) [[15][16] in handling long sequences,
we investigate analogous techniques for video generation. Extending the context window, while
potentially alleviating compounding errors to some degree, introduces substantial computational and
memory overhead. More critically, we find that unlike LLMs, current video generation models exhibit
weaker in-context learning capabilities, making longer context less effective in resolving fundamental
consistency issues. Similarly, retrieval-augmented generation (RAG) [17][18]], a powerful technique
for incorporating external knowledge in LLMs, shows limited benefits in our experiments with video
models. Neither static retrieval with heuristic sampling nor dynamic retrieval based on similarity
search significantly improved world model consistency.

These findings suggest that implicitly learning world consistency solely from autoregressive prediction
on pixel or latent representations is insufficient. We argue that explicit global state conditioning
is necessary. Incorporating explicit representations like world maps, object states, or coordinate
systems as conditioning information could provide the necessary grounding for generating consistent
long-term interactive simulations.

Furthermore, evaluating the specific failure modes of long video generation demands appropriate
metrics. Existing metrics often conflate the distinct issues of compounding errors and long-term
consistency (memory faithfulness), providing a coupled assessment that obscures the underlying
problems. To enable a clearer analysis, we advocate for and introduce a decoupled evaluation strategy
by separately quantify the severity of compounding errors and the faithfulness of memory retrieval in
long interactive video generation.

Our main contributions are: (1). We systematically decouple and analyze the challenges of com-
pounding errors and insufficient memory in autoregressive video generation for interactive world
modeling. (2). We propose video retrieval augmented generation (VRAG) with explicit global
state conditioning, which significantly improves long-term spatiotemporal coherence and reduces
compounding errors for interactive video generation. (3). We conduct a comprehensive comparison
with various long-context methods adapted from LLM techniques, including position interpolation,
neural memory augmentation, and historical frame retrieval, demonstrating their limited effectiveness
due to the inherent weak in-context learning capabilities of video diffusion models. This work sheds
light on the fundamental obstacles in building consistent, interactive video world models and provides
a benchmark and evaluation framework for future research in this direction.

2 Related Works

Video Diffusion Models Diffusion generative modeling has significantly advanced the fields of
image and video generation [19} [12} 20} 21, 22} 23| 24} 25 26} 27| 28| [29]. Latent video diffusion
models [21]] operate on video tokens within a latent space derived from a variational auto-encoder
(VAE) [30], building upon prior work in latent image diffusion models [31]]. The Diffusion Trans-
former (DiT) [32] introduced the Transformer [33]] backbone as an alternative to the previously
prevalent U-Net architecture 23| 21}, 122]] in diffusion models.

Long Video Generation Autoregressive video generation [11} [12} [13} 14} 134,35 36} 137, 38}, 139]]
represents a natural approach for long video synthesis by conditioning on preceding frames, drawing
inspiration from successes in large language models. This can be implemented using techniques
such as masked conditional video diffusion [40,|34]] or Diffusion Forcing [41]. Diffusion Forcing
introduces varying levels of random noise per frame to facilitate autoregressive generation conditioned
on frames at inference time. Furthermore, the autoregressive framework naturally supports interactive
world simulation by allowing action inputs at each step to influence future predictions. Nevertheless,



compounding errors remain a significant challenge in long video generation, particularly within the
autoregressive paradigm, as will be discussed subsequently.

Interactive Video World Models World models [1} 2, 3] are simulation systems designed to
predict future trajectories based on the current state and chosen actions. Diffusion-based world
models [42} 43 |10] facilitate the modeling of high-dimensional distributions, enabling high-fidelity
prediction of diverse trajectories, even directly in pixel space. The Sora model [8]] introduced the
concept of leveraging video generation models as world simulators. Extending video generation
models with interactive capabilities has led to promising applications in diverse domains, including
game simulation like Genie [9], GameNGen [10], Oasis [44], Gamegen-x [45]], The Matrix [37],
Mineworld [46], GameFactory [47] and so on [43], autonomous driving [48]], robotic manipula-
tion [35) 149], and navigation [50]. While existing work on interactive video world models has
made significant engineering advances, there remains a notable gap in systematically analyzing and
addressing the fundamental challenges underlying long-term consistency and compounding errors.

A lack of spatiotemporal consistency is a primary bottleneck for developing internal world models
using current video generation techniques. One line of research addressing this involves predicting
the underlying 3D world structure like Genie2 [51]], Aether [52], Gen3C [53]] and others [54} 55 56];
however, these approaches often suffer from lower resolution compared to direct video generation
due to the complexity of 3D representations, exhibit limited interaction capabilities, and typically
operate only within localized regions. Consequently, our work focuses on enhancing the consistency
of video-based world models [10} 34, 57]]. SlowFast-VGen [34] employs a dual-speed learning
system to progressively trained LoORA modules for memory recall, utilizing semantic actions but
offering limited interactivity. Concurrent work [57] explores interactive world simulation through the
integration of supplementary memory blocks.

3 Methodology

3.1 Preliminary: Latent Video Diffusion Model

Video diffusion models have emerged as a powerful framework for video generation. We adopt a
latent video diffusion model [21] that operates in a compressed latent space rather than pixel space
for computational efficiency. Specifically, given an input video sequence xz € RLXH>XWX3 'ye first
encode it into a latent representation z = £(x) using a pretrained variational autoencoder (VAE).
The forward process gradually adds Gaussian noise to the latent according to a variance schedule
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The model learns to reverse this process by predicting the noise €y at each step:
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where z; = /azz¢ + /1 — aze with € ~ N (0,T).

