
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GRAPH DISTRIBUTIONAL ANALYTICS: ENHANCING
GNN EXPLAINABILITY THROUGH SCALABLE EMBED-
DING AND DISTRIBUTION ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have achieved significant success in processing
graph-structured data but often lack interpretability, limiting their practical ap-
plicability. We introduce the Graph Distributional Analytics (GDA) framework,
leveraging novel combinations of scalable techniques to enhance GNN explain-
ability. The integration of Weisfeiler-Leman (WL) graph kernels with distribu-
tional distance analysis enables GDA to efficiently quantify graph data distribu-
tions, while capturing global structural complexities without significant computa-
tional costs. GDA creates high-dimensional embeddings employing WL kernels,
measures the distribution of distances from measures of categorical central ten-
dency, and assigns distribution scores to quantify each graph’s deviation from
this vector We evaluate GDA on the ENZYMES, ogbg-ppa, and MalNet-Tiny
datasets. Our experiments demonstrate GDA not only accurately characterizes
graph distributions but also outperforms baseline methods in identifying specific
structural features responsible for misclassifications. This comprehensive analysis
provides deeper insights into how training data distributions affect model perfor-
mance, particularly with out-of-distribution (OOD) data. By revealing the under-
lying structural causes of GNN predictions through a novel synergy of established
techniques, GDA enhances transparency and offers a practical tool for practition-
ers to build more interpretable and robust graph-based models. Our framework’s
scalability, efficiency, and ability to integrate with various embedding methods
make it a valuable addition to the suite of tools available for GNN analysis.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful framework for learning from graph-
structured data, with applications ranging from social network analysis to molecular biology (Wu
et al., 2020). While GNNs excel at learning complex, non-Euclidean relationships, their decision-
making processes remain largely opaque (Bodria et al., 2023). This lack of interpretability poses sig-
nificant challenges, especially in critical domains like bioinformatics and healthcare, where model
decisions must be both accurate and explainable (Sanchez-Lengeling et al., 2020; Adoni et al., 2020).
Explainability is crucial for understanding why models make specific predictions, detecting potential
biases, and improving model generalization (Ju et al., 2024).

In recent years, efforts have been made to develop explainability tools tailored for GNNs. However,
most existing methods focus on explaining node- or edge-level predictions, relying on gradient-
based or perturbation-based approaches (Rajabi & Kafaie, 2022). While useful in some contexts,
these methods struggle with graph-level predictions, particularly in datasets where structural diver-
sity within categories complicates classification (Georgousis et al., 2021). Furthermore, many of
these tools are computationally expensive and require significant customization to adapt to different
datasets, limiting their scalability and practical applicability (Agarwal et al., 2022).

This paper introduces Graph Distributional Analytics (GDA), a novel framework designed to ad-
dress the limitations of existing GNN explainability methods. GDA leverages Weisfeiler-Leman
graph kernels to embed graph structures into high-dimensional vector spaces, allowing for the char-
acterization of structural distributions within graph categories. By analyzing the distribution of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

graph embeddings, GDA provides insights at both population and sample levels, offering a scalable
and interpretable approach to understanding GNN model behavior.

Through a series of experiments on the ENZYMES, MalNet-Tiny, and ogbg-ppa datasets, we
demonstrate how GDA can reveal structural anomalies and distributional shifts that contribute to
model underperformance. Unlike previous explainability methods, GDA not only identifies poten-
tial sources of confusion within the dataset but also offers a preemptive tool for improving data
splits and detecting out-of-distribution samples. The contributions of this paper are threefold: (1)
the introduction of GDA for graph-level explainability, (2) validation of GDA’s utility through case
studies on real-world datasets, and (3) a discussion of how GDA can inform future research into
scalable, interpretable GNN models.

2 RELATED WORK

Demystifying neural network decision-making is a Herculean task, particularly for non-Euclidean
data, where complex interconnections stymie explainability (Adoni et al., 2020). Current explain-
ability methods demand significant computational resources (Sanchez-Lengeling et al., 2020), and
the explanations offered by these tools tend to be approximate and difficult to interpret (Li et al.,
2022). If explainability tools are difficult to explain, their usefulness is questionable. Nearly all
methods require extensive tailoring to specific datasets and models which reduces practicability for
diverse, real-world environments (Agarwal et al., 2022). Despite increased community interest, most
libraries have prioritized accuracy benchmarks over explainability (Agarwal et al., 2023).

Gradient-based explainers, such as Grad (Simonyan et al., 2014), Grad-CAM (Pope et al., 2019),
GuidedBP (Baldassarre & Azizpour, 2019), and Integrated Gradients (Sundararajan et al., 2017),
highlight specific feature importances by backpropagating gradients. These methods work well for
image or node classification but struggle with graph-level predictions (Kakkad et al., 2023), which
are critical for datasets like MalNet-Tiny, where node and edge features are absent.

