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ABSTRACT

Real world systems—such as robots, weather, energy systems and stock markets—
are complicated and high-dimensional. Hence, without prior knowledge of the
system dynamics, detecting or forecasting abnormal events from the sequential
observations of the system is challenging. In this work, we address the problem
caused by high-dimensionality via viewing time series anomaly detection as hy-
pothesis testing on dynamical systems. This perspective can avoid the dimension
of the problem from increasing linearly with time horizon, and naturally leads to a
novel anomaly detection model, termed as DyAD (Dynamical system Anomaly
Detection). Furthermore, as existing time-series anomaly detection algorithms are
usually evaluated on relatively small datasets, we released a large-scale one on
detecting battery failures in electric vehicles. We benchmarked several popular
algorithms on both public datasets and our released new dataset. Our experiments
demonstrated that our proposed model achieves state-of-the-art results.

1 INTRODUCTION

Hypothesis testing aims to decide whether the observed data supports or rejects a default belief known
as the null hypothesis. Applications are abundant. In this work, we view anomaly detection as an
application of hypothesis testing. This perspective is nothing profound—samples from the null hy-
pothesis can be viewed as in-distribution, and rejection can be viewed as detecting anomalies. Despite
being rather straightforward, this view was not carefully investigated in large-scale anomaly detection
tasks, because most classical hypothesis testing methods suffer from the curse of dimensionality.

In this work, we address the problem incurred by high-dimensionality via focusing on time series data
collected from unknown dynamical systems. We exploit the structure of dynamical systems and show
that although the time series data can be high dimensional due to the long time horizon, the problem
still remains tractable. More specifically, the concentration that leads to statistical confidence does
not come from independent variables but from martingales. We turn the high dimensionality caused
by the long time horizon into our favor. Furthermore, our analysis leads to a detection procedure in
which the anomaly in systems (e.g., errors and attacks) can be isolated from the rarity of system input
(e.g., control commands), and hence reduces misclassification rates.

By combining the above analysis with autoencoder-based probabilistic models, we develop a new
model termed DyAD (DYnamical system Anomaly Detection). We show that the theory-motivated
DyAD model can achieve state-of-the-art performances on public datasets including MSL (Mars
Science Laboratory rover) (Hundman et al., 2018) and SMAP (Soil Moisture Active Passive satel-
lite) (O’Neill et al., 2010). To further validate our finding, we then release a much larger (roughly 50
times in terms of data points) dataset to benchmark several popular baselines.

Our released dataset focuses on the battery safety problem in electric vehicles. In recent years, electric
vehicle (EV) adoption rates increased exponentially due to their environmental friendliness, improved
cruise range and reduced costs brought by onboard lithium batteries (Schmuch et al., 2018; Mauler
et al., 2021). Yet, large-scale battery deployment can lead to unexpected fire incidents and product
recalls (Deng et al., 2018). Hence, accurately evaluating the health status of EV batteries is crucial to
the safety of drivers and passengers. To promote research in this field, we release a dataset collected
from 301 electric vehicles recorded over 3 months to 3 years. Only battery-related data at charging
stations was released for anonymity purposes. 50 of the 301 vehicles eventually suffered from battery
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failure. Experiments on the EV battery dataset confirm that our proposed model achieves better
performance for system anomaly detection.

In summary, our contributions are:

• We formulate hypothesis testing based on data observed from dynamical systems and derive
generalized likelihood ratio test that exploits the Markovian structure of observations from
dynamical systems.

• We show that the above formulation leads to a novel model, termed DyAD, for anomaly
detection on dynamical systems.

• We release a large dataset collected from 301 electric vehicles, out of which 50 suffered
from battery failure. In addition to benchmarking anomaly detection algorithms, the dataset
may be of independent interest for machine learning tasks in nonlinear systems.

2 RELATED WORKS

2.1 ANOMALY DETECTION AND OUT-OF-DISTRIBUTION DETECTION

The difference between out-of-distribution detection (OOD) and anomaly detection (AD) is subtle. Up
to the authors’ knowledge, anomaly detection, as compared to OOD detection, refers to identifying
samples that differ more drastically but rarely from the in-distribution samples. However, the
mathematical formulations for the two problems are the same, and hence we use the two terms
interchangeably within the context of this manuscript.

