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ABSTRACT

Graph Neural Networks (GNNs) have achieved significant success in processing
graph-structured data but often lack interpretability, limiting their practical ap-
plicability. We introduce the Graph Distributional Analytics (GDA) framework,
leveraging novel combinations of scalable techniques to enhance GNN explain-
ability. The integration of Weisfeiler-Leman (WL) graph kernels with distribu-
tional distance analysis enables GDA to efficiently quantify graph data distribu-
tions, while capturing global structural complexities without significant computa-
tional costs. GDA creates high-dimensional embeddings employing WL kernels,
measures the distribution of distances from measures of categorical central ten-
dency, and assigns distribution scores to quantify each graph’s deviation from
this vector We evaluate GDA on the ENZYMES, ogbg-ppa, and MalNet-Tiny
datasets. Our experiments demonstrate GDA not only accurately characterizes
graph distributions but also outperforms baseline methods in identifying specific
structural features responsible for misclassifications. This comprehensive analysis
provides deeper insights into how training data distributions affect model perfor-
mance, particularly with out-of-distribution (OOD) data. By revealing the under-
lying structural causes of GNN predictions through a novel synergy of established
techniques, GDA enhances transparency and offers a practical tool for practition-
ers to build more interpretable and robust graph-based models. Our framework’s
scalability, efficiency, and ability to integrate with various embedding methods
make it a valuable addition to the suite of tools available for GNN analysis.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful framework for learning from graph-
structured data, with applications ranging from social network analysis to molecular biology (Wu
et al., 2020). While GNNs excel at learning complex, non-Euclidean relationships, their decision-
making processes remain largely opaque (Bodria et al., 2023). This lack of interpretability poses sig-
nificant challenges, especially in critical domains like bioinformatics and healthcare, where model
decisions must be both accurate and explainable (Sanchez-Lengeling et al., 2020; Adoni et al., 2020).
Explainability is crucial for understanding why models make specific predictions, detecting potential
biases, and improving model generalization (Ju et al., 2024).

In recent years, efforts have been made to develop explainability tools tailored for GNNs. However,
most existing methods focus on explaining node- or edge-level predictions, relying on gradient-
based or perturbation-based approaches (Rajabi & Kafaie, 2022). While useful in some contexts,
these methods struggle with graph-level predictions, particularly in datasets where structural diver-
sity within categories complicates classification (Georgousis et al., 2021). Furthermore, many of
these tools are computationally expensive and require significant customization to adapt to different
datasets, limiting their scalability and practical applicability (Agarwal et al., 2022).

This paper introduces Graph Distributional Analytics (GDA), a novel framework designed to ad-
dress the limitations of existing GNN explainability methods. GDA leverages Weisfeiler-Leman
graph kernels to embed graph structures into high-dimensional vector spaces, allowing for the char-
acterization of structural distributions within graph categories. By analyzing the distribution of
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graph embeddings, GDA provides insights at both population and sample levels, offering a scalable
and interpretable approach to understanding GNN model behavior.

Through a series of experiments on the ENZYMES, MalNet-Tiny, and ogbg-ppa datasets, we
demonstrate how GDA can reveal structural anomalies and distributional shifts that contribute to
model underperformance. Unlike previous explainability methods, GDA not only identifies poten-
tial sources of confusion within the dataset but also offers a preemptive tool for improving data
splits and detecting out-of-distribution samples. The contributions of this paper are threefold: (1)
the introduction of GDA for graph-level explainability, (2) validation of GDA’s utility through case
studies on real-world datasets, and (3) a discussion of how GDA can inform future research into
scalable, interpretable GNN models.

2 RELATED WORK

Demystifying neural network decision-making is a Herculean task, particularly for non-Euclidean
data, where complex interconnections stymie explainability (Adoni et al., 2020). Current explain-
ability methods demand significant computational resources (Sanchez-Lengeling et al., 2020), and
the explanations offered by these tools tend to be approximate and difficult to interpret (Li et al.,
2022). If explainability tools are difficult to explain, their usefulness is questionable. Nearly all
methods require extensive tailoring to specific datasets and models which reduces practicability for
diverse, real-world environments (Agarwal et al., 2022). Despite increased community interest, most
libraries have prioritized accuracy benchmarks over explainability (Agarwal et al., 2023).