At inference time, we can sample new videos by starting from random noise zr ~ N(0,I) and
iteratively denoising:
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where a; =1 — 3, and &y = HZ:l a,. The final latent sequence z( is decoded back to pixel space
using the decoder D to obtain the generated video.

3.2 Interactive Long Video Generation

To enable interactive long video generation conditioned on action sequences, we augment the base
diffusion model with two techniques: (1) additional action condition with adaptive layer normalization
(AdaLN), and (2) random frame noise for autoregressive modeling, as shown in diagram Fig.

Action Conditioning To enable interactive video generation conditioned on action sequences,
we augment the base diffusion model with adaptive layer normalization (AdaLN). Given an action
sequence a € RY*4 where A is the action dimension, we first embed it into a latent space using a
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Figure 2: Overview of our VRAG framework for interactive video generation. The framework
incorporates global state conditioning and memory retrieval mechanisms to ensure spatiotemporal
consistency and mitigate error accumulation. During both training and inference, retrieved memory
serves as context for joint self-attention in spatiotemporal DiT blocks. The model employs per-frame
noise injection during training to facilitate autoregressive sampling at inference time.

learnable embedding layer: e, = Embed(a) € RE*Pe where D, is the embedding dimension. For
each normalization layer in the diffusion model, we learn action-dependent scale and shift parameters
through linear projections: vy, = e, W, + b, € RLXDn g = eaWp +bg € REXPr where Dy,
matches the hidden dimension of the feature maps. We have AdaLN(h) = ~, ® LayerNorm(h) + S,,
where h € RE*Pr represents the intermediate feature maps and ® denotes dot production.

Autoregressive Video Generation To enable long video generation, we adopt an autoregressive
approach where we generate frames sequentially. At each step, we condition on a fixed-length context
window L, of previously generated frames. However, naive autoregressive generation with teacher
forcing can suffer from large compounding errors where mistakes accumulate over time. We apply
the Diffusion Forcing [41] technique during training.

Specifically, during training, we randomly add noise to each frame in the entire input video sequence
according to the diffusion schedule: 2} = \/a;z{ + /1 — auet, € ~ N(0,1), where 2! represents the
noised latent of the i-th frame. This forces the model to be robust to noise in the conditioning frames
and prevents it from relying too heavily on the context. With above two techniques, the training
objective for action-conditioned autoregressive video models become:
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where [t] is vector of L timesteps with different ¢ € [T'] for each frame. The noise prediction model
€p conditioned on both the action sequence a and noised frames z;.

Architecture We apply diffusion transformer (DiT) for video generation modeling. We adopt
spatiotemporal DiT block with separate spatial and temporal attention modules. Rotary Position
Embedding (RoPE) [58] is applied for both attention modules, and temporal attention is implemented
with causal masking.

3.3 Retrieval Augmented Video World Model with Global State

While the vanilla model in Sec. [3.2) provides a foundation for interactive video generation, it lacks
robust mechanisms for maintaining long-term consistency and world model coherence. To address
these limitations, we integrate memory retrieval and context enhancement with inspiration from
LLMs, and incorporate video-specific approaches such as historical frame buffer and global state con-
ditioning. These enhancements enable more consistent and coherent autoregressive video generation
by providing the model with better access to historical context and spatial awareness.



Global State Conditioning To enhance spatial consistency in video generation, we incorporate
global state information—specifically the character’s current coordinates and pose—as an additional
conditioning signal. The global state vector s € R consists of two key components: Spos TEpresenting
3D position coordinates and s.;; capturing orientation angles. Given an action sequence a € RE*4
and the global state sequence s € RZ*, both are transformed by a learnable embedding layer,
e. = Embed.(a, s), to produce conditioning features. These features are then fed into AdaLN layers
within the diffusion model. This mechanism allows the model to modulate its generation process,
adapting to both the input actions and the character’s spatial context, thereby improving overall
coherence.

Video Retrieval Augmented Generation (VRAG) Beyond global state conditioning, we propose
memory retrieval augmented generation to enhance the model’s ability to leverage historical context
while maintaining temporal coherence, namely video retrieval augmented generation (VRAG). For
VRAG, we combine the concatenated historical and current frames with their corresponding action
sequences a € RE*4 and global state sequences & = [spis(, 8] € RE*S as conditional inputs to the
model. The historical frames are retrieved from a fixed-length buffer 13, which stores previously
generated frames. The per-frame retrieval process is based on a heuristic sampling strategy, where we
select the most relevant historical frames based on similarity search to concatenate with the current
context. The similarity score based on global state is defined as:

r(8) = fim(8 O w, sp—1 Ow),§ € B 5)

where fgin is a distance metric (e.g., Euclidean distance) between the history frame and the last frame
to be predicted s, 1, and w € R” is a weight vector that modulates the importance of different state
components. The top L; most similar historical states and frames are selected and sorted to form
the retrieved context. Unlike RAG in LLMs which leverages strong in-context learning capabilities,
video diffusion models exhibit weak in-context learning abilities, making direct inference with
historical frames as context ineffective, as demonstrated later in our experiments. To address
this limitation, we propose VRAG training with key modifications to the standard RAG approach,
enabling effective memory-augmented video generation.

