
Novel Topological Shapes of Model Interpretability

Hendrik Jacob van Veen
MLWave

info@mlwave.com

Abstract

The most accurate models can be the most challenging to interpret. This paper
advances interpretability analysis by combining insights from Mapper with recent
interpretable machine-learning research. Enforcing new visualization constraints
on Mapper, we produce a globally - to locally interpretable visualization of the
Explainable Boosting Machine. We demonstrate the usefulness of our approach to
three data sets: cervical cancer risk, propaganda Tweets, and a loan default data set
that was artificially hardened with severe concept drift.

1 Introduction

The question of how to optimally generalize from train data to test data is quintessential to research
in machine learning (ML) [48]. In practice, accuracy is hardly a sole optimality concern. There
are other desiderata, such as simplicity, fairness, and robustness to concept drift. Even with the
focus on accuracy, complex modern ML algorithms will misuse artifacts in the data to improve the
accuracy on the train set, thereby falsely suggesting better performance than should be expected in
reality. For instance, Caruana et al. [8] demonstrated that a hospital-triage model learned to attribute
low-risk to asthma patients, due to the aggressive – and effective – care such high-risk asthma patients
had received in the train data. Financial risk models may learn from – and become entwined with
– business artifacts [4], or overfit to seasonality, causing financial ruin after a crash [12]. Protected
features are automatically inferred from other features [35]. Even benchmark-winning computer-
vision models display unpredictable failure modes, reducing trust in high-stakes deployments [17].

Interpretability is therefore important. In some cases it is even required by law [41]. Trust in models
increases with interpretability analysis and input from domain experts, because this can correct
mistakes. Ideally, interpretability not only helps with finding bias and debugging, but can also be used
to inform policy and research [15]. Unfortunately, a trade-off between accuracy and other desiderata
has been observed. Black-box algorithms, such as deep neural networks and gradient boosted
decision trees [9], produce highly accurate predictions and thus see a wide adoption in industry and
ML competitions, yet such models are not very interpretable. Conversely, white-box algorithms, such
as logistic regression and decision rules on handcrafted features, are more interpretable, but can fall
behind in accuracy on the problems that modern-day ML practitioners face.

The ML community has addressed accuracy trade-offs in a number of ways. Some relieve tension
by separating accuracy from other concerns, such as interpretability or fairness. For instance, LIME
and SHAP use white-box models and game theory to explain black-box predictions [30], while it is
also possible to threshold the predictions of a black box model [19] to introduce fairness constraints
[2]. Turner [45] weakens interpretability requirements and Rolf et al. [37] jointly optimizes for
performance (profit) and society-aware cost functions. One may even question the existence of trade-
offs [38]. Finally, a promising approach is to create inherently high-accuracy highly-interpretable
models, as in the case of the Explainable Boosting Machine (EBM) from InterpretML [33]. Here, we
examine the EBM in combination with the Mapper [43] from Topological Data Analysis (TDA) [6].
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Contributions. In this paper, we leverage the strengths of Mapper and interpretable ML to construct
a new method of interest to practitioners and researchers in ML and TDA. For interpretable ML we
(1) offer a more holistic data analysis, allowing analysts to go from a compressed chart to a single
sample, (2) create cluster explanations by aggregating local explanations, and (3) show interpretable
clusters with persistence through time. For Mapper, we (4) place Mapper in the context of traditional
analysis, potentially easing adoption, and (5) make Mapper’s output carry more useful meaning than
it currently has. We (6) show the utility and scalability of this approach on three challenging data sets.

2 Methods and Experiments
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Figure 1: An EBM scores
a local sample explanation.
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Figure 2: Mapper covers
data with overlapping bins.
Then it clusters inside these
bins and connects all the
clusters that have points in
common.

Hypothesis. The EBM rivals state-of-the-art models and is very inter-
pretable. The Mapper from TDA allows for unsupervised data explo-
ration. Thus, we hypothesize that extending the EBM with Mapper
techniques – combining global and local explanations in a single inter-
face – allows for more informative visualizations than charts alone. In
the next paragraphs we briefly describe the algorithmic details of the
EBM and Mapper as these relate to our methods.

