
TD-MPC2:
Scalable, Robust World Models for Continuous Control

Nicklas Hansen⋆, Hao Su⋆†, Xiaolong Wang⋆†
⋆University of California San Diego, †Equal advising

{nihansen,haosu,xiw012}@ucsd.edu

Multi-task Single-task

1M 10M 100M 1B
Model parameters

0

20

40

60

80

No
rm

al
ize

d
sc

or
e

1M

5M
19M

48M 317M

DMControl & Meta−World
80 tasks

TD-MPC2
TD-MPC

25

50

75

100

SA
C

Dr
ea

m
er

V3

TD
-M

PC

TD
-M

PC
2

DMControl
39 tasks

25

50

75

100

SA
C

Dr
ea

m
er

V3

TD
-M

PC

TD
-M

PC
2

Meta−World
50 tasks

0
25
50
75

100

SA
C

Dr
ea

m
er

V3

TD
-M

PC

TD
-M

PC
2

ManiSkill2
5 tasks

0
25
50
75

100
SA

C

Dr
ea

m
er

V3

TD
-M

PC

TD
-M

PC
2

Locomotion
7 tasks

0

25

50

75

SA
C

Dr
ea

m
er

V3

TD
-M

PC

TD
-M

PC
2

MyoSuite
10 tasks

0

25

50

75

SA
C

Dr
ea

m
er

V3

TD
-M

PC

TD
-M

PC
2

Pick YCB
1 task

Figure 1. Overview. TD-MPC2 compares favorably to existing model-free and model-based RL
methods across 104 continuous control tasks spanning multiple domains, with a single set of hyper-
parameters (right). We further demonstrate the scalability of TD-MPC2 by training a single 317M
parameter agent to perform 80 tasks across multiple domains, embodiments, and action spaces (left).

ABSTRACT

TD-MPC is a model-based reinforcement learning (RL) algorithm that performs
local trajectory optimization in the latent space of a learned implicit (decoder-
free) world model. In this work, we present TD-MPC2: a series of improvements
upon the TD-MPC algorithm. We demonstrate that TD-MPC2 improves signifi-
cantly over baselines across 104 online RL tasks spanning 4 diverse task domains,
achieving consistently strong results with a single set of hyperparameters. We
further show that agent capabilities increase with model and data size, and suc-
cessfully train a single 317M parameter agent to perform 80 tasks across multiple
task domains, embodiments, and action spaces. We conclude with an account of
lessons, opportunities, and risks associated with large TD-MPC2 agents.1

Explore videos, models, data, code, and more at
https://nicklashansen.github.io/td-mpc2

1 INTRODUCTION

Training large models on internet-scale datasets has led to generalist models that perform a wide
variety of language and vision tasks (Brown et al., 2020; He et al., 2022; Kirillov et al., 2023). The
success of these models can largely be attributed to the availability of enormous datasets, and care-
fully designed architectures that reliably scale with model and data size. While researchers have
recently extended this paradigm to robotics (Reed et al., 2022; Brohan et al., 2023), a generalist
embodied agent that learns to perform diverse control tasks via low-level actions, across multiple
embodiments, from large uncurated (i.e., mixed-quality) datasets remains an elusive goal. We argue
that current approaches to generalist embodied agents suffer from (a) the assumption of near-expert
trajectories for behavior cloning which severely limits the amount of available data (Reed et al.,
2022; Lee et al., 2022; Kumar et al., 2022; Schubert et al., 2023; Driess et al., 2023; Brohan et al.,
2023), and (b) a lack of scalable continuous control algorithms that are able to consume large uncu-
rated datasets.

1Presented at the Foundation Models for Decision Making Workshop at NeurIPS 2023.

1

https://nicklashansen.github.io/td-mpc2

Figure 2. Tasks. TD-MPC2 performs 104 diverse tasks from (left to right) DMControl (Tassa et al.,
2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023), and MyoSuite (Caggiano et al.,
2022), with a single set of hyperparameters. See Appendix B for visualization of all tasks.

Reinforcement Learning (RL) is an ideal framework for extracting expert behavior from uncurated
datasets. However, most existing RL algorithms (Lillicrap et al., 2016; Haarnoja et al., 2018) are
designed for single-task learning and rely on per-task hyperparameters, with no principled method
for selecting those hyperparameters (Zhang et al., 2021). An algorithm that can consume large multi-
task datasets will invariably need to be robust to variation between different tasks (e.g., action space
dimensionality, difficulty of exploration, and reward distribution). In this work, we present TD-
MPC2: a significant step towards achieving this goal. TD-MPC2 is a model-based RL algorithm
designed for learning generalist world models on large uncurated datasets composed of multiple
task domains, embodiments, and action spaces, with data sourced from behavior policies that cover
a wide range of skill levels, and without the need for hyperparameter-tuning.

Our algorithm, which builds upon TD-MPC (Hansen et al., 2022), performs local trajectory opti-
mization in the latent space of a learned implicit (decoder-free) world model. While the TD-MPC
family of algorithms has demonstrated strong empirical performance in prior work (Hansen et al.,
2022; 2023; Yuan et al., 2022; Yang et al., 2023; Feng et al., 2023; Chitnis et al., 2023; Zhu et al.,
2023; Lancaster et al., 2023), most successes have been limited to single-task learning with little em-
phasis on scaling. As shown in Figure 1, naı̈vely increasing model and data size of TD-MPC often
leads to a net decrease in agent performance, as is commonly observed in RL literature (Kumar et al.,
2023). In contrast, scaling TD-MPC2 leads to consistently improved capabilities. Our algorithmic
contributions, which have been key to achieving this milestone, are two-fold: (1) improved algo-
rithmic robustness by revisiting core design choices, and (2) careful design of an architecture that
can accommodate datasets with multiple embodiments and action spaces without relying on domain
knowledge. The resulting algorithm, TD-MPC2, is scalable, robust, and can be applied to a variety
of single-task and multi-task continuous control problems using a single set of hyperparameters.

We evaluate TD-MPC2 across a total of 104 diverse continuous control tasks spanning 4 task do-
mains: DMControl (Tassa et al., 2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023),
and MyoSuite (Caggiano et al., 2022). We summarize our results in Figure 1, and visualize task do-
mains in Figure 2. Tasks include high-dimensional state and action spaces (up to A ∈ R39), sparse
rewards, multi-object manipulation, physiologically accurate musculoskeletal motor control, com-
plex locomotion (e.g. Dog and Humanoid embodiments), and cover a wide range of task difficulties.
Our results demonstrate that TD-MPC2 consistently outperforms existing model-based and model-
free methods, using the same hyperparameters across all tasks (Figure 1, right). Here, “Locomotion”
and “Pick YCB” are particularly challenging subsets of DMControl and ManiSkill2, respectively.
We further show that agent capabilities increase with model and data size, and successfully train
a single 317M parameter world model to perform 80 tasks across multiple task domains, embod-
iments, and action spaces (Figure 1, left). In support of open-source science, we publicly release
300+ model checkpoints, datasets, and code for training and evaluating TD-MPC2 agents,
which is available at https://nicklashansen.github.io/td-mpc2. We conclude the
paper with an account of lessons, opportunities, and risks associated with large TD-MPC2 agents.

2 BACKGROUND

Reinforcement Learning (RL) aims to learn a policy from interaction with an environment, for-
mulated as a Markov Decision Process (MDP) (Bellman, 1957). We focus on infinite-horizon
MDPs with continuous action spaces, which can be formalized as a tuple (S,A, T , R, γ) where
s ∈ S are states, a ∈ A are actions, T : S ×A 7→ S is the transition function, R : S × A 7→ R
is a reward function associated with a particular task, and γ is a discount factor. The goal is to

2

https://nicklashansen.github.io/td-mpc2

derive a control policy π : S 7→ A such that the expected discounted sum of rewards (return)
Eπ [

∑∞
t=0 γ

trt] , rt = R(st, π(st)) is maximized. In this work, we obtain π by learning a world
model (model of the environment) and then select actions by planning with the learned model.

Model Predictive Control (MPC) is a general framework for model-based control that optimizes
action sequences at:t+H of finite length such that return is maximized (or cost is minimized) over
the time horizon H , which corresponds to solving the following optimization problem:

π(st) = arg max
at:t+H

E

[
H∑
i=0

γt+iR(st+i,at+i)

]
. (1)

The return of a candidate trajectory is estimated by simulating it with the learned model (Negenborn
et al., 2005). Thus, a policy obtained by Equation 1 will invariably be a (temporally) locally optimal
policy and is not guaranteed (nor likely) to be a solution to the general reinforcement learning
problem outlined above. As we discuss in the following, TD-MPC2 addresses this shortcoming
of local trajectory optimization by bootstrapping return estimates beyond horizon H with a learned
terminal value function.