During training, we retrieve historical frames zy;y € RE» %D and concatenate them with the current
context window z € RE<*D to form the extended context z = [Znist, z]. For effective VRAG, we
make several key modifications: (1). To distinguish retrieved frames from normal context frames,
we modify the RoPE embeddings by adding a temporal offset At to the retrieved frames’ position
indices. (2). Additionally, we apply lower noise levels By < f; to the retrieved frames zp;y to
simulate partially denoised historical frames during inference. This enhances the robustness of the
model with imperfect historical frames generated previously during the autoregressive process. The
model is trained to denoise for the entire context z including both retrieved and current frames. (3).
To ensure the model focuses on denoising the current context while leveraging historical information,
we mask the diffusion loss Lpf for retrieved frames. (4). Furthermore, for retrieved frames, we only
condition on their global states spis; € RLnxS masking out action conditions apisr € RELn*A 10 avoid
temporal discontinuity in action sequences. This selective conditioning approach helps maintain
spatial consistency while preventing action-related artifacts from propagating through the generation
process. Overall, the training objective of VRAG on diffusion models is defined as:

Lvrac = B 11,e.3,0.5]| € — €0(Z, %, @,8)||5 ©ml], (6)
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where 7 is a concatenation of ['] and [t], with ¢’ < ¢ and ¢/, t € [T]].

3.4 Long-context Extension Baselines

To investigate whether established long-context extension techniques from LLMs can effectively
enhance video generation models, we design three complementary approaches that leverage either
explicit frame context or neural memory hidden states, based on vanilla models in Sec. These
methods serve as baseline comparisons to our main approach, specifically targeting the model’s
ability to maintain spatial coherence and temporal consistency in long video generation. Through
these baselines, we aim to verify the in-context learning capabilities of video diffusion models and
assess their effectiveness in handling extended sequences.



Long-context Enhancement We extend the temporal context window using YaRN [59] modifica-
tion for RoPE in temporal attention. RoPE encodes relative positions via complex-valued rotations,
where the inner product between query q,, and key k,, depends on relative distance (m — n). YaRN
extends the context window by applying a frequency transformation to the rotary position embed-
dings. This transformation scales the rotation angles in a way that preserves the relative positioning
information while allowing the model to handle longer video sequences, after small-scale fine-tuning
on longer video clips.

Frame Retrieval from History Buffer We implement a fixed-length buffer B storing historical
latent frames with a heuristic sampling strategy. The buffer is partitioned into Ng = 5 exponentially
decreasing segments G';, where L; = Ly - a?~1. From each segment G;, we sample k frames to
form subset F;. The retrieved memory zmem = [F1, ..., Fng] is concatenated with current frame
window z as additional context: Z = [Zmem, 2], Which is then passed into the spatiotemporal DiT
blocks. This design ensures higher sampling density for recent frames, emphasizing recent visual
information while maintaining access to historical context for temporal consistency.

Neural Memory Augmented Attention Instead of using explicit frames as context in above
two methods, we explore a neural memory mechanism to store and retrieve hidden states. This
approach is inspired by the success of Infini-attention [60]] in LLMs, which utilizes a compressed
memory representation to enhance attention mechanisms. The model processes video in overlapping
segments to maintain temporal continuity. For each video segment z,, we compute query qs, key kg
and value v, matrices. The model retrieves hidden state A e, from compressive memory M _q:

Apem = %. Memory M,_; and normalization vector ns_; are then updated. The final
attention output combines retrieved hidden state A .., and standard attention using learnable gating

to maintain visual consistency across the long video sequence.

Frame Pack As another baseline, we follow the Frame Pack [61] to compress historical frames as
context. Three input compression kernels with different kernel sizes-(2, 4, 4), (4, 8, 8), and (8, 16, 16)-
are employed to condense the historical frames into a fixed-length context. This approach essentially
achieves frame compression through importance sampling with recency bias, which enables a
larger field of view while maintaining lower computational costs. However, the prioritization of
most recent frames can be suboptimal in many cases for long video generation especially when
considering the memory issue. Our VRAG based on frame relevance provides theoretically better
historical information retrieval. Moreover, our method is actually orthogonal to the frame compression
technique in Frame Pack. We leave the combined methods as future work.

More details of the above methods can be found in the supplementary material.

4 Experiments

4.1 Datasets and Evaluation Protocol

For training, we collected 1000 long Minecraft gameplay videos (17 hours total) using MineRL [62].
All videos have a fixed resolution of 640x360 pixels. Each sequence spans 1200 frames, annotated
with action vectors (forward/backward movement, jumping, camera rotation) and world coordinates
(X, y, z positions and yaw angle).

For evaluation, we assembled two distinct test sets: (1) for compounding error evaluation, we use 20
long videos of 1200 frames with randomized actions and locations, and (2) for world coherence, we
use 60 carefully curated 300-frame video sequences designed to systematically assess spatiotemporal
consistency. These curated sequences feature controlled motion patterns including in-place rotation,
direction reversal, and circular trajectory following. The first 100 frames of each sequence serve as
initialization buffer for methods requiring buffer frames or are excluded from evaluation for others.
Each model autoregressively generates next single frame with stride 1 until the desired length.

