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Abstract

Classification of galaxy morphology is a challenging but meaningful task for the enormous amount of data
produced by the next-generation telescope. By introducing the adaptive polar-coordinate transformation, we
develop a rotationally-invariant supervised machine-learning (SML) method that ensures consistent classifications
when rotating galaxy images, which is always required to be satisfied physically, but difficult to achieve
algorithmically. The adaptive polar-coordinate transformation, compared with the conventional method of data
augmentation by including additional rotated images in the training set, is proved to be an effective and efficient
method in improving the robustness of the SML methods. In the previous work, we generated a catalog of galaxies
with well-classified morphologies via our developed unsupervised machine-learning (UML) method. By using this
UML data set as the training set, we apply the new method to classify galaxies into five categories (unclassifiable,
irregulars, late-type disks, early-type disks, and spheroids). In general, the result of our morphological
classifications following the sequence from irregulars to spheroids agrees well with the expected trends of other
galaxy properties, including Sérsic indices, effective radii, nonparametric statistics, and colors. Thus, we
demonstrate that the rotationally-invariant SML method, together with the previously developed UML method,
completes the entire task of automatic classification of galaxy morphology.

Unified Astronomy Thesaurus concepts: Galaxy structure (622); Astrostatistics techniques (1886); Astronomy data
analysis (1858)

1. Introduction

Galaxy morphology is closely related to the formation and
assembly history of the galaxy. For example, as galaxies evolve,
structures–such as bulges, bars, and spiral arms or tidal tails–are
formed. Moreover, morphology is related to color, stellar mass,
star-formation rate, gas content, and environments (e.g., Dressler
1980; Kauffmann et al. 2003; Baldry et al. 2004; Lianou et al.
2019). Therefore, the classification or quantification of galaxy
morphology is instrumental in understanding galaxy evolution.
Besides the model-dependent or model-independent parameters
developed to quantify galaxy morphology, structural features
(Sérsic 1963; Lotz et al. 2004; Conselice 2014), or morphological
classification of galaxies (Hubble 1926) is a fundamental problem
and attracts great interest.

A direct way to carry out a certain scheme of the morphological
classification is by visual inspections (e.g., Hubble 1926; Flugge
et al. 1959; van den Bergh 1960). For example, volunteers were
gathered to identify the morphological types of galaxies in the
galaxy Zoo project (e.g., Lintott et al. 2011; Simmons et al. 2017;

Walmsley et al. 2022). Besides the visual inspections, methods
based on the multidimensional morphological parameter space are
developed, where the boundary of distinctions can be defined by
the empirical cuts (Lotz et al. 2004; Conselice 2014) or machine-
learning algorithms, such as the principal component analysis
(Scarlata et al. 2007) and the support-vector machine (Huertas-
Company et al. 2008).
In recent years, deep-learning methods have been introduced

to the morphological classification of galaxies. Instead of
searching the boundaries in the parameter spaces consisting of
manually designed parameters, they directly extract key
features from the two-dimensional images with single or
multiple channels and give the morphological types. For
example, the convolutional neural network (CNN) can directly
extract enormous information from raw pixels hierarchically
and is capable of mimicking human perceptions. The
supervised neural networks had been applied to galaxy
classification in several imaging surveys, e.g., Sloan Digital
Sky Survey, Dark Energy Survey, and Cosmic Assembly Near-
infrared Deep Extragalactic Legacy Survey at higher redshift
(Dieleman et al. 2015; Huertas-Company et al. 2015;
Domínguez Sánchez et al. 2018, 2019; Barchi et al. 2020;
Cheng et al. 2020b; Cheng et al. 2021b; Vega-Ferrero et al.
2021). Beyond the morphological classification, they were also
used to identify galaxies with specific features, such as bar
structures (Abraham et al. 2018) or galaxies that might suffer
gravitational lensing effect (Li et al. 2020).
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However, the existing solutions of galaxy morphological
classification suffer from the following shortcomings. (1) The
supervised deep-learning methods require large prelabeled data
sets as the training sets. Usually, such data sets are obtained by
visual inspections, which are low efficiency, high cost, and
with subjective bias. (2) The CNN-based neural networks have
poor robustness to image rotations (see Cheng et al. 2016;
Cabrera-Vives et al. 2017; Chen et al. 2018; Cheng et al. 2018;
Reyes et al. 2018; Yao et al. 2019). That is, the algorithms
might misclassify the morphological types of galaxies after
rotating their images. Usually, the conventional solution to this
problem is to perform data augmentation by including
additional rotated images in the training set (e.g., Dieleman
et al. 2015), which inevitably consumes a huge amount of
unnecessary computing resources.