Perturbation-based explainers, such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo
et al., 2024), SubgraphX (Yuan et al., 2021), and GraphLIME (Huang et al., 2023), evaluate how
model predictions change in response to input perturbations. D4Explainer (Chen et al., 2024) of-
fers a more efficient method by using a discrete denoising diffusion model tailored towards in-
distribution explanations. While these methods offer valuable insights, they are computationally
expensive and typically explore only a fraction of possible perturbations, often missing the struc-
tural nuances that impact graph-level decisions (Munikoti et al., 2023).

Surrogate-based explainers, like PGMExplainer (Vu & Thai, 2020), use simpler models such as
Bayesian networks to approximate GNN behavior. Although they provide interpretability, they face
scalability challenges when dealing with high-dimensional probability distributions, and they require
substantial tuning to capture relevant patterns in large datasets (Zhu et al., 2022).

Several gaps remain in GNN explainability. First, most approaches focus on node- and edge-level
tasks, neglecting graph-level explainability crucial for structural prediction problems (Pope et al.,
2019). Additionally, their computational inefficiency renders them impractical for dynamic, large-
scale graph environments (Kazemi et al., 2020). Finally, due to the difficulty of characterizing
graph data, the literature primarily focuses on explainability for Euclidean data, which leaves non-
Euclidean datasets like MalNet-Tiny underexplored (Kakkad et al., 2023).

Graph Distributional Analytics (GDA) addresses these issues by offering scalable, dataset-agnostic
explanations for both population- and sample-level predictions with linear time complexity, making
it suitable for real-world applications. GDA also tackles the challenge of out-of-distribution (OOD)
detection, enabling better interpretation of model behavior on unseen data by characterizing graph
distributions. GDA fills this gap by analyzing graph structures without relying on node or edge
features, providing a more versatile approach for complex, graph-structured data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 GRAPH DISTRIBUTIONAL ANALYTICS (GDA) FOR EXPLAINABILITY

3.1 GRAPH EMBEDDING AND STRUCTURAL DISTRIBUTION CHARACTERIZATION

Let G = (V,E) denote a graph where V represents the vertices and E the edges. To analyze the
structural properties of graphs, we first embed each graph as a high-dimensional vector using the
Weisfeiler-Leman (WL) graph kernel. For each graph, we define an embedding function τ : G →
Rd, where τh(G) represents the graph embedding after h iterations of the WL kernel, and d is equal
to the cardinality of unique labels in τh(G). Formally, the embedding is given by:

τh(G) =
∑
v∈V

lh(v) where lh(v) = f(lh−1(v), {lh−1(u) : u ∈ N (v)}),

where l0(v) is the initial label of vertex v, N (v) represents the neighborhood of v, and f is a hash
function aggregating neighborhood information (Shervashidze et al., 2011). This process captures
the structural features of the graph, producing a vectorized representation that preserves graph topo-
logical properties (Morris et al., 2019). This is repeated for each G in a dataset H to create a set of
embeddings:

τh(H) = [τh(G) ∀G ∈ H] (1)

However, the embeddings generated are heterogeneous in both cardinality and the correspondence
of mappings from labels to specific dimensions. Let L = {L1, L2, · · · , Ln | n = |H|, Lj ̸= Li<j}
be the set of unique vectors generated by τh(H) using the WL graph kernel. To standardize the
embeddings, we define the Hamel dimension, a, as the cardinality of the set of unique labels L, and
construct a vector space T , such that dim(T) = T |L| = Ra. A mapping g(L) 7→ Ra ensures that
each unique label in L corresponds to a specific dimension in Ra. For each embedding in H , we
generate a uniform vector η(G) as follows:

∀G ∈ H, η(G) = g(ϕ(G)) ∈ Ra (2)

The vectors within η(H) have very high dimensionality, and many dimensions within T are sparse,
containing non-zero values for only a few elements in η(H). We filter these non-informative dimen-
sions by constructing a linear subspace U ⊂ Rb≤a, defined by a function ϕ(G) 7→ Rb:

∀j ∈ {1, · · · , a}, η(G)j ∈ ϕ(G) ⇐⇒
n=|H|∑
i=1

η(Hi)j ≤ |H| × κ (3)

where 0 ≤ κ ≤ 1 denotes a percentage threshold such that 0 ≤ |H| × κ ≤ |H|. Numerous methods
exist among the feature selection literature that can be used to define κ to optimize the removal of
irrelevant dimensions from the embedding vector (Zebari et al., 2020; Gui et al., 2016). However,
during the investigation of the effectiveness of GDA towards GNN explainability, we opted for a
conservative approach that set κ such that |H| × κ = max(1, 0.002 × |H|). This still significantly
reduces the dimensionality of the embedding since a majority of embeddings, regardless of dataset
size, are unique to one sample due to the combinatorial immensity of possible graph structures
(Bondy et al., 1976).

After embedding, GDA characterizes the distribution of graph embeddings within each class. Let
GC represent the set of graphs belonging to class C. The mean embedding for class C is calculated
as:

µC =
1

|GC |
∑

G∈GC

ϕ(G),

which serves as the central tendency for the graphs within the class. We then calculate the cosine
similarity Sc(G) between each graph embedding ϕ(G) and the class mean µC :

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Sc(G) =
ϕ(G) · µC

∥ϕ(G)∥∥µC∥
.

This similarity score quantifies how closely each graph aligns with the structural norm of its class.