The core idea of AD is to develop a metric that differs drastically between normal and abnor-
mal samples. Some previous works find that the model output probability for normal samples is
higher (Hendrycks & Gimpel, 2016; Golan & El-Yaniv, 2018) in image tasks. Some previous works
focus on detecting anomalies in the feature space by forcing/assuming the feature concentration of
normal samples (Schölkopf et al., 1999; Lee et al., 2018). Some enhance the representation power
of networks by introducing contrastive learning (Winkens et al., 2020; Tack et al., 2020) and data
transformation (Golan & El-Yaniv, 2018). Ren et al. (2019) partition the input into semantic and
background parts and define the log-likelihood difference between a normal model and a background
model as the likelihood ratio to distinguish anomalies. More recently, Ristea et al. (2022) propose
a self-supervised neural network composed of masked convolutional layers and channel attention
modules for vision tasks, which predicts a masked region in the convolutional receptive field. Roth
et al. (2022) utilize a memory bank learned from nominal samples and nearest neighborhood search
to detect anomalies on industrial images.

2.2 TIME SERIES ANOMALY DETECTION

Since the battery system is a complex system that consists of multi-dimensional time series data, the
most relevant deep learning research topic is multivariate time series anomaly detection. We will
briefly introduce recent progress and the common datasets used in this area.

Several recent works focus on multivariate time series anomaly detection. Malhotra et al. (2016)
propose to model reconstruction probabilities of the time series with an LSTM-based encoder-
decoder network and use the reconstruction errors to detect anomalies. Hundman et al. (2018)
leverage the prediction errors of the LSTM model to detect telemetry anomaly data. Su et al.
(2019) propose OmniAnomaly to find the normal patterns through a stochastic recurrent neural
network and use the reconstruction probabilities to determine anomalies. Zhao et al. (2020) capture
multivariate correlations by considering each univariate series as an individual feature and including
two graph attention layers to learn the dependencies of multivariate series in both temporal and
feature dimensions. Deng & Hooi (2021) adopt graph neural networks to learn the inter-variable
interactions.

There are several public time series datasets for anomaly detection. The SMAP (Soil Moisture
Active Passive satellite) dataset is collected by a NASA’s Earth Environment Satellite Observation
Satellite (O’Neill et al., 2010). The MSL (Mars Science Laboratory rover) collects data sequences
to determine if Mars was ever able to support microbial life (Hundman et al., 2018). The water

2



Under review as a conference paper at ICLR 2023

treatment physical test-bed datasets, SWaT (Secure Water Treatment) (Mathur & Tippenhauer, 2016),
and WADI (Water Distribution) (Ahmed et al., 2017), are sensor data recording simulated attack
scenarios of real-world water treatment plants. The TSA (Time Series Anomaly detection system)
contains time series data collected from Flink (Zhao et al., 2020).

The anomaly labels in these time series datasets are marked when an anomaly event happens. In
contrast, battery system failures can only be marked on the vehicle level rather than the event level.
Therefore, though the mentioned multivariate time series anomaly detection algorithms achieve good
performance on their respective datasets, the performance of these algorithms on our battery system
failure detection dataset needs to be reassessed.

3 ANOMALY DETECTION FOR DYNAMICAL SYSTEMS

In this section, we start by formulating time series anomaly detection as hypothesis testing on
dynamical systems. We then study likelihood-based tests in this context and exploit the Markovian
structure of the time-series data collected from dynamical systems. By adapting classical analysis,
we provide a guarantee for the false discovery rate of our model.

3.1 HYPOTHESIS TESTING AND ANOMALY DETECTION

Hypothesis testing on time series tries to decide whether a collection of random samples
{x1, x2, ..., xT } provides enough evidence (in terms of statistical significance) to reject the null
hypothesis that the samples come from a null distribution p0 as opposed to a family of alternative
distributions. In practice, the null distribution p0 is often not known. To carry out standard hypothesis
tests, p0 needs to be estimated empirically from independent copies of random samples

{x1, x2, ..., xT }i, i = 1, 2, ..., n.

If the estimated p0 is accurate enough, one can still apply standard hypothesis testing algorithms. To
detect anomaly given a collection of time series {xi}i, where xi = {x1, x2, ..., xT }i, the model can
learn the normal distribution p0. Then, given a new sample x, the model predicts whether it is from
the normal distribution (i.e., not rejects the null hypothesis) or from an abnormal distribution (i.e.,
rejects the null hypothesis).

The procedure is conceptually simple, yet the challenge lies in efficiently approximating the distri-
bution p0. In the following parts, we show how viewing xt as outputs from dynamical systems can
relieve the curse of dimensionality.

