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Abstract

Model regularization requires extensive man-
ual tuning to balance complexity against over-
fitting. Cross-regularization resolves this trade-
off by directly adapting regularization parameters
through validation gradients during training. The
method splits parameter optimization - training
data guides feature learning while validation data
shapes complexity controls - converging provably
to cross-validation optima. When implemented
through noise injection in neural networks, this
approach reveals striking patterns: unexpectedly
high noise tolerance and architecture-specific reg-
ularization that emerges organically during train-
ing. Beyond complexity control, the framework
integrates seamlessly with data augmentation, un-
certainty calibration and growing datasets while
maintaining single-run efficiency through a sim-
ple gradient-based approach.

1. Introduction

Regularization in machine learning requires careful tun-
ing of parameters that control model complexity. Cross-
validation provides only discrete feedback through train-
ing multiple models. This applies across different types
of regularization - from classical norm-based penalties to
modern approaches like stochastic regularization and data
augmentation. While methods like variational approaches
(Molchanov et al., 2017) attempt to learn regularization
during training, they optimize proxy objectives on train-
ing data rather than directly targeting generalization perfor-
mance. Previous approaches either required inverse Hes-
sians (Larsen et al., 1998) or parameter history tracking
(Maclaurin et al., 2015), or multiple runs (Jaderberg et al.,
2017).

We introduce cross-regularization, a direct optimization of
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complexity controls through gradient descent on validation
data. The method splits both parameters and data: model
parameters optimize training loss while regularization pa-
rameters receive unbiased gradient information from a sep-
arate validation set. This provides continuous feedback
about generalization during training. We prove convergence
to cross-validation solutions under standard optimization
assumptions, making the method theoretically grounded.

The framework applies naturally across regularization types.
For norm-based regularization, we demonstrate automatic
discovery of optimal penalty strength without hyperparame-
ter search. In neural networks, learnable noise scales reveal
distinct regularization phases tied to feature learning and
architecture-specific patterns. The method extends to data
augmentation policy learning, uncertainty calibration, and
online adaptation to growing datasets, demonstrating broad
applicability while maintaining single-run efficiency.

2. Background and Related Work

2.1. Validation-Gradient Optimization

Validation-gradients emerged as a principled approach to
hyperparameter optimization (Bengio, 2000), computing
gradients of validation performance by backpropagating
through the training procedure. While theoretically elegant,
these methods require either computing inverse Hessians
(Larsen et al., 1998) or maintaining the full parameter update
history (Maclaurin et al., 2015), limiting their applicability
to modern networks.

Luketina et al. (Luketina et al., 2016) addressed the scaling
challenge by computing validation gradients for hyperpa-
rameters from only the most recent parameter update. How-
ever, training regularization parameters in both data parti-
tions prevented any convergence guarantees. Our work refor-
mulates the validation gradient approach by directly optimiz-
ing the quantities controlled by hyperparameters - weight
norms, noise scales and other complexity controls. This
eliminates hyperparameters while maintaining the frame-
work of validation-guided optimization. Other works have
also utilized validation gradients, for example, to weight
source tasks in transfer learning (Chen et al., 2022).
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2.2. Approaches to Regularization

Traditional regularization methods like weight decay (Krogh
& Hertz, 1992) and dropout (Srivastava et al., 2014) use
fixed parameters that must be tuned through cross-validation
(Stone, 1974). For modern networks, complexity controls
often need to vary across components (Zhang et al., 2021),
and other factors like the behavior of normalization layers
under distribution shifts (Nado et al., 2020) or the geometry
of the loss landscape (Foret et al., 2021) also make manual
tuning prohibitive. This has led to adaptive methods that at-
tempt to learn regularization parameters during training, like
Concrete Dropout (Gal et al., 2017) and variational dropout
(Molchanov et al., 2017). However, these approaches opti-
mize proxy objectives on training data rather than directly
targeting generalization, and can struggle to learn strong
regularization due to their training dynamics.

Population Based Training (PBT) (Jaderberg et al., 2017)
addresses generalization by adapting hyperparameters us-
ing validation performance, but requires training multiple
parallel models. For noise regularization, Noh et al. (Noh
et al., 2017) developed gradient-based noise optimization
but without validation gradients. While methods like varia-
tional dropout (Molchanov et al., 2017) offer another adap-
tive approach by learning noise scales through Bayesian
variational inference, they often struggle in practice due to
optimization challenges and restrictive prior assumptions.

2.3. Statistical Learning Theory

Our theoretical analysis builds on Vapnik’s structural risk
minimization principle (Vapnik, 1999), which formalizes
the tradeoff between empirical risk and model complexity.
Cross-regularization provides direct optimization of this
tradeoff through validation gradients. For linear models,
optimal regularization relates directly to noise-to-signal ra-
tios (Hastie et al., 2009), while in neural networks, recent
work connects regularization schemes to network capacity
(Bartlett et al., 2017). The interaction between regular-
ization and optimization shapes which solutions gradient
descent discovers (Bishop, 1995; Saxe et al., 2014).

3. Cross-regularization Method

Consider the standard machine learning setup where we
want to minimize test loss while preventing overfitting
through regularization. The traditional cross-validation ap-
proach involves training multiple models with different reg-
ularization strengths \:

m}%n Lya(w* (X)) (H
where  w*(\) = arg min{ Lyain(w) + AR(p(w))}

w

for a A-scaled penalty that depends on the parameters w
through p(w), which we denote as regularization parame-
ters and a penalty function R(-). For instance, in L2 reg-
ularization, we have p(w) = |w|z and R(z) = 2%. With
cross-regularization, we demonstrate that the relevant regu-
larization parameters p can be directly optimized through
gradient descent, eliminating indirect hyparameters .

3.1. General Framework

Cross-regularization separates model training into two par-
allel optimizations:

* Feature learning (model parameters #) on training data

» Complexity control (regularization parameters p) on
regularization data

Throughout this work, we use a single train-validation split,
though the method naturally extends to k-fold schemes. We
denote the complexity training data as the regularization set,
instead of the validation set, to clarify that it is used during
training.

Concretely, for a model fy ,(x) with parameters ¢ and reg-

ularization parameters p, the training loss for features and
validation loss for complexity are:

Etrain(ea P) = E(z,y)NDm"n [g(fe,p(‘r)a yﬂ (2)
Eval(ev P) = E(w,y)NDval [g(fe,p(x% y)] 3)

These are optimized through alternating updates:

Ot11 = 0r — 16V o Lirain (01, pt) “4)
Pt+1 = Pt — npvpﬁval(ot—‘rl» Pt) (5)

for learning rates 79 and 7),. This algorithm directly opti-
mizes regularization strength while maintaining the separa-
tion between feature learning and complexity control. The
validation gradients give p continuous feedback about gen-
eralization, unlike the discrete feedback in cross-validation.