Gradient-based explainers, such as Grad (Simonyan et al., 2014), Grad-CAM (Pope et al., 2019),
GuidedBP (Baldassarre & Azizpour, 2019), and Integrated Gradients (Sundararajan et al., 2017),
highlight specific feature importances by backpropagating gradients. These methods work well for
image or node classification but struggle with graph-level predictions (Kakkad et al., 2023), which
are critical for datasets like MalNet-Tiny, where node and edge features are absent.

Perturbation-based explainers, such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo
et al., 2024), SubgraphX (Yuan et al., 2021), and GraphLIME (Huang et al., 2023), evaluate how
model predictions change in response to input perturbations. D4Explainer (Chen et al., 2024) of-
fers a more efficient method by using a discrete denoising diffusion model tailored towards in-
distribution explanations. While these methods offer valuable insights, they are computationally
expensive and typically explore only a fraction of possible perturbations, often missing the struc-
tural nuances that impact graph-level decisions (Munikoti et al., 2023).

Surrogate-based explainers, like PGMExplainer (Vu & Thai, 2020), use simpler models such as
Bayesian networks to approximate GNN behavior. Although they provide interpretability, they face
scalability challenges when dealing with high-dimensional probability distributions, and they require
substantial tuning to capture relevant patterns in large datasets (Zhu et al., 2022).

Several gaps remain in GNN explainability. First, most approaches focus on node- and edge-level
tasks, neglecting graph-level explainability crucial for structural prediction problems (Pope et al.,
2019). Additionally, their computational inefficiency renders them impractical for dynamic, large-
scale graph environments (Kazemi et al., 2020). Finally, due to the difficulty of characterizing
graph data, the literature primarily focuses on explainability for Euclidean data, which leaves non-
Euclidean datasets like MalNet-Tiny underexplored (Kakkad et al., 2023).

Graph Distributional Analytics (GDA) addresses these issues by offering scalable, dataset-agnostic
explanations for both population- and sample-level predictions with linear time complexity, making
it suitable for real-world applications. GDA also tackles the challenge of out-of-distribution (OOD)
detection, enabling better interpretation of model behavior on unseen data by characterizing graph
distributions. GDA fills this gap by analyzing graph structures without relying on node or edge
features, providing a more versatile approach for complex, graph-structured data.
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3 GRAPH DISTRIBUTIONAL ANALYTICS (GDA) FOR EXPLAINABILITY

3.1 GRAPH EMBEDDING AND STRUCTURAL DISTRIBUTION CHARACTERIZATION

Let G = (V,E) denote a graph where V represents the vertices and E the edges. To analyze the
structural properties of graphs, we first embed each graph as a high-dimensional vector using the
Weisfeiler-Leman (WL) graph kernel. For each graph, we define an embedding function τ : G →
Rd, where τh(G) represents the graph embedding after h iterations of the WL kernel, and d is equal
to the cardinality of unique labels in τh(G). Formally, the embedding is given by:

τh(G) =
∑
v∈V

lh(v) where lh(v) = f(lh−1(v), {lh−1(u) : u ∈ N (v)}),

where l0(v) is the initial label of vertex v, N (v) represents the neighborhood of v, and f is a hash
function aggregating neighborhood information (Shervashidze et al., 2011). This process captures
the structural features of the graph, producing a vectorized representation that preserves graph topo-
logical properties (Morris et al., 2019). This is repeated for each G in a dataset H to create a set of
embeddings:

τh(H) = [τh(G) ∀G ∈ H] (1)

However, the embeddings generated are heterogeneous in both cardinality and the correspondence
of mappings from labels to specific dimensions. Let L = {L1, L2, · · · , Ln | n = |H|, Lj ̸= Li<j}
be the set of unique vectors generated by τh(H) using the WL graph kernel. To standardize the
embeddings, we define the Hamel dimension, a, as the cardinality of the set of unique labels L, and
construct a vector space T , such that dim(T ) = T |L| = Ra. A mapping g(L) 7→ Ra ensures that
each unique label in L corresponds to a specific dimension in Ra. For each embedding in H , we
generate a uniform vector η(G) as follows:

∀G ∈ H, η(G) = g(ϕ(G)) ∈ Ra (2)