3.2 HYPOTHESIS TESTING IN DYNAMICAL SYSTEMS

In this subsection, we formulate hypothesis testing in dynamical systems and highlight its difference
against the classical setup. For simplicity, we consider a discrete dynamical system with a fixed time
length in a Euclidean space. A more generalized and formal study is left as future directions. In
particular, consider a random mapping

f : X × θ × U → X ,

where f describes the transition probability that maps an inner state xt ∈ X , a system input ut ∈ U ,
and a time-invariant system parameter θ ∈ Θ to a random next state xt+1 ∈ X . More formally, for
t = 1, 2, ..., T ,

xt+1 ∼ f(xt, θ, ut),

Furthermore, we consider the case when system inputs are sampled from a distribution that is
independent from the system itself, u1:T ∼ U.

Our goal is to detect whether an observed sample comes from a normal system, where system
parameters are sampled from the null hypothesis H0, or from an abnormal system, where the
parameters are sampled from the alternative hypothesis H1:

H0 :θ ∼ Θ0,

H1 :θ ∼ Θ1, for some Θ1 ∈ Θ
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The above formulation subsumes many real-world problems. For example, if we aim to detect
abnormal electric vehicle batteries, θ can describe battery health, whereas the signals xt are recorded
by the battery management system under the charging current ut.

The benefit of viewing time series as observations from dynamical systems is that it turns the high
dimensionality caused by the long time horizon into our favor. Intuitively, the problem dimension is
determined by the dimension of the system dynamics θ, whereas additional observations xt, ut tell us
more about the unobserved parameter θ. We pursue this idea in the next subsection.

3.3 LIKELIHOOD TESTS FOR THE DYNAMICAL SYSTEMS

Following the notations above, the anomaly detection task can be stated via the optimization problem
below:

max
c∈F

Eu1:t∼U,θ∼Θ1
[I{c(x1:T , u1:T ) = 1}], (1)

s.t Eu1:t∼U,θ∼Θ0
[I{c(x1:T , u1:T ) = 1}] ≤ α. (2)

where, I denotes the indicator function, the hypothesis class F is a subset of prediction functions
{c : Y⊗T ×U⊗T → {0, 1}}, and the parameter α controls the false discover rate. Here, the objective
aims to maximize the power of the test on the alternative hypothesis, i.e., the percentage of anomaly
detected. For now, we assumed that the alternative hypothesis is simple and single-valued.

With the above goal in mind, we then have the proposition below.
Proposition 1. For any α, the optimal solution to the optimization problem above (also known as the
uniformly most powerful test) can be written as thresholding the conditional likelihood ratio below

c(x1:T , u1:T ) = I

{∏
t

p1(xt|ut−1, xt−1)

p0(xt|ut−1, xt−1)
> c

}
, (3)

where p0 denotes the likelihood under the null hypothesis, p1 denotes the likelihood under the
alternative hypothesis, and c is chosen such that Eu1:t∼U,θ∼Θ[I{f(y1:T |u1:T ) = 1}] = α.

The proof is a direct application of the famous Neyman-Pearson theorem along with the fact that

p1(x1:T , u1:T )

p0(x1:T , u1:T )
=

∏
t

p1(xt|ut−1, xt−1)

p0(xt|ut−1, xt−1)
,

where we use the Bayes rule and the Markovian property of the dynamical system.

The interesting observations from the above theorem are twofold. First, the optimal detector is
independent of the input distribution u1:t ∼ U , but only depends on the conditional distribution
p(x1:T |u1:T ). Second, we get a product form that resembles likelihood ratios for independent
variables, which suggests that we may get stronger statistical significance from martingale-style
concentration bounds.

In practice, very often the alternative hypothesis is composite instead of simple. In this setup, the
uniformly most power test may not exist. Alternatively, we have the following guarantee on false
discover rate:
Proposition 2. If for any y, x, u, there exists a θ such that pθ(y|x, u) = 1, then we have that

f(y1:T , u1:T ) = I

{∏
t

p0(xt|ut−1, xt−1) < c

}
,

is the generalized likelihood ratio test. Under the null hypothesis, the likelihood ratio within the
indicator function converges in distribution to χ-squared distribution with freedom d, where d is the
dimension of the parameter space.

The proof applies Wilk’s theorem to the following equation:

sup
p1

p1(x1:T , u1:T )

p0(x1:T , u1:T )
=

∏
t

1

p0(xt|ut−1, xt−1)
.
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The above proposition suggests that, asymptotically, we could simply reject the hypothesis by
thresholding the likelihood according to the χ2 test and control the false discovery rate. Since
log-likelihood is monotonic in likelihood, it is equivalent to finding a classifier of the following form:

f(x1:T , u1:T ) = I

l(θ) +
∑
t≤T

l(xt|ut−1, xt−1, θ) < c

 , (4)

where we dropped the subscript and use l(θ, x, u) := log p0(θ, x, u) to denote the log-likelihood
under the distribution of the null hypothesis. The form in equation 4 motivates us to propose the
anomaly detection algorithm in the next section.