3.2. L2 Regularization Analysis

To demonstrate cross-regularization, we analyze it in the
context of ridge regression where the relationship between
regularization and solution complexity is well understood.
The standard approach controls this complexity indirectly
through a regularization parameter \:

w*(A) = argmin{|| Xw —y|* + Mwl3} (6

For each A, this yields an optimal solution w*(\) with cor-
responding norm p*(A) = ||jw*(A)]|2. As A increases, p* ()
decreases monotonically - higher regularization enforces
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smaller norms. This means searching over A to minimize
validation loss:

m)%n La(w*(N)) @)

is equivalent to directly searching over achievable norms

*

pr:

min Ly, (w*) subjectto ||w*||2 = p* (8)
g

Rather than searching over )\, we can directly optimize the
L2 constraint by reparameterizing the weights into magni-
tude and direction:

p = llwlz, &)
0 =w/|wlla where ||z =1 (10)

This naturally separates the optimization problem 1:

in(0,p) = mi X0 — y|?. 11
Luain(0,p) = min {[pX60 = yllain an
Lo (8, p) = minlpX0 = yll%y (12)

Theorem 3.1 (L2 Cross-Validation Equivalence). Un-
der smoothness and strong convexity conditions, cross-
regularization, in eqs. 4 and 5, converges to the same
solution as optimal ridge regression:

p*e* _ ’wm]()\*>

where w,q(\*) is the ridge solution with best validation ).
The general proof for convex losses appears in appendix.

Since optimizing validation loss over A is equivalent to
optimizing over achievable norms p*, we can directly op-
timize p* through gradient descent rather than searching
over A. This eliminates the indirect hyperparameter while
maintaining explicit control over model complexity. The
optimization naturally decomposes into two subproblems:
an outer loop that optimizes p* using validation loss, and
an inner loop that optimizes over the space of parameters
orthogonal to the norm constraint. In other words, for each
fixed p*, the inner optimization learns the optimal direc-
tion in parameter space while maintaining the prescribed
complexity.

Rather than solving these nested optimization problems
exactly, cross-regularization performs alternating gradient
updates using different losses for each parameter set. While
similar in structure to coordinate descent, this approach dif-
fers fundamentally by using separate objective functions:
training loss for direction parameters and validation loss
for norm parameters. This split optimization allows con-
tinuous adaptation of model complexity during training,
providing immediate feedback about generalization perfor-
mance rather than waiting for complete convergence at each
complexity level.

3.3. Parameter Partition through Gradient
Decomposition

Cross-regularization separates model parameters from regu-
larization parameters. However, for non-smooth penalties
like L1 norms, no natural parameter split exists. This limita-
tion suggests shifting from separating parameters to separat-
ing parameter update directions - identifying subspaces that
control model capacity versus feature learning.

This geometrical view leads to decomposing parameter gra-
dients into orthogonal components:

9=69p+91, gpLlygy (13)

For a regularizer R(w), the regularization component cap-
tures movement in the direction of steepest complexity
change, V,, R(w):

VR

— (T

9p = Projg r(9)

For L1 regularization, V,, R = sign(w) yields:

sign(w)

= 15
sgn@)l ()

g =aw - (¢"an),
Training updates occur in the complementary subspace
through ¢, , maintaining current complexity, while vali-
dation updates through g, modulate regularization strength.
This geometric perspective generalizes to any differentiable
regularizer by identifying its characteristic complexity di-
rection.

3.4. Stochastic Regularization

Modern neural networks rely heavily on stochastic regular-
ization, where random perturbations during training improve
generalization (Bishop, 1995). These perturbations can take
many forms - from additive noise to random masking - but
all require careful tuning of their magnitude, as it deter-
mines the strength of regularization: higher values force
more robust features at the cost of computational precision.
While manual tuning can find a single optimal noise level,
cross-validation becomes impractical when different parts
of the model require different noise scales.

A simple univariate example illustrates how validation gradi-
ents can automate noise tuning. Consider a Gaussian model
for regression, p(y|zr) = N (wx,c?), trained on a single
data pair (x4, y;). Training both w and o on this data leads
to overfitting (o — 0), but using a validation point (., ¥, )
to tune ¢ while training w recovers appropriate uncertainty.

This principle scales to neural networks through noise scale
parameters optimized by validation gradients. However,
noise typically reduces accuracy unless we treat the model as
sampling from a distribution - similar to ensemble methods
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or Bayesian inference. By averaging predictions during
validation, the method can discover noise levels that improve
generalization. Thus we define the inference at validation
using Monte Carlo averaging:

Mx

Ja(z) = E[f(z, € f(z,er), e ~N(0,0)
k:
(16)
Leading to distinct objectives for training and validation:
l:[rain = ]E(Eay)’\/’DlminIE6 [e(f(m7 6)’ y)] (17)
Ly = ]E(z7y)NDvul M(]Ee [f(l‘, 6)]7 y)] (18)

Training with single noise samples maintains the regular-
izing effect of randomization, while validation averages
multiple samples to measure generalization. Note that a
deterministic validation scheme (¢ = 0) would make the
validation loss independent of noise scales o, preventing
their optimization.

4. Theoretical Analysis

Four theoretical results establish the core properties of cross-
regularization: the alternating updates converge linearly, the
optimization landscape admits local analysis, the statistical
complexity scales with regularization parameters, and the
method achieves cross-validation performance. All proofs
appear in the Appendix.

Our first theoretical result establishes convergence of param-
eter updates despite the differing training and regularization
objectives. Under standard smoothness and strong convexity
conditions, the alternating optimization scheme, eqgs. 4 and
5, achieves linear convergence:

Theorem 4.1 (Linear Convergence). For appropriate learn-
ing rates, cross-regularization, eqs. 4 and 5, converges
linearly:

10 =0" 1+ e =" 1> < (1=)" (1B —0" |+l po—p"[I*)

where k > 0 depends on problem constants.

The linear convergence holds despite the distinct objectives
for 6 and p.

Neural networks and other complex models have noncon-
vex loss landscapes. To address this, we first characterize
convergence through local geometry.