We evaluate the models against ground-truth test sets using several metrics: Structural Similarity
Index (SSIM) [63]] to measure spatial consistency, Peak Signal-to-Noise Ratio (PSNR) for pixel-
level reconstruction quality, Learned Perceptual Image Patch Similarity (LPIPS) [64] to assess
perceptual similarity. For the compounding error evaluation, we find SSIM more accurately reflect
the faithfulness of frames over long sequences.
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Figure 3: Visual comparison of VRAG with ground truth videos on world coherence evaluation. With
100 initial frames as history buffer, VRAG predicts 200 subsequent frames.

4.2 Training Details

A consistent window size
of 20 frames is applied for
both model training and
evaluation for fair compar-
ison. For vanilla Diffu-
sion Forcing, we addition-
ally train a variant with
window sizes of 10 frame
for context length evalu-
ation. For our VRAG
method, we combine 10 re-
trieved frames with 10 cur-
rent frames for both train-
ing and inference. We rep-
resent the agent’s state us-
ing a global state vector s =
[x,y, z,yaw] during train-
ing, which can be extended
to incorporate a full 3D
pose representation when
needed. To facilitate train-
ing convergence, these val-
ues are normalized relative
to the initial state, thereby

YaRN

History Buffer ~ Neural Memory

Figure 4: Visual comparison of different methods, evaluated for world
coherence analysis.

reducing the complexity of the diffusion process. The YaRN implementation extends the vanilla
model (window size 20) by replacing position embeddings with YaRN and stretching factor 4, fol-
lowed by fine-tuning for 10* steps on 80-frame sequences. During evaluation of Yarn, we use a
40-frame window. The Infini-attention with neural memory employs a sliding window size 20 and
stride 10, using the first 10 frames for memory state updates and the last 10 for local attention com-
putation. The History Buffer method maintains a 124-frame buffer partitioned into 5 exponentially
decreasing segments (L1 = 2, a = 2), sampling 2 frames per segment to form 10 historical frames
that are concatenated with the 10 current frames. All models are trained for 3 epochs on the dataset,
with a batch size of 32 across 8 A100 GPUs.



4.3 World Coherence Results

We investigate the spatiotemporal consistency of internal world models by evaluating the predicted
videos given initial frames and action sequences. As visualized in Fig. [} our VRAG provides an
effective approach to enhance the model’s ability to leverage historical context for improving world
coherence. Fig.[3|shows more visual comparison of VRAG with ground truth videos. We evaluate
the world coherence of different methods using multiple metrics. Fig. [5]shows the SSIM scores over
time, while Tab. [I] presents a comprehensive comparison across all metrics. Our VRAG method
achieves the best performance across all metrics, demonstrating its superior ability to maintain world
coherence in generated videos. Our experimental results demonstrate that expanding the window size
from 10 to 20 frames in the baseline DF model improves world coherence, indicating that longer
context windows enhance consistency. However, further context extension using YaRN shows no
improvement over the vanilla DF model. This suggests that YaRN’s context extension capabilities,
while effective in language models, do not transfer effectively to video generation for maintaining
world coherence. Similarly, the History Buffer method fails to effectively utilize historical frames
for spatiotemporal consistency without explicit in-context training. These findings from both YaRN
and History Buffer approaches reveal that video diffusion models at the current scale possess limited
in-context learning capabilities, preventing them from effectively leveraging historical frames for
maintaining long-term consistency. The Neural Memory method performs poorly due to its instability
in model training.

0.60 —— DF(window 10) = Neural Memory Method SSIM1 PSNR T LPIPS |

058 e ) e P oy DF (window 10) 0455  16.161 _ 0.509
P\ 8 —— Histoy Bufer DF (window 20) 0466  16.643  0.538
P40\ YaRN 0462 16567  0.532

0.35 History Buffer 0459 16922  0.543

0.30 Frame Pack 0421 16372 0574

028 VRAG 0.506 17.097  0.506
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Table 1: Quantitative comparison of world co-

Figure 5: SSIM scores over time for different meth- herence across different methods, evaluated on
ods on world coherence evaluation. videos with 300 frames.

4.4 Compounding Error Results

We evaluate the compound-
ing error in long video
generation across different
methods using the SSIM
metric. As shown in Fig.
[7] and Tab. 2] our VRAG
method achieves superior
performance with an SSIM
score of 0.349, demonstrat-
ing better structural similar-
ity preservation compared
to baseline methods. In-
creasing the window size in
DF from 10 to 20 frames
improves SSIM, indicating
that longer context helps Figure 6: Visual comparison of long-term video prediction (1200
mitigate compounding er- frames) across different methods, evaluated for compounding error
rors. However, this im- analysis.

provement is still inferior to

VRAG'’s performance, suggesting that our retrieval-augmented approach provides more effective
long-term consistency. As visualized in Fig. [6] our VRAG method generates more coherent and
consistent frames over long sequences, while other methods exhibit noticeable artifacts and incon-
sistencies. The History Buffer method performs poorly, with an SSIM score of 0.188, indicating
that naive historical frame retrieval without effective in-context training fails to maintain long-term
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consistency. Given its limited performance in the world coherence experiments (Sec.[d.3)), we exclude
the Neural Memory method from visualization in this longer video prediction visualization.
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@ 01 = bronien ) YaRN 0.316
00 — Wi History Buffer 0.188
01— o st Neural Memory 0.283
° 7100 300 500 700 900 1100 VRAG 0.349

F Ind
rome fndex Table 2: Average SSIM scores across all frames

Figure 7: SSIM scores over time for compound-  in compounding error evaluation
ing error evaluation

4.5 VBench Evaluation

We evaluate the long video generation with five Video Quality metrics in VBench [63] for xxx. The
evaluation results on VBench (higher is better) are shown in the Tab. E As demonstrated in the
results, our method outperforms all other baselines across all metrics in both temporal quality and
video frame quality. The Neural Memory baseline has Aesthetic Quality 0.343 and Imaging Quality
score 0.3597 respectively, which are significantly lower than other baselines, therefore not listed here.
Our VRAG shows better temporal consistency compared with all baseline methods, and the high
video frame quality indicates the results are not over-smoothed.