4 DYAD: AUTO-ENCODER-BASED ANOMALY DETECTION MODEL

We have seen above that the key to anomaly detection via hypothesis testing is to learn the distribution
of θ ∼ Θ0. We adopt the variational inference (as in variational autoencoder (Kingma & Welling,
2013), diffusion models (Ho et al., 2020), etc.) formulation for this task. In particular, we parameterize
the family of likelihoods L via weights in neural networks. Then we want to identify the likelihood
l∗ ∈ L that minimizes the KL divergence between the empirical distribution p̂0 and the probability
function pl∗ induced by the learned likelihood l∗. For a more detailed discussion on the variational
inference, we refer the readers to Section 2.2 in Kingma & Welling (2013). Hence, we get,

min
l∈L

DKL(p̂0, pl∗) = Exi,ui,θi∼p̂0

[
log

(
p0(xi,ui, θi)

pl∗(xi,ui, θi)

)]
,

where ui, xi are shorthands for the ith sampled input and output sequences. We note that as the
numerator is independent of l, we can equivalently solve

max
l∈L

Exi,ui,θi∼Dtrain

l(θi) + ∑
t≤T

l(xi
t|ui

t−1, x
i
t−1, θ

i)

 ,

where we used the fact that likelihood can be rewritten as products due to the Markovian structure.

However, the above problem cannot be solved, because in practice we can only observe the system
inputs and outputs ui, xi, whereas the system parameter θ remains unknown. Hence, a natural fix is
to infer θ from observed data.

max
(le,ld)∈L

Exi,ui∼Dtrain
Eθ′

i∼le(·|xi,ui)

∑
t≤T

ld(x
i
t|ui

t−1, x
i
t−1, θ

′
i)

 ,

where we marginalize over the unobserved θ by learning a posterior distribution. In practice, we
cannot optimize over the entire probability space. Hence we simplify the problem with the following
approximations:

1. We assume the distribution of the system parameters θ can be reparameterized (e.g., through
a neural network) as a multivariate Gaussian θ ∼ N (0, I).

2. We assume that xt is Gaussian conditioned on ut−1, xt−1, θ, i.e.,
xt ∼ N (µd(ut−1, xt−1, θ), σ

2
dI),

where µd is a function to be learned and σ is a hyper-parameter.
3. We assume the posterior is also Gaussian, i.e.,

θ ∼ N (µe(ut−1, yt−1), σ
2
e(ut−1, yt−1)),

where µe and σ are functions to be learned.

Putting everything together and use the ELBO (evidence lower bound) trick, we get something that is
similar to the LSTM-autoencoder model, but with one key difference, that the system input is sent
into the decoder. The optimization problem now becomes:

min
µd,µe,σe

Exi,ui∼Dtrain,θ∼N (µe,σ2
eI)

DKL(N (µe, σ
2
e),N (0, I)) +

∑
t≤T

(yit − µd)
2/σ2

d
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Figure 1: The network architecture of DyAD. The input data are split into system input u and system
response x. The model parameters are updated by minimizing an autoencoder style loss in Eqn. 5.

where DKL denotes the KL divergence, we take the negative sign and use that log-likelihood of
Gaussian is quadratic. The notations µd, µe are parameterized by recurrent neural networks and are
shorthands for

µe = µe(xi,ui), σ
2
e = σ2

e(xi,ui),

µd = µd(u
i
t−1, x

i
t−1, θ).

We further simplify the KL divergence using properties of Gaussian distributions and get

min
µd,µe,σe

Exi,ui∼Dtrain,θ∼N (µe,σ2
eI)

∥µe∥2 + tr(σ2
e)− log(|σ2

e |)︸ ︷︷ ︸
variational reg. loss

+
∑
t≤T

(yit − µd)
2/σ2

d︸ ︷︷ ︸
recon. loss

 (5)

If we view µe, σe as output of the encoder network and µd as output of the encoder network, then
we can adopt the variational autoencoder training procedure with the modification specified in the
Figure 1. The key difference is that, instead of requiring the network to learn to retrieve all data
dimensions, our model aims to learn the internal states θ of the system. Therefore, the decoder
in DyAD, which now serves as a dynamical system, is responsible for simulating the system, and
retrieving the response from the latent representation and the internal states. We note that some recent
works (e.g., Girin et al. (2020); Mehta et al. (2021)) also applied autoencoders to learning dynamical
systems, yet our result provides the first derivation and application via anomaly detection.