The EBM is based on Generalized Additive Models (GAM) [20] and is
of the form g(E[y]) = β0 +

∑
fj(xj) with g a link function to switch

between regression and classification. The EBM improves on the GAM
with feature interactions, bagging, and boosting [26]. A prediction is
obtained by simply summing the scores of features. So, it is natural to
create local sample explanations and global feature explanations and
to subsequently chart such explanations for interpretability analysis.
However, analysts are not currently able to quickly switch between
global - and local explanations, and hence the contextual value of
feature explanations may suffer. Figure 1 shows a local explanation.

Mapper is an algorithm to visualize the data created in TDA with network graphs. It draws inspiration
from the Reeb graph [1]. Intuitively, Mapper works by a local clustering stratified by a function,
such as Height(X). More precisely, start with a filter function f (also called a “lens”) and project
X down to one dimension R; f : X → R. Construct an overlapping covering of R. From each i
intervals on R, collect i subsets from X; XS1, XS2 , ... , XSi. Create clusters inside each subset XS

with clusterer C to form vertices V . Finally, edges E are created by drawing an edge Eij between
vertices Vi and Vj when these share data points Vi ∩ Vj 6= ∅. The output is a graph G(V,E) which
can be displayed on screen for analysis. See Figure 2 for an example. Mapper is a versatile approach
to capturing shapes of data, in part due to the flexibility of the parameters. Hence, it sees applications
to problems in a range of academic fields, such as healthcare [39], security [10], and neuroscience
[16]. Moreover, Mapper offers unique insights to analysts, and provides hypothesis that scale with
large amounts of complex data [27]. Even so, one needs basic knowledge of algebraic topology to
effectively use TDA, reducing utility for non-experts. Furthermore, since the position of a node on
the screen has no contextual meaning, analysts need extra steps to place areas of interest into context,
for instance by looking at the descriptive statistics for a node. Figure 3 illustrates how we solve this.
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Figure 3: Illustration of part of our approach. In Step 1 a chart with a global feature expla-
nation is created. In Step 2 we map this chart on the x-axis and order clusters by membership size. In
Step 3, the clusters are connected and colored by a function of interest. Note how, unlike traditional
Mapper, while Clusters 1 and 2 are not connected, these are still close-by on the screen. Note also
how the edge between Clusters 1 and 6 shows a persistent – but downward – trend. Finally, note how
the color of Cluster 3 surfaces a small high-risk group in a low-risk feature-value interval (Age < 23).
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Setup. Following Algorithm 1 (in Appendix A), we apply Mapper to traditional charts. In our case,
we use a lens for each axis of a traditional chart to output two topological graphs. The horizontal
axis is a continuous variable, such as a time tick, or an age column. The vertical axis is the output
from a model, either an interpretation score, or an opaque dynamical system, such as the stock
market. Where relevant, we limit the number of intervals per axis in an effort to reduce cognitive
load [29]. Unlike traditional Mapper methods, the nodes are confined to the intervals in which these
were formed and the clusters inside an interval are ordered by set size. We show that these simple
modifications creates more insightful data analysis, without removing any of Mapper’s benefits or
theoretical grounding. We perform clustering with DBSCAN [13], which is density-based clustering,
motivated by the speed and not being required to set the number of clusters, and agglomerative
clustering [47], motivated by its strong theoretical guarantees and past usage in literature [32]. By
coloring nodes with the average predictions in a cluster, we automatically surface low-score clusters
inside high-score intervals. For the local sample explanations, we order the features by impact (due
to space limitations we only show the top 4). Since the standard EBM implementation provides a
Scikit-Learn API [5] we look at Mapper implementations with a similar API, such as giotto-tda [44]
and KeplerMapper [46], and we opt for the latter. Appendix A has more details on the experiments.