3 TD-MPC2

Our work builds upon TD-MPC (Hansen et al., 2022), a model-based RL algorithm that performs
local trajectory optimization (planning) in the latent space of a learned implicit world model. TD-
MPC2 marks the beginning of a new era for model-based RL, in which massively multitask world
models are trained and subsequently finetuned to new tasks. Specifically, we propose a series of
improvements to the TD-MPC algorithm, which have been key to achieving strong algorithmic
robustness (can use the same hyperparameters across all tasks) and scaling its world model to 300×
more parameters than previously. In the following, we introduce the TD-MPC2 algorithm in detail.

3.1 LEARNING AN IMPLICIT WORLD MODEL

â â

enc enc enc

â âr

aa

s1 s2 s3

z1 z2 z3

âr ârâq âq âq

1 2

1 2 31 2 3
1 2 3

Figure 3. The TD-MPC2 architecture.
Observations s are encoded into their
(normalized) latent representation z. The
model then recurrently predicts actions â,
rewards r̂, and terminal values q̂, without
decoding future observations.

Learning a generative model of the environment using
a reconstruction (decoder) objective is tempting due to
its rich learning signal. However, accurately predict-
ing raw future observations (e.g., images or propriocep-
tive features) over long time horizons is a difficult prob-
lem, and does not necessarily lead to effective control
(Lambert et al., 2020). Rather than explicitly model-
ing dynamics using reconstruction, TD-MPC2 aims to
learn a maximally useful model: a model that accurately
predicts outcomes (returns) conditioned on a sequence
of actions. Specifically, TD-MPC2 learns an implicit,
control-centric world model from environment interac-
tion using a combination of joint-embedding prediction
(Grill et al., 2020), reward prediction, and TD-learning
(Sutton, 1998), without decoding observations. We ar-
gue that this alternative formulation of model-based RL
is key to modeling large datasets with modest model
sizes. The world model can subsequently be used for
decision-making by performing local trajectory opti-
mization (planning) following the MPC framework.

Components. The TD-MPC2 architecture is shown in Figure 3 and consists of five components:
Encoder z = h(s, e) ▷ Maps observations to their latent representations
Latent dynamics z′ = d(z,a, e) ▷ Models (latent) forward dynamics
Reward r̂ = R(z,a, e) ▷ Predicts reward r of a transition
Terminal value q̂ = Q(z,a, e) ▷ Predicts discounted sum of rewards (return)
Policy prior â = p(z, e) ▷ Predicts action a∗ that maximizes Q

(2)

where s and a are states and actions, z is the latent representation, and e is a learnable task embed-
ding for use in multitask world models. For visual clarity, we will omit e in the following unless it is

3

particularly relevant. The policy prior p serves to guide the sample-based trajectory optimizer (plan-
ner), and to reduce the computational cost of TD-learning. During online interaction, TD-MPC2
maintains a replay buffer B with trajectories, and iteratively (i) updates the world model using data
sampled from B, and (ii) collects new environment data by planning with the learned model.

Model objective. The h, d,R,Q components are jointly optimized to minimize the objective

L (θ)
.
= E

(s,a,r,s′)0:H∼B

 H∑
t=0

λt

∥ z′t − sg(h(s′t))∥22︸ ︷︷ ︸
Joint-embedding prediction

+ CE(r̂t, rt)︸ ︷︷ ︸
Reward prediction

+ CE(q̂t, qt)︸ ︷︷ ︸
Value prediction

 , (3)

where sg is the stop-grad operator, (z′t, r̂t, q̂t) are as defined in Equation 2, qt
.
= rt+Q̄(z′t, p(z

′
t))

is the TD-target at step t, λ ∈ (0, 1] is a constant coefficient that weighs temporally farther time
steps less, and CE is the cross-entropy. Q̄ used to compute the TD-target is an exponential moving
average (EMA) of Q (Lillicrap et al., 2016). As the magnitude of rewards may differ drastically
between tasks, TD-MPC2 formulates reward and value prediction as a discrete regression (multi-
class classification) problem in a log-transformed space, which is optimized by minimizing cross-
entropy with rt, qt as soft targets (Bellemare et al., 2017; Kumar et al., 2023; Hafner et al., 2023).

Policy objective. The policy prior p is a stochastic maximum entropy (Ziebart et al., 2008; Haarnoja
et al., 2018) policy that learns to maximize the objective

Lp(θ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt [αQ(zt, p(zt))− βH(p(·|zt))]

]
, zt+1 = d(zt,at), z0 = h(s0) , (4)

where H is the entropy of p which can be computed in closed form. Gradients of Lp(θ) are taken wrt.
p only. As magnitude of the value estimate Q(zt, p(zt)) and entropy H can vary greatly between
datasets and different stages of training, it is necessary to balance the two losses to prevent premature
entropy collapse (Yarats et al., 2021). A common choice for automatically tuning α, β is to keep
one of them constant, and adjusting the other based on an entropy target (Haarnoja et al., 2018) or
moving statistics (Hafner et al., 2023). In practice, we opt for tuning α via moving statistics, but
empirically did not observe any significant difference in results between these two options.

Architecture. All components of TD-MPC2 are implemented as MLPs with intermediate linear
layers followed by LayerNorm (Ba et al., 2016) and Mish (Misra, 2019) activations. To mitigate
exploding gradients, we normalize the latent representation by projecting z into L fixed-dimensional
simplices using a softmax operation (Lavoie et al. (2022); see Appendix H for an implementation).
A key benefit of embedding z as simplices (as opposed to e.g. a discrete representation or squashing)
is that it naturally biases the representation towards sparsity without enforcing hard constraints. We
dub this normalization scheme SimNorm. Let V be the dimensionality of each simplex g constructed
from L partitions (groups) of z. SimNorm then applies the following transformation:

z◦
.
= [gi, . . . ,gL] , gi =

ezi:i+V /τ∑V
j=1 e

zi:i+V /τ
, (5)

where z◦ is the simplicial embedding of z, [·] denotes concatenation, and τ > 0 is a temperature
parameter that modulates the “sparsity” of the representation. As we will demonstrate in our ex-
periments, SimNorm is essential to the training stability of TD-MPC2. Finally, to reduce bias in
TD-targets generated by Q̄, we learn an ensemble of Q-functions using the objective from Equa-
tion 3 and maintain Q̄ as an EMA of each Q-function. We use 5Q-functions in practice. Targets are
then computed as the minimum of two randomly sub-sampled Q̄-functions (Chen et al., 2021).

3.2 MODEL PREDICTIVE CONTROL WITH A POLICY PRIOR

TD-MPC2 derives its closed-loop control policy by planning with the learned world model. Specif-
ically, our approach leverages the MPC framework for local trajectory optimization using Model
Predictive Path Integral (MPPI) (Williams et al., 2015) as a derivative-free optimizer with sampled
action sequences (at,at+1, . . . ,at+H) of length H evaluated by rolling out latent trajectories with
the model. At each decision step, we estimate parameters µ∗, σ∗ of a time-dependent multivariate
Gaussian with diagonal covariance such that expected return is maximized, i.e.,

µ∗, σ∗ = argmax
(µ,σ)

E
(at,at+1,...,at+H)∼N (µ,σ2)

[
γHQ(zt+H ,at+H) +

H−1∑
h=t

γhR(zh,ah)

]
, (6)

4

0 1M 2M 3M 4M
0

500

1000

DMControl
39 tasks

0 1M 2M
0

50

100

Meta−World
50 tasks

0 1M 2M 3M 4M
0

50

100

ManiSkill2
5 tasks

0 1M 2M
0

50

100

MyoSuite
10 tasks

SAC DreamerV3 TD-MPC TD-MPC2
Figure 4. Single-task RL. Episode return (DMControl) and success rate (others) as a function of
environment steps across 104 continuous control tasks spanning 4 diverse task domains. TD-MPC2
achieves higher data-efficiency and asymptotic performance than existing methods, while using the
same hyperparameters across all tasks. Mean and 95% CIs over 3 seeds.

where µ, σ ∈ RH×m, A ∈ Rm. Equation 6 is solved by iteratively sampling action sequences from
N (µ, σ2), evaluating their expected return, and updating µ, σ based on a weighted average. Notably,
Equation 6 estimates the full RL objective introduced in Section 2 by bootstrapping with the learned
terminal value function beyond horizon H . TD-MPC2 repeats this iterative planning process for
a fixed number of iterations and executes the first action at ∼ N (µ∗

t , σ
∗
t) in the environment. To

accelerate convergence of planning, a fraction of action sequences originate from the policy prior p,
and we warm-start planning by initializing (µ, σ) as the solution to the previous decision step shifted
by 1. Refer to Hansen et al. (2022) for more details about the planning procedure.