4.6 Extension: Real World Setting

Background  Temporal Motion Aesthetic  Imaging -
Method Consistency  Flickering Smoothness  Quality Quality gllséitﬁcT (? ff;; (\)/l;ﬁ(g
DF20 0.9668 0.9485 0.9582 0.5272 0.6058 PSNR 1 1'3 03 3‘2 21
YaRN 0.9686 0.9401 0.9523 0.5252 0.6323 LPIPS | 0 4;169 0 1.146
History Buffer 0.9664 0.9475 0.9579 0.5167 0.6253 FVD | ?;37 5 ‘221
VRAG 0.9686 0.9511 0.9603 0.5295 0.6444 :

Table 4: Quantitative com-
parison on RealEstate 10K
dataset.

Table 3: Evaluation results on five Video Quality metrics in VBench.

We conduct additional experiments in
real-world setting beyond Minecraft
simulation to show generalization of
our approach. Specifically, following
the experimental setup of Diffusion
Forcing Transformer (DFoT) [66]], our
VRAG model is initialized from pre-
trained DFoT and finetuned on the
RealEstate 10K dataset [67] with ad-
ditionally retrieved historical context,
as described in Sec.

After fine-tuning for just 2 epochs

(10% of the original training steps), ) ‘
our method significantly outperforms i

the DFoT baseline in terms of mem- ‘ ; -
orization capability. The visualized ‘ ‘

frames are presented in Fig. [§] and
quantitative results are summarized in
Tab. ] The results effectively demon-
strate the generalization of our ap-
proach beyond Minecraft for solving the memory issue in long video prediction.

Figure 8: Visualized video frames on RealEstate10K dataset.
Red blocks indicate the ground-truth frames.



4.7 Ablation: Memory and Training of VRAG

0.60 — Method SSIM+ PSNRt LPIPS |
ggg VRAG (no training) VRAG 0.506 17.097 0.506
=045 —— VRAG (no memory) VRAG (no training) 0.455 16.670 0.528

VRAG (no memory)  0.436 16.372 0.547

Table 5: Ablation study of VRAG components. We
1000125 150 72 200 225 250 275 300 compare the full model with variants that remove ei-
ther the memory component (additional global state

Figure 9: Comparison of SSIM scores over  conditioning only) or training component (in-context
time for VRAG variants. learning only).

We ablate the key designs for VRAG methods, including the memory and training components. The
ablation results are shown in Fig. [0]and Tab. [5| We compare the full VRAG model with two variants:
(1) VRAG without the memory component, which only uses additional global state conditioning, and
(2) VRAG without the training component, i.e., vanilla model with retrieval augmented generation for
in-context learning at inference. The ablation study is conducted on the world coherence evaluation
dataset.

The ablation results reveal several key insights about VRAG components. First, removing the mem-
ory component leads to the largest performance drop across all metrics, with SSIM decreasing by
13.8% and LPIPS increasing by 8.1%. This demonstrates that the memory mechanism is crucial for
maintaining spatiotemporal consistency and quality. Second, removing the training component also
causes significant degradation, with SSIM dropping by 10.1% and LPIPS increasing by 4.3%, high-
lighting the weak capabilities of in-context learning for current video models. The full VRAG model
achieves the best performance across all metrics, showing that both components work synergistically
to improve video generation quality.

5 Conclusions and Discussions

In conclusion, VRAG tackles the fundamental challenge of maintaining long-term consistency in
interactive video world models through an innovative combination of memory retrieval-augmented
generation and global state conditioning. By maintaining a buffer of past frames associated with
spatial information, VRAG effectively recalls relevant context and preserves coherent dynamics across
extended sequences. Its memory mechanism with explicit in-context training process substantially
mitigates compounding errors and improves spatiotemporal consistency. Extensive experiments on
long-horizon interactive tasks demonstrate the superior performance of VRAG over both long-context
and memory-based baselines, establishing a scalable framework for faithful video-based world
modeling. Notably, we discovered that context enhancement techniques from LLMs fail to transfer
effectively to the video generation domain, even with shared transformer backbones, due to the
inherent limitations of in-context learning capabilities for video models. This finding underscores the
critical importance of VRAG’s in-context training approach. We hope our work will inspire further
exploration into memory retrieval mechanisms for long video generation and interactive simulation.

Limitaitons. We acknowledge the current computational limitations preventing effective scaling
to longer sequences or larger architectures. GPU memory constraints severely restricted memory
buffer size and training sequence length, potentially impacting long-horizon consistency and model
performance. The higher computational cost of memory retrieval-augmented generation may further
limit deployment in resource-constrained settings such as edge devices. Future work could explore
more efficient memory mechanisms, adaptive optimization strategies, and hardware-aware algorithms.