The vectors within η(H) have very high dimensionality, and many dimensions within T are sparse,
containing non-zero values for only a few elements in η(H). We filter these non-informative dimen-
sions by constructing a linear subspace U ⊂ Rb≤a, defined by a function ϕ(G) 7→ Rb:

∀j ∈ {1, · · · , a}, η(G)j ∈ ϕ(G) ⇐⇒
n=|H|∑
i=1

η(Hi)j ≤ |H| × κ (3)

where 0 ≤ κ ≤ 1 denotes a percentage threshold such that 0 ≤ |H| × κ ≤ |H|. Numerous methods
exist among the feature selection literature that can be used to define κ to optimize the removal of
irrelevant dimensions from the embedding vector (Zebari et al., 2020; Gui et al., 2016). However,
during the investigation of the effectiveness of GDA towards GNN explainability, we opted for a
conservative approach that set κ such that |H| × κ = max(1, 0.002 × |H|). This still significantly
reduces the dimensionality of the embedding since a majority of embeddings, regardless of dataset
size, are unique to one sample due to the combinatorial immensity of possible graph structures
(Bondy et al., 1976).

After embedding, GDA characterizes the distribution of graph embeddings within each class. Let
GC represent the set of graphs belonging to class C. The mean embedding for class C is calculated
as:

µC =
1

|GC |
∑

G∈GC

ϕ(G),

which serves as the central tendency for the graphs within the class. We then calculate the cosine
similarity Sc(G) between each graph embedding ϕ(G) and the class mean µC :
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Sc(G) =
ϕ(G) · µC

∥ϕ(G)∥∥µC∥
.

This similarity score quantifies how closely each graph aligns with the structural norm of its class.

To assess the degree of deviation from the class central tendency, we introduce a normalized distri-
bution score for each graph G:

z(G) =
Sc(G)√

1
|GC |

∑
G′∈GC

Sc(G′)2
.

This score reflects how much a graph diverges from its class’s prototypical structure. Graphs with
lower z(G) values indicate significant deviations and are often associated with misclassifications or
outliers. By analyzing these scores, GDA can reveal structural anomalies and patterns responsible
for misclassification.

Algorithm 1 Graph Embedding and Structural Distribution Characterization using Weisfeiler-
Leman Kernel

Input: Dataset H of graphs, iteration count h, threshold κ
Output: Set of filtered embeddings η(H) and distribution scores z(G) for each G ∈ H
for each graph G = (V,E) ∈ H do

Initialize node labels l0(v) for all v ∈ V
for i = 1 to h do

for each vertex v ∈ V do
Update label: li(v) = f(li−1(v), {li−1(u) | u ∈ N (v)})

end for
end for
Compute graph embedding: τh(G) =

∑
v∈V lh(v)

end for
Let L = {L1, L2, · · · , Ln | n = |H|, Lj ̸= Li<j} represent the set of unique labels across all
graphs
Define vector space T ∈ Ra where a = |L|
for each graph G ∈ H do

Map embedding: η(G) = g(τh(G)) ∈ Ra

end for
for each dimension j ∈ {1, · · · , a} do

if
∑|H|

i=1 η(Hi)j ≤ |H| × κ then
Remove dimension j from all embeddings η(G) ∈ H

end if
end for
Compute the filtered embeddings η(H) ∈ Rb where b ≤ a
for each class C in dataset H do

Compute class mean embedding: µC = 1
|GC |

∑
G∈GC

η(G)

for each graph G ∈ GC do
Compute cosine similarity: Sc(G) = η(G)·µC

∥η(G)∥∥µC∥

Compute normalized distribution score: z(G) = Sc(G)√
1

|GC |
∑

G′∈GC
Sc(G′)2

end for
end for
Output: Filtered embeddings η(H) and distribution scores z(G) for each G ∈ H

3.2 OUTLIER DETECTION AND DISTRIBUTION ANALYSIS

In the context of Graph Distributional Analytics (GDA), we define outliers as graphs whose struc-
tural properties significantly deviate from the central tendency of their class. Using the embeddings
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generated by the Weisfeiler-Leman (WL) kernel, we quantify these deviations based on cosine sim-
ilarity between the graph embeddings and the mean embedding of the class. Additionally, we assess
abnormal distributions within classes using kurtosis, a measure of how heavily tailed a distribution
is compared to a normal distribution.