Theorem 4.2 (Local Structure). Let L(0, p) be twice contin-
uously differentiable in a neighborhood of a local minimum
(0*, p*) with Hessian H. If L has Ly -Lipschitz continuous

. . . . 1—
Hessian, then there exists a radius r = min | —£— (=vn
6Lz 2H]

(Where o = Amin (H), v € (0, 1) is a constant determining
the preserved fraction of strong convexity, and || H|| is the
spectral norm) such that in the ball B,.(0*, p*), the loss

2
z)TH(z — z*) + R(0, p), where z = (0 p) and the re-
mainder R satisfies || R(0, p)|| < 4 (|0—0%|1*+lp—p*[|*)-

admits the decomposition L(0,p) = L(0*, p*) + 3(z —
(

The local quadratic structure implies a well-behaved loss
landscape within this radius, providing the smoothness and
effective strong convexity crucial for stable optimization. In
non-convex settings like neural networks, stability hinges
on managing interactions between model parameters (¢) and
regularization parameters (p). Our neural network analysis
(Theorem 4.3) assumes conditions like Lipschitz continuous
validation loss gradients with respect to model parameters.
These assumptions ensure bounded coupling, preventing
conflicting gradients from destabilizing p optimization, a
behavior empirically supported by stable noise adaptation
over extended training (Appendix G).

Building on local geometric insights, we further establish
convergence guarantees for neural networks under practical
assumptions:

Theorem 4.3 (Convergence for Neural Networks). Under
the assumptions that: (1) the training dynamics of model
parameters 0 converge to a stationary point 6*(p) for any
fixed regularization parameters p; (2) the validation loss
Leztvai (0, p) is a-strongly convex in p for any fixed 0; and
(3) the gradients NV ,Lcztva1(8, p) are B-Lipschitz contin-
uous with respect to 6, then the alternating optimization
scheme of cross-regularization (Eqs. 4-5) converges to a
stationary point (0%, p*).

Thus, Theorems 4.2 and 4.3 establish that cross-
regularization mirrors the convergence behavior of fixed-
regularization models, even within the non-convex land-
scapes of neural networks.

4.1. Statistical Rate

The dimensionality of regularization parameters p (k < d)
is typically much smaller than model parameters 6 (dimen-
sion d). This low-dimensional structure leads to favorable
statistical bounds:

Theorem 4.4 (Statistical Rate). The regularization parame-
ters converge to the population optimum at rate:

) klog(1/5
||pm - ptrue||2 < 0 ( g( / )>
m

where m is the regularization set size.

The O(\/k/m) convergence rate directly reflects the
method’s efficiency - statistical error scales with the few
regularization parameters (k) rather than the full model di-
mension (d).

Cross-regularization also matches the performance of stan-
dard cross-validation:
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Theorem 4.5 (Cross-validation Equivalence). Under mild
conditions on the regularizer, cross-regularization achieves
the same validation loss as the optimal cross-validation
solution.

Both approaches minimize validation loss over identical
solution spaces but through different parameterizations. The
theory thus confirms cross-regularization’s practical advan-
tages: linear convergence in optimization, statistical scaling
with only regularization parameters, and recovery of cross-
validation optima.

5. Norm-Based Regularization Examples
5.1. L2 Regularization

To validate the theoretical analysis, we construct synthetic
data where regularization is essential for generalization.
From a small set of independent base features, we gen-
erate a larger feature set by adding correlated variants with
Gaussian noise. This design creates groups of highly cor-
related features, making the linear system ill-conditioned
- without regularization, the model can exploit these cor-
relations to overfit by assigning large opposing weights to
related features.

The empirical results in Figure 1(A-C) show cross-
regularization converging to optimally tuned ridge regres-
sion through direct gradient descent. The optimization re-
veals an inherent tension in regularization - training loss
increases as the method reduces complexity to improve vali-
dation performance, demonstrating how validation gradients
guide the tradeoff between memorization and generalization,
reducing the generalization gap (difference between train
and test accuracy).

5.2. L1 Regularization

L1 regularization presents a fundamental challenge: the
non-differentiability of the L1 norm prevents direct norm
decomposition. This is particularly important for medical
applications where feature selection helps identify relevant
biomarkers. On the diabetes progression prediction task,
standard LASSO requires evaluating an entire regularization
path to find the optimal sparsity level.

Training updates follow g, while validation updates control
sparsity through gr ;. This allows simultaneous optimization
of prediction accuracy and feature selection without manual
tuning. Figure 1(D) shows cross-regularization automati-
cally discovers optimal sparsity levels matching LASSO’s
best cross-validated performance.

5.3. Derivative Norm for Splines

Smoothing splines measure complexity through integrated
squared derivatives, which for B-spline bases reduces to
a quadratic form |Df|? with finite difference matrix D.
The gradient decomposition handles this matrix norm by
projecting updates onto level sets of constant smoothness:

. DTD
9p = Projprps(9) = |DTD§2 (¢"D"DB) (19

Training follows g, to maintain smoothness while valida-
tion gradients through g, adapt complexity to local feature
scales, as demonstrated in Figure 1(E). This shows how the
gradient decomposition framework naturally accommodates
differential regularizers.

6. Neural Network Regularization
6.1. Interpretable Noise Regularization

Cross-regularization allows noise parameters at any granu-
larity, from per-unit to global. We demonstrate the approach
using layer-wise noise as it balances adaptivity to network
structure against statistical efficiency - while per-unit noise
offers maximal flexibility, it introduces O(d?L) regular-
ization parameters, and global noise cannot capture archi-
tectural differences. Layer-wise noise requires only O(L)
parameters while respecting natural network boundaries.