3.3 TRAINING GENERALIST TD-MPC2 AGENTS

The success of TD-MPC2 in diverse single-task problems can be attributed to the algorithm outlined
above. However, learning a large generalist TD-MPC2 agent that performs a variety of tasks across
multiple task domains, embodiments, and action spaces poses several unique challenges: (i) how to
learn and represent task semantics? (ii) how to accommodate multiple observation and action spaces
without specific domain knowledge? (iii) how to leverage the learned model for few-shot learning
of new tasks? We describe our approach to multitask model learning in the following.

Learnable task embeddings. To succeed in a multitask setting, an agent needs to learn a common
representation that takes advantage of task similarities, while still retaining the ability to differen-
tiate between tasks at test-time. When task or domain knowledge is available, e.g. in the form of
natural language instructions, the task embedding e from Equation 2 may encode such information.
However, in the general case where domain knowledge cannot be assumed, we may instead choose
to learn the task embeddings (and, implicitly, task relations) from data. TD-MPC2 conditions all of
its five components with a learnable, fixed-dimensional task embedding e, which is jointly trained
together with other components of the model. To improve training stability, we constrain the ℓ2-
norm of e to be ≤ 1. When finetuning a multitask TD-MPC2 agent to a new task, we can choose to
either initialize e as the embedding of a semantically similar task, or simply as a random vector.

Action masking. TD-MPC2 learns to perform tasks with a variety of observation and action spaces,
without any domain knowledge. To do so, we zero-pad all model inputs and outputs to their largest
respective dimensions, and mask out invalid action dimensions in predictions made by the policy
prior p during both training and inference. This ensures that prediction errors in invalid dimensions
do not influence TD-target estimation, and prevents p from falsely inflating its entropy for tasks with
small action spaces. We similarly only sample actions along valid dimensions during planning.

4 EXPERIMENTS

We evaluate TD-MPC2 across a total of 104 diverse continuous control tasks spanning 4 task do-
mains: DMControl (Tassa et al., 2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023),
and MyoSuite (Caggiano et al., 2022). Tasks include high-dimensional state and action spaces (up to
A ∈ R39), sparse rewards, multi-object manipulation, physiologically accurate musculoskeletal mo-
tor control, complex locomotion (e.g. Dog and Humanoid embodiments), and cover a wide range
of task difficulties. In support of open-source science, we publicly release 300+ model check-
points, datasets, and code for training and evaluating TD-MPC2 agents, which is available at
https://nicklashansen.github.io/td-mpc2.

5

https://nicklashansen.github.io/td-mpc2

0 4M 8M 12M
0

500

1000
Dog Run

0 4M 8M 12M

Dog Trot

0 4M 8M 12M

Dog Walk

0 4M 8M 12M

Humanoid Run

0 4M 8M 12M

Humanoid Walk

SAC DreamerV3 TD-MPC TD-MPC2

Figure 5. High-dimensional locomotion. Episode return as a function of environment steps in
Humanoid (A ∈ R21) and Dog (A ∈ R38) locomotion tasks from DMControl. SAC and DreamerV3
are prone to numerical instabilities in Dog tasks, and are significantly less data-efficient than TD-
MPC2 in Humanoid tasks. Mean and 95% CIs over 3 seeds. See Appendix D for more tasks.

0 1M 2M 3M 4M
0

50

100
Lift Cube

0 1M 2M 3M 4M

Pick Cube

0 4M 8M 12M

Pick YCB

0 1M 2M 3M 4M

Stack Cube

0 1M 2M 3M 4M

Turn Faucet

SAC DreamerV3 TD-MPC TD-MPC2

Figure 6. Object manipulation. Success rate (%) as a function of environment steps on 5 object
manipulation tasks from ManiSkill2. Pick YCB considers manipulation of all 74 objects from the
YCB (Calli et al., 2015) dataset. TD-MPC2 excels at hard tasks. Mean and 95% CIs over 3 seeds.

We seek to answer three core research questions through experimentation:
• Comparison to existing methods. How does TD-MPC2 compare to state-of-the-art model-free

(SAC) and model-based (DreamerV3, TD-MPC) methods for data-efficient continuous control?
• Scaling. Do the algorithmic innovations of TD-MPC2 lead to improved agent capabilities as

model and data size increases? Can a single agent learn to perform diverse skills across multiple
task domains, embodiments, and action spaces?

• Analysis. How do the specific design choices introduced in TD-MPC2 influence downstream
task performance? How much does planning contribute to its success? Are the learned task
embeddings semantically meaningful? Can large multi-task agents be adapted to unseen tasks?

Baselines. Our baselines represent the state-of-the-art in data-efficient RL, and include (1) Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), a model-free actor-critic algorithm based on maximum
entropy RL, (2) DreamerV3 (Hafner et al., 2023), a model-based method that optimizes a model-
free policy with rollouts from a learned generative model of the environment, and (3) the original
version of TD-MPC (Hansen et al., 2022), a model-based RL algorithm that performs local trajec-
tory optimization (planning) in the latent space of a learned implicit (non-generative) world model.
SAC and TD-MPC use task-specific hyperparameters, whereas TD-MPC2 uses the same hyperpa-
rameters across all tasks. Additionally, it is worth noting that both SAC and TD-MPC use a larger
batch size of 512, while 256 is sufficient for stable learning with TD-MPC2. Similarly, DreamerV3
uses a high update-to-data (UTD) ratio of 512, whereas TD-MPC2 uses a UTD of 1 by default. We
use a 5M parameter TD-MPC2 agent in all experiments (unless stated otherwise). For reference, the
DreamerV3 baseline has approx. 20M learnable parameters. See Appendix H for more details.

4.1 RESULTS

Comparison to existing methods. We first compare the data-efficiency of TD-MPC2 to a set of
strong baselines on 104 diverse tasks in an online RL setting. Aggregate results are shown in Fig-
ure 4. We find that TD-MPC2 outperforms prior methods across all task domains. The MyoSuite
results are particularly noteworthy, as we did not run any TD-MPC2 experiments on this bench-
mark prior to the reported results. Individual task performances on some of the most difficult tasks
(high-dimensional locomotion and multi-object manipulation) are shown in Figure 5 and Figure 6.
TD-MPC2 outperforms baselines by a large margin on these tasks, despite using the same hyper-
parameters across all tasks. Notably, TD-MPC sometimes diverges due to exploding gradients,
whereas TD-MPC2 remains stable. We provide per-task visualization of gradients in Appendix G.
Similarly, we observe that DreamerV3 experiences occasional numerical instabilities (Dog) and

6

1M 10M 100M 1B
Model parameters

0

20

40

60

80

No
rm

al
ize

d
sc

or
e

16.0

49.5
57.1

68.0 70.6

DMControl & Meta−World
80 tasks

TD-MPC2
TD-MPC

1M 10M 100M 1B
Model parameters

0

20

40

60

80

No
rm

al
ize

d
sc

or
e

18.9
28.3

54.2
59.4

71.4

DMControl
30 tasks

Walker Walk
Walker RunCheetah Run

Cartpole Balance
Cartpole Swingup

Cup Catch
Finger Spin

Finger Turn Easy
Finger Turn Hard

Hopper Stand
Hopper Hop

Cheetah Jump

Cup Spin

Dial Turn

Door Open
Door Close

Pick Place
Pick Place Wall

Reach
Reach Wall

Stick Push
Stick Pull

Figure 7. Massively multi-task world models. (Left) Normalized score as a function of model
size on the two 80-task and 30-task datasets. TD-MPC2 capabilities scale with model size. (Right)
T-SNE (van der Maaten & Hinton, 2008) visualization of task embeddings learned by a TD-MPC2
agent trained on 80 tasks from DMControl and Meta-World. A subset of labels are shown for clarity.

generally struggles with tasks that require fine-grained object manipulation (lift, pick, stack). See
Appendix D for the full single-task RL results.

Table 1. Training cost. Ap-
proximate TD-MPC2 training cost
on the 80-task dataset, reported in
GPU days on a single NVIDIA
GeForce RTX 3090 GPU. We also
list the normalized score achieved
by each model at end of training.

Params (M) GPU days Score

1 3.7 16.0
5 4.2 49.5
19 5.3 57.1
48 12 68.0
317 33 70.6

Massively multitask world models. To demonstrate that our
proposed improvements facilitate scaling of world models, we
evaluate the performance of 5 multitask models ranging from
1M to 317M parameters on a collection of 80 diverse tasks that
span multiple task domains and vary greatly in objective, em-
bodiment, and action space. Models are trained on a dataset
of 545M transitions obtained from the replay buffers of 240
single-task TD-MPC2 agents, and thus contain a wide variety
of behaviors ranging from random to expert policies. The task
set consists of all 50 Meta-World tasks, as well as 30 DMCon-
trol tasks. The DMControl task set includes 19 original DM-
Control tasks, as well as 11 new tasks. For completeness, we
include a separate set of scaling results on the 30-task DMCon-
trol subset (345M transitions) as well. Due to our careful de-
sign of the TD-MPC2 algorithm, scaling up is straightforward:
to improve rate of convergence we use a 4× larger batch size (1024) compared to the single-task
experiments, but make no other changes to hyperparameters.