3.2.1 OUTLIER DETECTION

We define outliers as graphs whose similarity score falls significantly below the average similarity
for the class. Specifically, a graph G ∈ GC is considered an outlier if:

Sc(G) < µSc − ασSc ,

where µSc and σSc are the mean and standard deviation of cosine similarity scores across all graphs
in class C, and α is a user-defined threshold (typically set to 2 or 3) that determines how many
standard deviations away from the mean qualifies as an outlier. This method ensures that graphs
with significantly lower similarity to the class mean are identified as outliers, which can help explain
misclassifications or structural anomalies in the dataset.

3.2.2 ABNORMAL DISTRIBUTION DETECTION VIA KURTOSIS

To detect abnormal distributions within a class, we use kurtosis, ξ(Gc) which measures the ”tailed-
ness” of the distribution of cosine similarity scores. High kurtosis indicates that the distribution has
heavy tails, meaning there are more extreme outliers than expected under a normal distribution. Low
kurtosis suggests that the distribution has lighter tails, indicating fewer extreme values.

Kurtosis for a set of cosine similarity scores {Sc(G) | G ∈ GC} is defined as:

ξ(Gc) =
1

n

n∑
i=1

(
Sc(Gi)− µSc

σSc

)4

− 3,

where µSc and σSc are the mean and standard deviation of the similarity scores, and n = |GC | is
the number of graphs in class C. A kurtosis value greater than 3 indicates a distribution with heavy
tails, suggesting that the class contains a significant number of structural outliers or subgroups with
distinct structural features. Conversely, a kurtosis value less than 3 indicates a distribution with light
tails, where most graphs are similar to the class mean.

By analyzing kurtosis, GDA can identify classes with abnormally high or low variability in graph
structures, which can provide insights into model performance. For instance, classes with high kur-
tosis may indicate the presence of substructures that cause misclassifications or other performance
issues, while low kurtosis may suggest that the class is highly homogeneous and thus easier for the
model to learn.

3.3 POST-HOC STRUCTURAL ATTRIBUTION FOR MISCLASSIFIED GRAPHS

For misclassified graphs, GDA provides a post-hoc explanation by tracing structural deviations.
By rerunning the WL kernel with degree sequence tracking, we can identify specific substructures
responsible for classification errors. The process involves examining how node labels evolve through
each iteration, enabling us to pinpoint graph substructures that deviate from the class norm. This
structural attribution mechanism allows for an interpretable analysis of misclassifications, offering
insights into how structural features influence GNN predictions.

3.4 SCALABILITY AND INTEGRATION WITH EXISTING EXPLAINABILITY METHODS

GDA’s key strength lies in its scalability. The embedding and distribution analysis have a compu-
tational complexity of O(n ·m), where n is the number of graphs and m is the average number of
nodes per graph. This ensures that GDA can handle large-scale graph datasets efficiently.

Moreover, GDA complements existing gradient-based and perturbation-based explainability tech-
niques. While Grad-CAM and GNNExplainer focus on the node or edge-level importance, GDA
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Dataset Avg. # Nodes Avg. # Edges Node Features Edge Features # Categories
MalNet-Tiny 1,410.3 2,647.3 N/A N/A 5

ogbg-ppa 243.4 2,266.1 N/A 6 features 37
ENZYMES 32.6 62.1 Atom type N/A 6

Table 1: Dataset Statistics
Statistics highlighting graph order, graph size, number of classification categories, and the presence

or absence of node features.

offers a higher-level, graph-wide perspective. This allows GDA to serve as a versatile framework,
providing insights at both population and sample levels, including outlier detection and out-of-
distribution (OOD) analysis.

4 EXPERIMENTS

The experiments conducted in this study validate the utility of Graph Distributional Analytics (GDA)
for explaining GNN performance. GDA provides insights into model behavior and data distribu-
tions, but it does not prescribe specific actions to improve model performance. The results presented
in this section demonstrate how GDA can inform further analysis and lead to improvements, though
the implied action remains open and is subject to further research.

We present specific case studies that highlight the power of GDA at both population and sample
levels. The body of this paper focuses upon how GDA is employed for GNN explainability. Detailed
quantitative accountings of experiments are included in the appendices.