The unsupervised techniques that combine a convolutional
autoencoder (CAE; Masci et al. 2011) with clustering
methods have been applied in the classification tasks, such
as gravitational lensing detection (Cheng et al. 2020a) and
galaxy morphological classification (Cheng et al. 2021a). The
CAE is used to extract key features of galaxies from the raw
images, while clustering algorithms are responsible for
gathering the galaxies with similar features into a group
subsequently. Different clustering algorithms, using different
similarity definitions and techniques, may result in incon-
sistent clustering output. To obtain a comprehensive perspec-
tive of classifications, we develop the bagging-based
multiclustering method that clusters galaxies by the voting
of three clustering algorithms (Zhou et al. 2022), rather than
using a single algorithm. To establish a high-quality
classification of galaxy morphology, only the galaxies with
consistent voting by the three clustering algorithms are
collected as the ”well-classified” data set (hereafter the UML
data set). In Zhou et al. (2022), the application of the
proposed UML method to 47,149 galaxies with H< 24.5 in
five CANDELS fields resulted in a UML data set containing
24,900 galaxies (∼53%), at the cost of leaving 22,249
galaxies (∼47%) with disputed labels.

In this work, to handle the remaining 22,249 galaxies with
disputed labels and complete the entire task of automatic
classification of galaxy morphology, we further propose a
rotationally-invariant supervised machine-learning (SML)
method by using the UML data set as the training set. Unlike
the conventional method of data augmentation, we propose a
different method (adaptive polar-coordinate transformation;
APCT) to consider the rotation invariance of the CNN model in
the preprocessing step, which converts the rotation-invariant
problem into a translation-invariant problem.

The paper is organized as follows. The sample selection and
UML data set are described in Section 2. The APCT and other
preprocess strategies are introduced in Section 3. In Section 4,
we introduce three typical existing SML models. The
combination of the APCT and the SML algorithms is used
directly to give the morphological types of galaxies. In
Section 5, the result of morphological classification is given.
The effectiveness of the proposed method is evaluated by the
t-Distributed Stochastic Neighbor Embedding (t-SNE) visuali-
zation graphs and galaxy properties as a function of our
classification results from the best model. Finally, a summary is
given in Section 6.

2. Sample Selection and UML Data Set

In this section, we give a brief introduction to the galaxy
sample, which is in line with Zhou et al. (2022). The sample of
47,149 galaxies with F160W < 24.5 mag are selected from the
five CANDELS fields, with an additional criterion being the
flag use_phot=1, which means that the object is not a star
and not heavily contaminated. Here we refer to the 3D-HST
project (Skelton et al. 2014; Momcheva et al. 2016) for the full
details, from which the H-band selected catalogs (v4.1.5) and
H-band images are taken in this work.
To accomplish a well-classified data set, a UML method, the

combination of the CAE and the bagging-based multiclustering
method, is proposed in our previous work (Zhou et al. 2022). It
has been applied to 47,149 galaxies with H< 24.5 extracted
from five CANDLES fields. In this method, only galaxies with
consistent clustering results from three clustering algorithms
were defined as ”well-clustered sample” and then ”well
classified” into different morphological types (see Zhou et al.
2022 for more details). As a result, 24,900 galaxies (∼53%) are
well classified, without any prelabeled galaxies, yielding the
UML data set. In this data set, galaxies are classified into five
categories, including 6335 spheroid (SPH), 3916 early-type
disk (ETD), 4333 late-type disk (LTD), 9851 irregular (IRR),
and 465 unclassifiable (UNC) galaxies. It provides enough
samples to learn the key features corresponding to each
category. The overview of UML data set is illustrated in
Figure 1, including the example stamps, the t-SNE visualiza-
tion, and the counting distribution of the five categories. The
t-SNE is a technique that visualizes the high-dimensional data
by giving each data point a location in a two or three-
dimensional map (van der Maaten & Hinton 2008).
However, the remaining 22,249 galaxies (∼47%; hereafter