0

20

40

60

No
rm

al
ize

d
sc

or
e

24.0

47.0

Finetuning
10 tasks

From scratch
Finetuned

Figure 8. Finetuning.
Score of a 19M parameter
TD-MPC2 agent trained
on 70 tasks and finetuned
online to each of 10 held-
out tasks for 20k environ-
ment steps. 3 seeds.

Scaling TD-MPC2 to 317M parameters. Our scaling results are
shown in Figure 7. To summarize agent performance with a single
metric, we produce a normalized score that is an average of all indi-
vidual task success rates (Meta-World) and episode returns normalized
to the [0, 100] range (DMControl). We observe that agent capabili-
ties consistently increase with model size on both task sets. Notably,
performance does not appear to have saturated for our largest models
(317M parameters) on either dataset, and we can thus expect results
to continue improving beyond our considered model sizes. We refrain
from formulating a scaling law, but note that normalized score appears
to scale linearly with the log of model parameters (gray line in Fig-
ure 7). We also report approximate training costs in Table 1. The 317M
parameter model can be trained with limited computational resources.
To better understand why multitask model learning is successful, we
explore the task embeddings learned by TD-MPC2 (Figure 7, right).
Intriguingly, tasks that are semantically similar (e.g., Door Open and
Door Close) are close in the learned task embedding space. However,
embedding similarity appears to align more closely with task dynamics (embodiment, objects) than
objective (walk, run). This makes intuitive sense, as dynamics are tightly coupled with control.

Few-shot learning. While our work mainly focuses on the scaling and robustness of world models,
we also explore the efficacy of finetuning pretrained world models for few-shot learning of unseen
tasks. Specifically, we pretrain a 19M parameter TD-MPC2 agent on 70 tasks from DMControl and
Meta-World, and naı̈vely finetune the full model to each of 10 held-out tasks (5 from each domain)
via online RL with an initially empty replay buffer and no changes to hyperparameters. Aggregate

7

0 4M 8M 12M
0

20

40

60

80

No
rm

al
ize

d
sc

or
e

Actor
3 tasks

Policy
Planning
Planning + policy

30

40

50

60

No
rm

al
ize

d
sc

or
e

42.2

53.7 54.2

Actor
Multitask (80)

Policy
Planning
Planning + policy

0 4M 8M 12M
0

20

40

60

80

No
rm

al
ize

d
sc

or
e

Normalization
3 tasks

No Norm
SimNorm
LN + SimNorm

30

40

50

60

No
rm

al
ize

d
sc

or
e

46.8
51.0

54.2

Normalization
Multitask (80)

No Norm
SimNorm
LN + SimNorm

0 4M 8M 12M
0

20

40

60

80

No
rm

al
ize

d
sc

or
e

Regression
3 tasks

Continuous
Discrete

30

40

50

60

No
rm

al
ize

d
sc

or
e

49.6
54.2

Regression
Multitask (80)

Continuous
Discrete

0 4M 8M 12M
0

20

40

60

80

No
rm

al
ize

d
sc

or
e

Q−functions
3 tasks

2
5
10

30

40

50

60

No
rm

al
ize

d
sc

or
e

53.5 54.2
57.0

Q−functions
Multitask (80)

2
5
10

Figure 9. Ablations. (Curves) Normalized score as a function of environment steps, averaged
across three of the most difficult tasks: Dog Run, Humanoid Walk (DMControl), and Pick YCB
(ManiSkill2). Mean and 95% CIs over 3 random seeds. (Bars) Normalized score of 19M parameter
multitask (80 tasks) TD-MPC2 agents. Our ablations highlight the relative importance of each
design choice; red is the default formulation of TD-MPC2. See Appendix D for more ablations.

results are shown in Figure 8. We find that TD-MPC2 improves 2× over learning from scratch
on new tasks in the low-data regime (20k environment steps2). Although finetuning world models
to new tasks is very much an open research problem, our exploratory results are promising. See
Appendix E for experiment details and individual task curves.

Ablations. We ablate most of our design choices for TD-MPC2, including choice of actor, various
normalization techniques, regression objective, and number of Q-functions. Our main ablations,
shown in Figure 9, are conducted on three of the most difficult online RL tasks, as well as large-
scale multitask training (80 tasks). We observe that all of our proposed improvements contribute
meaningfully to the robustness and strong performance of TD-MPC2 in both single-task RL and
multi-task RL. Interestingly, we find that the relative importance of each design choice is consistent
across both settings. Lastly, we also ablate normalization of the learned task embeddings, shown in
Appendix F. The results indicate that maintaining a normalized task embedding space (ℓ2-norm of 1)
is moderately important for stable multitask training, and results in more meaningful task relations.

5 LESSONS, OPPORTUNITIES, AND RISKS

Lessons. Historically, RL algorithms have been notoriously sensitive to architecture, hyperparame-
ters, characteristics of the task, and even random seed (Henderson et al., 2018), with no principled
method for tuning the algorithms. As a result, successful application of deep RL often requires large
teams of experts with significant computational resources (Berner et al., 2019; Schrittwieser et al.,
2020; Ouyang et al., 2022). TD-MPC2 – along with several other contemporary RL methods (Yarats
et al., 2021; Ye et al., 2021; Hafner et al., 2023) – seek to democratize use of RL (i.e., lowering the
barrier of entry for smaller teams of academics, practitioners, and individuals with fewer resources)
by improving robustness of existing open-source algorithms. We firmly believe that improving al-
gorithmic robustness will continue to have profound impact on the field. A key lesson from the
development of TD-MPC2 is that the community has yet to discover an algorithm that truly masters
everything out-of-the-box. While e.g. DreamerV3 (Hafner et al., 2023) has delivered strong results
on challenging tasks with discrete action spaces (such as Atari games and Minecraft), we find that
TD-MPC2 produces significantly better results on difficult continuous control tasks. At the same
time, extending TD-MPC2 to discrete action spaces remains an open problem.

Opportunities. Our scaling results demonstrate a path for model-based RL in which massively
multitask world models are leveraged as generalist world models. While multi-task world models

220k environment steps corresponds to 20 episodes in DMControl and 100 episodes in Meta-World.

8

remain relatively underexplored in literature, prior work suggests that the implicit world model of
TD-MPC2 may be better suited than reconstruction-based approaches for tasks with large visual
variation (Zhu et al., 2023). We envision a future in which implicit world models are used zero-shot
to perform diverse tasks on seen embodiments (Xu et al., 2023; Yang et al., 2023), finetuned to
quickly perform tasks on new embodiments, and combined with existing vision-language models to
perform higher-level cognitive tasks in conjunction with low-level physical interaction. Our results
are promising, but such level of generalization will likely require several orders of magnitude more
tasks than currently available. Lastly, we want to remark that, while TD-MPC2 relies on rewards for
task learning, it is useful to adopt a generalized notion of reward as simply a metric for task comple-
tion. Such metrics already exist in the wild, e.g., success labels, human preferences or interventions
(Ouyang et al., 2022), or the embedding distance between a current observation and a goal (Eysen-
bach et al., 2022; Ma et al., 2022) within a pre-existing learned representation. However, leveraging
such rewards for large-scale pretraining is an open problem. To accelerate research in this area, we
are releasing 300+ TD-MPC2 models, including 12 multitask models, as well as datasets and code,
and we are beyond excited to see what the community will do with these resources.

Risks. While we are excited by the potential of generalist world models, several challenges re-
main: (i) misspecification of task rewards can lead to unintended outcomes (Clark & Amodei, 2016)
that may be difficult to anticipate, (ii) handing over unconstrained autonomy of physical robots to
a learned model can result in catastrophic failures if no additional safety checks are in place (Lan-
caster et al., 2023), and (iii) data for certain applications may be prohibitively expensive for small
teams to obtain at the scale required for generalist behavior to emerge, leading to a concentration of
power. Mitigating each of these challenges will require new research innovations, and we invite the
community to join us in these efforts.