Cross-regularization requires only differentiable noise pa-
rameters, making it compatible with multiplicative Gaussian
noise but not standard Dropout, though both share similar
regularization properties (Srivastava et al., 2014; Molchanov
et al., 2017). While multiplicative noise offers scale invari-
ance, we implement additive noise after normalization to
allow for direct analysis of noise structure:

u; = wle”71 (20)
iy = (ul - /J/u)/Ju 2D
h; :g(ﬁl+0'l€), ENN(O,I) (22)

for weights w;, nonlinearity g(-), and Layer normalization,
chosen over Batch normalization to avoid confounding reg-
ularizing effects of batch stochasticity. This design ensures
noise magnitudes remain interpretable across layers, though
multiplicative noise achieves similar results with less inter-
pretable scales (see Appendix). During training, we use
single noise samples, switching to averaged samples for
validation and deterministic prediction f(x,e = 0) at test
time. While L2 regularization is a common technique, we
focused on noise-based regularization for our neural net-
work experiments given its prominence and effectiveness in
regularizing deep neural networks.
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Figure 1. Cross-regularization results across different norms. (A-C) L2 regularization: Evolution of weight norm showing adaptation to
optimal ridge levels, training/validation loss dynamics, and recovered coefficient values matching cross-validated ridge regression. (D) L1
regularization on diabetes prediction: Validation loss versus L1 norm shows automatic discovery of optimal sparsity matching LASSO.
(E) Spline smoothing: Learned function achieves appropriate complexity without manual tuning.
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Figure 2. Noise dynamics in VGG-16 on CIFAR-10 reveal architectural regularization patterns. (A) Cross-regularization matches PBT
accuracy (83.7%) while improving over baseline (76.0%) in a single training run. Fixed noise (¢ = 1 in the final five layers) impedes
initial learning yet fails to prevent later overfitting. (B) Layer noise adaptation tracks overfitting - low during feature learning, then
increasing to prevent memorization, when a generalization gap appears (around epoch 5), and again when the training accuracy rises again
(around epoch 40), after a period of strong regularization. (C) Final noise distribution (0.01-12 o) shows unprecedented yet functional
noise levels, surpassing PBT’s more conservative regime (max 2.8 ). (D) ResNet noise concentrates in early and final layers, with 14.9 o
in layer 2. Such a profile enforces a bottleneck at points where there is high information flow.

Algorithm 1 Cross-regularization Training

1: Input: Parameters 0, p; datasets Digin, Dreg

2: for each epoch do
3 for (z,y) ~ Dyain do
4 e ~N(0,I)
5: Etrain(f@,p(‘r76)>y)
6: Update 6 using gradient descent
7 if every reg_interval steps then
8 (xra yr) ~ Dreg
9: 0= SN fop(arer)
10: Lieg (9 yr)
11: Update p using gradient descent
12: end if
13:  end for
14: end for

6.2. Adaptive Noise Dynamics

The layer-normalized design provides standardized signal-
to-noise ratios, allowing direct analysis of information ca-
pacity (Fig. 2). Noise patterns expose computational
structure: early layers preserve precise feature detection
while deeper layers force increasingly robust representa-
tions. When validation accuracy plateaus, indicating poten-
tial overfitting, noise selectively increases in layers prone to
memorization.

Cross-regularization leads to a regime where neural net-
works remain functional under surprisingly high noise levels
- up to 13 standard deviations post-normalization. While
these levels are far beyond conventional regularization
strengths, their emergence through gradient-based optimiza-
tion of generalization performance offers insights into net-
work robustness and capacity.

Our noise level o can be related to standard dropout rates p
through signal-to-noise ratio analysis. For layer-normalized
activations with unit variance, additive Gaussian noise
N(0,0?) gives SNR = 1/02. Standard dropout with rate
p, after the 1/(1 — p) scaling, yields unit variance noise
at p = 0.5 (equivalent to 0 = 1). For comparison, typi-
cal dropout rates like p = 0.2 correspond to ¢ ~ 0.5. In
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contrast, our observed noise level of ¢ = 12 corresponds
to dropout rates of p = 0.987 - revealing a previously un-
explored high-noise regime that only becomes accessible
through gradual adaptation, as directly initializing with such
extreme noise levels would prevent learning.

This high-noise regime, while initially appearing to dramat-
ically challenge assumptions about neural robustness, finds
an interesting parallel in the neural network pruning liter-
ature, particularly the Lottery Ticket Hypothesis (Frankle
& Carbin, 2019). Our observed noise levels of o ~ 13
create a significant information bottleneck. Quantitatively,
this level of noise corresponds to an information capacity
of approximately 0.004 bits per symbol, which is mathe-
matically equivalent to pruning with a sparsity of around
99.4%. This aligns remarkably well with findings from the
Lottery Ticket Hypothesis, which has shown that VGG-style
networks on CIFAR-10 can be pruned to similar sparsity lev-
els (e.g., 98%) while maintaining performance, often with
sparsity concentrated in later layers, similar to our noise
patterns. This convergence of findings from two distinct
methodologies—gradient-based noise adaptation versus it-
erative weight pruning—suggests that cross-regularization
is effectively identifying intrinsic properties of neural infor-
mation capacity and architecture-specific compressibility.

This adaptive mechanism offers a valuable window into
generalization dynamics. Rather than prescribing fixed reg-
ularization schedules, noise levels automatically track each
layer’s capacity to overfit. The gradual emergence of ex-
treme noise demonstrates networks can learn robust features
even under severe perturbation when guided by validation
gradients. Furthermore, these adaptively learned noise lev-
els and the resulting model performance remain stable over
extended training periods, as confirmed by simulations run
for 600 epochs (see Figure 13 in Appendix G).

Comparison with Population-Based Training (PBT) vali-
dates these findings - both methods optimize noise using
validation performance, but through different mechanisms.
While evolutionary search also discovers layer-wise pat-
terns but more conservative magnitudes, gradient-based op-
timization reveals higher functional noise levels, and with
an order of magnitude less computation, requiring only
O(T(1 + K/r)) forward passes versus PBT’s O(PT).

Fixed noise injection (¢ = 1 in final five layers) illustrates
the limitations of static regularization: too strong initially,
slowing feature learning, yet insufficient to prevent later
overfitting, exhibiting larger generalization gaps. We also at-
tempted a comparison with variational dropout (Molchanov
et al., 2017) but found it unsuitable for layer-wise noise
adaptation. Despite extensive hyperparameter tuning of the
KL weight, the method either collapsed to zero noise or
became unstable - precisely the kind of manual tuning our
approach aims to eliminate.

6.3. Additional Architectures

To validate our method’s generality across architectures, we
apply cross-regularization to a ResNet with noise injection
(WideResNet-16-4). The noise adaptation reveals a striking
pattern: high noise emerges in both early and final layers,
with 10.4 o the first layer (o7 = 0.9, 09 = 10.4,014 = 3.3),
while maintaining low noise in middle layers (Fig. 2-D).

This pattern reflects the network’s architecture - since skip
connections allow information to bypass middle layers, the
network concentrates regularization at early layers that pro-
cess all inputs and final layers that integrate features, creat-
ing an information bottleneck that can’t be bypassed. These
results demonstrate how cross-regularization discovers com-
plexity controls that reflect network topology. The concen-
tration of noise in layers that cannot be circumvented by
skip connections provides evidence for how residual archi-
tectures shape information flow and regularization require-
ments. This finding connects to theoretical work showing
residual networks can be viewed as ensembles of paths of
different lengths (Veit et al., 2016).