the UML remaining data set) were eliminated in Zhou et al.
(2022) due to the disputed votes from different clustering
algorithms. In order to complete the morphological classifica-
tion of galaxies, the UML data set is considered as the training
set for the downstream SML methods. That is, by training the
SML models on the UML data set, we obtain algorithms that
can give the morphological classification for the rest of the
sample.
In general, the performances of algorithms are affected by

the signal-to-noise ratios (S/Ns) of images and the orienta-
tions of galaxies. S/N is defined as the ratio between the flux
and the corresponding uncertainty in H band, which are
extracted from Skelton et al. (2014). In this work, we use the
astronomical definition of position angles (PA) to approxi-
mately represent the orientation of galaxies for simplicity. By
assuming a single elliptical Sérsic model of light profile
(central symmetric) for galaxies, PA describes the direction of
the major axis of the assumed elliptical profile, which is
measured with GALFIT by van der Wel et al. (2014). As
shown in Figure 2, due to the large sample size, galaxies in
the UML data set have a relatively uniform PA distribution
with small fluctuation. However, the distribution of image
S/Ns is not as uniform as that of PAs and exhibits a peak at
∼1000. The problem arising from this uneven S/N distribu-
tion will be further discussed and be solved in Section 3.2. It
is noteworthy that the astronomically defined PA ranging
from −90° to 90° cannot fully constrain the orientations of
galaxies due to the fact that the light profiles and backgrounds
of galaxies in observations are not perfectly central
symmetric. Thus, unlike the model profile of galaxies, the
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raw image from observation and its rotated image are not
exactly the same. The standard CNN models are not rotation
invariant and might recognize them as different types. If the
rotation features are not well learned by the machine, the
algorithm might give different classifications for images of
the same galaxy before and after rotating the image by a
certain degree. However, It is expected that the classification
results should not be affected by how galaxy images are
rotated. Instead of feeding in more images in the training
phase by artificially rotating to solve this problem, we
propose an APCT in the preprocess phase as described in
Section 3.1.

3. The APCT and Other Preprocessing Strategies

The preprocessing strategies are also important for the SML
algorithms. In this section, the proposed adaptive polar-
coordinate transformation and other preprocessing strategies
are introduced.

3.1. The APCT

The morphological classification of galaxies should be
rotationally invariant, which means that the result of morpho-
logical classification should not change regardless of how the
raw image of one galaxy is rotated. CNN extracts the local

Figure 1. An overview of the UML data set. Left: cutouts of galaxies selected from different categories, i.e., SPH, ETD, LTD, IRR, and UNC galaxies, are shown
from top to bottom. Right: the t-SNE visualization of 6000 randomly selected galaxies with different morphologies (top) and the corresponding counting distribution
(bottom) in the UML data set are given.

Figure 2. Distributions of the image S/Ns (left) and positional angles (right) of galaxies in the UML data set.
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translation-invariant features effectively, which is widely used
to learn the key morphological features of the galaxies.
However, the standard CNN models have poor robustness to
rotations of images (see Cheng et al. 2016; Cabrera-Vives et al.
2017; Chen et al. 2018; Cheng et al. 2018; Reyes et al. 2018;
Yao et al. 2019). Existing SML algorithms, such as the CNN-
based neural networks, are affected by the rotational angle so
that they might not recognize galaxies with the same
morphological type after rotation. The performance of the
SML methods will be affected, especially when the training set
has an uneven distribution of orientations.

Data augmentation and conventional polar-coordinate trans-
formation are both strategies to overcome the problem of
rotation invariance. Data augmentation is a common treatment
that generates extra images by rotating the raw images to make
the angles evenly distributed in the training set. Another
alternative is the polar-coordinate transformation that trans-
forms the rotation of the raw images into the translation of the
new images, as well as the potential features. By combining the
polar-coordinate transformation with the CNN, which is
translation-invariant, one obtains a rotation-invariant algorithm.
For example, the polar-coordinate transformation is used to
transform circle-like features in the CT Images of vulnerable
plaques into line-like features (Liu et al. 2019).

To yield an efficient data preprocessing method for galaxy
images, we adopt the polar-coordinate transformation rather
than data augmentation in the preprocessing phase of our
rotationally-invariant SML method. However, when the pixel
values in the orthogonal coordinate are assigned to the new
pixels in the polar coordinate, distortion may happen since the
images are constructed by discrete pixels. As also shown in
Figure 3, if using the conventional polar-coordinate transfor-
mation, rotations of the raw images may not be transformed
into translations of the new images perfectly. Thus, in this
section, we propose the APCT to solve this problem. To help
clarification, an overview of the preprocess phase is shown in
Figure 4, while the improvements are summarized as the
following three aspects.