6 RELATED WORK

Multiple prior works have sought to build RL algorithms that are robust to hyperparameters, archi-
tecture, as well as variation in tasks and data. For example, (1) Double Q-learning (Hasselt et al.,
2016), RED-Q (Chen et al., 2021), SVEA (Hansen et al., 2021), and SR-SPR (D’Oro et al., 2023)
each improve the stability of Q-learning algorithms by adjusting the bias-variance trade-off in TD-
target estimation, (2) C51 (Bellemare et al., 2017) and DreamerV3 (Hafner et al., 2023) improve
robustness to the magnitude of rewards by performing discrete regression in a transformed space,
and (3) model-free algorithms DrQ (Kostrikov et al., 2020) and DrQ-v2 (Yarats et al., 2021) improve
training stability and exploration, respectively, through use of data augmentation and several other
minor but important implementation details. However, all of the aforementioned works strictly focus
on improving data-efficiency and robustness in single-task online RL.

Existing literature that studies scaling of neural architectures for decision-making typically assume
access to large datasets of near-expert demonstrations for behavior cloning (Reed et al., 2022; Lee
et al., 2022; Kumar et al., 2022; Schubert et al., 2023; Driess et al., 2023; Brohan et al., 2023). Gato
(Reed et al., 2022) learns to perform tasks across multiple domains by training a large Transformer-
based sequence model (Vaswani et al., 2017) on an enormous dataset of expert demonstrations, and
RT-1 (Brohan et al., 2023) similarly learns a sequence model for object manipulation on a single
(real) robot embodiment by training on a large dataset collected by human teleoperation. While the
empirical results of this line of work are impressive, the assumption of large demonstration datasets
is impractical. Additionally, current sequence models rely on discretization of the action space
(tokenization), which makes scaling to high-dimensional continuous control tasks difficult.

Most recently, researchers have explored scaling of RL algorithms as a solution to the aforemen-
tioned challenges (Baker et al., 2022; Jia et al., 2022; Xu et al., 2023; Kumar et al., 2023; Hafner
et al., 2023). For example, VPT (Baker et al., 2022) learns to play Minecraft by first pretraining
a behavior cloning policy on a large human play dataset, and then finetuning the policy with RL.
GSL (Jia et al., 2022) requires no pre-existing data. Instead, GSL iteratively trains a population of
“specialist” agents on individual task variations, distills them into a “generalist” policy via behavior
cloning, and then uses the generalist as initialization for the next population of specialists. However,
this work considers strictly single-task RL and assumes full control over the initial state in each
episode. Lastly, DreamerV3 (Hafner et al., 2023) successfully scales its world model in terms of
parameters and shows that larger models generally are more data-efficient in an online RL setting,
but does not consider multitask RL.

9

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. Advances in Neural
Information Processing Systems, 2016.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957. ISSN
0022-2518.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar.
Myosuite – a contact-rich simulation suite for musculoskeletal motor control. https:
//github.com/facebookresearch/myosuite, 2022. URL https://sites.
google.com/view/myosuite.

Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M. Dollar.
The ycb object and model set: Towards common benchmarks for manipulation research. In 2015
International Conference on Advanced Robotics, pp. 510–517, 2015. doi: 10.1109/ICAR.2015.
7251504.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. International Conference on Learning Representations, 2021.

Rohan Chitnis, Yingchen Xu, Bobak Hashemi, Lucas Lehnert, Urun Dogan, Zheqing Zhu, and
Olivier Delalleau. Iql-td-mpc: Implicit q-learning for hierarchical model predictive control. arXiv
preprint arXiv:2306.00867, 2023.

Jack Clark and Dario Amodei. Faulty reward functions in the wild. OpenAI Blog, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio bar-
rier. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=OpC-9aBBVJe.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

10

https://github.com/facebookresearch/myosuite
https://github.com/facebookresearch/myosuite
https://sites.google.com/view/myosuite
https://sites.google.com/view/myosuite
https://openreview.net/forum?id=OpC-9aBBVJe

Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiaolong Wang. Fine-
tuning offline world models in the real world. Conference on Robot Learning, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent:
A new approach to self-supervised learning. Advances in Neural Information Processing Systems,
2020.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiaing Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie Tan, Vikash Ku-
mar, Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine. Soft actor-critic algorithms and
applications. ArXiv, abs/1812.05905, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. In Annual Conference on Neural Information Processing
Systems, 2021.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In ICML, 2022.

Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind Rajeswaran.
Modem: Accelerating visual model-based reinforcement learning with demonstrations. 2023.

H. V. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In Aaai,
2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, and Hao Su. Improving Policy Opti-
mization with Generalist-Specialist Learning. In International Conference on Machine Learning,
2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. International Conference on Learning Representations,
2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? International Conference on Learning Representations, 2022.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. International Conference on
Learning Representations, 2023.

11

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. Conference on Learning for Decision and Control, 2020.

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, and Vikash Kumar. Modem-v2: Visuo-
motor world models for real-world robot manipulation. arXiv preprint, 2023.

Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Ankit Vani, Michael Noukhovitch, Kenji
Kawaguchi, and Aaron Courville. Simplicial embeddings in self-supervised learning and down-
stream classification. arXiv preprint arXiv:2204.00616, 2022.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
formers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Diganta Misra. Mish: A self regularized non-monotonic neural activation function. arXiv preprint
arXiv:1908.08681, 2019.

Rudy R. Negenborn, Bart De Schutter, Marco A. Wiering, and Hans Hellendoorn. Learning-based
model predictive control for markov decision processes. IFAC Proceedings Volumes, 38(1):354–
359, 2005. 16th IFAC World Congress.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller,
Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, and Nicolas Heess. A
generalist dynamics model for control. arXiv preprint arXiv:2305.10912, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

R. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:9–44,
1998.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, et al. Deepmind control suite. Technical report, DeepMind, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Ma-
chine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

12

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html

Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral
control using covariance variable importance sampling. ArXiv, abs/1509.01149, 2015.

Yifan Xu, Nicklas Hansen, Zirui Wang, Yung-Chieh Chan, Hao Su, and Zhuowen Tu. On the
feasibility of cross-task transfer with model-based reinforcement learning. 2023.

Sizhe Yang, Yanjie Ze, and Huazhe Xu. Movie: Visual model-based policy adaptation for view
generalization. Advances in Neural Information Processing Systems, 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. International Conference on Learning
Representations, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2019.

Yifu Yuan, Jianye Hao, Fei Ni, Yao Mu, Yan Zheng, Yujing Hu, Jinyi Liu, Yingfeng Chen, and
Changjie Fan. Euclid: Towards efficient unsupervised reinforcement learning with multi-choice
dynamics model. arXiv preprint arXiv:2210.00498, 2022.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua,
Frank Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for
model-based reinforcement learning. In International Conference on Artificial Intelligence and
Statistics, pp. 4015–4023. PMLR, 2021.

Chuning Zhu, Max Simchowitz, Siri Gadipudi, and Abhishek Gupta. Repo: Resilient model-based
reinforcement learning by regularizing posterior predictability. arXiv preprint arXiv:2309.00082,
2023.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence,
volume 3, 2008.

13

APPENDICES

A Summary of Improvements 15

B Task Visualizations 16

C Task Domains 17

D Single-task Experimental Results 20

E Few-shot Experimental Results 23

F Additional Ablations 24

G Gradient Norm and Training Stability 24

H Implementation Details 25

14

A SUMMARY OF IMPROVEMENTS

We summarize the main differences between TD-MPC and TD-MPC2 as follows:

• Architectural design. All components of TD-MPC2 are MLPs with LayerNorm (Ba et al.,
2016) and Mish (Misra, 2019) activations after each layer. We apply SimNorm normaliza-
tion to the latent state z which biases the representation towards sparsity and maintaining
a small ℓ2-norm. We train an ensemble of Q-functions (5 by default) and additionally
apply 1% Dropout (Srivastava et al., 2014) after the first linear layer in each Q-function.
TD-targets are computed as the mininum of two randomly subsampled Q-functions (Chen
et al., 2021). In contrast, TD-MPC is implemented as MLPs without LayerNorm, and in-
stead uses ELU (Clevert et al., 2015) activations. TD-MPC does not constrain the latent
state at all, which in some instances leads to exploding gradients (see Appendix G for ex-
perimental results). Lastly, TD-MPC learns only 2 Q-functions and does not use Dropout.
The architectural differences in TD-MPC2 result in a 4M net increase in learnable param-
eters (5M total) for our default single-task model size compared to the 1M parameters of
TD-MPC. However, as shown in Figure 7, naı̈vely increasing the model size of TD-MPC
does not lead to consistently better performance, whereas it does for TD-MPC2.

• Policy prior. The policy prior of TD-MPC2 is trained with maximum entropy RL (Ziebart
et al., 2008; Haarnoja et al., 2018), whereas the policy prior of TD-MPC is trained as a
deterministic policy with Gaussian noise applied to actions. We find that a carefully tuned
Gaussian noise schedule is comparable to a policy prior trained with maximum entropy.
However, maximum entropy RL can more easily be applied with task-agnostic hyperparam-
eters. We only compute policy entropy over valid action dimensions in multi-task learning
with multiple action spaces.