We briefly comment on why our proposed algorithm could outperform existing methods before
moving on to testing the empirical performance of DyAD. Existing deep-learning based methods
mostly build on the intuition that a model could learn generalizable normal patterns in the time
series. Our analysis formalizes this intuition with Proposition 1 and 2, from which we can make the
following improvements. First, by proposing a dynamical system probabilistic model, we isolate rare
input signals (e.g., battery charging protocol) from abnormal systems (e.g., battery status). Second,
by focusing on hypothesis testing in the system parameter space θ, the dimension of the distribution
is significantly reduced. These two changes allow our model to utilize data more efficiently.

5 BATTERY SYSTEM ANOMALY DETECTION

Before we present the anomaly detection results, we briefly describe our released EV dataset. As
one of the core components of EVs, the battery system not only needs to support long cruising
range, but also guarantee the safety of drivers and passengers. Effective and efficient detection
of battery system failure reduces the product recall rate and improves the user experience. Due
to its wide range of applications and great significance, we release a large-scale battery dataset,
which contains over 88M battery charging time steps collected from 301 vehicles (see detailed stats
in Table 1). The multi-dimensional time series features include current, voltage, temperature and
SOC (state of charge) information. An example is shown in Figure 2(b) and 2(c). More examples
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MSL SMAP SWaT EV (ours)
Number of dimensions 55 25 50 8
Number of time frames 132, 046 562, 800 92, 255 88, 135, 040
Anomaly ratio 10.27% 13.13% 5.95% N/A

Table 1: The statistics of our EV Dataset and public datasets.

can be found in Appendix B. Our dataset and code are available at https://1drv.ms/u/s!
AnE8BfHe3IOlg13v2ltV0eP1-AgP?e=n4oBM1. The usage of our data is under CC BY-NC-
SA license.
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Figure 2: An illustration of our EV dataset. (a) The data structure of our EV dataset. Only vehicle-
level anomaly labels are available. Charging snippets are collected within months and years. (b)-(c)
The voltage and current of charging snippets collected from a normal and an abnormal vehicle.

We highlight that unlike previous datasets where anomalies are marked when an unexpected event
happens in time series, the anomaly labels in the battery dataset have a natural hierarchical structure
as shown in Figure 2(a). Specifically, abnormalities in the battery system are chronic (such as aging),
so the abnormality labels are at the vehicle level (one per vehicle) rather than the event level (one per
timestamp), which is a more challenging time series anomaly detection task. To address the problem,
we propose the following procedure to summarize piece-wise prediction into vehicle-level prediction.

5.1 DETECT VEHICLE LEVEL ANOMALIES

To handle the hierarchical dataset structure and sparsity of anomaly labels, we develop a robust
scoring function to map the snippet-level scores obtained from DyAD to vehicle-level predictions.
The scoring function is shown in Alg. 1. In particular, we predict the abnormal degree of a charging
snippet by thresholding the reconstruction error at value τ and then predict whether a vehicle is
abnormal by averaging the top h percentile errors. Both τ and h are fine-tuned on the validation
dataset. Notice that the straightforward idea is to average all charging snippets belonging to a vehicle,
but we will show that our robust scoring procedure achieves better performance in experiments.
We apply both the robust scoring function and the averaging scoring function to all deep learning
baselines.

Algorithm 1 Pseudo code of the robust scoring function
Hyperparameters: percentile h and threshold τ .
Input: Charging snippet scores r⃗ = {(ri)}i from a vehicle.
Output: Vehicle-level prediction.
1: Sort r⃗ by ri from large to small.
2: Take the mean of the largest h% as the vehicle’s score.
3: Predict a vehicle as abnormal if the average of the largest h% is greater than τ .

5.2 EXPERIMENT RESULTS

The interpolated averaged ROC curves and the mean and variance of AUROC values are shown in
Figure 3 and Table 2, respectively. Our proposed algorithm DyAD achieves the best performance
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Figure 3: Interpolated averaged ROC curves of several algorithms on our EV battery dataset. Shaded
area represents the five-fold variance.

on our large-scale dataset against well-established autoencoder-based and graph-based algorithms.
Meanwhile, this is the first time to deploy deep learning algorithms to detect electric vehicle battery
system failure in such a large dataset. Furthermore, DyAD benefits from the proposed robust scoring
function with a 2.0% improvement. It suggests that sometimes averaging on all snippets belongs to a
vehicle is not the best choice for such a hierarchical dataset, which is one of the difference between
our dataset and traditional time series anomaly detection datasets.