(1) The conventional polar-coordinate transformation uses a
fixed polar axis. In that case, as the raw images rotate, there are
horizontal translations in the transformed images. Different
from the conventional polar-coordinate transformation, the
proposed APCT uses a polar axis that is invariant under
rotation instead of a fixed one. In this approach, The positions
of pixels with the maximum and minimum flux values in the
images are selected as the brightest and darkest points,
respectively. When there is more than one pixel with the
minimum/maximum fluxes, we choose the ones with the
smallest distance to the image centers. The axis from the
brightest point to the darkest point is taken as the polar axis of
the polar-coordinate system making the polar axis of the
processed images rotationally invariant, as shown in panel (a)
of Figure 4.
(2) For images with smaller sizes, such as 28× 28, the polar-

coordinate transformation will lead to distortions, as shown in
Figure 3. We find that the distortion will be reduced if the
images are enlarged. Therefore, to reduce the distortion caused
by the polar-coordinate transformation, the raw images are
resized from 28× 28 to a larger size, say 56× 56, before the
APCT. Once the polar axis is chosen, as shown in panel (a) of
Figure 4, the axis is rotated counterclockwise at a unit of 0.05
rad each time. For each discreet rotation, the axis passes
through many pixels of the raw images. By stacking the pixels
along this rotating axis while rotating, one obtains a new image
with a size of 28× 125 with 125 equaling 2π/0.05 rounded, as
shown in panels (b) and (c) of Figure 4. Here, 28 is the radius
equaling half of the width or height of the images after the
aforementioned resizing. Pixels along the rotating axis within
the coverage of images are remained, while those outside the
coverage or with missing fluxes are set to be 0. In the
transformation, raw pixels will be resampled yielding new
images with larger sizes.
(3) To highlight morphological features, images are

mirrored, resulting in images with a size of 56× 125 before
feeding to the algorithms, as shown in panel (d) of Figure 4.
A comparison between the conventional polar-coordinate

transformation and the APCT is given in Figure 5. It shows that

Figure 3. Examples of the conventional polar-coordinate transformation. It shows that the conventional polar-coordinate transformation cannot transform the rotations
of the raw images into perfect translations of the new images.
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the APCT is almost rotationally invariant. For example, a
simple statistic shows that, for the majority of the images after
the APCT, the mean pixel-value differences before and after
the rotation are smaller than 1, which is small enough and can
be ignored.

3.2. Noise Reduction by Convolutional Autoencoder

The CNNs are sensitive to noises (see Nazaré et al. 2017; Liu
et al. 2020); therefore, the distribution of image S/Ns in the
training set also affects the performance of the SML

algorithms. For example, if the training set has an uneven
distribution of the S/Ns, say most of the samples in the training
set have high S/Ns, the algorithm might fail on the test set
consisting of samples with low S/Ns. It is because in images
with low S/Ns, the noises will break features that are learned
by the neural networks leading to misclassifications. As shown
in the left panel of Figure 2, the distribution of image S/Ns of
the UML data set is not uniform, thus additional procedure in
the image preprocess or the training algorithms, such as
enhancing the image quality of low-S/N images or assigning
more weights to low-S/N images in the training, is required.

Figure 4. A flow chart of the preprocess phase before feeding the network, including adaptive polar-coordinate transformation, and mirroring.
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As an effective implementation method of the former procedure
(i.e., enhancing the poor quality of low-S/N images), noise
reduction is known to be a useful method to overcome the
problem arising from the uneven distribution of S/N (see
Nazaré et al. 2017). In this work, we adopt the CAE method to
reduce the noise (Du et al. 2017).

In this approach, the images are encoded by the convolu-
tional and subsampling layers and decoded by the deconvolu-
tional and upsampling layers generating the reconstructed
images. The parameters of the CAE are trained to minimize the
mean square error of pixels between the input and recon-
structed images. We show some examples of comparisons
between the input and reconstructed images in Figure 6. The
reconstructed images not only maintain the main morphologi-
cal features but also remove the redundant pixels, and thus
reduce the noises.

The preprocessing strategies of APCT and noise reduction
make the SML algorithms not affected by the distributions of
PAs and S/Ns of galaxies in the training set. In other words, by
applying the proposed preprocess strategies, we reduce the
dependence of the training set on the galaxy PAs and image
S/Ns.