6.4. Parameter Sensitivity Analysis

Empirical studies validate cross-regularization$ robustness
across hyperparameters (Appendix F). While single sam-
ples suffice during training, validation requires 3-5 MCMC
samples for stable gradient estimation, with performance
deteriorating below this range (Fig. 11). Regularization up-
dates can be sparse (every 30 steps) with minimal impact on
convergence, resulting in only 10% computational overhead.
The method maintains performance with extremely small
regularization sets - down to 1% of training data (Fig. 12),
aligning with our statistical analysis that error scales with
regularization dimension k rather than model dimension d
(Theorem 4.3). These results establish an efficient configu-
ration for practical use.

6.5. Automatic Uncertainty Calibration

Reliable uncertainty estimation is critical for deploying ma-
chine learning systems in practice. Medical diagnosis re-
quires accurate confidence scores to determine when to defer
to human experts, autonomous systems need calibrated un-
certainties for safe decision making, and active learning
systems rely on uncertainty estimates to select informa-
tive samples. Current approaches either require post-hoc
corrections (Guo et al., 2017), model-specific assumptions
(Gal et al., 2017), or separate training objectives (Lakshmi-
narayanan et al., 2017). However, real-world applications
need models that provide reliable uncertainties immediately
upon deployment and adapt these estimates as they continue
learning.

Analysis of the neural network experiments reveals that
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Figure 3. Uncertainty calibration and ECE evolution. Left: Ex-
pected Calibration Error (ECE) over training epochs for Cross-
Regularization (X-Reg), compared to final ECE values for an
uncalibrated model, Temperature Scaling, a Fixed Regularization
model (Fixed Reg), and a Deep Ensemble. Right: Reliability
diagram comparing these methods. Shaded areas represent 95%
confidence intervals. X-Reg maintains strong calibration through-
out training and performs competitively against strong baselines.

cross-regularization achieves strong calibration. Figure 3
illustrates this by comparing Cross-Regularization (X-Reg)
against several baselines: an uncalibrated model, Tempera-
ture Scaling (Guo et al., 2017), a model with manually fixed
regularization parameters (Fixed Reg), and a 5-member
Deep Ensemble. The right panel shows the reliability di-
agrams, where X-Reg closely tracks perfect calibration.
The left panel demonstrates the Expected Calibration Error
(ECE) evolution for X-Reg alongside the final ECE values
for the baselines. X-Reg achieves a final ECE of 0.038 (with
79.5% accuracy), showcasing strong calibration in a single
training run that is competitive with the 5-member Deep
Ensemble (ECE 0.030, Acc. 81.3%), and significantly sur-
passing the uncalibrated model (ECE 0.163, Acc. 67.4%),
Temperature Scaling (ECE 0.057, Acc. 69.6%), and the
Fixed Reg model (ECE 0.175, Acc. 74.7%). Shaded areas
in the figure represent 95% confidence intervals. This online
calibration represents a fundamental advance, as the model
maintains calibrated uncertainties even as it learns, without
requiring a separate post-hoc calibration phase.

This automatic online calibration represents a fundamental
advance in uncertainty estimation. The adaptive noise scales
learned through validation simultaneously control model
complexity and shape predictive uncertainty, enabling im-
mediate deployment with reliable confidence scores. As
the model encounters new data, both its predictions and
uncertainty estimates adapt naturally without requiring re-
calibration or retraining. This direct connection between
validation performance and uncertainty quantification sug-
gests cross-regularization learns to modulate predictions
based on their empirical reliability, providing a practical
solution for systems requiring trustworthy real-time uncer-
tainty estimates.

Aug. Param.
- B

°

0 100 200 0 100 200
Epoch Epoch

Figure 4. Dataset growth adaptation and adaptive augmentation.
A: Performance evolution shows successful knowledge transfer
at epoch 100 transition from partial to full dataset. B: Total regu-
larization strength automatically adapts - stronger regularization
compensates for limited initial data, then decreases as full dataset
provides natural regularization. Vertical line marks dataset transi-
tion. C: Evolution of learned augmentation parameters on SVHN.
Translation parameters (pixels) and rotation angles (degrees) in-
crease early in training before stabilizing, while shear transforma-
tions remain minimal. Results demonstrate automatic discovery of
dataset-specific invariances favouring rigid transformations.

6.6. Adaptive Regularization Under Data Growth

Training data often becomes available incrementally, re-
quiring models to learn from limited data while adapting as
samples accumulate. While increasing dataset size improves
generalization (Nakkiran et al., 2020), optimal regulariza-
tion typically requires manual adjustment with data growth.
We study adaptation to growing datasets by training initially
on 20% of data before incorporating the full dataset. This
mirrors practical scenarios where models must deploy with
limited data while preparing for growth.

Results demonstrate automatic adaptation to dataset size
(Figure 4-A,B). During limited-data training, the model
maintains generalization through elevated regularization.
Upon transitioning to the full dataset, regularization ad-
justs downward while preserving performance, aligning
with theoretical understanding that larger datasets require
less explicit regularization. The smooth adaptation sug-
gests applications to continual learning settings where data
distributions evolve over time.

6.7. Adaptive Data Augmentation

Data augmentation through label-preserving transforma-
tions forms a cornerstone for regularization in modern deep
learning, yet tuning transformation magnitudes remains a
manual, dataset-specific task. Methods like AutoAugment
(Cubuk et al., 2019) and Population Based Augmentation
(Ho et al., 2019) automate this search through reinforce-
ment learning or evolution, but require thousands of training
runs. While cross-regularization optimizes model param-
eters through validation gradients, applying this approach
to data transformations appears problematic - random per-
turbations of inputs should degrade validation performance,
pushing gradient descent to minimize all transformations.

Data augmentation fits naturally into our framework by
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viewing transformations as a distribution over model con-
figurations, analogous to noise-based regularization. Each
transformed input represents a sample from the space of
valid variations of the original image. For each type of
transformation (e.g., rotation, translation), we define contin-
uous magnitude parameters (e.g., for rotation, a learnable
maximum angle «,..; defines a range U[—aot, Qo] from
which a specific angle is sampled for each training instance).
These magnitude parameters o become part of the model’s
optimizable regularization parameters p. As with noise regu-
larization, we maintain the asymmetry between training and
validation: single samples during training provide stochastic
regularization, while Monte Carlo averaging during valida-
tion measures expected performance across transformations.
This implementation follows the same alternating optimiza-
tion algorithm as noise-based regularization: the transforma-
tion magnitude parameters « are updated using validation
gradients V, Ly, (obtained through standard backpropaga-
tion as these parameters affect the validation loss), aiming
to maximize generalization.