4.1 EXPERIMENTAL SETUP

All experiments were conducted by both models on all three datasets for ten runs with seeds (numpy,
torch, random) set to {1, 2, · · · , 10} corresponding to the run of the experiment. Initial experiments,
also referred to as baseline experiments, used prescribed training, test, and validation splits as de-
fined by the dataset.

4.1.1 DATASETS:

Three datasets were examined for this study:

• MalNet-Tiny: MalNet-Tiny (Freitas & Dong, 2021) is a curated subset of 5000 of the
MalNet dataset graphs where each graph is selected to have fewer than 5000 nodes. Both
datasets seek to classify function calls as indicative of malware or benign. It is designed for
rapid prototyping of methods and seeks to strike a balance between the problem difficulty
of the larger dataset and the computational demands of processing large data.

• ogbg-ppa: ogbg-ppa (Szklarczyk et al., 2019) is a graph-structural prediction dataset fo-
cused on identifying protein interactions between different species and taxa of organisms
from the Stanford Open Graph Benchmark (Hu et al., 2020).

• ENZYMES: ENZYMES (Schomburg et al., 2004) is a part of the larger TUDataset bench-
mark (Morris et al., 2020). It seeks to identify protein tertiary structures categorized into
six enzyme classes, with graphs representing the structural relationships between amino
acids.

4.1.2 MODELS

To fully place the emphasis of the study upon the application of GDA for GNN explainability, we
examined all datasets using the same model architectures to ensure relevance and comparability.

• GraphSAGE: A scalable, inductive graph learning model that generates embeddings by
sampling and aggregating features from a node’s local neighborhood. This model is partic-
ularly useful for learning representations in large-scale graphs (Hamilton et al., 2017).
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Figure 1: Abnormal Distribution for Transferases
LEFT: Category 0 demonstrates a ’nice’ distribution with low kurtosis, but Category 1 has a
strange double peak indicative of a bimodal distribution for the transferases category of the

Enzymes dataset. This double-peak demonstrated high kurtosis which indicated further
investigation was warranted.

RIGHT: Here we observe two distinctly different graph structures both categorized as transferases
which originates from the enzymes functional (not structural) definition. Separating this class
during training may help prevent model confusion when trying to structurally classify these

samples.

Architecture: The architecture consists of three SAGEConv layers with hidden channels.
An AttentionalAggregation layer is used with a gate neural network that includes a linear
layer and a sigmoid activation. This is followed by two fully connected layers where the
hidden channels are reduced by half in the first layer and then mapped to the number of
output classes in the second layer.

• Graph Isomorphism Network (GIN): A powerful GNN model designed to distinguish
graph structures more effectively by leveraging an aggregation function that closely resem-
bles the Weisfeiler-Lehman graph isomorphism test (Xu et al., 2019).
Architecture: The architecture consists of one initial GINConv layer, which maps the input
features to the hidden channels, followed by three additional GINConv layers. Each GIN-
Conv block includes two linear layers, ReLU activations, and batch normalization. After
the GINConv layers, a global mean pooling operation aggregates the node embeddings into
a graph-level representation. The final classification is performed using two fully connected
layers, with dropout applied between them.

4.2 RESULTS

In this section, we present a comprehensive analysis of how Graph Distributional Analytics (GDA)
was applied across multiple datasets to examine structural anomalies and their impact on model per-
formance. The experiments focus on understanding population-level distribution shifts and sample-
level misclassifications in the ENZYMES, MalNet-Tiny, and ogbg-ppa datasets. All experiments
were conducted using the GraphSAGE and GIN architectures to maintain consistency and compa-
rability across datasets.

4.2.1 POPULATION LEVEL ANALYSIS

The population-level analysis begins with the ENZYMES dataset, where GDA was applied to detect
abnormal distribution patterns within the graph embeddings. A key observation in this dataset was
the bimodal distribution found in Category 1 that presented a high kurtosis value, corresponding
to the transferase enzymes. Transferases are a functional definition, not a structural definition, so
while assigned to the same category, they exhibit significant structural heterogeneity. The existence
of two distinct clusters within this category suggested that the enzyme structures were quite different,
despite their shared functional role. This bimodal distribution, which was confirmed by the structural
representations are shown in Figure ??. This finding is consistent with biochemical literature that
highlights the variability within enzyme families (Giegé et al., 2012; Breton et al., 2006). The
structural diversity in transferases led to underperformance in this category, with the GNN models
struggled to capture the dual signals introduced by these two clusters.
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Figure 2: Distribution Shifts in Malnet-Tiny
In Class 0 (left), we see a relatively normal distribution of similarities for a classification category
with nearly all samples lying close to the central tendency vector. However, in Class 1 (right), we
see an atypical distribution that has a significant portion of samples being nearly orthogonal to the

central tendency.