Table 2: Mean and standard variance of test AUROC (%) values on all vehicles from three makes.
Among all the considered algorithms, DyAD achieves the best detection results by a 3.1% ∼ 20.0%
AUROC boost and a relatively small variance compared to the second best algorithm on both
averaging (Left) and robust scoring (Right) criteria. Further, our robust scoring function consistently
improves baseline algorithms. Bold denotes the best results.

Algorithm AUROC (%)
by Averaging Score

AUROC (%)
by Robust Score

AE 66.1± 3.1 69.4± 2.6
Deep SVDD 51.3± 4.2 55.2± 2.5
LSTMAD 60.0± 1.5 63.1± 1.7

MTAD-GAT 61.3± 0.9 65.2± 2.3
GDN 68.9± 3.1 72.1± 3.2

DyAD (Ours) 73.2± 2.5 75.2± 2.7

Table 3: Mean and standard variance of test AUROC (%) values on each make. Bold denotes the
best results.

Algorithm Make 1 Make 2
AE 65.3± 7.0 59.4± 8.4

Deep SVDD 51.6± 5.7 58.5± 13.7
LSTMAD 56.0± 7.3 58.6± 9.5

MTAD-GAT 57.1± 9.9 50.9± 12.5
GDN 64.8± 11.5 65.3± 4.3

DyAD+Robust Score (Ours) 78.0± 5.2 84.4± 3.8

We further examine the difficulty of detecting anomalies in each make by training models on data
from the same make only. Make 3 is omitted since it has only four anomaly vehicles thus can
not do the five-fold cross-validation. The AUROC values of different algorithms are shown in
Table 3. It seems that learning one make of vehicles individually would lead to a larger variance
of the results. One possible reason is due to the smaller amount of data. When the variance of the
results becomes significantly larger, the mean value of the results becomes less reliable in comparing
different algorithms affected by outlier values. Therefore, we recommend using a larger number of
vehicles to reflect the performance of the algorithms in the population. In all five algorithms, the
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variance of DyAD, although also increased, is still at a lower level than the other four. Meanwhile,
the change of the other four algorithms is within variance. Based on the results in Table 3, detecting
anomalous vehicles from Make 2 appears to be simpler than that from Make 1.

By comparing Table 3 against Table 2, we notice that some algorithms(e.g., GDN) benefit from
training on all vehicles altogether, whereas some (e.g., DyAD) benefit from learning different models
for each Make. Hence, there is still room for researchers to improve the detection of electric vehicle
battery system failure. Limited to time and computing resources, we only implement these algorithms.
We also welcome researchers to further develop algorithms on the dataset to improve EV safety.

6 TIME SERIES ANOMALY DETECTION IN OTHER REAL-WORLD TASKS

To supplement our results, we implement DyAD on two spacecraft system time-series anomaly
detection datasets, MSL (Mars Science Laboratory rover) and SMAP (Soil Moisture Active Passive
satellite), and a water treatment test-bed system dataset, SWaT (Secure Water Treatment). The two
spacecraft datasets are released by NASA (O’Neill et al., 2010; Hundman et al., 2018), recording
the spacecraft’s telemetry channel sequences and command sequences encoded as 0 or 1. The water
treatment dataset integrates digital and physical elements to control and monitor system behaviors.
They are widely used as benchmarks for anomaly detection (Hundman et al., 2018; Zhao et al., 2020;
Chen et al., 2022; Deng & Hooi, 2021). For these three datasets, the anomaly events are defined on
time frames by another log. And the commonly used metrics are F1 score, Precision, and Recall.

We implement the same baseline algorithms with necessary modification for dataset dimension. The
detection results are shown in Table 4. For the spacecraft system, we treat the command dimensions
as system input and the telemetry data as system response. More training details can be found in
Appendix C. As shown in the table, DyAD achieves the best F1 scores consistently. Specifically,
we improve the SOTA algorithm by 3.9% and 3.0% on the MSL and SMAP datasets respectively.
For the water treatment system, the sensor dimensions are treated as system input and the actuator
dimensions as system response. More details can be found in Appendix C. We can see from the table
that DyAD outperforms other baseline algorithms by 0.4%.

Table 4: F1, Precision and Recall on the two spacecraft datasets. Bold denotes the best results.