Broader Impacts. We acknowledge serious ethical concerns regarding the potential misuse of
such technology for creating highly convincing misleading or manipulated video content in games
or simulation systems. We strongly encourage responsible development and deployment of video
generation technologies, with appropriate technical and ethical safeguards, clear accountability
frameworks, and transparency measures in place to mitigate risks.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract clearly identifies spatiotemporal consistency and compounding
error as key challenges, and the paper directly addresses them through the proposed VRAG
model, with improvements demonstrated using a comprehensive set of evaluation metrics.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss in Sec[5|the computational limitations of our work that the higher
computational cost of memory retrieval-augmented generation may limit deployment in
resource-constrained settings.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results are provided in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided relevant details on the methodology and experiment setups
as seen in Section 3.3]and Secion ]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be available later on Github with sufficient instructions to reproduce
the results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described all relevant training and evaluation details in Section 4]
More details will be provided in appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The error bars are not reported in paper due to heavy computation for each
model training. However, we report the average scores across whole test sets for each
method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The detailed computational resources are reported in Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our paper does not involve human or animal subjects, and all data are collected
from openly available sources.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader social impacts are discussed in Section [5|and we acknowledge the
potential misuse of the video generation technology for creating misleading or manipulated
video content in games or simulation systems.

Guidelines:

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our video generation models are trained from scratch, with self-collected
datasets in Minecraft simulation games, therefore does not pose such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All code and data are cited explicitly and used within the scope of the license.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release our code on Github with a detailed documentation.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core method does not involve LLMs, and the entire content of this paper
is written by the authors.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Baseline Method Details

For the baseline methods in Sec. [3.4 we implemented the following techniques to enhance the
temporal context window of our video generation model.

Long-context Enhancement To extend the temporal context window of our video generation
model, we apply the YaRN [59] modification for ROPE in temporal attention module for improved
extrapolation. RoPE encodes relative position via complex-valued rotations, such that the inner
product between the m-th query q,, and n-th key k,, depends only on the relative distance (m — n):

(Am. kn) = (fw, (Zm, M), fw, (Zn,1))r ®)
=Re ((Wyzm)e™?, (Wyz,)e?)) o)
=Re ((qum)(szn)* . ei(m_")9> (10)
= 9(Zm,Zn, m — n) (1D

where Rel[:] is real part of complex values and (-)* represents conjugate of complex numbers,

Zm,Zn, € RP are input vectors, W,, W, are learned projections, and 6 € RP encodes rotation
frequencies per dimension: 8y = b=24/P_with b = 10000.

YaRN modifies modifies the rotated input vector fw (2, m, ;) by applying a frequency transforma-
tion:
f\/N(vamaed> :fW(Zmag(m)vh(Gd)) (]2)

with g(m) = m and frequency warping function:

M(00) = (1 =) - 2 4 (1) -0 (13)

Here, s is a stretching factor and 4 = L./ )\, is the context-to-wavelength ratio with Ay = 27/604 =

27 (b )Qd/ D and b = bsP>2. The ramp function 7(-) interpolates low-frequency dimensions to
improve extrapolation while preserving high-frequency components.

Frame Retrieval from History Buffer We also experimented with a fixed-length buffer B that
stores a history of previously generated latent frames, employing a heuristic sampling strategy
for retrieval. Following [68]], this strategy involves partitioning B into Ng = 5 segments G; for
je€{l,..., Ng}, ordered from oldest (G) to most recent (G y). The total number of frames in the

buffer is Np = Z;le |G,|. The lengths of these segments, L; = |G|, decrease exponentially (e.g.,

L; =Ly -a’~! forabase a < 1 and L, being the length of the oldest segment G1), ensuring that
more recent segments are shorter. From each segment G, k frames are randomly sampled to form a
subset F;; C G; (where | F;| = k). The retrieved memory Zpyen, is constructed as the concatenation of
these sampled frames, Zmem = [F1, Fo, ..., Fng], totaling Ng - k frames. This design with recency
bias implies that the sampling density k/L; is higher for more recent segments, thereby placing
greater emphasis on recent information. This retrieved information Zy,e, is concatenated with current
frame window z along temporal dimension as additional context: Z = [Zpem, 2], which is then passed
as input to the spatiotemporal DiT blocks, enabling the model to jointly attend to both recent and
historical frames.

Neural Memory Augmentation To extend video generation capabilities to longer sequences be-
yond a fixed attention window while retaining memory of past scenes, we adapt Infini-attention [60] as
a neural memory mechanism for our video diffusion model. Infini-attention is a recurrent mechanism
that augments standard dot-product attention (local context) with a compressed summary of past
context (global context) stored in an evolving memory.

The model processes the video in segments using a sliding window. To maintain the high degree
of temporal continuity crucial for video generation, we employ overlapping segments. This is a
modification from the original Infini-attention, which typically processes non-overlapping segments.
The input latent video segment z, € RV*P (s is segment index) is processed to derive query qs,
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key k, and value v, matrices using standard attention mechanisms. Key-value pairs from processed
segments are incrementally summarized and stored in a compressive memory M, which can be
efficiently queried by subsequent segments using their query vectors. After each slide, the model first
retrieves a hidden state A, by querying the compressive memory M_;:

o(qs)M,_
Ao = (9s) 1
U(qs)ns—l

where o(-) is an element-wise nonlinear activation function (e.g., ELU(-) 4+ 1) and ns_; is a
normalization vector (accumulated up to segment s — 1).