To address this issue, we computed Pearson correlation coefficients on the embedding vectors, which
allowed us to separate the two clusters and treat them as distinct categories during model training.
After the training phase, we recombined the categories, leading to a 2.3% performance improvement
for the transferase category, which also translated to a 0.4% increase in overall dataset performance
across both models repeated with ten separate seeds. These results highlight the importance of iden-
tifying and handling structural heterogeneity within a class, which can significantly impact model
accuracy. This observation aligns with prior work showing that structural complexity and variability
within functional groups can lead to model confusion (Chen & Wu, 2022; Ji et al., 2021).

Moving to the MalNet-Tiny dataset, we found that three out of five categories exhibited relatively
normal distributions with cosine similarities clustered near 1 and low kurtosis. However, two cate-
gories showed significant divergence, with some graph embeddings nearly orthogonal to their class
mean vectors, as seen in Figure 2. These outliers indicated the presence of structurally distinct
graphs that deviated from the majority of samples in their respective categories. Our hypothesis
was that these outliers were injecting noise into the model, leading to poorer performance in those
categories. To test this, we removed the outliers and retrained the models. While the improvements
were modest, the reduction in false positives was notable. We hypothesize that the model was al-
ready learning to ignore these outliers during training in the baseline runs, as their removal only
reflected an equivalent reduction in false negative samples. This observation reinforces the idea
that models can effectively disregard noisy samples under certain conditions, but identifying and
removing them still contributes to cleaner classification metrics.

A related experiment involved analyzing distribution shifts between the training, validation, and test
sets in the MalNet-Tiny dataset. GDA revealed significant shifts in the distributions, with the train-
ing set embeddings clustering more tightly around the mean compared to the test and validation sets.
These shifts, shown in Figure 3, likely caused overfitting, as the model was able to perform well on
the more homogeneous training set but struggled to generalize to the more diverse test and validation
samples. To address this, we restructured the dataset splits to ensure more consistent distributions
across the sets. After retraining the models, we observed an average 4.3% improvement in perfor-
mance over the baseline across 10 runs, using both GraphSAGE and GIN architectures. These re-
sults emphasize the critical importance of ensuring distributional consistency between dataset splits
to prevent overfitting and improve generalization, as noted in previous studies on distributional shifts
in machine learning (Ding et al., 2021; Fan et al., 2024).

4.2.2 SAMPLE LEVEL ANALYSIS

Finally, we applied GDA to analyze individual misclassifications at the sample level, particularly
in the ogbg-ppa dataset. In this case, GDA identified a structural motif (Figure 4) that was present
in 12% of misclassified samples from Category 5 but was prevalent in 68% of Category 27 sam-
ples. This structural overlap likely led to misclassifications, as graphs containing this motif were
frequently classified as belonging to Category 27, even when they were from Category 5. Misclas-
sification due to structural imbalances is a well-known issue in graph-based learning systems, and
similar findings have been reported in the literature (Ding et al., 2021). By isolating this motif and
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Figure 3: Distribution Shifts
In classification category 2 of the MalNet-Tiny dataset, we see a significant shift between the

training distribution, which is closer to the central tendency, and the testing and validation shifts
which tend to be less similar. This may result in overfitting by the model due to the disparity

between training and testing/validation distributions.

Figure 4: Embedding Analysis
This structure was present in a majority of misclassified examples in one class. We discovered it is
a highly prevalent structure in another class which may have led to models becoming stuck in local

minima when trying to differentiate these samples.

adjusting the training process to account for this structural overlap, we observed a significant reduc-
tion in misclassification rates between the two categories. This case study demonstrates the utility
of GDA in identifying structural imbalances and mitigating their effects on model performance.

While benchmark datasets like those used in this study are useful for prototyping, their simplicity
precludes in-depth study of individual samples. The sample-level analysis provided by GDA is
most powerful when employed by those with domain expertise. The lack of detailed information in
protein, enzyme, and malware identification datasets, which would be required to tie structures to
real-world examples, hindered the application of this method in this study..