To assess the degree of deviation from the class central tendency, we introduce a normalized distri-
bution score for each graph G:

z(G) =
Sc(G)√

1
|GC |

∑
G′∈GC

Sc(G′)2
.

This score reflects how much a graph diverges from its class’s prototypical structure. Graphs with
lower z(G) values indicate significant deviations and are often associated with misclassifications or
outliers. By analyzing these scores, GDA can reveal structural anomalies and patterns responsible
for misclassification.

Algorithm 1 Graph Embedding and Structural Distribution Characterization using Weisfeiler-
Leman Kernel

Input: Dataset H of graphs, iteration count h, threshold κ
Output: Set of filtered embeddings η(H) and distribution scores z(G) for each G ∈ H
for each graph G = (V,E) ∈ H do

Initialize node labels l0(v) for all v ∈ V
for i = 1 to h do

for each vertex v ∈ V do
Update label: li(v) = f(li−1(v), {li−1(u) | u ∈ N (v)})

end for
end for
Compute graph embedding: τh(G) =

∑
v∈V lh(v)

end for
Let L = {L1, L2, · · · , Ln | n = |H|, Lj ̸= Li<j} represent the set of unique labels across all
graphs
Define vector space T ∈ Ra where a = |L|
for each graph G ∈ H do

Map embedding: η(G) = g(τh(G)) ∈ Ra

end for
for each dimension j ∈ {1, · · · , a} do

if
∑|H|

i=1 η(Hi)j ≤ |H| × κ then
Remove dimension j from all embeddings η(G) ∈ H

end if
end for
Compute the filtered embeddings η(H) ∈ Rb where b ≤ a
for each class C in dataset H do

Compute class mean embedding: µC = 1
|GC |

∑
G∈GC

η(G)

for each graph G ∈ GC do
Compute cosine similarity: Sc(G) = η(G)·µC

∥η(G)∥∥µC∥

Compute normalized distribution score: z(G) = Sc(G)√
1

|GC |
∑

G′∈GC
Sc(G′)2

end for
end for
Output: Filtered embeddings η(H) and distribution scores z(G) for each G ∈ H

3.2 OUTLIER DETECTION AND DISTRIBUTION ANALYSIS

In the context of Graph Distributional Analytics (GDA), we define outliers as graphs whose struc-
tural properties significantly deviate from the central tendency of their class. Using the embeddings

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

generated by the Weisfeiler-Leman (WL) kernel, we quantify these deviations based on cosine sim-
ilarity between the graph embeddings and the mean embedding of the class. Additionally, we assess
abnormal distributions within classes using kurtosis, a measure of how heavily tailed a distribution
is compared to a normal distribution.

3.2.1 OUTLIER DETECTION

We define outliers as graphs whose similarity score falls significantly below the average similarity
for the class. Specifically, a graph G ∈ GC is considered an outlier if:

Sc(G) < µSc − ασSc ,

where µSc and σSc are the mean and standard deviation of cosine similarity scores across all graphs
in class C, and α is a user-defined threshold (typically set to 2 or 3) that determines how many
standard deviations away from the mean qualifies as an outlier. This method ensures that graphs
with significantly lower similarity to the class mean are identified as outliers, which can help explain
misclassifications or structural anomalies in the dataset.

3.2.2 ABNORMAL DISTRIBUTION DETECTION VIA KURTOSIS

To detect abnormal distributions within a class, we use kurtosis, ξ(Gc) which measures the ”tailed-
ness” of the distribution of cosine similarity scores. High kurtosis indicates that the distribution has
heavy tails, meaning there are more extreme outliers than expected under a normal distribution. Low
kurtosis suggests that the distribution has lighter tails, indicating fewer extreme values.

Kurtosis for a set of cosine similarity scores {Sc(G) | G ∈ GC} is defined as:

ξ(Gc) =
1

n

n∑
i=1

(
Sc(Gi)− µSc

σSc

)4

− 3,

where µSc and σSc are the mean and standard deviation of the similarity scores, and n = |GC | is
the number of graphs in class C. A kurtosis value greater than 3 indicates a distribution with heavy
tails, suggesting that the class contains a significant number of structural outliers or subgroups with
distinct structural features. Conversely, a kurtosis value less than 3 indicates a distribution with light
tails, where most graphs are similar to the class mean.

By analyzing kurtosis, GDA can identify classes with abnormally high or low variability in graph
structures, which can provide insights into model performance. For instance, classes with high kur-
tosis may indicate the presence of substructures that cause misclassifications or other performance
issues, while low kurtosis may suggest that the class is highly homogeneous and thus easier for the
model to learn.

3.3 POST-HOC STRUCTURAL ATTRIBUTION FOR MISCLASSIFIED GRAPHS

For misclassified graphs, GDA provides a post-hoc explanation by tracing structural deviations.
By rerunning the WL kernel with degree sequence tracking, we can identify specific substructures
responsible for classification errors. The process involves examining how node labels evolve through
each iteration, enabling us to pinpoint graph substructures that deviate from the class norm. This
structural attribution mechanism allows for an interpretable analysis of misclassifications, offering
insights into how structural features influence GNN predictions.