Method MSL SMAP SWaT

F1 Precison Recall F1 Precision Recall F1 Precision Recall
AE 0.5774 0.5507 0.6070 0.6215 0.8606 0.4864 0.7961 0.9452 0.6876

Deep SVDD 0.6804 0.8270 0.5779 0.2965 0.1752 0.9630 0.7870 0.8633 0.7231
LSTMAD 0.4502 0.3831 0.5458 0.6944 0.8914 0.5687 0.8007 0.9570 0.6883

MTAD-GAT 0.9084 0.8754 0.9440 0.9013 0.8906 0.9123 0.8359 0.9271 0.7612
GDN 0.7660 0.7598 0.7723 0.7069 0.7556 0.6641 0.8082 0.9935 0.6812

DyAD (Ours) 0.9438 0.9215 0.9673 0.9313 0.9501 0.9132 0.8399 0.9824 0.7335

7 CONCLUSIONS AND DISCUSSIONS

In this work, we have seen that properly formulating the probabilistic model underlying the data—in
our case, viewing time series as outputs from dynamical systems— can greatly improve sample effi-
ciency and lead to better model design. Our analysis naturally motivates a variant of the autoencoder
model that is tailored for encoding dynamical systems. The performance of our proposed model is
validated on both our released large-scale EV dataset and on existing public datasets.

There is much to be done. It is known that models based on likelihood alone do not achieve the
best performances, as observed in Nalisnick et al. (2018). The idea is that although likelihood
provides a guarantee of the false discovery rate, it does not necessarily give the best detection power,
which would depend on the distribution of the alternative hypothesis. For this reason, multiple
improvements (Ren et al., 2019; Xiao et al., 2020; Choi et al., 2018) have been made to further boost
detection performances by improving the scores generated by likelihoods. As these investigations are
orthogonal to our focus within this work, it remains to see whether similar ideas can be applied to
improve our models.
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A RELATED WORK ON BATTERY SAFETY

To the best of our knowledge, there is no well-established deep learning study of battery system
failure with large-scale datasets. On one hand, deep learning technology has not been widely used in
detecting battery failure, and many studies still use statistical methods (Xue et al., 2021) or canonical
machine learning (Zheng et al., 2020). On the other hand, the absence of large public datasets hinders
the progress of deep learning techniques in this area.

Existing researches mainly study lithium battery safety through battery physical/chemical structure
and charging/discharging data. Physic-based approaches usually aim to improve battery safety
by changing/adding the structure/component inside a battery. Wu et al. (2014) add a bifunctional
separator inside the battery to achieve early detection of lithium dendrites. Yang et al. (2021) design
a thermally modulated LFP (lithium iron phosphate) battery to improve cruise range. Advanced
data-based methods analyze battery faults with deep learning models. Hong et al. (2019) adopt
an LSTM network to predict multi-forward-step voltage value and judges the battery safety with a
threshold voltage value. Li et al. (2020) propose to achieve higher battery fault diagnosis reliability
and accuracy by combining the LSTM model and the equivalent circuit model. Yang et al. (2020)
employ multi-layer neural network to estimate the current of the short-circuited cell and then predict
maximum temperature increase with a 3D electro-thermal coupling model.

Meanwhile, although deep learning is a data-hungery technique, existing related studies do not
incorporate enough vehicles in their datasets. We notice that Li et al. (2020) collects data from 9
vehicles and divides them into three categories, Hong et al. (2019) record time series information
of one electric taxi, Zheng et al. (2020) use four cells with inconsistent capacities, and Yang et al.
(2020) use eight cells. However, they cannot be used as a benchmark for measuring battery system
anomalies because we believe that a conclusive result requires validation on a much larger dataset
beyond several vehicles and their inconsistent data form is another problem.

B DATASET EXAMPLES

Some charging snippets from the battery dataset are depicted in Figure 4. The feature dimensions
include voltage, current, max/min single cell voltage and max/min cell temperature. From the figure,
we can see that the time series are mixed, and there is no simple rule to distinguish the charging
snippets of abnormal vehicles from normal charging snippets. This is also one of the main reasons
why anomaly labels are on the vehicle level rather than the snippet level.

0 50 100
Timestamp (s)

4

3

2

1

0

1

2

Vo
lta

ge
 (V

)

Normal vehicle
Abnormal vehicle

0 50 100
Timestamp (s)

102

101

100

0
100

Cu
rre

nt
 (A

)

Normal vehicle
Abnormal vehicle

0 50 100
Timestamp (s)

3.6

3.7

3.8

3.9

4.0

4.1

M
ax

 si
ng

le
 v

ol
t (

V)

Normal vehicle
Abnormal vehicle

0 50 100
Timestamp (s)

3.6

3.7

3.8

3.9

4.0

4.1

M
in

 si
ng

le
 v

ol
t (

V)

Normal vehicle
Abnormal vehicle

0 50 100
Timestamp (s)

10

20

30

40

M
ax

 te
m

p 
(

C)

Normal vehicle
Abnormal vehicle

0 50 100
Timestamp (s)

10

20

30

40

M
in

 te
m

p 
(

C)

Normal vehicle
Abnormal vehicle

Figure 4: Charging snippet examples from snippets of normal and abnormal vehicles.
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Here we also give a conceptual figure to help to understand what an anomaly in battery system would
be like. In Figure 5, there are three charging snippets collected from a vehicle, where the first two
have a normal max temperature value and the third shows a sharp increase in temperature. Notice
that the different snippets are not contiguous, and there are discharging phase between snippets. Our
dataset does not contain the third type of snippets, as our goal is to detect battery system failures
early enough to prevent potential hazard in advance.