5 CONCLUSION

Graph Distributional Analytics (GDA) offers a novel and scalable framework for understanding
the structural complexities that influence model performance in Graph Neural Networks (GNNs).
By leveraging Weisfeiler-Leman graph kernels to embed graphs and analyze their distributions,
GDA provides insights at both population and sample levels. The experiments conducted on the
ENZYMES, MalNet-Tiny, and ogbg-ppa datasets demonstrate that GDA can effectively identify
structural anomalies, distributional shifts, and misclassified samples that traditional methods may
overlook. While GDA does not prescribe specific solutions, it offers a powerful tool for preemptive
data analysis, improving dataset splits, and detecting out-of-distribution samples. Future work will
focus on integrating GDA with more systematic model refinement strategies and further exploring
its applications in real-world GNN tasks.
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H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan Saeed. A compre-
hensive review of dimensionality reduction techniques for feature selection and feature extraction.
Journal of Applied Science and Technology Trends, 1(1):56–70, 2020.

Xiubin Zhu, Dan Wang, Witold Pedrycz, and Zhiwu Li. Fuzzy rule-based local surrogate models
for black-box model explanation. IEEE Transactions on Fuzzy Systems, 31(6):2056–2064, 2022.

A APPENDIX

A.1 EXPERIMENTAL RESULTS

A.1.1 ENZYMES-BEFORE AND AFTER SPLITTING CLUSTERS

Run 1 2 3 4 5 6 7 8 9 10 Avg
GraphSAGE

Before 83.3 80.6 83.0 81.8 81.9 80.1 83.5 82.3 82.8 81.7 82.1
After 82.8 82.8 83.7 82.5 83.5 81.3 83.9 83.4 82.9 80.2 82.7
GIN

Before 83.3 81.4 83.8 80.4 84.9 83.2 84.9 82.7 84.2 82.5 83.1
After 82.0 81.8 83.1 84.4 82.1 84.7 84.5 81.7 84.6 84.4 83.3

A.1.2 MALNET-TINY DATASET-BEFORE AND AFTER REMOVING OUTLIERS

Run 1 2 3 4 5 6 7 8 9 10 Avg
GraphSAGE

Before 84.0 82.7 81.4 85.2 81.9 79.1 79.0 79.2 82.4 82.8 81.8
After 81.1 81.0 81.1 82.0 82.7 82.8 83.1 81.6 83.4 81.1 82.0
GIN

Before 83.5 87.1 83.2 81.0 86.1 87.5 84.6 86.3 86.7 86.5 85.2
After 86.0 84.8 83.8 85.0 86.3 86.9 85.7 85.4 85.9 84.3 85.4
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A.1.3 MALNET-TINY: BEFORE AND AFTER CORRECTING DISTRIBUTION SHIFTS

Run 1 2 3 4 5 6 7 8 9 10 Avg
GraphSAGE

Before 84.0 82.7 81.4 85.2 81.9 79.1 79.0 79.2 82.4 82.8 81.8
After 84.1 87.1 86.4 85.3 87.6 87.6 83.9 84.9 87.3 85.1 85.9
GIN

Before 83.5 87.1 83.2 81.0 86.1 87.5 84.6 86.3 86.7 86.5 85.2
After 88.4 89.0 89.5 88.8 90.0 89.6 89.8 89.8 90.1 89.1 89.4

A.2 EXAMPLE VISUALIZATION OF FUNCTION CALL GRAPH FROM MALNET-TINY

A.3 VISUALIZATION OF EMBEDDING VECTOR IN MALNET-TINY

A.4 TIME COMPLEXITY ANALYSIS OF GDA

A detailed analysis of the time complexity for the Graph Distributional Analytics (GDA) process is
essential for understanding its computational efficiency.
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A.4.1 WEISFEILER-LEMAN EMBEDDING PROCESS

For each graph Gi = (Vi, Ei) in the dataset H , the Weisfeiler-Leman (WL) embedding process is
performed. The embedding involves iterating over the graph’s nodes, refining their labels through
the WL kernel, and aggregating these labels to form the final graph embedding. The time complexity
for this embedding process is given by:

TWL(Gi) = 5h · |Vi|+ 1 (4)

where: - h is the number of iterations of the WL kernel, - |Vi| is the number of nodes in graph Gi.