(14)

Next, the compressive memory M and normalization vector n, are updated using the KV entries of
the current segment s:

k)M, _
Ms — Msfl 4 O_(ks)T (Vs _ U(S)Sl>

o(ks)ns_1 (15)

n, =n, ; +ok,) 1y

Here, N is the length of the current segment s. o(-) is applied element-wise, and 1 is an N x 1
vector of ones.

The final attention output for segment s, denoted A 5, combines the standard dot-product attention
output Ao (local context from the current segment) with the retrieved memory state A ., (global
context from past segments) using a learnable gating scalar 8 € R:

A, = sigmoid() ® Apem + (1 — sigmoid(5)) ©® Ajocal (16)

As in standard multi-head attention, a final linear projection is applied to A ¢ to produce the output of
the Infini-attention layer.

B Implementation Details

The VAE compresses each input frame of size 3 x 640 x 360 into a latent representation of size
16 x 32 x 18 before processing by the diffusion model. All diffusion models employ a hidden size of
1024 and depth of 16, with one temporal and one spatial attention modules in each spatialtemporal
DiT block. We use a uniform learning rate of 8 x 10~° during training. For Infini-Attention, we
apply a learning rate of 3 x 103 specifically to the global weight parameter to effectively balance
global and local attention contributions while maintaining stable convergence. In VRAG, we set the
weights as [10.0, 10.0, 10.0, 3.0] across the global state dimentions ([z, ¥, z, yaw]) in the similarity
function, to accommodate the wider range of yaw values. To differentiate retrieved historical frames
from current context frames along the temporal dimension, we incorporate a temporal offset of 100
in the rotary position embeddings of temporal attentional for retrieved frames.

C Additional Experiments

C.1 Analysis of Compounding Error Evaluation Metrics

Traditional metrics like SSIM, PSNR, and LPIPS measure pixel-level or feature-level differences
between original and generated images. However, these metrics lose effectiveness when the generated
video sample deviates significantly from the original video sample, especially for the compounding
error evaluation, even if they falls in the same distribution and are visually reasonable. As shown
in Figure we normalize all metrics to a 0-1 scale where higher values indicate better generation
quality (with SSIM score flipped). While all metrics perform well on the initial frame (index 0),
assigning high scores to ground truth, their values begin to deteriorate after frame 100.

To address this limitation, we developed a discriminator-based evaluation metric. We train a discrimi-
nator using 1000 videos from the vanilla DF model (window size 20), with each video containing
1000 frames. This yielded a dataset of 106 ground truth frames and 106 generated frames as fake ones.
We implemented the discriminator as a binary classifier using a lightweight architecture with 4 ResNet
blocks. Too large discriminator architecture will lead to less meaningful discriminative signals. Each
block contains two convolutional layers with batch normalization and activation functions. This
design provides discriminative outputs while maintains computational efficiency.
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Figure 10: Comparison of SSIM, PSNR, LPIPS, and discriminator metrics. All metrics are normalized
to the [0,1] range, where higher values indicate better performance for all scores. The discriminator
score can accurately capture variations in generated image quality, while the other metrics are affected
by distribution shift and fail to properly reflect compounding errors.

As shown in Fig.[I0} the decrease of discriminator value faithfully reflects the distortions in generated
images, while other metrics decline for two reasons: image quality degradation and distributional
shift from the original video. This shift prevents traditional metrics from accurately assessing
generation performance in terms of the compounding error. For instance, while the 270th frame
shows significantly better generation quality than the 1080th frame, SSIM, PSNR, and LPIPS assign
similar scores to both. This indicates that the distribution shift has become the dominant factor in
lowering the metric scores, making these metrics unreliable for evaluating compounding error in
long-range video generation.

Unlike traditional metrics, the discriminator’s evaluation remains robust to distribution shifts since it
doesn’t depend on the original image, but rather depending only on the distortion of the generated
images. This makes the discriminator score a more reliable metric for evaluating compounding errors
in this case. However, the discriminator approach has several limitations. First, training requires
sampling from a pre-trained diffusion model, which incurs computational overhead. Second, the
training of the discriminator heavily depends on human judgment. We find that even a shallow ResNet
architecture can effectively distinguish between ground truth and generated images. This suggests
that an overly complex model might assign uniformly low scores to all generated content, making the
discriminator metric less meaningful to look at. Finally, the discriminator shows limited generalization
capability. When evaluating videos generated by new methods or datasets, the discriminator may be
deceived into assigning inappropriately high scores. Therefore we do not report the discriminator
score in the main paper, and advocate more investigation into faithful evaluation of compounding
error in future work.

C.2 Vanilla Long-context Extension vs. YaRN

To ensure a fair comparison, we evaluate YaRN against a baseline that directly extrapolates the vanilla
model’s window size from 20 during training to 40 at inference, to match the inference window
length as YaRN in our experiments as Sec.[d Evaluation of quantitative metrics LPIPS, SSIM and
PSNR shown in Figures [T} [T2} and [[3]indicates that, YaRN maintains lower compounding error
for long video generation (1100 frames). This demonstrates YaRN’s effectiveness in extending the
context window of diffusion video models to 40 frames after minimal fine-tuning. Vanilla extension
of context length on DF models performs poorly due to out-of-distribution window size at inference.

