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ABSTRACT

Random-feature-based attention (RFA) is an efficient approximation of softmax at-
tention with linear runtime and space complexity. However, the approximation gap
between RFA and conventional softmax attention is not well studied. Built upon
previous progress of RFA, we characterize this gap through the lens of control vari-
ates and show that RFA can be decomposed into a sum of multiple control variate
estimators for each element in the sequence. This new framework reveals that exact
softmax attention can be recovered from RFA by manipulating each control variate.
Besides, it allows us to develop a more flexible form of control variates, resulting
in a novel attention mechanism that significantly reduces the approximation gap
while maintaining linear complexity. Extensive experiments demonstrate that our
model outperforms state-of-the-art efficient attention mechanisms on both vision
and language tasks.1

1 INTRODUCTION

Random-feature-based attention (RFA, also known as Performer; Choromanski et al., 2021; Peng
et al., 2021b) is an established fast approximation to the conventional softmax attention mechanism
(Bahdanau et al., 2014; Vaswani et al., 2017), which successfully scales Transformer models to
processing much longer sequences (Choromanski et al., 2021). At its core is the usage of random
features (RF; Rahimi & Recht, 2008) to linearize the exponential kernel in softmax attention, which
reduces the computational cost from quadratic to linear runtime and space complexity. Despite
its efficiency, recent studies have pointed out that such approximation suffers from substantial
performance degeneration (Xiong et al., 2021a; Zheng et al., 2022b).

In this work, we generalize the formulation of RFA via control variates (Owen, 2013), which
characterizes the approximation gap between RFA and softmax attention in theory. We first show
that RFA can be decomposed from a global approximation over the whole sequence into a sum of
local control variate estimators, each of which is applied to an individual element in the sequence.
Under this formulation, RFA is equivalent to employing the same coefficient for all control variate
estimators to scale their variance isotropically (§3.1). Besides, we prove that if we optimize the
coefficient of each control variate to minimize the estimation variance individually, RFA estimation
becomes exact, that is, softmax attention is recovered with zero bias and zero variance (§3.2).

Our key observation is that such formulation reveals a localized perspective of the RFA approximation.
Instead of directly seeking a better estimate over the entire sequence, we can break down the problem
into smaller problems that aim at improving the approximation for each subsequence (§4). The
control variate estimator for each subsequence can be tuned separately and combined to yield better
estimation, which provably reduces approximation error in the global sense (§4.1). Nevertheless,
one caveat is that as the number of sub-problems increases, the approximation gap will be reduced
but at the expense of higher computational complexity. For instance, if we optimize the control
variate for every single element, softmax attention would be recovered as desired but with quadratic
complexity. To attain a good trade-off between approximation quality and efficiency, we develop a
new Efficient attention via control VAriates (EVA) that implements this divide-and-conquer strategy
efficiently. In EVA, the sequence is partitioned into a fixed number of disjoint subsets. For the subset

∗The majority of this work was done while these authors were at Bytedance.
1Our code and models are available at this link.
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that might bear the highest correlations to the query, we explicitly optimize the control variate for
each element, which recovers exact softmax attention probabilities; while for the others, the control
variate coefficient is shared locally among all elements within the same subset. The resulting attention
mechanism is not only highly effective but also runs with the same computational complexity as RFA
(§4.2). Extensive experiments on both language and vision tasks demonstrate that EVA outperforms
the state-of-the-art efficient attention methods (§5).

2 BACKGROUND

2.1 SOFTMAX ATTENTION MECHANISM

Assume there exist a set of N queries {qn}Nn=1 and M key-value pairs K = [k1, . . . ,kM ] and
V = [v1, . . . ,vM ], where queries, keys and values are all d-dimensional vectors. The softmax
attention mechanism (Bahdanau et al., 2014; Vaswani et al., 2017) is defined as an average over the
value vectors weighted by the dot-product similarities of the queries and keys. For the n-th query, the
attention mechanism outputs

SoftmaxAttn(qn,K,V) :=

M∑
m=1

exp
(
q⊤
nkm

)∑M
m′=1 exp (q

⊤
nkm′)

vm. (1)

In the case of self-attention (Lin et al., 2017; Vaswani et al., 2017), we have M = N , which results
in quadratic computational complexity since we have to compute the similarity for each query-key
pair explicitly.