3.4 SCALABILITY AND INTEGRATION WITH EXISTING EXPLAINABILITY METHODS

GDA’s key strength lies in its scalability. The embedding and distribution analysis have a compu-
tational complexity of O(n ·m), where n is the number of graphs and m is the average number of
nodes per graph. This ensures that GDA can handle large-scale graph datasets efficiently.

Moreover, GDA complements existing gradient-based and perturbation-based explainability tech-
niques. While Grad-CAM and GNNExplainer focus on the node or edge-level importance, GDA

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Dataset Avg. # Nodes Avg. # Edges Node Features Edge Features # Categories
MalNet-Tiny 1,410.3 2,647.3 N/A N/A 5

ogbg-ppa 243.4 2,266.1 N/A 6 features 37
ENZYMES 32.6 62.1 Atom type N/A 6

Table 1: Dataset Statistics
Statistics highlighting graph order, graph size, number of classification categories, and the presence

or absence of node features.

offers a higher-level, graph-wide perspective. This allows GDA to serve as a versatile framework,
providing insights at both population and sample levels, including outlier detection and out-of-
distribution (OOD) analysis.

4 EXPERIMENTS

The experiments conducted in this study validate the utility of Graph Distributional Analytics (GDA)
for explaining GNN performance. GDA provides insights into model behavior and data distribu-
tions, but it does not prescribe specific actions to improve model performance. The results presented
in this section demonstrate how GDA can inform further analysis and lead to improvements, though
the implied action remains open and is subject to further research.

We present specific case studies that highlight the power of GDA at both population and sample
levels. The body of this paper focuses upon how GDA is employed for GNN explainability. Detailed
quantitative accountings of experiments are included in the appendices.

4.1 EXPERIMENTAL SETUP

All experiments were conducted by both models on all three datasets for ten runs with seeds (numpy,
torch, random) set to {1, 2, · · · , 10} corresponding to the run of the experiment. Initial experiments,
also referred to as baseline experiments, used prescribed training, test, and validation splits as de-
fined by the dataset.

4.1.1 DATASETS:

Three datasets were examined for this study:

• MalNet-Tiny: MalNet-Tiny (Freitas & Dong, 2021) is a curated subset of 5000 of the
MalNet dataset graphs where each graph is selected to have fewer than 5000 nodes. Both
datasets seek to classify function calls as indicative of malware or benign. It is designed for
rapid prototyping of methods and seeks to strike a balance between the problem difficulty
of the larger dataset and the computational demands of processing large data.

• ogbg-ppa: ogbg-ppa (Szklarczyk et al., 2019) is a graph-structural prediction dataset fo-
cused on identifying protein interactions between different species and taxa of organisms
from the Stanford Open Graph Benchmark (Hu et al., 2020).

• ENZYMES: ENZYMES (Schomburg et al., 2004) is a part of the larger TUDataset bench-
mark (Morris et al., 2020). It seeks to identify protein tertiary structures categorized into
six enzyme classes, with graphs representing the structural relationships between amino
acids.

4.1.2 MODELS

To fully place the emphasis of the study upon the application of GDA for GNN explainability, we
examined all datasets using the same model architectures to ensure relevance and comparability.

• GraphSAGE: A scalable, inductive graph learning model that generates embeddings by
sampling and aggregating features from a node’s local neighborhood. This model is partic-
ularly useful for learning representations in large-scale graphs (Hamilton et al., 2017).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 1: Abnormal Distribution for Transferases
LEFT: Category 0 demonstrates a ’nice’ distribution with low kurtosis, but Category 1 has a
strange double peak indicative of a bimodal distribution for the transferases category of the

Enzymes dataset. This double-peak demonstrated high kurtosis which indicated further
investigation was warranted.

RIGHT: Here we observe two distinctly different graph structures both categorized as transferases
which originates from the enzymes functional (not structural) definition. Separating this class
during training may help prevent model confusion when trying to structurally classify these

samples.

Architecture: The architecture consists of three SAGEConv layers with hidden channels.
An AttentionalAggregation layer is used with a gate neural network that includes a linear
layer and a sigmoid activation. This is followed by two fully connected layers where the
hidden channels are reduced by half in the first layer and then mapped to the number of
output classes in the second layer.

• Graph Isomorphism Network (GIN): A powerful GNN model designed to distinguish
graph structures more effectively by leveraging an aggregation function that closely resem-
bles the Weisfeiler-Lehman graph isomorphism test (Xu et al., 2019).
Architecture: The architecture consists of one initial GINConv layer, which maps the input
features to the hidden channels, followed by three additional GINConv layers. Each GIN-
Conv block includes two linear layers, ReLU activations, and batch normalization. After
the GINConv layers, a global mean pooling operation aggregates the node embeddings into
a graph-level representation. The final classification is performed using two fully connected
layers, with dropout applied between them.

4.2 RESULTS

In this section, we present a comprehensive analysis of how Graph Distributional Analytics (GDA)
was applied across multiple datasets to examine structural anomalies and their impact on model per-
formance. The experiments focus on understanding population-level distribution shifts and sample-
level misclassifications in the ENZYMES, MalNet-Tiny, and ogbg-ppa datasets. All experiments
were conducted using the GraphSAGE and GIN architectures to maintain consistency and compa-
rability across datasets.