4. The SML Models and the Experiment Settings

In order to complete the entire task of automatic morpho-
logical classification of galaxies and, at the same time, give the
morphological types for the UML remaining data set, we train
three widely used SML algorithms on the UML data set. In this
section, we give a brief review of the three SML methods and
the experiment settings.

4.1. A Brief Review of Three SML Models

In this work, we test three SML models, namely the
GoogLeNet (see Szegedy et al. 2015), the DenseNet121 (see
Huang et al. 2017), and the attention56 network (see Wang
et al. 2017). The one with the best performance on the
validation set will be selected as our fiducial model. Figure 7
gives an overview of the three neural networks. The brief
introductions are described below.
The Googlenet is a deep-learning neural network proposed

by christian szegedy in 2014 (see Szegedy et al. 2015). the
googlenet uses 9 inception modules stacked one over the other.
in the inception module, convolutions with kernel sizes of
1× 1, 3× 3, and 5× 5 and max pooling with a kernel size of

Figure 5. A comparison between the conventional and the adaptive polar-coordinate transformation. Our method (i.e., APCT) keeps the resulting images almost
invariant regardless of how the raw images are rotated.

Figure 6. Comparisons between the input (left) and reconstructed (right) images in the noise reduction by using the CAE. The reconstructed images not only maintain
the main morphological features but also remove the redundant pixels, and thus reduce the noises.
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3× 3 are applied in a parallel way, making it cover a bigger
area of the images and, at the same time, keep a fine resolution
for small areas.

The DenseNet121 is one of the derivative versions of the
densely connected convolutional network (DenseNet; see
Huang et al. 2017). In a DenseNet, each layer is connected
to every other layer. That is, the outputs of all the preceding
layers are used as inputs of the subsequent layers. Unlike the
resnet, which uses an additive method that merges the previous
layer with the future layer, the DenseNet concatenates the
outputs of the previous layers with the future layers. The
number “121” denotes the number of layers in the neural
network.

The attention56 network is one of the derivative versions of
the residual attention network (see Wang et al. 2017). The
residual attention network is built by stacking attention
modules. The attention modules can generate attention-aware
features and the attention-aware features from different
modules change adaptively as layers go deeper. Inside each
attention module, a bottom-up top-down feedforward structure
is used to unfold the feedforward and feedback attention
process into a single feedforward process (see Wang et al.
2017). The number “56” denotes the number of layers in the
neural network.

4.2. Experiment Setting

One of the main aims of this work is to train the SML models
on the UML data set with 24,900 galaxies and then label the
UML remaining data set with 22,249 galaxies that cannot be
well classified by the UML method proposed by Zhou et al.
(2022) in the five CANDELS fields. In principle, all the UML
data set should be trained in order to make the algorithms learn

all the information contained in the training set. However, to
avoid overfitting, the UML data set should be split into
subsamples of training and validation sets usually with a ratio
of 7:3 or 8:2. Here, instead of adopting a fixed ratio, the UML
data set is randomly split into training and validation sets
containing 22,000 and 2900 galaxies, respectively, as shown in
Table 1. To ensure that there is no overfitting, we repeat the
random splitting of the UML data set several times to generate
different combinations of the training and validation sets and
perform the training and validation on these sets respectively.
The result indeed shows that there is no overfitting in our
training.
In the training phase of the SML algorithms, the batch size is

32, the learning rate for 0.0001, and the maximum training
epoch is 500.

5. Results and Analysis

In this section, we show the result of the proposed
rotationally-invariant SML method. The performance is mainly
evaluated by the accuracy of the validation set and the t-SNE
visualization on the UML remaining data set. We will also
demonstrate the effectiveness of the preprocess strategy of
the APCT.

Figure 7. An overview of the three SML networks.

Table 1
The Numbers of Galaxies in the Training and Validation Sets

Number of images SPH ETD LTD IRR UNC ALL

Training set 5588 3436 3837 8727 412 22000
Validation set 747 480 496 1124 53 2900

7
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5.1. Performances of Three Models

In this section, we show the performances of three SML
models. The morphological labels from the UML data set are
regarded as the real labels, whereas the predicted labels are
given by the SML methods. The overall accuracy is calculated
by Ncorrect/Ntotal where Ncorrect is the number of correctly
labeled galaxies and Ntotal is the total number of galaxies. The
overall accuracies of the three models on the validation sets are
listed in Table 2. It shows that all three models have high
accuracy (>90%), while the GoogLeNet has the highest
accuracy of 95.1%. Table 2 also shows that the overall
accuracy of GoogLeNet on the validation set is improved by
∼5.2% after the noise reduction, proving the effectiveness of
noise reduction by the CAE.