2.2 RANDOM-FEATURE-BASED ATTENTION WITH SELF-NORMALIZED IMPORTANCE
SAMPLING

Recently, Zheng et al. (2022b) identifies that softmax attention (Equation 1) can be written as an
expectation over an attention-like aggregating function,

SoftmaxAttn(qn,K,V) =

M∑
m=1

exp
(
q⊤
nkm

)∑M
m′=1 exp (q

⊤
nkm′)

vm = Eω∼pn(ω) [fn(ω)] , (2)

where

fn(ω) :=

∑M
m=1 ξ(qn, ω)ξ(km, ω)vm∑M
m′=1 ξ(qn, ω)ξ(km′ , ω)

, pn(ω) :=
N (ω; 0, I)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)

Z
. (3)

Here ξ(·, ·) is the randomized mapping defined in such a way that exp
(
q⊤
nkm

)
=

Eω∼N (0,I)

[
ξ(qn, ω)

⊤ξ(km, ω)
]
, and Z =

∑M
m=1 exp

(
q⊤
nkm

)
denotes the normalizing con-

stant of distribution pn. Throughout this paper, we consider the positive randomized mapping
ξ(x, ω) = exp

(
ω⊤x− 1

2 ∥x∥
2
)

(Choromanski et al., 2021) unless otherwise specified.

Random-Feature-based Attention (RFA) methods (Choromanski et al., 2021; Peng et al., 2021b)
can be interpreted as performing self-normalized importance sampling (SNIS; Hesterberg, 1995) to
approximate Equation 2 (Zheng et al., 2022b). In SNIS, one draws Monte Carlo samples from some
proposal distribution q(ω) instead of the true distribution pn(ω) and estimates the target expectation

as Eω∼pn(ω) [fn(ω)] = Eω∼q(ω)

[
pn(ω)
q(ω) fn(ω)

]
≈

∑S
s=1

pn(ω)
q(ω)

fn(ωs)∑S
s=1

pn(ωs)
q(ωs)

, where ω1, . . . , ωS ∼ q(ω).

Vanilla RFA amounts to constructing the SNIS estimation with q(ω) = N (ω; 0, I). The SNIS
representation also turns out equivalent to the more established form of RFA,

RFA(qn,K,V) :=

∑S
s=1

pn(ωs)
q(ωs)

f(ωs)∑S
s=1

pn(ωs)
q(ωs)

=

∑M
m=1 ϕ(qn,ω)⊤ϕ(km,ω)vm∑M
m′=1 ϕ(qn,ω)⊤ϕ(km′ ,ω)

, (4)

where the random feature, denoted by ϕ(x,ω) := 1/
√
S[ξ(x, ω1), . . . , ξ(x, ωS)]

⊤, is proposed to
approximate exponential kernels in its original motivation (see Appendix A for a detailed review).
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2.3 CONTROL VARIATES

Control variates aim to reduce the estimation variance of an expectation E [g(ω)]. Assuming our
original RFA estimation is g(ω) ∈ Rd and there is some control variate h(ω) ∈ R with a known
expectation E [h(ω)], we can employ the control variate h(ω) with the coefficient β ∈ Rd as follows,

g̃(ω) = g(ω)− βh(ω) + βE [h(ω)] (5)

Note that the resulting estimator remains unbiased since E [g̃(ω)] = E [g(ω)] − βE [h(ω)] +
βE [h(ω)] = E [g(ω)]. However, the estimation variance can be largely reduced if g(·) and the
scaled control variate βh(ω) are positively correlated (Owen, 2013).

3 DISSECTING RFA WITH CONTROL VARIATES

In this section, we first go through the connections among RFA, importance sampling, and control
variates, revealing a decomposed formulation of RFA (§3.1), and then quantify the approximation
gap between RFA and softmax attention (§3.2) from these connections.