4.2.1 POPULATION LEVEL ANALYSIS

The population-level analysis begins with the ENZYMES dataset, where GDA was applied to detect
abnormal distribution patterns within the graph embeddings. A key observation in this dataset was
the bimodal distribution found in Category 1 that presented a high kurtosis value, corresponding
to the transferase enzymes. Transferases are a functional definition, not a structural definition, so
while assigned to the same category, they exhibit significant structural heterogeneity. The existence
of two distinct clusters within this category suggested that the enzyme structures were quite different,
despite their shared functional role. This bimodal distribution, which was confirmed by the structural
representations are shown in Figure ??. This finding is consistent with biochemical literature that
highlights the variability within enzyme families (Giegé et al., 2012; Breton et al., 2006). The
structural diversity in transferases led to underperformance in this category, with the GNN models
struggled to capture the dual signals introduced by these two clusters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: Distribution Shifts in Malnet-Tiny
In Class 0 (left), we see a relatively normal distribution of similarities for a classification category
with nearly all samples lying close to the central tendency vector. However, in Class 1 (right), we
see an atypical distribution that has a significant portion of samples being nearly orthogonal to the

central tendency.

To address this issue, we computed Pearson correlation coefficients on the embedding vectors, which
allowed us to separate the two clusters and treat them as distinct categories during model training.
After the training phase, we recombined the categories, leading to a 2.3% performance improvement
for the transferase category, which also translated to a 0.4% increase in overall dataset performance
across both models repeated with ten separate seeds. These results highlight the importance of iden-
tifying and handling structural heterogeneity within a class, which can significantly impact model
accuracy. This observation aligns with prior work showing that structural complexity and variability
within functional groups can lead to model confusion (Chen & Wu, 2022; Ji et al., 2021).

Moving to the MalNet-Tiny dataset, we found that three out of five categories exhibited relatively
normal distributions with cosine similarities clustered near 1 and low kurtosis. However, two cate-
gories showed significant divergence, with some graph embeddings nearly orthogonal to their class
mean vectors, as seen in Figure 2. These outliers indicated the presence of structurally distinct
graphs that deviated from the majority of samples in their respective categories. Our hypothesis
was that these outliers were injecting noise into the model, leading to poorer performance in those
categories. To test this, we removed the outliers and retrained the models. While the improvements
were modest, the reduction in false positives was notable. We hypothesize that the model was al-
ready learning to ignore these outliers during training in the baseline runs, as their removal only
reflected an equivalent reduction in false negative samples. This observation reinforces the idea
that models can effectively disregard noisy samples under certain conditions, but identifying and
removing them still contributes to cleaner classification metrics.

A related experiment involved analyzing distribution shifts between the training, validation, and test
sets in the MalNet-Tiny dataset. GDA revealed significant shifts in the distributions, with the train-
ing set embeddings clustering more tightly around the mean compared to the test and validation sets.
These shifts, shown in Figure 3, likely caused overfitting, as the model was able to perform well on
the more homogeneous training set but struggled to generalize to the more diverse test and validation
samples. To address this, we restructured the dataset splits to ensure more consistent distributions
across the sets. After retraining the models, we observed an average 4.3% improvement in perfor-
mance over the baseline across 10 runs, using both GraphSAGE and GIN architectures. These re-
sults emphasize the critical importance of ensuring distributional consistency between dataset splits
to prevent overfitting and improve generalization, as noted in previous studies on distributional shifts
in machine learning (Ding et al., 2021; Fan et al., 2024).

4.2.2 SAMPLE LEVEL ANALYSIS

Finally, we applied GDA to analyze individual misclassifications at the sample level, particularly
in the ogbg-ppa dataset. In this case, GDA identified a structural motif (Figure 4) that was present
in 12% of misclassified samples from Category 5 but was prevalent in 68% of Category 27 sam-
ples. This structural overlap likely led to misclassifications, as graphs containing this motif were
frequently classified as belonging to Category 27, even when they were from Category 5. Misclas-
sification due to structural imbalances is a well-known issue in graph-based learning systems, and
similar findings have been reported in the literature (Ding et al., 2021). By isolating this motif and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 3: Distribution Shifts
In classification category 2 of the MalNet-Tiny dataset, we see a significant shift between the

training distribution, which is closer to the central tendency, and the testing and validation shifts
which tend to be less similar. This may result in overfitting by the model due to the disparity

between training and testing/validation distributions.

Figure 4: Embedding Analysis
This structure was present in a majority of misclassified examples in one class. We discovered it is
a highly prevalent structure in another class which may have led to models becoming stuck in local

minima when trying to differentiate these samples.

adjusting the training process to account for this structural overlap, we observed a significant reduc-
tion in misclassification rates between the two categories. This case study demonstrates the utility
of GDA in identifying structural imbalances and mitigating their effects on model performance.