Data. To demonstrate potential, we use a healthcare data set [14], motivated by the importance
of interpretability in the field of healthcare, and by the prospect of informing disease treatment and
risk factors [31]. After pre-processing, the data have 849 rows and 32 features. We do a stratified
split of 20%. We use a social media propaganda data set [36] to place our algorithm in the context
of a timely problem of adverse shaping of political discourse and to demonstrate that our approach
also works on unstructured text data, and without the EBM. The data set has 120.058 rows and
3.000 features. Our final choice of data set is motivated by the tricky real-world issues implementing
credit-risk models. Since such data is generally not available, we altered a public loan data set [49] to
display very problematic concept drift (different feature distribution in train and test set). We use
25.000 samples for training and 5.000 samples for testing. The first 2.500 test samples are regular
samples, the second 2.500 test samples are corrupted by randomly shuffling 50% of the features in
each column. Appendix B has reproducibility checklists for all data.

Models and parameter settings. We use the EBM from InterpretML. For benchmarks in the cervical
cancer data set and the loan data set, we compare with a non-tuned XGBoost [9], for that is a known
accurate model. Since a thorough performance comparison is not the point of this paper, we do
not hypertune, but manually change parameters to make the EBM approximately equal XGBoost.
The propaganda tweets data set is created by taking char-grams of length four to six and calculating
TF-IDF for the top 3000 features. For comparisons see Appendix C and for full EBM vs. XGBoost
benchmark details see the InterpretML repository [28].

Discussion of results. Figure 4 demonstrates how the current state-of-the-art in model interpretability
can be improved with our Mapper approach. Notice how analysts are able to go from a global
feature explanation, to a cluster explanation, to a local sample explanation, all from within a single
interface. Figure 5 shows our approach applies to the challenging real-life problem of concept drift
and demonstrates its utility for debugging a deployed ML model. The color and connectivity of the
Mapper graph hint at a distribution change, thereby pinpointing interesting areas for further analysis.
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Figure 5: Result of concept drift
experiment. Clusters with concept
drift (in the right region) are more
connected. The colors in both re-
gions are different. X-Axis are row
# and Y-axis is mean(prediction ŷ
per 100 rows). C is agglomerative
clustering. Color is stdev(ŷ100).
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Figure 4: Resulting interface for a cervical cancer data set.
1 and 2 are created by the EBM. 3 and 4 are the Mapper

graphs, positioned through confining and ordering. 5 shows
the members in the selected cluster. 6 is the averaged cluster
explanation and 7 the local explanation of a selected member.

3

https://github.com/scikit-tda/kepler-mapper
https://github.com/interpretml/interpret
https://github.com/dmlc/xgboost


Figure 6 indicates that our approach is fitted to unstructured data, such as text. Our method generates
interesting questions, which our visualization can instantly answer, such as: “What was the longest-
lasting topic?”, “Which topic is most atypical?”, and “Which topics correlate with increased
activity?”. Remarkably, the number of clusters seems to encode for density of topics in an interval.
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Figure 6: The result of Mapper on alleged IRA tweets. We apply clustering with DBSCAN on X ,
which is a TF-IDF representation [21] with 3.000 columns (formed from the top char-grams of
length 4 to 6) and 120.058 rows. Colored by Cosine distance to mean(X). Cluster 1 signals start of
longest-lasting topic chain. Cluster 2 is most distant to mean.

3 Conclusions

We showed how extending the interpretability research of ML with the Mapper from TDA improves
data analysis and model interpretability. We demonstrated that our approach – laying out network
graphs alongside a traditional chart – is able to capture novel shapes of model interpretability which
persist (or not) over time. We showed that the local clustering of Mapper finds clusters of interest,
that traditional interpretability methods cannot, for instance, low-score clusters inside high-score
regions, and thus is a natural extension to the process of making models less biased and unfair. By
averaging the local explanations inside of a cluster we obtained a new type of aggregate explanation
useful for data - and cluster analysis. We favorably examined usefulness on three data sets.