Figure 8 shows the precision and recall of the predictions.
The precision is defined by Npredict−correct/Npredict−total, where
Npredict−total is the total number of this morphological type
predicted by the SML model and the Npredict−correct is the
number of correct predictions in line with the labels from the
UML data set. The recall is defined by Npredict−correct/Nreal−total,
where Nreal−total is the total number of this morphological type
from the UML data set. It shows that although the
DenseNet121 model has higher precision in the LTD category,
GoogLeNet performs much better in the other four categories
making it the best model. Therefore, in the following analysis,
GoogLeNet is chosen to be the representative and fiducial SML
model.

5.2. The Effectiveness of the APCT

In this section, we demonstrate the effectiveness of the
APCT. Without loss of generality, we rotate the images in the
validation set at 90°, 180°, and 270°, respectively, and calculate
the overall accuracy for the GoogLeNet model.
The accuracy as a function of rotational angles for the

GoogLeNet model applied to the images with and without
APCT is presented in Figure 9, which shows that under the
APCT, the overall accuracy is nearly unchanged after rotations
compared to that of the original, rotation-free validation set.
However, the overall accuracy of the models using the raw
images after rotations but without APCT decreases signifi-
cantly (by about 13%). Given that the unrotated validation set
is randomly selected from the UML data set, there is little

Table 2
Overall Accuracy of the Deep-learning Models

Model
Accuracy of the
Training Set

Accuracy of the Vali-
dation Set

GoogLeNet 100.0% 95.1%
GoogLeNet (without noise
reduction)

100.0% 89.9%

DenseNet121 100.0% 94.3%
DenseNet121 (without
noise reduction)

100.0% 89.9%

Attention56 100.0% 93.2%
Attention56 (without noise
reduction)

100.0% 89.6%

Figure 8. The precision (top) and the recall (bottom) of each morphological types in the validation set for the three SML models, i.e., Attention56 (left), DenseNet121
(middle), and GoogLeNet (right).
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difference in the distributions of angles between the training
and validation sets. Therefore, the unrotated validation set has a
high overall accuracy without the APCT. However, after
rotation, the difference in the angle distributions between the
training and validation sets occurs. As a result, the overall
accuracy decrease obviously from over 95% to about 83%,
suggesting that the existing SML methods have poor robust-
ness to rotations of images.

Moreover, Table 3 shows the overall accuracy of the original
and rotated validation sets of the three SML models. It shows
that, after rotation, the accuracy is nearly unchanged (with the
largest difference of only 1.5%) compared to that of the
unrotated validation set regardless of the SML models
considered.

In practical application, the model needs to label galaxies
that have never been met before. The distribution of angles of
the new data set might have a large difference from that of the
training set. Therefore, the SML method with good robustness
to rotations of images is preferred. Figure 9 and Table 3
demonstrate that the APCT is an effective and efficient method
to improve the robustness of the SML methods.

5.3. The t-SNE Visualization of the UML Remaining Data Set

Given that the intrinsic morphological types of the galaxies
in the five CANDELS fields are missing, we cannot directly
evaluate the performance of the SML methods by calculating
indicators such as overall accuracy. In this section, we use the
t-SNE visualization graph to evaluate the morphological
classification result of the UML remaining data set. The
t-SNE is a useful method to map the subsamples from a high-
dimensional feature space to a two-dimensional compressed
feature space. By using this method, one can check the
classification result intuitively, especially when the real labels
are missing.