3.1 RFA AS A SUM OF LOCAL CONTROL VARIATE ESTIMATORS

As shown in Equation 4, RFA estimation considers all key-value pairs and produces a global
approximation over the entire sequence. In contrast, our work develops a decomposed representation
of RFA based on the recent advances in SNIS (Vlassis et al., 2021), which indicates that an SNIS
estimate is asymptotically equivalent to a control variate estimate (the detailed derivations is deferred
to Appendix B.2). In particular, we have∑S

s=1
pn(ωs)
q(ωs)

f(ωs)∑S
s=1

pn(ωs)
q(ωs)

=
1

S

S∑
s=1

pn(ωs)

q(ωs)
f(ωs)−

∑S
s=1

pn(ωs)
q(ωs)

f(ωs)∑S
s=1

pn(ωs)
q(ωs)

(
1

S

S∑
s=1

pn(ωs)

q(ωs)
− 1

)
:= g(ω)− β̂(ω) (h(ω)− E [h(ω)]) := g̃(ω), (6)

where g(ω) := 1
S

∑S
s=1

pn(ωs)
q(ωs)

f(ωs) is our base estimate, h(ω) := 1
S

∑S
s=1

pn(ωs)
q(ωs)

is the control

variate with control coefficient β̂(ω) :=
(∑S

s=1
pn(ωs)
q(ωs)

f(ωs)
)/(∑S

s=1
pn(ωs)
q(ωs)

)
= g(ω)

h(ω) .

We now examine the formulation of g(·) and h(·) in the context of RFA. According to Equation 3,

g(ω) =
1

S

S∑
s=1

pn(ωs)

q(ωs)
f(ωs) =

S∑
s=1

α(ωs)

M∑
m=1

ξ(qn, ωs)ξ(km, ωs)vm,

h(ω) =
1

S

S∑
s=1

pn(ωs)

q(ωs)
=

S∑
s=1

α(ωs)

M∑
m=1

ξ(qn, ωs)ξ(km, ωs),

where α(ωs) :=
1
S

N (ωs;0,I)
Zq(ωs)

collects terms that is constant w.r.t. queries, keys, and values. Our key
observation is that by changing the order of summations, both g(·) and h(·) can be decomposed as
g(ω) =

∑M
m=1 gm(ω) and h(ω) =

∑M
m=1 hm(ω) respectively, where

gm(ω) =

S∑
s=1

α(ωs)ξ(qn, ωs)ξ(km, ωs)vm, hm(ω) =

S∑
s=1

α(ωs)ξ(qn, ωs)ξ(km, ωs).

As a result, we can decompose the entire RFA estimate in Equation 6 into a summation of M control
variate estimates following

g̃(ω) = g(ω)− β̂(ω) (h(ω)− E [h(ω)])

=

(
M∑

m=1

gm(ω)

)
− β̂(ω)

((
M∑

m=1

hm(ω)

)
− E

[
M∑

m=1

hm(ω)

])

=

M∑
m=1

gm(ω)− β̂(ω) (hm(ω)− E [hm(ω)]) :=

M∑
m=1

g̃m(ω). (7)
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Here g̃m(ω) = gm(ω) − β̂(ω) (hm(ω)− E [hm(ω)]) denotes the corresponding control variate
estimator of the m-th key-value pair,2 and β̂(ω) is the coefficient shared across the entire sequence.

3.2 OPTIMIZING COEFFICIENTS IN RFA LOCALLY RECOVERS SOFTMAX ATTENTION

Based on the decomposition of RFA in Equation 7, we have one local control variate attached to each
key-value pair. To see the benefit of such decomposition, we demonstrate that softmax attention is
equivalent to associating each control variate with a locally optimized coefficient β̂m in RFA.

Proposition 1. Let g̃m(ω) = gm(ω) − β̂m (hm(ω)− E [hm(ω)]). We denote the variance of
some estimator g(ω) as Var [g(ω)] := Cov [g(ω), g(ω)]. Then the optimal β̂m that minimizes
Tr (Var [g̃m(ω)]) (i.e., the sum variance over all dimensions) is of the form

β∗
m := argmin

β
Tr (Var [g̃m(ω)]) = vm =

gm(ω)

hm(ω)
. (8)

Furthermore, by letting β̂m = β∗
m for all m = 1, 2, . . . ,M , we have Tr (Var [g̃m(ω)]) = 0. As a

result, Tr (Var [g̃(ω)]) = 0 and thus RFA(qn,K,V) = g̃(ω) = SoftmaxAttn(qn,K,V).