This example also explains that the labels in the dataset can only be labeled at the vehicle level, but
not at the charging snippet level, since even a battery system that is about to fail may exhibit a normal
charging pattern early on.
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Figure 5: An example of the anomaly in the EV dataset. (a) The max temperature of a vehicle
with three charging snippets. (b) The SOC of the battery system with three charging snippets. The
third snippet shows a runaway charging temperature, which means that the battery system is already
broken.

C ALGORITHMS IMPLEMENTATION DETAILS

The ultra implementation details can be found in our released code. We partially use the official and
public code resources from PyOD1, LSTMAD2, GDN3 and MTAD-GAT4. All the experiments are
run on a machine with four 2080 Ti GPUs.

C.1 AUTOENCODER

The network adopts an encoder-decoder structure with batch normalization layers, drop out layers
and sigmoid activation functions. It is built with several fully connected layers. The latent dimensions
are [64, 32, 32, 64] in the encoder and decoder. We train the network 20 epochs with a batch size of
128 for the battery dataset, and 5 epoch for the two spacecraft datasets. We use the Adam optimizer
with a learning rate of 0.001.

C.2 DEEP SVDD

The feature extraction network of the deep SVDD is an autoencoder with hidden dimensions [64,
32, 32, 64], which is similar to the autoencoder above. The SVDD loss is computed on the middle
32-dimensional latent feature. We also adopt the reconstruction loss to help the network learn better
data representation. We train 10 epochs with a batch size of 64 using the Adam optimizer with a
learning rate of 0.001 for both the battery dataset and the spacecraft datasets.

1https://github.com/yzhao062/pyod
2https://github.com/PyLink88/Recurrent-Autoencoder
3https://github.com/d-ailin/GDN
4https://github.com/ML4ITS/mtad-gat-pytorch
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C.3 LSTMAD

The LSTMAD uses the LSTM layers and LSTM cells to encode and decode the input data, respec-
tively. The latent feature dimension is 32. We use an Adam optimizer with a learning rate of 0.001
and train 20 epochs with a batch size of 128 on both the battery dataset and the spacecraft datasets.
For the two spacecraft datasets, the window length is set to 128. The reconstruction loss function is
the mean absolute error.

C.4 MTAD-GAT

For the spacecraft dataset, the detection results are directly from the official paper Zhao et al. (2020).
For the battery dataset, we set the window length to 100 and train the graph network 30 epochs with
a batch size of 256. Only the feature dimension number is modified. The other parameters are set to
the default value.

C.5 GDN

We adapt the graph layers to fit our input data. Stacked fully-connected layers are attached at the end
of the graph layer. The latent dimension is 128. The window length of the time series data is set to 32
for the battery dataset and 128 for the spacecraft datasets. We use an Adam optimizer with a learning
rate of 0.001 to train 20 epochs with a batch size of 128.

C.6 DYAD

For the battery dataset, we use GRU as the recurrent unit and train the network 3 epochs with a cosine
annealing Adam optimizer. The hidden size and latent size are set to 64 and 32, respectively. The
spacecraft dataset is pre-processed following Zhao et al. (2020). Different snippets are concatenated
together. To deal with this special data structure, we use LSTM as the recurrent cell and add a
convolutional layer to the decoder. A delayed signal of the encoder is passed to the decoder to
compensate for sparse command channels. We train the MSL dataset for 10 epochs and the SMAP
dataset for 5 epochs. Both with a cosine annealing Adam optimizer.

The SWaT dataset provides an official document interpreting each dimension of the data, including the
type (sensor or actuator) and a brief description for each dimension. We treat the sensor dimensions
as system input and the actuator dimension as system response. We directly apply DyAD on SWaT
with a window size of 128.

We notice that another water treatment dataset, WADI (Ahmed et al., 2017), is also used in recent
works (Deng & Hooi, 2021). However, as shown on the official dataset website, the current version
of WADI has 127 dimensions, while the reported number of dimensions is 112 in recent research
works (Deng & Hooi, 2021). Because of the version mismatch, we do not consider using WADI in
our experiments.
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