This validation-guided optimization creates a natural equi-
librium for the transformation strengths. If transformations
are too aggressive (e.g., rotating a digit ’6’ by 180 degrees
to resemble a ’9’), they will degrade validation performance,
and the gradients will drive down their magnitudes. Con-
versely, if transformations are too mild to provide sufficient
regularization, the model may overfit to the training data,
leading to a higher validation loss compared to a more op-
timally regularized state, again guiding the parameters «
towards more effective levels. The approach naturally en-
courages transformation-invariant features by penalizing
models that fail to generalize across valid variations of the
input. This formulation connects preprocessing parame-
ters to stochastic parameters in Bayesian neural networks
(Blundell et al., 2015; Wan et al., 2013), as both represent
distributions over model configurations optimized through
Monte Carlo sampling.

Figure 4-C demonstrates this adaptation on SVHN: transla-
tions converge to 1-2 pixels, rotations to 3 degrees, while
shear transformations diminish. These learned parameters
match the intuition that digit recognition benefits from rigid
transformations over deformations, emerging automatically
from validation gradients. The optimization improves test
accuracy from 82.8% to 86.3%, while reducing the gener-
alization gap from 16.2% to 7.3%. The smooth parameter
trajectories throughout training reveal when different trans-
formations become more or less useful for regularization.
This optimization of preprocessing transforms through vali-
dation gradients points to applications in automating feature
extraction and data preprocessing, while quantifying the
relationship between datasets and their underlying invari-
ances.

7. Conclusion

Cross-regularization demonstrates that model complexity
control can be directly optimized through validation gra-
dients rather than requiring manual tuning through cross-
validation. This optimization enables continuous adaptation
of regularization parameters during training, replacing dis-
crete hyperparameter search. The method provides a unified
optimization framework for different forms of regulariza-
tion, from classical norm penalties to stochastic regulariza-
tion and data augmentation.

Analysis through direct optimization reveals regularization
to be a dynamic process that evolves with model training.
In deep networks, regularization requirements reflect archi-
tectural structure, with patterns of noise tolerance emerging
across layers. These findings connect network architec-
ture to optimal regularization strategy, advancing our un-
derstanding of how network design influences learning and
generalization.

The effectiveness of validation-gradient optimization for
complexity control establishes regularization as a learnable
component of model training. This formulation eliminates
manual tuning while offering a principled approach to reg-
ularization design that adapts to specific architectures and
tasks.
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A. Theoretical Analysis

We analyze the convergence of our alternating optimization scheme where model parameters 6 train on training data while
regularization parameters p optimize on a separate regularization set. We show that the split optimization converges despite
using different objectives for each parameter set.

A.1. Optimization Analysis

We first establish convergence of the alternating gradient scheme under standard smoothness and strong convexity conditions.

Theorem A.1 (Linear Convergence). Assume the loss L(0, p) satisfies:

1. B-smoothness in both arguments:

IVL(0,p) = VL', o) < B0 = 6"]| + [lp — £']])

2. p-strong convexity in 0 for any fixed p

3. a-strong convexity in p for any fixed 0

Then the alternating updates:

Opp1 =0 — nGVOLtrain(ata Pt) (23)
Pt+1 = Pt — npvereg(6t+1a Pt) 24
with learning rates:
ne < 1/8 (25)
1, < min(1/B, e/ (46°)) (26)

converge linearly:
10 = 0117 + llpe = p"[I* < (1 = w)" (00 — 0" [|* + [lpo — p"|I?)

where k = min(une /2, an),).

Proof. The proof analyzes each update step separately and then combines them to show overall convergence. Let 6*(p)
denote the minimizer of L(-, p) for fixed p.

Step 1 (6-update): By S-smoothness and optimality of 8*(p;):

Ltrain(9t+17 pt) S Ltrain(et; pt) - (770 - ng@/Q)”vOLtrain”z

By p-strong convexity in 6:
||V9LtrainH2 Z Zﬂ(Llrain(atv pt) - Ltrain(g*(pt)a pt))

Combining with 79 < 1//3 gives:
10¢1 — 67 (o) |I* < (1 — o) 16 — 0" (p2)|® @
Step 2 (p-update): By similar arguments and smoothness of V, Ly, with respect to 0:
lperr = 117 < (1= amp)llpe = [P + B2n0p 1001 — 6% (p0) |1 @)
Step 3 (Combined Progress): Let V; = [|6; — 6*(p:)||*> + || pt — p*||*>. Combining (1) and (2):
Vier < [(1 = pmp) + B2n,]l10¢ — 0 (po)I* + (1 — amy)llpe — p*[|?

12
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The condition 77, < ung/(43%) ensures the 6 progress term dominates the coupling cost:
(1= pmp) + B%np < 1 — punje /2
Therefore:
Vier < (1 - H)W

where x = min(une /2, an,) > 0

Iterating gives the final bound:
Vi<(1-r)"V

O

Note that the condition on learning rates arises from our chosen update order, suggesting this asymmetry is not fundamental
to the method but rather an artefact of the ordering.

This result establishes that despite optimizing different objectives for 6 and p, the alternating scheme converges linearly to
the optimum.

A.2. Local Approximation Analysis

Let L(6, p) be twice continuously differentiable in a neighborhood of a local minimum (6*, p*) with Hessian H satisfying
Assumption 1 (from main text, referring to positive definiteness and bounded coupling). Since (6*, p*) is a local minimum,
we have VL(0*, p*) = 0. By Taylor’s theorem with remainder:

R B R S
L0 =100+ 5 (370 ) 1 ()70 Rio) @)

For the function with L g-Lipschitz continuous Hessian, the remainder term is bounded by:

L * *
IR, p)I| < =16~ 67 p— p)II° (28)

By the assumptions for Theorem 4.2 (main text), H is positive definite with A\, (H) > g > 0, giving us:
T
0—0* 0—0*
] H L) >0 —=0%p—p9)|? 29
(O=0) #(00) =@ -omp- )
For the quadratic approximation to maintain ~yu-strong convexity (for some v € (0, 1)), as stated in Theorem 4.2, we

require:

1—
1700 < L5200 07— )2 G0)

Combining with our bound on R:

]__
(e DY TP 31)

Ly X a3 (
— — — <
- p ) < L

This yields ||(0 — 0%, p — p*)|| < 3(1;77)“ The radius r in Theorem 4.2 is established by taking the minimum of this and
H

another constraint related to Hessian approximation validity, r = min (ﬁ, (;ﬁ;)‘l“ ) . Within this radius, the remainder
term satisfies the condition in Theorem 4.2, ensuring that the function is effectively ~yu-strongly convex, preserving local

optimization properties.