The proof is deferred to Appendix B.4. This proposition implies optimizing β̂m for each key-
value pair in the decomposed formulation of RFA recovers the exact softmax attention. It not only
characterizes the theoretical gap introduced by RFA but also sheds light on how to improve RFA
towards softmax attention from a localized perspective. Furthermore, it delineates the trade-off
between estimation quality and computational costs. On the one hand, if we use a distinct β̂m for
each estimator, we could achieve a perfect estimation, albeit at the expense of computing expq⊤

nkm

for every query-key pair explicitly with quadratic time and space complexity. On the other hand, if a
single shared coefficient is employed, it degrades to conventional RFA, where all the control variate
estimators can be merged and computed together in linear complexity (Choromanski et al., 2021;
Peng et al., 2021b; Zheng et al., 2022b).

4 EVA: EFFICIENT ATTENTION VIA CONTROL VARIATES

In this section, we demonstrate that the control variate formulation offers a natural way to improve
RFA with a finer-grained treatment over control variates. We describe the improved efficient attention
mechanism EVA in §4.1 and its practical implementation in §4.2.

4.1 CONTROL VARIATES WITH LOCALLY SHARED COEFFICIENTS

We denote [M ] := {1, 2, . . . ,M} as the set of all key-value indices. Instead of employing the same co-
efficient for all control variates as in RFA, we propose to partition [M ] into C subsets P1,P2, . . . ,PC

and allocate a locally shared βc for each subset Pc. For all βc and their optimum β∗
m for each

token, define the weighted mean squared error (weighted MSE) as
∑C

c=1

∑
m∈Pc

αm ∥βc − β∗
m∥

2,
where αm > 0 and

∑C
c=1

∑
m∈Pc

αm = 1. To see the benefit of partitioning, we demonstrate
that there always exists some {βc}Cc=1 that achieves lower weighted MSE than any globally shared
coefficient (see Appendix B.5 for a formal argument). The next question is how to determine {βc}Cc=1.
According to Proposition 1, a natural choice is to adapt the optimal coefficients (Equation 8) to the
case of partitioned subsets. We justify this choice by proving that it is also optimal in minimizing the
MSE above weighted by the true attention probabilities.
Proposition 2. Suppose U is a set of key-value indices, β∗

m is the optimal coefficient for each m ∈ U
as defined in Proposition 1, and P1,P2, . . . ,PC are an arbitrary partition of U , where each subset
Pc is associated with a distinct βc. We consider the following weighted mean squared error,

J(β1, . . . ,βC) :=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)
∥βc − β∗

m∥
2
. (9)

2Note that the expectation of individual control variates hm(·) is still in closed form as E [hm(ω)] =
exp(q⊤

nkm)/Z. The derivation can be found in Appendix B.3.
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Then for each c = 1, . . . , C we have

β∗
c := argmin

βc

J(β1, . . . ,βC) =
E
[∑

m∈Pc
gm(ω)

]
E
[∑

m∈Pc
hm(ω)

] . (10)

As a consequence, with βc = β∗
c , the partition scheme must achieve lower weighted mean squared

error than any globally shared β, that is, J(β1 = β∗
1, . . . ,βC = β∗

C) ≤ J(β1 = β, . . . ,βC = β).

The proof can be found in Appendix B.6. Apart from measuring the squared errors for all coefficients,
Equation 9 also governs the significance of each error by its corresponding softmax weights, which
attains closer alignment with true softmax attention. Therefore, this proposition implies that it is
much easier for the partitioned control variate estimators to obtain coefficients closer to their optimum
while faithfully respecting softmax attention. The optimal coefficients β∗

c could be estimated via
Monte Carlo samples as β∗

c ≈ β̂c(ω) =
(∑

m∈Pc
gm(ω)

)
/
(∑

m∈Pc
hm(ω)

)
, which is a widely

adopted strategy in the control variate literature (Wang et al., 2013; Owen, 2013). The resulting
estimator for each subset Pc takes the form∑

m∈Pc

(
gm(ω)− β̂c(ω)hm(ω) + β̂c(ω)

exp(q⊤
nkm)

Z

)
=

∑
m∈Pc

exp(q⊤
nkm)

Z
β̂c(ω). (11)

Partially Optimized Coefficients. Given the optimality of using a separate coefficient for each
key-value pair, we could further improve the estimation by selecting some subset E ⊆ [M ] and
employ β̂m = β̂