While benchmark datasets like those used in this study are useful for prototyping, their simplicity
precludes in-depth study of individual samples. The sample-level analysis provided by GDA is
most powerful when employed by those with domain expertise. The lack of detailed information in
protein, enzyme, and malware identification datasets, which would be required to tie structures to
real-world examples, hindered the application of this method in this study..

5 CONCLUSION

Graph Distributional Analytics (GDA) offers a novel and scalable framework for understanding
the structural complexities that influence model performance in Graph Neural Networks (GNNs).
By leveraging Weisfeiler-Leman graph kernels to embed graphs and analyze their distributions,
GDA provides insights at both population and sample levels. The experiments conducted on the
ENZYMES, MalNet-Tiny, and ogbg-ppa datasets demonstrate that GDA can effectively identify
structural anomalies, distributional shifts, and misclassified samples that traditional methods may
overlook. While GDA does not prescribe specific solutions, it offers a powerful tool for preemptive
data analysis, improving dataset splits, and detecting out-of-distribution samples. Future work will
focus on integrating GDA with more systematic model refinement strategies and further exploring
its applications in real-world GNN tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Hamilton Wilfried Yves Adoni, Tarik Nahhal, Moez Krichen, Brahim Aghezzaf, and Abdeltif El-
byed. A survey of current challenges in partitioning and processing of graph-structured data in
parallel and distributed systems. Distributed and Parallel Databases, 38:495–530, 2020.

Chirag Agarwal, Marinka Zitnik, and Himabindu Lakkaraju. Probing gnn explainers: A rigorous
theoretical and empirical analysis of gnn explanation methods. In International Conference on
Artificial Intelligence and Statistics, pp. 8969–8996. PMLR, 2022.

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
for graph neural networks. Scientific Data, 10(1):144, 2023.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks. In International Conference on Machine Learning (ICML) Workshops, 2019 Work-
shop on Learning and Reasoning with Graph-Structured Representations, 2019. URL https:
//urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260507.

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, and Sal-
vatore Rinzivillo. Benchmarking and survey of explanation methods for black box models. Data
Mining and Knowledge Discovery, 37(5):1719–1778, 2023.

John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with applications,
volume 290. Macmillan London, 1976.

Christelle Breton, Lenka Šnajdrová, Charlotte Jeanneau, Jaroslav Koča, and Anne Imberty. Struc-
tures and mechanisms of glycosyltransferases. Glycobiology, 16(2):29R–37R, 2006.

Jialin Chen, Shirley Wu, Abhijit Gupta, and Rex Ying. D4explainer: in-distribution gnn explanations
via discrete denoising diffusion. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Yu Chen and Lingfei Wu. Graph Neural Networks: Graph Structure Learning. Springer, 2022.

Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David Wipf, Furong
Huang, and Tom Goldstein. A closer look at distribution shifts and out-of-distribution general-
ization on graphs. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and
Applications, 2021. URL https://openreview.net/forum?id=XvgPGWazqRH.

Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks
on out-of-distribution graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(1):322–337, 2024. doi: 10.1109/TPAMI.2023.3321097.

Scott Freitas and Yuxiao Dong. A large-scale database for graph representation learning. Advances
in neural information processing systems, 2021.

Stavros Georgousis, Michael P Kenning, and Xianghua Xie. Graph deep learning: State of the art
and challenges. IEEE Access, 9:22106–22140, 2021.

Richard Giegé, Frank Jühling, Joern Pütz, Peter Stadler, Claude Sauter, and Catherine Florentz.
Structure of transfer rnas: similarity and variability. Wiley Interdisciplinary Reviews: RNA, 3(1):
37–61, 2012.

Jie Gui, Zhenan Sun, Shuiwang Ji, Dacheng Tao, and Tieniu Tan. Feature selection based on struc-
tured sparsity: A comprehensive study. IEEE transactions on neural networks and learning
systems, 28(7):1490–1507, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural Information Processing Systems, 33:22118–22133, 2020.

10

https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260507
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260507
https://openreview.net/forum?id=XvgPGWazqRH
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local inter-
pretable model explanations for graph neural networks. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6968–6972, 2023.

Yang Ji, Samuel Deslauriers-Gauthier, and Rachid Deriche. Structure-function mapping via graph
neural networks. In International Workshop on Machine Learning in Clinical Neuroimaging, pp.
135–144. Springer, 2021.

Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang Qin,
Nan Yin, Senzhang Wang, et al. A survey of graph neural networks in real world: Imbalance,
noise, privacy and ood challenges. CoRR, 2024.

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey on
explainability of graph neural networks. Data Engineering, pp. 35, 2023.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, and Peter Forsyth.
Representation learning for dynamic graphs: A survey. Journal of Machine Learning Research,
21(70):1–73, 2020.

Peibo Li, Yixing Yang, Maurice Pagnucco, and Yang Song. Explainability in graph neural networks:
An experimental survey, 2022. URL https://arxiv.org/abs/2203.09258.

Dongsheng Luo, Tianxiang Zhao, Wei Cheng, Dongkuan Xu, Feng Han, Wenchao Yu, Xiao Liu,
Haifeng Chen, and Xiang Zhang. Towards inductive and efficient explanations for graph neural
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):5245–5259,
2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.
graphlearning.io.