The morphological types of the UML remaining data set
with 22,249 galaxies are predicted by our SML method. Here,

to verify the effectiveness of the morphological classifications,
we randomly select 2000 labeled galaxies from the data set and
give the t-SNE visualization graphs based on the raw images.
Figure 10 shows the t-SNE visualization graphs of the 2000
galaxies labeled by three methods. It shows that the SML
models give the labeled galaxies with clear boundaries that
prove the effectiveness of the proposed method. From the
t-SNE visualization graphs, there is no obvious evidence that
one model has an advantage over the other two models.
To further evaluate the effectiveness of the proposed

rotationally-invariant SML method, we give Figure 11 that
shows the t-SNE visualization graphs between our SML
methods with/without the APCT and the SML results of
Huertas-Company et al. (2015). The morphological type of
Huertas-Company et al. (2015) is determined by five
parameters, fspheroid, fdisk, firr, fPS and fUnc. The definition is
shown as follows:

1. Spheroids (SPH): fspheroid> 2/3, fdisk< 2/3, and
firr< 0.1.

2. Early-type Disks (ETD): fspheroid> 2/3, fdisk> 2/3, and
firr< 0.1.

Figure 9. The accuracy of the GoogLeNet with and without APCT on the validation sets as a function of rotational angles.

Table 3
The Accuracy of Three SML Models with and without APCT on the Validation

Sets Rotated by Different Angles

Model
Without
Rotation 90° 180° 270°

GoogLeNet 95.1% 94.7% 94.5% 94.6%
GoogLeNet (with-
out APCT)

96.7% 82.9% 83.3% 83.6%

DenseNet121 94.3% 93.6% 93.4% 93.9%
DenseNet121 (with-
out APCT)

97.2% 82.3% 82.6% 83.4%

Attention56 93.2% 92.0% 91.7% 92.9%
Attention56 (with-
out APCT)

96.0% 82.4% 76.3% 79.6%
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3. Late-type Disks (LTD): fspheroid< 2/3, fdisk> 2/3, and
firr< 0.1.

4. Irregulars (IRR): fspheroid< 2/3 and firr> 0.1.
5. Unclassifiable (UNC): the remaining sources.

Galaxies can be matched by the object ID from the 3D-HST
catalogs of Skelton et al. (2014).

It shows that the SML models trained on the UML data set
give the labeled galaxies with clear boundaries in the t-SNE
visualization graphs. Among 22,249 galaxies in the UML
remaining data set, 17,793 of them (∼80%) are labeled
consistently by the GoogLeNet with and without APCT. Like
the result shown in Figure 10 where the differences between the
three models are not obvious, in this t-SNE visualization graph
(Figure 11) the difference between the classification result with
and without APCT is also not obvious. One plausible reason
for this situation is that the t-SNE graph is not a quantitative
tool and thus not good at distinguishing small differences in
accuracy, like difference 10% (e.g., Figure 9).

Moreover, in Figure 12 we show some galaxies selected
from the UML remaining data set that are correctly labeled by
the rotationally-invariant SML model with APCT but incor-
rectly labeled by the same model without APCT. These
galaxies are first randomly selected from the collections of
4456 galaxies that are inconsistently labeled by the GoogLeNet
with and without APCT and then verified by visual inspection.
It shows that the proposed rotationally-invariant SML model

with APCT has better robustness to morphological types such
as LTD and SPH.

5.4. Comparisons with Galaxy Properties

Similar to our previous work of Zhou et al. (2022), we
investigate the connections of massive galaxies (M* > 1010Me)
between our morphological types and other galaxy properties in
Figure 13. The SPH, ETD, LTD, and IRR categories are
represented by red, green, blue, and cyan colors, respectively.
The upper-left panel summarizes the distribution of galaxies in
rest frame U− V versus V− J color space. The wedged region
defined by Williams et al. (2009) represents the region
dominated by quiescent galaxies and the rest of the region
represents the region where star-forming galaxies reside. The
combination of the Gini coefficient andM20 shown in the upper
right panel is useful to demonstrate the disturbance and bulge
strength of galaxies (Lotz et al. 2004; Sazonova et al. 2020).
The Gini coefficient can quantify the uniformity of light
distribution. The higher Gini means that fluxes are more
concentrated in the minority of pixels. The M20 is the second
moment of the distribution of the brightest 20% of galaxy light,
tracing the substructures in a galaxy. The bottom panels are the
distribution of the Sérsic indices n and effective radii re,
respectively. The detailed definitions of these parameters have
been introduced in our previous work of Zhou et al. (2022).
In general, the galaxy properties agree well with the

expected sequence of our morphological types from IRR to

Figure 10. The t-SNE visualization graphs of 2000 randomly selected images that are labeled by the three SML methods. There is no obvious evidence that one model
has an advantage over the two.