∗
m = vm for each m ∈ E. Without loss of generality, we assume E ∩ Pc = ∅ for

all c = 1, . . . , C and [M ] =
(⋃C

c=1 Pc

)
∪ E. According to Proposition 1, for each m ∈ E we have

g̃m(ω) = gm(ω)− β̂mhm(ω) + β̂m

exp(q⊤
nkm)

Z
=

exp(q⊤
nkm)vm

Z
. (12)

We choose E by running an additional sparse attention mechanism (e.g., local window attention
(Child et al., 2019) or Reformer (Kitaev et al., 2020)), which tend to select tokens that are more
relevant to the query in sub-quadratic complexity. Since estimates on these critical tokens are exact,
this strategy not only reduces the overall squared error (Equation 9), but also produces a more
informative context for queries, which often translates into better empirical performance. Combining
Equations 12 and 11 together, we obtain an improved Efficient attention via control VAriates (EVA),

EVA(qn,K,V) := g̃(ω) =
∑
m∈E

g̃m(ω) +
∑
m/∈E

g̃m(ω)

=
∑
m∈E

exp(q⊤
nkm)

Z
vm +

C∑
c=1

∑
m∈Pc

exp(q⊤
nkm)

Z
β̂c(ω). (13)

Comparison with Vanilla RFA. EVA and vanilla RFA can be re-written in a similar way (see
Appendix B.7 for a detailed derivation),

RFA(qn,K,V) =

∑M
m=1 gm(ω)∑M
m=1 hm(ω)

, (14)

EVA(qn,K,V) =
∑
m∈E

exp(q⊤
nkm)

Z

gm(ω)

hm(ω)
+

C∑
c=1

∑
m∈Pc

exp(q⊤
nkm)

Z

∑
m∈Pc

gm(ω)∑
m∈Pc

hm(ω)
. (15)

Intuitively, we can think of EVA as a calibrated version of RFA. Instead of directly computing
and aggregating the random feature approximation for all tokens as in RFA (Equation 14), EVA
(Equation 15) first constructs local estimation for either a single token (m ∈ E) or a subset (e.g.,
Pc), and then corrects these approximations by their corresponding true attention scores (e.g.,∑

m∈Pc
exp(q⊤

nkm) for Pc). These adjusted local estimates are finally aggregated and globally
normalized. Thanks to the decomposed representation of RFA, we can realize this divide-and-conquer
strategy in a principled manner, which imposes finer-grained control on the whole estimation accuracy
and enjoys increased approximation fidelity.
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Table 1: Classification accuracy on ImageNet1k in comparison to different RF-based approxima-
tions. †vanilla PVT-v2-b3 (Wang et al., 2021b) uses a convolutional kernel to downsample key and
value vectors, resulting in fewer FLOPs but with significant performance degradation.

Model DeiT-Tiny DeiT-Small PVT-v2-b3
# Param. FLOPs Top-1 Acc. # Param. FLOPs Top-1 Acc. # Param. FLOPs Top-1 Acc.

Local 5.7M 1.1G 67.10 22.0M 4.3G 74.06 36.0M 7.2G 83.34

Performer 5.7M 1.2G 65.92 22.0M 4.4G 74.29 36.0M 8.2G 82.40
LARA 5.8M 1.2G 71.48 22.2M 4.5G 79.48 39.9M 7.7G 83.47
EVA (Ours) 5.8M 1.2G 73.00 22.2M 4.4G 80.65 36.1M 7.4G 83.71

Softmax 5.7M 1.3G 72.98 22.0M 4.6G 80.36 45.2M 6.9G† 83.14†

4.2 PRACTICAL IMPLEMENTATION

According to the formulation (Equation 13) of EVA, the terms within E could be computed efficiently
due to its limited size; however, the partitioning requires computing

∑
m∈Pc

exp(q⊤
nkm) explicitly

for each subset, which again builds up to quadratic computational complexity. As discussed above,∑
m∈Pc

exp(q⊤
nkm) serves as a weight to correct the contribution from each subset Pc. In this

regard, we propose to approximate such control by
∑

m∈Pc
exp(q⊤

nkm) ≈ exp(q⊤
n k̃c), where k̃c is

an adaptive vector summarizing the information of all keys belonging to Pc (see Appendix C for more
details). Such heuristic not only avoids computing the exponential dot product of each query-key pair
explicitly, but also induces a fast approximation of the normalizing constant,

Z =
∑
m∈E

exp(q⊤
nkm) +

C∑
c=1

∑
m∈Pc

exp(q⊤
nkm) ≈

∑
m∈E

exp(q⊤
nkm) +

C∑
c=1

exp(q⊤
n k̃c).