• Planning. The planning procedure of TD-MPC2 closely follows that of TD-MPC. How-
ever, we simplify planning marginally by not leveraging momentum between iteration, as
we find it to produce comparable results. We also improve the throughput of planning by
approx. 2× through a series of code-level optimizations.

• Model objective. We revisit the training objective of TD-MPC and improve its robustness
to variation in tasks, such as the magnitude of rewards. TD-MPC2 uses discrete regression
(soft cross-entropy) of rewards and values in a log-transformed space (Bellemare et al.,
2017; Kumar et al., 2023; Hafner et al., 2023), which makes the magnitude of the two
loss terms independent of the magnitude of the task rewards. TD-MPC uses continuous
regression which leads to training instabilities in tasks where rewards are large. While this
issue can be alleviated by, e.g., normalizing task rewards based on moving statistics, in the
single-task case, it is difficult to design robust reward normalization schemes for multi-task
learning. TD-MPC2 retains the continuous regression term for joint-embedding prediction
as the latent representation is already normalized by SimNorm (Lavoie et al., 2022), and
discrete regression is computationally expensive for high-dimensional spaces (requires N
bins for each dimension of z).

• Multi-task model. TD-MPC2 introduces a framework for learning multi-task world mod-
els across multiple domains, embodiments, and action spaces. We introduce a normalized
learnable task embedding space which all components of TD-MPC are conditioned on,
and we accommodate multiple observation and action spaces by applying zero-padding
and action masking during both training and inference. We train multi-task models on a
large number of tasks, and finetune the model to held-out tasks (across embodiments) us-
ing online RL. TD-MPC only considers multi-task learning on a small number of tasks
with shared observation and action space, and does not consider finetuning of the learned
multi-task model.

• Simplified algorithm and implementation. TD-MPC2 removes momentum in MPPI
(Williams et al., 2015), and replaces prioritized experience replay sampling from the re-
play buffer with uniform sampling, both of which simplify the implementation with no
significant change in experimental results. Finally, we also use a faster replay buffer imple-
mentation that uses multiple workers for sampling, and we increase training and planning
throughput through code-level optimizations such as Q-function ensemble vectorization,
which makes the wall-time of TD-MPC2 comparable to that of TD-MPC despite a larger
architecture (5M vs. 1M).

15

B TASK VISUALIZATIONS

Figure 10. Task visualizations. Visualization of a random initial state for each of the 104 tasks
that we consider. Tasks vary greatly in objective, embodiment, and action space. Visit https://
nicklashansen.github.io/td-mpc2 for videos of TD-MPC2 performing each task. See
Appendix C for task details.

16

https://nicklashansen.github.io/td-mpc2
https://nicklashansen.github.io/td-mpc2

C TASK DOMAINS

We consider a total of 104 continuous control tasks from 4 task domains: DMControl (Tassa et al.,
2018), Meta-World (Yu et al., 2019), ManiSkill2 (Gu et al., 2023), and MyoSuite (Caggiano et al.,
2022). This section provides an exhaustive list of all tasks considered, as well as their observation
and action dimensions. Environment details are listed at the end of the section. We provide (static)
task visualizations in Appendix B and videos of TD-MPC2 agents performing each task at https:
//nicklashansen.github.io/td-mpc2.

Table 2. DMControl. We consider a total of 39 continuous control tasks in the DMControl domain,
including 19 original DMControl tasks and 11 new (custom) tasks created specifically for TD-MPC2
benchmarking and multitask training. We list all considered DMControl tasks below. The Locomo-
tion task set shown in Figure 1 corresponds to the Humanoid and Dog embodiments of DMControl,
with performance reported at 14M environment steps.

Task Observation dim Action dim Sparse? New?
Acrobot Swingup 6 1 N N
Cartpole Balance 5 1 N N
Cartpole Balance Sparse 5 1 Y N
Cartpole Swingup 5 1 N N
Cartpole Swingup Sparse 5 1 Y N
Cheetah Jump 17 6 N Y
Cheetah Run 17 6 N N
Cheetah Run Back 17 6 N Y
Cheetah Run Backwards 17 6 N Y
Cheetah Run Front 17 6 N Y
Cup Catch 8 2 Y N
Cup Spin 8 2 N Y
Dog Run 223 38 N N
Dog Trot 223 38 N N
Dog Stand 223 38 N N
Dog Walk 223 38 N N
Finger Spin 9 2 Y N
Finger Turn Easy 12 2 Y N
Finger Turn Hard 12 2 Y N
Fish Swim 24 5 N N
Hopper Hop 15 4 N N
Hopper Hop Backwards 15 4 N Y
Hopper Stand 15 4 N N
Humanoid Run 67 24 N N
Humanoid Stand 67 24 N N
Humanoid Walk 67 24 N N
Pendulum Spin 3 1 N Y
Pendulum Swingup 3 1 N N
Quadruped Run 78 12 N N
Quadruped Walk 78 12 N N
Reacher Easy 6 2 Y N
Reacher Hard 6 2 Y N
Reacher Three Easy 8 3 Y Y
Reacher Three Hard 8 3 Y Y
Walker Run 24 6 N N
Walker Run Backwards 24 6 N Y
Walker Stand 24 6 N N
Walker Walk 24 6 N N
Walker Walk Backwards 24 6 N Y

17

https://nicklashansen.github.io/td-mpc2
https://nicklashansen.github.io/td-mpc2

Table 3. Meta-World. We consider a total of 50 continuous control tasks from the Meta-World
domain. The Meta-World benchmark is designed for multitask and meta-learning research and all
tasks thus share embodiment, observation space, and action space.

Task Observation dim Action dim
Assembly 39 4
Basketball 39 4
Bin Picking 39 4
...
Window Open 39 4

Table 4. ManiSkill2. We consider a total of 5 continuous control tasks from the ManiSkill2 domain.
The ManiSkill2 benchmark is designed for large-scale robot learning and contains a high degree
of randomization and task variations. The Pick YCB task shown in Figure 1 corresponds to the
ManiSkill2 task of the same name, with performance reported at 14M environment steps.

Task Observation dim Action dim
Lift Cube 42 4
Pick Cube 51 4
Pick YCB 51 7
Stack Cube 55 4
Turn Faucet 40 7

Table 5. MyoSuite. We consider a total of 10 continuous control tasks from the MyoSuite domain.
The MyoSuite benchmark is designed for high-dimensional physiologically accurate muscoloskele-
tal motor control and involves particularly complex object manipulation with a dexterous hand. The
MyoSuite domain consists of tasks with and without goal randomization. We consider both settings,
and refer to them as Easy (fixed goal) and Hard (random goal), respectively.

Task Observation dim Action dim
Reach Easy 115 39
Reach Hard 115 39
Pose Easy 108 39
Pose Hard 108 39
Pen Twirl Easy 83 39
Pen Twirl Hard 83 39
Object Hold Easy 91 39
Object Hold Hard 91 39
Key Turn Easy 93 39
Key Turn Hard 93 39

18

Environment details. We benchmark algorithms on DMControl, Meta-World, ManiSkill2, and
MyoSuite without modification. All four domains are infinite-horizon continuous control environ-
ments for which we use a fixed episode length and no termination conditions. We list episode
lengths, action repeats, total number of environment steps, and the performance metric used for
each domain in Table 6. In all experiments, we only consider an episode successful if the final step
of an episode is successful. This is a stricter definition of success than used in some of the related
literature, which e.g. may consider an episode successful if success is achieved at any step within
a given episode. In tasks that require manipulation of objects, such as picking up an object, our
definition of success ensures that an episode in which an object is picked up but then dropped again
is not considered successful.

Table 6. Environment details. We list the episode length and action repeat used for each task
domain, as well as the total number of environment steps and performance metrics that we use for
benchmarking methods. All methods use the same values for all tasks.