This accounts for the operations required to hash and sort node labels during each iteration.

A.4.2 MEAN VECTOR CALCULATION

The calculation of mean vectors for each classification category involves summing the embeddings
of all graphs within the same category. Let: - m represent the number of classification categories, -
|H| represent the total number of graphs in the dataset H .

The time complexity for computing the mean vectors is:

Tmean = m+ |H| (5)

This reflects the time required to iterate over all graphs and categories to compute their respective
mean embeddings.

A.4.3 COSINE SIMILARITY CALCULATION

Determining the cosine similarity for each graph with respect to its classification category mean
vector is a key step in GDA. The time complexity for this operation across all graphs is:

Tcosine = m+ 2|H| (6)

This accounts for the multiplication and summation operations necessary to compute the cosine
similarity between the graph embeddings and the category mean vectors.

A.4.4 DISTRIBUTION SCORE CALCULATION

Calculating the distribution score for each graph involves standardizing its cosine similarity relative
to the category’s standard deviation. The time complexity for this step is:

Tscore = m+ 3|H| (7)

This reflects the additional operations required for calculating and applying the standard deviation
to each graph’s cosine similarity.

A.4.5 OVERALL TIME COMPLEXITY

The total time complexity for the entire GDA process is the sum of the complexities of each step:

TGDA = (5h+ 1)

|H|∑
i=1

|Vi|+ 6|H|+ 3m (8)

Here,
∑|H|

i=1 |Vi| = |VH | represents the total number of nodes across all graphs in the dataset H . In
the worst-case scenario, the time complexity is dominated by the term |VH |, leading to an overall
complexity of:

TGDA ∈ O(|VH |) (9)
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Figure 5: Time and Space Empirical Analysis of GDA

A.4.6 STORAGE COMPLEXITY

The storage requirements for the graph embeddings are also an important consideration. Each em-
bedding vector is normalized to a standard length based on the number of unique labels in the dataset.
If every node in the dataset has a unique label, the worst-case storage requirement is:

SGDA = |H| × |VH | (10)

However, in practice, the storage requirement is often significantly smaller. For instance, in the
ogbg-ppa dataset, which contains |H| = 158, 100 graphs with an average of |Vi| = 243 nodes each,
the length of the embedding vectors was only 2,021. This indicates that the practical storage needs
are much less than the theoretical worst case.

A.4.7 EMPIRICAL VALIDATION

The time and storage complexities were empirically validated using the datasets discussed in this
paper. As shown in Figure 5, the observed time complexity closely matches the predicted linear
growth with respect to the sum of the graph orders in the dataset, confirming the efficiency of the
GDA approach.

A.5 HARDWARE AND SOFTWARE SPECIFICATIONS

All experiments were conducted using Python with several key libraries integral to the development
and evaluation of our models:

• PyTorch: The primary deep learning library used for implementing neural network models.

• PyTorch Geometric: A specialized extension of PyTorch designed for working with
graph-structured data, crucial for implementing the Graph Neural Networks (GNNs) eval-
uated in this study.

• NumPy: Used for efficient numerical computations, particularly for handling matrix oper-
ations and dataset preprocessing.

• Matplotlib: Utilized for generating the figures and plots presented in the main text, pro-
viding clear visualizations of the experimental results.

All computations were performed on a cloud-based server with the following hardware specifica-
tions:
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• 2 NVIDIA T4 GPUs: These GPUs are optimized for deep learning tasks, each equipped
with 16 GB of GDDR6 memory, providing the necessary computational power for training
complex GNN models on large datasets.

• 30 GB RAM: This amount of system memory facilitated the handling of large datasets and
the execution of memory-intensive operations, particularly during the preprocessing and
training phases.

• 8 vCPUs: Virtual CPUs were used to manage concurrent processing tasks efficiently, en-
suring smooth operation and timely completion of the experiments.

• Ubuntu 20.04 LTS: The operating system provided a stable and secure environment for
running the software libraries and managing computational tasks.

These hardware and software configurations ensured that the experiments were executed efficiently
and that the results were both reliable and reproducible. The combination of PyTorch, PyTorch Ge-
ometric, and advanced hardware like the NVIDIA T4 GPUs enabled the successful implementation
and evaluation of the GDA framework across the various datasets and models used in this study.
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