Relation to other work. Cluster analysis is not new [18]. Two decades ago, Nauck et al. advocated
interpretable models over black-box models in high-stakes settings [31]. Olah et al. explored the
power of combining different interpretability techniques [34]. Following these trends, we also find
that combining local sample explanations with global feature explanations provides a more powerful
interface. More recently, Carlsson et al. showed that using the output of a ML model as a filter
function yields valuable insights into failure modes [7]. Saul et al. applied Mapper to the predictions
of a black-box model to create global and local explanations [40]. In this regard, the closest related
work we found in functionality in KeplerMapper (aggregate cluster statistics) and an article by Harlan
Sexton [42] which describes averaging the images within a cluster. Our approach builds on Mapper
[43]. Mapper on original features is also not uncommon. However, unlike pure Mapper output, the
position of a node on the screen now has a useful meaning. Since we also order the clusters inside
an interval by membership size, the angle of the edges now carries meaning too, with horizontal
edges connecting clusters of similar size. The “branching out” of text topics offers a venue for future
research, representing complex objects, such as literature – or indeed an entire era [3] – with graphs.

Impacts and limitations. Since accurate and interpretable modeling removes an economic incentive
to favor profit over interpretation, we expect our solution to contribute to a more insightful and more
responsible application of ML systems in society. The authors do appreciate that interpretable ML
is a dual-use technology (“How do we get at-risk life-insurance cohorts to cancel?”) and that
fair models may be deployed in unfair settings. For completeness, we highlight three possible
negative impacts and shortcomings of our work. First off, our approach currently has no open-source
implementation and we did not provide a unified framework for parameter settings and lens choice.
Therefore, replicability is hampered, and an objective explanation of a model is impossible. Second,
interpretability and fairness is not a solved problem in theory nor practice. Though using a surrogate
model to explain a closed-box model may improve interpretability, there is no guarantee that these
models reasoned exactly the same [30]. Additionally, fairness and interpretability is ill-defined [25],
may ignore essential elements of causality [11], and simultaneously satisfying all fairness constraints
is provably impossible [23]. Thus, strongly implying the creation of a fair or debiased model using
our approaches may be deceptive and create a false sense of fairness. Lastly, creating fair and safe
models requires the indispensable input of domain experts. Topological data analysis may not be the
best medium for non-experts in TDA and hence reduce the quality of their feedback [24]. This third
impact inspired the combination of traditional charts and topological graphs, instead of outputting
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the topological graphs alone, but work remains to be done. Though outside the scope of this paper,
solving for issues with low-error implementation, accessibility, and user misalignment [22] is a must.
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A Appendix A: Algorithms & Experiments

A.1 Mapper on Charts Algorithmic Details

Algorithm 1 Mapper on charts
Result: H. Interface for Interpretable ML
Input: E . 2-axis Chart; X . Data set.
Initialize: CanvasH from E
for axis ∈ E do
G(V,E)axis ← Mapper(X, lens=axis)
H.draw(G(V,E)axis)
for Vi ∈ G(V,E)axis do
H.drawUpdate(

Confine Vi to interval on axis
Order Vi in interval by set size

)
for U = {}, x ∈ Vi do

u← localExplanation(x)
U.update(u)

H.draw(U,U )

A.2 Experiment reproducibility Checklists

Experiments
Listing Cervical Cancer Loan Data Propaganda Tweets
Lens horizontal Age Row # Day #
Lens vertical Risk Score (with un-

certainty estimates)
Mean prediction of
100 rows (with stdev
prediction of 100
rows)

Log2 # Tweets per day

# Intervals horizontal 7 14 60
# Intervals vertical 3 None None
Overlap Percentage 10% / 30% 30% 33%
Clusterer horizontal Agglomerative Clus-

tering(
clusters=2)

Agglomerative Clus-
tering(
clusters=2)

DBSCAN

Clusterer vertical Agglomerative Clus-
tering(
clusters=3)

None None

Color Function Average Target in
Cluster

Stdev of batch of 100
predictions

Distance to mean

Mapper Tuning Manual visual feed-
back

None Manual visual feedback

Mapper Timing < 1 second < 10 seconds < 10 minutes
Model EBM EBM TF-IDF
Model Tuning Manual XGBoost

comparison (See
Appendix C)