DMControl Meta-World ManiSkill2 MyoSuite
Episode length 1, 000 200 200 100
Action repeat 2 2 2 1
Effective length 500 100 100 100
Total env. steps 4M - 14M 2M 4M - 14M 2M
Performance metric Reward Success Success Success

— Appendices continue on next page —

19

D SINGLE-TASK EXPERIMENTAL RESULTS

0

500

1000
Acrobot Swingup Cartp Balance Cartp Balance Sparse Cartp Swingup Cartp Swingup Sparse

0

500

1000
Cheetah Jump Cheetah Run Cheetah Run Back Cheetah Run Bkwd Cheetah Run Front

0

500

1000
Cup Catch Cup Spin Dog Run Dog Stand Dog Trot

0

500

1000
Dog Walk Finger Spin Finger Turn Easy Finger Turn Hard Fish Swim

0

500

1000
Hopper Hop Hopper Hop Bkwd Hopper Stand Humanoid Run Humanoid Stand

0

500

1000
Humanoid Walk Pendulum Spin Pendulum Swingup Quadruped Run Quadruped Walk

0

500

1000
Reacher Easy Reacher Hard Reacher 3 Easy Reacher 3 Hard Walker Run

0 1M 2M 3M 4M
0

500

1000
Walker Run Bkwd

0 1M 2M 3M 4M

Walker Stand

0 1M 2M 3M 4M

Walker Walk

0 1M 2M 3M 4M

Walker Walk Bkwd

SAC DreamerV3 TD-MPC TD-MPC2

Figure 11. Single-task DMControl results. Episode return as a function of environment steps.
The first 4M environment steps are shown for each task, although the Humanoid and Dog tasks are
run for 14M environment steps; we provide those curves in Figure 14 as part of the “Locomotion”
benchmark. Note that TD-MPC diverges on tasks like Walker Stand and Walker Walk whereas TD-
MPC2 remains stable. We visualize gradients on these tasks in Appendix G. Mean and 95% CIs
over 3 seeds.

20

0

50

100
Assembly Basketball Bin Picking Box Close Button Press

0

50

100
Button Press Td Button Press Td Wall Button Press Wall Coffee Button Coffee Pull

0

50

100
Coffee Push Dial Turn Disassemble Door Close Door Lock

0

50

100
Door Open Door Unlock Drawer Close Drawer Open Faucet Close

0

50

100
Faucet Open Hammer Hand Insert Handle Press Handle Press Side

0

50

100
Handle Pull Handle Pull Side Lever Pull Peg Insert Side Peg Unplug Side

0

50

100
Pick Out Of Hole Pick Place Pick Place Wall Plate Slide Plate Slide Back

0

50

100
Plate Slide Back Side Plate Slide Side Push Push Back Push Wall

0

50

100
Reach Reach Wall Shelf Place Soccer Stick Pull

0 1M 2M
0

50

100
Stick Push

0 1M 2M

Sweep

0 1M 2M

Sweep Into

0 1M 2M

Window Close

0 1M 2M

Window Open

SAC DreamerV3 TD-MPC TD-MPC2

Figure 12. Single-task Meta-World results. Success rate (%) as a function of environment steps.
TD-MPC2 performance is comparable to existing methods on easy tasks, while outperforming other
methods on hard tasks such as Pick Place Wall and Shelf Place. DreamerV3 often fails to converge.

21

0 1M 2M 3M 4M
0

50

100
Lift Cube

0 1M 2M 3M 4M

Pick Cube

0 4M 8M 12M

Pick YCB

0 1M 2M 3M 4M

Stack Cube

0 1M 2M 3M 4M

Turn Faucet

SAC DreamerV3 TD-MPC TD-MPC2

Figure 13. Single-task ManiSkill2 results. Success rate (%) as a function of environment steps on 5
object manipulation tasks from ManiSkill2. Pick YCB is the hardest task and considers manipulation
of all 74 objects from the YCB (Calli et al., 2015) dataset. We report results for this tasks at 14M
environment steps, and 4M environment steps for other tasks. TD-MPC2 achieves a > 60% success
rate on the Pick YCB task, whereas other methods fail to learn within the given budget. Mean and
95% CIs over 3 seeds.

0

500

1000
Dog Run Dog Stand Dog Trot Dog Walk Humanoid Run

0 4M 8M 12M
0

500

1000
Humanoid Stand

0 4M 8M 12M

Humanoid Walk

SAC DreamerV3 TD-MPC TD-MPC2

Figure 14. Single-task high-dimensional locomotion results. Episode return as a function of
environment steps on all 7 “Locomotion” benchmark tasks. This domain includes high-dimensional
Humanoid (A ∈ R21) and Dog (A ∈ R38) embodiments. Mean and 95% CIs over 3 seeds.

0

50

100
Key Turn Key Turn Hard Obj Hold Obj Hold Hard Pen Twirl

0 1M 2M
0

50

100
Pen Twirl Hard

0 1M 2M

Pose

0 1M 2M

Pose Hard

0 1M 2M

Reach

0 1M 2M

Reach Hard

SAC DreamerV3 TD-MPC TD-MPC2

Figure 15. Single-task MyoSuite results. Success rate (%) as a function of environment steps.
This task domain includes high-dimensional contact-rich musculoskeletal motor control (A ∈ R39)
with a physiologically accurate robot hand. Goals are randomized in tasks designated as “Hard”.
TD-MPC2 achieves comparable or better performance than existing methods on all tasks from this
benchmark, except for Key Turn Hard in which TD-MPC succeeds early in training.

22

E FEW-SHOT EXPERIMENTAL RESULTS

We finetune a 19M parameter TD-MPC2 agent trained on 70 tasks to each of 10 held-out tasks.
Individual task curves are shown in Figure 16. We compare data-efficiency of the finetuned model to
a baseline agent of similar model capacity trained from scratch. However, we find that performance
of our 19M parameter baselines trained from scratch are comparable to our 5M parameter agents
also trained from scratch. Our few-shot finetuning results suggest that the efficacy of finetuning is
somewhat task-dependent. However, more research is needed to conclude whether this is due to task
similarity (or rather lack thereof) or due to subpar task performance of the pretrained agent on the
source task. We conjecture that both likely influence results.

When finetuning to an unseen task, we initialize the learnable task embedding for the new task as
the embedding of a semantically similar task from the pretraining dataset. We list the source task
embedding used as initialization for each experiment in Table 7. We did not experiment with other
initialization schemes, nor other task pairings.

0

50

100
Cheetah Run Hopper Hop Bin Picking Box Close Door Lock

0 20k 40k
0

50

100
Door Unlock

0 20k 40k

Hand Insert

0 20k 40k

Pendulum Swingup

0 20k 40k

Reacher Hard

0 20k 40k

Walker Run

From scratch Finetuned
Figure 16. Few-shot learning. Normalized episode return (DMControl) and success rate (Meta-
World) as a function of environment steps while finetuning a 19M parameter TD-MPC2 agent
trained on 70 tasks to each of 10 held-out tasks. 40k steps corresponds to 40 episodes in DM-
Control and 200 in Meta-World. Mean and 95% CIs over 3 seeds.

Table 7. Initialization of task embeddings for few-shot learning. We list the task embeddings
used as initialization when finetuning our 19M parameter TD-MPC2 agent to held-out tasks. We did
not experiment with other initialization schemes, nor other task pairings.

Target task Source task
Walker Run Walker Walk
Cheetah Run Cheetah Run Backwards
Hopper Hop Hopper Stand
Pendulum Swingup Pendulum Spin
Reacher Hard Reacher Easy
Bin Picking Pick Place
Box Close Assembly
Door Lock Door Open
Door Unlock Door Open
Hand Insert Sweep Into

23

F ADDITIONAL ABLATIONS

30

40

50

60

No
rm

al
ize

d
sc

or
e

46.6

54.2

Task embedding
Multitask (80)

Unnormalized
Normalized

Figure 17. Normalized task embeddings. Normalized score of 19M parameter multitask (80 tasks)
TD-MPC2 agents, with and without normalized task embeddings e as described in Section 3.1. We
find that normalizing e to have a maximum ℓ2-norm of 1 improves multitask performance.

Walker Walk
Walker RunCheetah Run

Cartpole Balance
Cartpole Swingup

Cup Catch
Finger Spin

Finger Turn Easy
Finger Turn Hard

Hopper Stand
Hopper Hop

Cheetah Jump

Cup Spin

Dial Turn

Door Open
Door Close

Pick Place
Pick Place Wall

Reach
Reach Wall

Stick Push
Stick Pull

Walker Walk
Walker Run

Cheetah Run

Cartpole Balance

Cartpole Swingup

Cup Catch

Finger Spin
Finger Turn Easy
Finger Turn Hard

Hopper Stand
Hopper Hop

Cheetah Jump

Cup Spin
Dial Turn

Door Open

Door ClosePick Place

ReachReach Wall

Stick Push
Stick Pull

Figure 18. T-SNE of task embeddings with and without normalization. T-SNE (van der Maaten
& Hinton, 2008) visualizations of task embeddings learned by TD-MPC2 agent trained on 80 tasks
from DMControl and Meta-World. (Left) with normalization. (Right) without normalization. A
subset of labels are shown for clarity. We observe that task embeddings are more semantically
meaningful when normalized during training, e.g., “Door Open” and “Door Close” are close in
embedding space on the left, but far apart on the right.