Sai Munikoti, Deepesh Agarwal, Laya Das, Mahantesh Halappanavar, and Balasubramaniam
Natarajan. Challenges and opportunities in deep reinforcement learning with graph neural net-
works: A comprehensive review of algorithms and applications. IEEE transactions on neural
networks and learning systems, 2023.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann. Ex-
plainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10772–10781, 2019.

Enayat Rajabi and Somayeh Kafaie. Knowledge graphs and explainable ai in healthcare. Informa-
tion, 13(10):459, 2022.

Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Wang, Wesley Qian,
Kevin McCloskey, Lucy Colwell, and Alexander Wiltschko. Evaluating attribution for graph
neural networks. Advances in neural information processing systems, 33:5898–5910, 2020.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic acids research, 32(suppl 1):D431–D433, 2004.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12:2539–2561,
2011.

K Simonyan, A Vedaldi, and A Zisserman. Deep inside convolutional networks: visualising im-
age classification models and saliency maps. In Proceedings of the International Conference on
Learning Representations (ICLR), pp. 1–8. ICLR, 2014.

11

https://arxiv.org/abs/2203.09258
www.graphlearning.io
www.graphlearning.io

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-
Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. String v11:
protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. Advances in neural information processing systems, 33:12225–12235, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gn-
nexplainer: Generating explanations for graph neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan Saeed. A compre-
hensive review of dimensionality reduction techniques for feature selection and feature extraction.
Journal of Applied Science and Technology Trends, 1(1):56–70, 2020.

Xiubin Zhu, Dan Wang, Witold Pedrycz, and Zhiwu Li. Fuzzy rule-based local surrogate models
for black-box model explanation. IEEE Transactions on Fuzzy Systems, 31(6):2056–2064, 2022.

A APPENDIX

A.1 EXPERIMENTAL RESULTS

A.1.1 ENZYMES-BEFORE AND AFTER SPLITTING CLUSTERS

Run 1 2 3 4 5 6 7 8 9 10 Avg
GraphSAGE

Before 83.3 80.6 83.0 81.8 81.9 80.1 83.5 82.3 82.8 81.7 82.1
After 82.8 82.8 83.7 82.5 83.5 81.3 83.9 83.4 82.9 80.2 82.7
GIN

Before 83.3 81.4 83.8 80.4 84.9 83.2 84.9 82.7 84.2 82.5 83.1
After 82.0 81.8 83.1 84.4 82.1 84.7 84.5 81.7 84.6 84.4 83.3

A.1.2 MALNET-TINY DATASET-BEFORE AND AFTER REMOVING OUTLIERS

Run 1 2 3 4 5 6 7 8 9 10 Avg
GraphSAGE

Before 84.0 82.7 81.4 85.2 81.9 79.1 79.0 79.2 82.4 82.8 81.8
After 81.1 81.0 81.1 82.0 82.7 82.8 83.1 81.6 83.4 81.1 82.0
GIN

Before 83.5 87.1 83.2 81.0 86.1 87.5 84.6 86.3 86.7 86.5 85.2
After 86.0 84.8 83.8 85.0 86.3 86.9 85.7 85.4 85.9 84.3 85.4

12

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A.1.3 MALNET-TINY: BEFORE AND AFTER CORRECTING DISTRIBUTION SHIFTS

Run 1 2 3 4 5 6 7 8 9 10 Avg
GraphSAGE

Before 84.0 82.7 81.4 85.2 81.9 79.1 79.0 79.2 82.4 82.8 81.8
After 84.1 87.1 86.4 85.3 87.6 87.6 83.9 84.9 87.3 85.1 85.9
GIN

Before 83.5 87.1 83.2 81.0 86.1 87.5 84.6 86.3 86.7 86.5 85.2
After 88.4 89.0 89.5 88.8 90.0 89.6 89.8 89.8 90.1 89.1 89.4

A.2 EXAMPLE VISUALIZATION OF FUNCTION CALL GRAPH FROM MALNET-TINY

A.3 VISUALIZATION OF EMBEDDING VECTOR IN MALNET-TINY

A.4 TIME COMPLEXITY ANALYSIS OF GDA

A detailed analysis of the time complexity for the Graph Distributional Analytics (GDA) process is
essential for understanding its computational efficiency.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.4.1 WEISFEILER-LEMAN EMBEDDING PROCESS

For each graph Gi = (Vi, Ei) in the dataset H , the Weisfeiler-Leman (WL) embedding process is
performed. The embedding involves iterating over the graph’s nodes, refining their labels through
the WL kernel, and aggregating these labels to form the final graph embedding. The time complexity
for this embedding process is given by:

TWL(Gi) = 5h · |Vi|+ 1 (4)

where: - h is the number of iterations of the WL kernel, - |Vi| is the number of nodes in graph Gi.

This accounts for the operations required to hash and sort node labels during each iteration.

A.4.2 MEAN VECTOR CALCULATION

The calculation of mean vectors for each classification category involves summing the embeddings
of all graphs within the same category. Let: - m represent the number of classification categories, -
|H| represent the total number of graphs in the dataset H .