None None

Learning Methods Supervised
Semi-Supervised
Unsupervised

Supervised
Unsupervised

Unsupervised

Environment python=3.6.8
sklearn=0.20.3
pandas=0.25.1
interpret=0.1.20
kmapper=1.1.5
xgboost=0.81

python=3.6.8
sklearn=0.20.3
pandas=0.25.1
interpret=0.1.20
kmapper=1.1.5
xgboost=0.81

python=3.6.8
sklearn=0.20.3
pandas=0.25.1
kmapper=1.1.5

Hardware Macbook Pro 2015 Macbook Pro 2015 Macbook Pro 2015
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A.3 Mapping details

Note that the authors lack the medical domain expertise necessary to responsibly interpret the resulting visualiza-
tion for the Cervical Cancer Data Set. The point of that demonstration then is to showcase the interface and its
parts, global - to local explanations of samples and features, and the layout of the Mapper graphs in relation to
the chart.

For the Propaganda Tweet data set, we can visualize with KeplerMapper, using data vectorized for words.
DBSCAN finds 79 clusters and this results in the following figure A.1 for comparison with our “Mapper on
charts” methodology:

Figure A.1: KeplerMapper output for Propaganda Tweets experiment.
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B Appendix B

B.1 Data Reproducibility Checklists

Data Sets

Listing Cervical Cancer Loan Data Propaganda Tweets

Number of samples 858 30.000 203.451

Number of samples after
processing

849 30.000 120.058

Number of features 32 23 228.130 tokens

Number of features after
processing

32 23 3.000

Number of targets 4 1 0

Number of targets after pro-
cessing

1 1 0

Percentage target 11.7% 22.1% None

Evaluation splits Stratified
80% train
20% test

Out-of-time
25.000 train
2.500 test normal
2.500 test with con-
cept drift induced

300 days around the
2016 US election

Sourced UCI ML repository/
Venezuela hospital/
Patients

UCI ML repository/
Taiwan bank/
Customers

ABCNews/
Twitter/
Alleged Trolls

Link to raw data Cervical cancer (Risk
Factors)

Default of credit card
clients

Researcher Tweets.csv

B.2 Cervical Cancer Risk Factors Data Set

This Cervical Cancer Risk Factors data set was introduced in [14]. Some participants declined to answer certain
sensitive questions, so there are missing values. It is unexplored if there are problems in the collection of this
data set. The data set has 858 rows and 32 features:

[’Age’,
’Number of sexual partners’,
’First sexual intercourse’,
’Num of pregnancies’,
’Smokes’,
’Smokes (years)’,
’Smokes (packs/year)’,
’Hormonal Contraceptives’,
’Hormonal Contraceptives (years)’,
’IUD’,
’IUD (years)’,
’STDs’,
’STDs (number)’,
’STDs:condylomatosis’,
’STDs:cervical condylomatosis’,
’STDs:vaginal condylomatosis’,
’STDs:vulvo-perineal condylomatosis’,
’STDs:syphilis’,
’STDs:pelvic inflammatory disease’,
’STDs:genital herpes’,
’STDs:molluscum contagiosum’,
’STDs:AIDS’,
’STDs:HIV’,
’STDs:Hepatitis B’,
’STDs:HPV’,
’STDs: Number of diagnosis’,
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’STDs: Time since first diagnosis’,
’STDs: Time since last diagnosis’,
’Dx:Cancer’,
’Dx:CIN’,
’Dx:HPV’,
’Dx’]

B.2.1 Preprocessing the Cervical Cancer Data

For preprocessing, we crudely impute ? values with 0 values. For binary target creation, we set the target to 1 if
any of the 4 target columns (Hinselmann, Schiller, Citology, Biopsy) is 1. Furthermore, for this demonstration,
we delete outliers over 50 years of Age.