G GRADIENT NORM AND TRAINING STABILITY

0 4M 8M 12M
10−6
10−3

1
103
106
109

1012
Dog Trot

0 1M 2M 3M 4M

Hopper Hop

0 1M 2M 3M 4M

Quadruped Run

0 1M 2M 3M 4M

Reacher Hard

0 1M 2M 3M 4M

Walker Stand

TD-MPC TD-MPC2
Figure 19. Gradient norm during training. We compare the gradient norm (log-scale) of TD-MPC
and TD-MPC2 as a function of environment steps on five tasks from DMControl. TD-MPC is prone
to exploding gradients, which can cause learning to diverge on some tasks (e.g., Walker Stand in
Figure 11). In comparison, the gradients of TD-MPC2 remain stable throughout training. We only
display 1 seed per task for visual clarity.

24

H IMPLEMENTATION DETAILS

Architectural details. All components of TD-MPC2 are implemented as MLPs. The encoder h
contains a variable number of layers (2−5) depending on the architecture size; all other components
are 3-layer MLPs. Intermediate layers consist of a linear layer followed by LayerNorm and a Mish
activation function. The latent representation is normalized as a simplicial embedding. Q-functions
additionally use Dropout. We summarize the TD-MPC2 architecture for the 5M parameter base
(default for online RL) model size using PyTorch-like notation:

Encoder parameters: 167,936
Dynamics parameters: 843,264
Reward parameters: 631,397
Policy parameters: 582,668
Q parameters: 3,156,985
Task parameters: 7,680
Total parameters: 5,389,930

Architecture: TD-MPC2 base 5M(
(task_embedding): Embedding(T, 96, max_norm=1)
(encoder): ModuleDict(
(state): Sequential(

(0): NormedLinear(in_features=S+T, out_features=256, act=Mish)
(1): NormedLinear(in_features=256, out_features=512, act=SimNorm)

)
)
(dynamics): Sequential(
(0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): NormedLinear(in_features=512, out_features=512, act=SimNorm)

)
(reward): Sequential(
(0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101,)

)
(pi): Sequential(
(0): NormedLinear(in_features=512+T, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=2A, bias=True)

)
(Qs): Vectorized ModuleList(
(0-4): 5 x Sequential(

(0): NormedLinear(in_features=512+T+A, out_features=512, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)
)

where S is the input dimensionality, T is the number of tasks, and A is the action space. We exclude
the task embedding T from single-task experiments. The exact parameter counts listed above are for
S= 39, T= 80, and A= 6.

Hyperparameters. We use the same hyperparameters across all tasks. Our hyperparameters are
listed in Table 8. We use the same hyperparameters for TD-MPC and SAC as in Hansen et al.
(2022). DreamerV3 (Hafner et al., 2023) uses a fixed set of hyperparameters.

We set the discount factor γ for a task using the heuristic

γ = clip(
T
5 − 1

T
5

, [0.95, 0.995]) (7)

where T is the expected length of an episode after applying action repeat, and clip constrains the
discount factor to the interval [0.95, 0.995]. Using this heuristic, we obtain γ = 0.99 for DMControl
(T = 500), which is the most widely used discount factor for this task domain. Tasks with shorter
episodes are assigned a lower discount factor, whereas tasks with longer episodes are assigned a
higher discount factor. All of the tasks that we consider are infinite-horizon MDPs with fixed episode
lengths. We use individual discount factors (set using the above heuristic) for each task in our
multitask experiments. For tasks with variable or unknown episode lengths, we suggest using an
empirical mean length, a qualified guess, or simply γ = 0.99. While this heuristic is introduced in
TD-MPC2, we apply the same discount factor for the TD-MPC and SAC baselines to ensure that
comparison is fair across all task domains.

25

Table 8. TD-MPC2 hyperparameters. We use the same hyperparameters across all tasks. Certain
hyperparameters are set automatically using heuristics.

Hyperparameter Value
Planning
Horizon (H) 3
Iterations 6 (+2 if ∥A∥ ≥ 20)
Population size 512
Policy prior samples 24
Number of elites 64
Minimum std. 0.05
Maximum std. 2
Temperature 0.5
Momentum No

Policy prior
Log std. min. −10
Log std. max. 2

Replay buffer
Capacity 1, 000, 000
Sampling Uniform

Architecture (5M)
Encoder dim 256
MLP dim 512
Latent state dim 512
Task embedding dim 96
Task embedding norm 1
Activation LayerNorm + Mish
Q-function dropout rate 1%
Number of Q-functions 5
Number of reward/value bins 101
SimNorm dim (V) 8
SimNorm temperature (τ) 1

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 10
Reward prediction coef. 0.5
Value prediction coef. 1
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Discount factor Heuristic
Seed steps Heuristic

We set the seed steps S (number of environment steps before any gradient updates) for a task using
the heuristic

S = max(5T, 1000) (8)
where T again is the expected episode length of the task after applying action repeat. We did not
experiment with other heuristics nor constant values, but conjecture that Equation 8 will ensure that

26

the replay buffer B has sufficient data for model learning regardless of episode lengths.

Model configurations. Our multitask experiments consider TD-MPC2 agents with model sizes
ranging from 1M parameters to 317M parameters. Table 9 lists the exact specifications for each of
our model sizes. We scale the model size by varying dimensions of fully-connected layers, the latent
state dimension z, the number of encoder layers, and the number of Q-functions. We make no other
modifications to the architecture nor hyperparameters across model sizes.

Table 9. Model configurations. We list the specifications for each model configuration (size)
of our multitask experiments. Encoder dim is the dimensionality of fully connected layers in the
encoder h, MLP dim is the dimensionality of layers in all other components, Latent state dim is the
dimensionality of the latent representation z, # encoder layers is the number of layers in the encoder
h, # Q-functions is the number of learned Q-functions, and Task embedding dim is the dimensionality
of e from Equation 2. TD-targets are always computed by randomly subsampling two Q-functions,
regardless of the number of Q-functions in the ensemble. We did not experiment with other model
configurations. *The default (base) configuration used in our single-task RL experiments has 5M
parameters.

1M 5M* 19M 48M 317M
Encoder dim 256 256 1024 1792 4096
MLP dim 384 512 1024 1792 4096
Latent state dim 128 512 768 768 1376
encoder layers 2 2 3 4 5
Q-functions 2 5 5 5 8
Task embedding dim 96 96 96 96 96

Simplicial Normalization (SimNorm). We implement the SimNorm normalization layer (Lavoie
et al., 2022) using PyTorch-like notation as follows:

def simnorm(self, z, V=8):
shape = z.shape
z = z.view(*shape[:-1], -1, V)
z = softmax(z, dim=-1)
return z.view(*shape)

Here, z is the latent representation z, and V is the dimensionality of each simplex. The number of
simplices L can be inferred from V and the dimensionality of z. We apply a softmax (optionally
modulated by a temperature τ) to each of L partitions of z to form simplices, and then reshape to
the original shape of z.

TD-MPC baseline implementation. We benchmark against the official implementation of TD-
MPC available at https://github.com/nicklashansen/tdmpc. The default TD-MPC
world model has approx. 1M trainable parameters, and uses per-task hyperparameters. We use the
suggested hyperparameters where available (DMControl and Meta-World). For example, TD-MPC
requires tuning of the number of planning iterations, latent state dimensionality, batch size, and
learning rate in order to solve the challenging Dog and Humanoid tasks. Refer to their paper for a
complete list of hyperparameters.

DreamerV3 baseline implementation. We benchmark against the official reimplementation of
DreamerV3 available at https://github.com/danijar/dreamerv3. We follow the au-
thors’ suggested hyperparameters for proprioceptive control (DMControl) and use the S model size
(20M parameters), as well as an update-to-data (UTD) ratio of 512. We use this model size and
UTD for all tasks. Refer to their paper for a complete list of hyperparameters.

SAC baseline implementation. We follow the TD-MPC (Hansen et al., 2022) paper in
their decision to benchmark against the SAC implementation from https://github.com/
denisyarats/pytorch_sac, and we use the hyperparameters suggested by the authors (when
available). For example, this includes tuning the latent dimension, learning rate, and batch size for
the Dog and Humanoid tasks. Refer to their paper for a complete list of hyperparameters.

27

https://github.com/nicklashansen/tdmpc
https://github.com/danijar/dreamerv3
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

	Introduction
	Background
	TD-MPC2
	Learning an Implicit World Model
	Model Predictive Control with a Policy Prior
	Training Generalist TD-MPC2 Agents

	Experiments
	Results

	Lessons, Opportunities, and Risks
	Related Work
	Summary of Improvements
	Task Visualizations
	Task Domains
	Single-task Experimental Results
	Few-shot Experimental Results
	Additional Ablations
	Gradient Norm and Training Stability
	Implementation Details