13
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A.3. Statistical Analysis

Having established optimization convergence, we analyze how sample size affects the solution quality. The main result is
that the statistical error scales with regularization parameter dimension & rather than model dimension d.

Theorem A.2 (Statistical Rate). Assume:
1. Loss bounded: |L(z;0,p)| < B
2. Population risk R is a-strongly convex in p

3. Parameter spaces compact: © C R* P C RF

Then with probability at least 1 — §:
4B? (k log(l/é))

||pm - p;kme||2 < 2 m

where p;.,, minimizes the population risk and m is the regularization set size.

Proof. By standard uniform convergence over the k-dimensional space P:

N N klog(1/d
Sup | R (8% (), p) — R(0"(0), p)| < By F1BU/0)
pEP m
Strong convexity then gives:
2 4B? (klog(1/4)
* 2 *
lom  pel? < 2(R(p) ~ Risfue) < 25 (REE2))

O

This O(+/k/m) rate explains why small regularization sets suffice - the error depends on regularization parameter dimension
k (typically number of layers) rather than model dimension d (total parameters).

A 4. Cross-validation Equivalence

We show our direct optimization achieves the same solution as standard cross-validation. The proof relies on showing that
both methods optimize over equivalent solution spaces through different parameterizations.

Theorem A.3 (Cross-validation Equivalence). Let f(p) be a complexity measure. For any A > 0, let 0 be the solution from
cross-validation:

O = arggnin{ﬁtmin ('9) + Af(p)}

Assume X is monotonic in the solution p. Then cross-regularization achieves the same validation loss as cross-validation:

m)%n Loa(0y)) = mpin La(0(p))
Proof. By monotonicity of A in p, we can rewrite cross-validation optimization:
mgn Lya(0y) = mpin Lya(0)

where 0 = arg ming{ Lyain(0) + Af(p)}

This is equivalent to direct optimization of p in cross-regularization:

mgn Lyal (9(/)))

Therefore both methods optimize the same objective over the same solution space, just parameterized differently through A
or direct optimization of p. O
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A.5. Proof of Neural Network Convergence Stability

The theorem regarding the convergence of cross-regularization for neural networks (Theorem 4.3) is established under the
following assumptions:

1. The training dynamics of 6 converge to a stationary point 6*(p) for any fixed p.
2. The validation loss Ly, (8, p) is a-strongly convex in p for any fixed 6.

3. The gradients V,Lya (6, p) are S-Lipschitz continuous with respect to §.

The proof, summarized below, demonstrates that for sufficiently small learning rates 7),, the error terms for both model and
regularization parameters converge to zero:

Proof. Define the error metrics:
Ey(t) = 10: — 6" (p2) | (32)
By(t) = llpe — p"|I? (33)

By assumption 1, 6 converges to 6*(p) for any fixed p with some convergence rate. When p is updated, this introduces a
perturbation in the optimization landscape. We can model this as:

Eg(t+1) <~ Eg(t) + 6 [lper1 — pell® (34)

where v < 1 captures the convergence rate of § and J is a coupling constant that measures how changes in p affect the
optimization of 6.

For the p updates, we use strong convexity (assumption 2) and Lipschitz continuity (assumption 3):

lpe1 — P17 < llpe = 1pV o Lova(Brs1. pr) — p*|? (35)
= lloe = 1oV o Lvat (07 (p2), pt) — p* 11> + 11p(V p Lot (Bes1, pt) — V o Lvar (07 (1), pe)) |17 (36)
< (1= np)E,(t) +123%Eg(t +1) (37)

Where we used the fact that for a-strongly convex functions with step size 7, < %, the update contracts the distance to the
optimum by a factor of (1 — 7,a).

Combining these inequalities, we get a linear system:

FrE {n;;ﬁ ) ) (38)

Let’s denote this matrix as M. For the system to converge, we need all eigenvalues of M to have magnitude less than 1. The
eigenvalues are the solutions to:

det(M — XI) =0 (39)

For sufficiently small 7,, we can ensure that both eigenvalues have magnitude less than 1, as the diagonal terms - and
(1 — npa) are dominant. Specifically, when:

1, < min (27 \/W) (40)

Then both error terms converge to zero as t — 0o, establishing convergence to a stationary point (6%, p*). O
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B. Norm based examples
B.1. L2 Regularization Details

We validate L2 cross-regularization on synthetic data specifically designed to demonstrate the importance of regularization.
From 5 independent base features, we create 100 total features by adding Gaussian noise (¢ = 0.1) to copies of the base
features. True coefficients alternate between +1 and -1 for features derived from the same base feature. This design creates
groups of highly correlated features, making the linear system ill-conditioned. Without regularization, the model can exploit
these correlations to fit noise by assigning large positive and negative weights to redundant features.

The cross-regularization model uses stochastic gradient descent with learning rates 0.01 for both feature learning and L2
regularization. Training runs for 6000 steps with regularization starting at step 3000 to demonstrate adaptation. For baseline
comparison, we fit ridge regression models across 1000 logarithmically-spaced values of A from 1073 to 10*.

B.2. L1 Regularization Details

We evaluate L1 cross-regularization on the diabetes regression dataset (Efron et al., 2004). The dataset consists of 442
patients with 10 physiological features. Data is standardized and split 80/20 into train/validation sets.

The cross-regularization model uses stochastic gradient descent with momentum 0.99, learning rate 0.0005 for feature
learning and 0.01 for L1 regularization. Training runs for 2000 epochs with batch size 512. For baseline comparison, we fit
LASSO models across 50 logarithmically-spaced values of A from 10~2° to 1. Extended results are shown in Fig. 5.

094 —-- Train Loss 097 —— LASSO 034

i —— Reg Loss e Cross-Reg
0.8 1

ra3

0.2 4 ¥

0.7 q

Val MSE

00 { — %
P!