B.3 Loan Data set

This dataset was collected from a Taiwanese bank in [49] for the purpose of comparing data mining methods. It
has 30.000 rows and 23 features:

[’LIMIT_BAL’,
’SEX’,
’EDUCATION’,
’MARRIAGE’,
’AGE’,
’PAY_0’,
’PAY_2’,
’PAY_3’,
’PAY_4’,
’PAY_5’,
’PAY_6’,
’BILL_AMT1’,
’BILL_AMT2’,
’BILL_AMT3’,
’BILL_AMT4’,
’BILL_AMT5’,
’BILL_AMT6’,
’PAY_AMT1’,
’PAY_AMT2’,
’PAY_AMT3’,
’PAY_AMT4’,
’PAY_AMT5’,
’PAY_AMT6’]

The average signal "default payment next month" is 22%.

B.3.1 Concept drift induction

To induce concept drift we shuffle the feature columns. We take a holdout set of 5000 of the last rows of the
train data and split those in two equal parts. For the first part we do nothing, for the second part, we shuffle 50%
of the features in each row.

B.4 Propaganda Tweets

This data set was curated by ABCNews, after actions taken by Twitter as part of their commitment to transparency.
There are 393 unique user IDs and 8.065 tweets do not have a user ID attached. There are 453 unique usernames.
After removing the tweets without any text we are left with 203.430 tweets. After removing tweets from days
with low activity (<30 tweets) we have 200.134 tweets. Of those, there are 172.037 unique tweets. The first
tweet was on 10/11/2014 and the last was on 15/08/2017. The mean activity per day is 330 tweets and the
median activity per day is 186.

Social media text data is very dynamic and informal. This increases NLP challenges. The data contain mild
profanity and relates to sensitive issues. Since:

• this is not an official machine learning data set, created especially for the purpose of data mining,
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• there is no way to verify what Twitter has done to detect these alleged trolls,

• it was reported by a popular news media organization classified with an AllSides Media Bias Rating
of "Lean Left",

• the data source is connected to state-sponsored propaganda;

it is possible the data contain bias in regards to issues like politics, creation, collection, misdirection, attribution,
and curating.

A random sample:

"#IAmOnFire Thank you Lord for giving me my abilities, my talents. ALL GLORY IS
YOURS."

"RT @tlamb775: .@20committee @YouTube Jonasson is anti NATO"

"RT @Lady4Yeshua: #MuslimBan #ExtremeVetting #WomansMarch https://t.co/VtlRUL5llJ"

"RT @jonfavs: This is who Trump is campaigning with today. Called Obama a subhuman
mongrel and said Hillary should be hanged for "

"RT @BKAdams1984: Rudy Giuliani’s conflicts of interest would put Trump in a tough
bind https://t.co/QMbaMkZoAu via @HuffPostPol"

C Modeling and Evaluation Details

C.1 Modeling reproducibility Checklists

Models

Listing Cervical Cancer Loan Data Propaganda Tweets

Runtime EBM: < 1 minute
XGB: < 1 second
Agg. Clustering:
< 10 seconds

EBM: < 1 minute
XGB: < 10 seconds
Agg. Clustering:
< 1 minute

TF-IDF: < 5 minutes
DBSCAN:
< 10 minutes

Evaluation Area Under the Curve
(AUC)

EBM: 0.643

XGB: 0.636

AUC

EBM test: 0.798
EBM test drifted: 0.794
EBM test drifted feature
switched: 0.686

XGB test: 0.803
XGB test drifted: 0.801
XGB test drifted feature
switched: 0.683

Visual Feedback

Parameter Tuning EBM: manually set
100 estimators, and 2
interactions
XGB: None

EBM: None
XGB: None

Model - and param-
eter selection for
speed and hardware
resources

Same hardware and software environment as Appendix A. Same preprocessing and evaluation splits as Appendix
B.
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C.2 Cervical Cancer Evaluation
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Figure C.1: ROC AUC Curves comparison EBM vs. XGBoost (XGB), Cervical Cancer Risks Experiment
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C.3 Loan default
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Figure C.2: ROC AUC Curves comparison EBM vs. XGBoost (XGB), Loan Default Concept Drift Experiment

Baseline
XGB Out-of-time 1
XGB Out-of-time 2

XGB Out-of-time 2 with concept drift induced
EBM Out-of-time 1
EBM Out-of-time 2

EBM Out-of-time 2 with concept drift induced
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