The time complexity for computing the mean vectors is:

Tmean = m+ |H| (5)

This reflects the time required to iterate over all graphs and categories to compute their respective
mean embeddings.

A.4.3 COSINE SIMILARITY CALCULATION

Determining the cosine similarity for each graph with respect to its classification category mean
vector is a key step in GDA. The time complexity for this operation across all graphs is:

Tcosine = m+ 2|H| (6)

This accounts for the multiplication and summation operations necessary to compute the cosine
similarity between the graph embeddings and the category mean vectors.

A.4.4 DISTRIBUTION SCORE CALCULATION

Calculating the distribution score for each graph involves standardizing its cosine similarity relative
to the category’s standard deviation. The time complexity for this step is:

Tscore = m+ 3|H| (7)

This reflects the additional operations required for calculating and applying the standard deviation
to each graph’s cosine similarity.

A.4.5 OVERALL TIME COMPLEXITY

The total time complexity for the entire GDA process is the sum of the complexities of each step:

TGDA = (5h+ 1)

|H|∑
i=1

|Vi|+ 6|H|+ 3m (8)

Here,
∑|H|

i=1 |Vi| = |VH | represents the total number of nodes across all graphs in the dataset H . In
the worst-case scenario, the time complexity is dominated by the term |VH |, leading to an overall
complexity of:

TGDA ∈ O(|VH |) (9)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 5: Time and Space Empirical Analysis of GDA

A.4.6 STORAGE COMPLEXITY

The storage requirements for the graph embeddings are also an important consideration. Each em-
bedding vector is normalized to a standard length based on the number of unique labels in the dataset.
If every node in the dataset has a unique label, the worst-case storage requirement is:

SGDA = |H| × |VH | (10)

However, in practice, the storage requirement is often significantly smaller. For instance, in the
ogbg-ppa dataset, which contains |H| = 158, 100 graphs with an average of |Vi| = 243 nodes each,
the length of the embedding vectors was only 2,021. This indicates that the practical storage needs
are much less than the theoretical worst case.

A.4.7 EMPIRICAL VALIDATION

The time and storage complexities were empirically validated using the datasets discussed in this
paper. As shown in Figure 5, the observed time complexity closely matches the predicted linear
growth with respect to the sum of the graph orders in the dataset, confirming the efficiency of the
GDA approach.

A.5 HARDWARE AND SOFTWARE SPECIFICATIONS

All experiments were conducted using Python with several key libraries integral to the development
and evaluation of our models:

• PyTorch: The primary deep learning library used for implementing neural network models.

• PyTorch Geometric: A specialized extension of PyTorch designed for working with
graph-structured data, crucial for implementing the Graph Neural Networks (GNNs) eval-
uated in this study.

• NumPy: Used for efficient numerical computations, particularly for handling matrix oper-
ations and dataset preprocessing.

• Matplotlib: Utilized for generating the figures and plots presented in the main text, pro-
viding clear visualizations of the experimental results.

All computations were performed on a cloud-based server with the following hardware specifica-
tions:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

• 2 NVIDIA T4 GPUs: These GPUs are optimized for deep learning tasks, each equipped
with 16 GB of GDDR6 memory, providing the necessary computational power for training
complex GNN models on large datasets.

• 30 GB RAM: This amount of system memory facilitated the handling of large datasets and
the execution of memory-intensive operations, particularly during the preprocessing and
training phases.

• 8 vCPUs: Virtual CPUs were used to manage concurrent processing tasks efficiently, en-
suring smooth operation and timely completion of the experiments.

• Ubuntu 20.04 LTS: The operating system provided a stable and secure environment for
running the software libraries and managing computational tasks.

These hardware and software configurations ensured that the experiments were executed efficiently
and that the results were both reliable and reproducible. The combination of PyTorch, PyTorch Ge-
ometric, and advanced hardware like the NVIDIA T4 GPUs enabled the successful implementation
and evaluation of the GDA framework across the various datasets and models used in this study.

16

	Introduction
	Related Work
	Graph Distributional Analytics (GDA) for Explainability
	Graph Embedding and Structural Distribution Characterization
	Outlier Detection and Distribution Analysis
	Outlier Detection
	Abnormal Distribution Detection via Kurtosis

	Post-Hoc Structural Attribution for Misclassified Graphs
	Scalability and Integration with Existing Explainability Methods

	Experiments
	Experimental Setup
	Datasets:
	Models

	Results
	Population Level Analysis
	Sample Level Analysis

	Conclusion
	Appendix
	Experimental Results
	ENZYMES-Before and After Splitting Clusters
	MalNet-Tiny Dataset-Before and After Removing Outliers
	MalNet-Tiny: Before and After Correcting Distribution Shifts

	Example Visualization of Function Call Graph from MalNet-Tiny
	Visualization of Embedding Vector in MalNet-Tiny
	Time Complexity Analysis of GDA
	Weisfeiler-Leman Embedding Process
	Mean Vector Calculation
	Cosine Similarity Calculation
	Distribution Score Calculation
	Overall Time Complexity
	Storage Complexity
	Empirical Validation

	Hardware and Software Specifications