While YaRN effectively extends the context window, its performance improvements are constrained
by the inherent limitations of diffusion models in in-context learning. As demonstrated in Figure[14]
the model exhibits difficulties in effectively leveraging long-range dependencies, leading to subopti-
mal spatialtemporal consistency against the ground truth. In addition, YaRN also requires greater
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computational overheads during inference as it has a larger window size compared with other methods
in our experiments in Sec. d] making it less suitable for real-time gameplay applications.
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Figure 11: Comparison of vanilla long-context extension for DF model and YaRN with window
length of 40 frames at inferences. Lower is better for LPIPS score.
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Figure 12: Comparison of vanilla long-context extension for DF model and YaRN with window
length of 40 frames at inferences. Higher is better for SSIM score.
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Figure 13: Comparison of vanilla long-context extension for DF model and YaRN with window
length of 40 frames at inferences. Higher is better for PSNR score.

C.3 More Discussions on Main Results

For the main results in Sec.[#.3]and Sec.[#.4] we provide more discussions here. The Infini-attention
model faces significant training challenges due to its global attention mechanism. As evidenced in
Figure[T3] the model struggles to converge during training. For VRAG without memory component,
we incorporated global state conditioning (specifically [z, vy, z, yaw]) into the input. However,
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Figure 14: Visual comparison of vanilla long-context extension for DF model and YaRN. Both
models are inferred with 40 frames window.

compared to the vanilla diffusion model, the training process becomes significantly more difficult.
This may be due to the higher dimensionality and larger ranges of the spatial condition, whereas the
action condition mostly consists of binary states ([0, 1]), making it harder for the model to learn and
increasing perplexity.
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Figure 15: Training Loss Curves
C.4 Predicted Global State

In the paper, our main experiments are conducted with the access to the ground-truth global state as
conditions during training and inference. However, the practical usage may require the global state to
be also predicted based on historical states and actions. To ablate this effect, we trained a pose (global
state) prediction model that takes the current frame and action as inputs and outputs the predicted
pose change. The next post can be derived by adding the predicted pose change to the current pose.
Its architecture consists of only a few convolutional layers and fully connected layers, with a very
small inference time overhead. At evaluation, we apply this trained predictor to predict the global
state at next step, and generate videos based on the predicted global state. Following the same setting
as in Sec. 3] the experimental results (for 300 frames prediction) are summarized in Table 6]

Method SSIMT  PSNRtT  LPIPS|
DF20 0466 16.643  0.538
VRAG (predicted pose) | 0.500 17.116  0.506
VRAG 0.506 17.097  0.506

Table 6: Ablation study of replacing the ground-truth global state with predicted ones by a trained
pose predictor.
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As shown in the table, the evaluation results are nearly identical with or without the pose prediction,
since the pose prediction is a relatively simple task compared with the video generation. This proves
the feasibility of using the predicted global state without significant video performance degradation.

C.5 Memory and Time Overhead

We also compare the memory usage and inference time of VRAG against several baselines: diffusion
forcing with 10 and 20 context frames, and YaRN with 40 context frames.

Method DFI10 DF20 YaRN VRAG
Context length (Frame) 10 20 40 20
Memory usage (MB) 4420 4448 4543 4452
Inference Time (min) 9 12 23 12

Table 7: Memory usage and inference-time of different methods

As demonstrated in the Table[7]] VRAG’s GPU memory usage and inference time overhead are nearly
identical to DF20. The inference time is derived for autoregressive generation over 600 frames.
Meanwhile, the computation for the retrieval operations can be entirely performed on the CPU, with
its memory footprint being only num_frame x action_dim x 4 Bytes = 9.4 KB in our experiments,
which is almost negligible.

In summary, VRAG incurs almost no additional inference-time overhead compared to standard
diffusion forcing. The memory and computational cost introduced by the retrieval mechanism are
negligible, as it only involves similarity calculations between a set of vectors.

D More Results

Method SSIM{ PSNR{ LPIPS |

VRAG 0.349 12.039 0.654

VRAG (no training) 0.218 11.588 0.712

VRAG (no memory)  0.205 11.367 0.746
Table 8: Ablation study of VRAG components for compounding error on long video generation. We
compare the full model with variants that remove either the memory component (additional global
state conditioning only) or training component (in-context learning only).
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Figure 16: World coherence evaluation on all methods for PSNR (left) and LPIPS (right).
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Figure 17: Compounding error evaluation on all methods for PSNR (left) and LPIPS (right).

22 — VRAG 18 — VRAG
20 ——— VRAG (no training) ——— VRAG (no training)
—— VRAG (no memory) 16 —— VRAG (no memory)
18
x x4
G16 &
a a
14 12
12 10
10
100 125 150 175 200 225 250 275 300 100 300 500 700 900 1100
Frame Index Frame Index

Figure 18: Ablation study of VRAG components for world coherence (left) and compounding error
(right), with PSNR metric. We compare the full model with variants that remove either the memory
component (additional global state conditioning only) or training component (in-context learning
only).
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Figure 19: Ablation study of VRAG components for world coherence (left) and compounding error
(right), with LPIPS metric. We compare the full model with variants that remove either the memory
component (additional global state conditioning only) or training component (in-context learning
only).
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Figure 20: Ablation study of VRAG components for world coherence (left) and compounding error
(right), with SSIM metric. We compare the full model with variants that remove either the memory
component (additional global state conditioning only) or training component (in-context learning
only).
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