MSE Loss

0.6 4

Coefficient Value

% LASSO

0.5 Cross-Reg

T T T T T T T T T T T T T
0 50 100 150 200 0.0 0.5 1.0 15 0.0 0.5 10 15
Training Steps L1 Norm L1 Norm

Figure 5. Extended L1 cross-regularization results on diabetes dataset. (A) Training dynamics demonstrating stable convergence despite
non-smooth L1 penalty. (B) Validation MSE versus L1 norm comparing cross-regularization and LASSO. (C) Coefficient paths showing
similar sparsity patterns were discovered through direct optimization rather than cross-validation.

B.3. Spline Regularization Details
We generate synthetic data from the function:
y(x) = sin(27x) + 0.5sin(87z) + €(x)

with heteroskedastic noise () ~ N(0, (0.5 + z)20%). This provides a challenging test case with both smooth and sharp
features. We sample 20 points with gaps to evaluate interpolation.

The B-spline model uses cubic basis functions with 15 knots. Second derivatives are computed analytically and normalized
by trace. Training uses SGD with learning rate 0.3 for both parameters and smoothness. Extended results shown in Fig. 6.
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| —=- Best CV Loss 0.020 4
| —— Reg. Loss 11
0.6 —_ i
: Train Loss 0.015 4 ol -
o 11 =
804 8 0.010 1 > =11
- Noisy data
—2 - == True function
021 0.005 — Crossreg
Best A=2e+04
Lh-x =31 A=2
0.0+ 0.000 - —— A=2e+08
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0.00 025 050 0.75 1.00
Epoch Epoch X

Figure 6. Extended Spline Results: (A) Validation loss evolution demonstrates convergence to cross-validation performance. (B)
Smoothness norm adaptation reveals automatic discovery of appropriate complexity. (C) Comparison of fitted functions across different
smoothness levels.

C. Neural Network Implementation

Cross-regularization requires only two modifications to standard neural network training: adding noise parameters after
normalization layers and implementing validation updates. The method can be implemented in a few lines of code, with no
custom optimizers or complex architectural changes needed.

C.1. Model Architecture

Each layer block in our neural networks applies normalization (LayerNorm or BatchNorm) followed by learnable noise:

* Linear / Convolutional layer
* Normalization (without affine)
* Additive noise with learned scale o; = exp(p;)

¢ ReLU activation

C.2. Regularization Class

The algorithm requires only the separation of parameters and datasets. We implement this through an abstract
RegularizedModel class, which must specify the set of regularization parameters p. The remaining parameters
are considered training parameters. This abstraction facilitates models to implement different forms of regularization while
maintaining the same training procedure.

C.3. Training Protocol
Optimization settings:
* Adam optimizer
* Learning rates: 10~* (model), 10~ (noise)
* Initialization: log o = —3
* Batch size: 512
¢ Training epochs: 100
C.4. Computational Analysis

Computational requirements for T training steps:

* Standard train-validation split: O(T'(1 4+ +2-)) forward passes, for a v validation split %, (1-v) test split %, and one

1—v

validation run per training epoch. For v=10%: O(1.117).

¢ Cross-regularization: O(7T'(1 + %)) forward passes for K MCMC samples and regularization update interval r. For
K=3 and r=30: O(1.17T").
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* M-fold cross-validation: O(MT') forward passes.
* PBT: O(PT) forward passes. Memory usage: O(PM) for model size M and population size P.

D. Population-Based Training

101 4

Noise (std)

0 20 40 60 80 100
Epoch

Figure 7. Noise dynamics for PBT. Noise evolution in PBT exhibits more volatile adaptation compared to the smooth emergence in
cross-regularization, reflecting the discrete nature of evolutionary updates.

PBT was implemented with a population size of 20 models, using validation accuracy for selection and random perturbation
factors in [0.8, 1.2] for noise parameter updates. The population size was chosen to balance computational cost with
optimization stability.

The evolutionary optimization in PBT leads to distinct training dynamics compared to cross-regularization’s gradient-based
approach. Figure 7 shows the more volatile noise adaptation, with sudden changes in noise levels corresponding to selection
and mutation events.

E. ResNet Experiments

WideResNet-16-4 implements residual blocks with dual 3x3 convolutions and batch normalization across three stages.
The architecture’s skip connections create an ensemble of paths with varying depths (Veit et al., 2016), enabling multiple
information routes. Our experiments reveal two findings: first, despite injecting noise levels comparable to VGG-16, the
network maintains performance through its skip connections; second, the training dynamics (Figure 8) show distinct noise
adaptation phases - an initial increase at epoch 5 when validation plateaus, followed by a second rise at epoch 40 as training
accuracy approaches 100%. This pattern mirrors our CIFAR-10 results, reinforcing the connection between generalization
gaps and noise adaptation.
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Figure 8. ResNet training dynamics: (a) Generalization gap emerges at epoch 5 and training nearly overfits at epoch 40, triggering
corresponding noise adaptations. (b) Layer-wise noise evolution follows VGG-16 pattern, increasing at validation plateaus and overfiting.
(c) Final noise concentrates in layers 1, 2 and 14, exceeding 10 standard deviations without compromising performance.

E.1. BatchNorm and Multiplicative Noise

The standard ResNet implementation with BatchNorm and multiplicative noise exhibits similar qualitative dynamics, though
with less interpretable scales (reaching over 3000 standard deviations)
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Figure 9. Training dynamics for ResNet with BatchNorm and multiplicative noise.

F. Parameter Sensitivity Analysis

Figures 10, 11 and 12 show the detailed plots for the systematic method analyses.
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Figure 10. Effect of update interval. Consistent noise patterns emerge despite different update frequencies. Smoother evolution with more

frequent updates but comparable convergence.
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Figure 11. Impact of MCMC samples for regularization. Accuracy with different sample counts shows diminishing returns beyond 3-5

samples.
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Figure 12. Sensitivity to regularization set size. Performance remains stable down 1% of training data. This efficiency stems from the
low-dimensional nature of the regularization parameters compared to model weights.

G. Extended Stability Simulations

To further demonstrate the stability of the learned regularization parameters in neural networks, Figure 13 shows the
evolution of layer-wise noise sigmas (o;) over an extended training period of 600 epochs. The noise parameters stabilize
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after an initial adaptation phase, confirming the empirical robustness of the adaptive mechanism discussed in Subsection 6.2.
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Figure 13. Evolution of layer-wise noise sigmas (o;) over 600 training epochs for a VGG-style network on CIFAR-10. The regularization
parameters demonstrate long-term stability after an initial adaptation period.
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