Figure 11. The t-SNE visualization graphs of 2000 randomly selected images that are labeled by different results. Image (a) is the results of the GoogLeNet model
with APCT, image (b) is the results of the GoogLeNet model without APCT, and image (c) is the results of Huertas-Company et al. (2015). It shows that both SML
models give the labeled galaxies with clear boundaries in the t-SNE visualization graphs, proving the effectiveness of the proposed method.
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SPH. Following the sequence in Figure 13, (a) shows that
galaxies move from the star-forming region to the quiescent
region, (b) illustrates galaxies changing from more disturbed to
more concentrated (high Gini coefficient for SPH category), (c)
shows that galaxies tend to be more bulge dominated, and (d)
implies that galaxies become smaller in size. In Zhou et al.
(2022) we have demonstrated that the majority of the UNC
sources have very low S/Ns (e.g., images in the bottom row of
the left panel of Figure 1). For this reason, we do not carry out a
similar analysis for these UNC sources.

6. Conclusions and Outlooks

The main aim of this series of works is to provide an
automatic morphological classification method for galaxies. To
accomplish this goal, we implement the following studies.

(1) In Zhou et al. (2022), a UML method was proposed to
build a well-classified UML data set. In that approach, the CAE
is used to compress the dimension of raw image data and, at the
same time, extract key morphological features. The bagging-
based multiclustering method, a voting method, clusters
galaxies with analogous characteristics into one group. By
applying this UML method to galaxies in the five CANDELS
fields, we obtain a well-classified UML data set consisting of

24,900 galaxies that are consistently voted by different
clustering algorithms at the cost of eliminating 22,249 disputed
galaxies. The UML data set is generated without using any
prelabeled galaxies.
(2) In this work, we develop a rotationally-invariant SML

method as supplementary. In this approach, an APCT is
proposed to improve the robustness of the SML method to
rotations of images. Then, the SML algorithms are trained on
the UML data set giving a method that identifies the
morphological types of new galaxies with high confidence.
By applying the rotationally-invariant SML method on galaxies
in the five CANDELS fields, we give the missing labels for the
remaining 22,249 disputed galaxies. The result of the proposed
method in the five CANDELS fields, including the t-SNE
visualization graphs showing our morphological classification
result and that of Huertas-Company et al. (2015), the
comparison with galaxy properties showing the agreement
between the galaxy properties and the sequence of our
morphological types, proves that the combination of the
UML method proposed in the previous work (Zhou et al.
2022) and the rotationally-invariant SML method proposed in
the present work can automatically give the morphological
classification of galaxies.

Figure 12. Examples of galaxies that are correctly labeled by the rotationally-invariant SML model with APCT but incorrectly labeled by the same model without
APCT. These galaxies are first randomly selected from galaxies with disputed labels by the SML models with and without APCT and then verified by visual
inspection.
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The framework of automatic classification of galaxy
morphology developed in this series of works will be iterated
and updated continuously (e.g., Y. Dai et al. 2022, in
preparation), and could be used in future deep field surveys
that produce enormous amounts of photometric data, including
surveys scheduled by the forthcoming Chinese Space Station
Telescope.

This work is based on observations taken by the 3D-HST
Treasury Program (GO 12177 and 12328) with the NASA/
ESA HST, which is operated by the Association of Universities
for Research in Astronomy, Inc., under NASA contract

NAS526555. This work has made use of the Rainbow
Cosmological Surveys Database, which is operated by the
Centro de Astrobiología (CAB/INTA), partnered with the
University of California Observatories at Santa Cruz (UCO/
Lick,UCSC). This work is supported by the Strategic Priority
Research Program of Chinese Academy of Sciences (No. XDB
41000000), the National Key R&D Program of China
(2017YFA0402600), and the China Manned Space Project
with No. CMS-CSST-2021-A07. This work is also supported
by the National Natural Science Foundation of China (NSFC;
Nos. 11973038, 62106033, 11673004). C.C.Z. acknowledges
the support from Yunnan Youth Basic Research Projects

Figure 13. Relationships between morphological types and other galaxy properties for massive galaxies in the UML remaining data set. The upper panels summarize
the distribution of galaxies in rest frame U − V vs. V − J color space and in the G − M20 space. The contour levels indicate the 20%, 50%, and 80% of the
corresponding subclass from inner to outskirts. The data points are 100 galaxies randomly selected from each subclass, where the total numbers are given in the corner.
The bottom panels are the distribution of n and re, with the median values represented as the upper bricks. The SPH, ETD, LTD, and IRR categories are represented by
red, blue, green, and cyan colors, respectively.
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