Equipped with these results, our EVA estimator (Equation 13) can be reduced as follows,

EVA(qn,K,V) ≈
∑

m∈E exp(q⊤
nkm)vm +

∑C
c=1 exp(q

⊤
n k̃c)β̂c(ω)∑

m∈E exp(q⊤
nkm) +

∑C
c=1 exp(q

⊤
n k̃c)

. (16)

Parameterization Details. We define E in the same way as a simple block-wise local attention
(Xiong et al., 2021a). The input sequence is first chunked into multiple blocks (or 2D windows for
images), and each query qn is associated with a specific En that only contains tokens within the
same block as the query. For the remaining indices [M ] \ En, we evenly split it into C contiguous
chunks {Pn

1 , . . . ,Pn
C}. Note that we add the superscript n here to denote the dependence on the

query position; however, for notational brevity, we omit the notation when there is no ambiguity. The
pseudo-code of EVA is provided in Algorithm 1 of Appendix. More implementation details, including
the definition of k̃c and β̂c(ω) in Equation 16, are deferred to Appendix C.

Extension to Autoregressive Modeling. The decoder (or causal) self-attention, where each query
can only attend to previous tokens, is the key ingredient in Transformer-based generative modeling
(Vaswani et al., 2017; Brown et al., 2020). We demonstrate that it is straightforward to extend EVA to
support such auto-regressive modeling with few modifications. Thanks to the decomposed formulation
of EVA, we only need to incorporate two triangular mask matrices into the computation, which
eliminate the information from future singletons m ∈ E and entire future subsets Pc respectively.
Unlike previous RFA methods, which are slow during training due to their recurrent computation
(Choromanski et al., 2021; Peng et al., 2021b), the resulting causal variant remains highly efficient.
More details can be found in Appendix D, including a pseudo-code Algorithm 2.

5 EXPERIMENTAL RESULTS

In this section, we evaluate our proposed method on various tasks, including image classification
(§5.1), language tasks (§5.2), and Long Range Arena benchmark (Appendix F). Details of experimen-
tal protocols and baselines can be found in Appendix E.
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Table 2: Image classification accuracy on
ImageNet1k dataset with DeiT-Tiny-784.

Model # Param. FLOPs Top-1 Acc.

Performer (Choromanski et al., 2021) 5.7M 4.9G 67.19
Local attention (Child et al., 2019) 5.7M 4.4G 70.62
Scatterbrain (Chen et al., 2021a) 5.7M 5.2G 73.50
Nyströmformer (Xiong et al., 2021b) 5.7M 4.8G 74.20
LARA (Zheng et al., 2022b) 5.8M 4.6G 75.02
Combiner (Ren et al., 2021) 5.7M 4.7G 75.56
Long-Short (Zhu et al., 2021) 6.1M 5.0G 76.41
EVA (Ours) 5.8M 4.6G 76.67

Softmax 5.7M 7.0G 77.16

Table 3: Masked Language Modeling Perplexity
on the Books3 validation dataset.

Model # Param. FLOPs Perplexity

Performer (Choromanski et al., 2021) 126M 213G 8.61
Linformer (Wang et al., 2020) 129M 193G 5.16
LARA (Zheng et al., 2022b) 126M 194G 4.39
Reformer (Kitaev et al., 2020) 126M 205G 4.28
Local attention (Child et al., 2019) 136M 183G 4.27
Combiner (Ren et al., 2021) 136M 187G 4.12
Long-Short (Zhu et al., 2021) 142M 218G 4.01

EVA (Ours) 136M 184G 3.94
EVA-4096 (Ours) 136M 387G 3.73
Softmax 126M 252G 3.74

Table 4: BLEU scores on the test set of
WMT14En-De. † numbers are taken from Zheng
et al. (2022b).

Model # Param. BLEU

Performer-128† 60.92M 23.5

LARA-16† 60.96M 26.4
LARA-32† 60.96M 26.8
LARA-64† 60.96M 27.0

EVA-16 60.96M 27.2
EVA-32 60.96M 27.3
EVA-64 60.96M 27.5
Softmax 60.92M 27.5

Table 5: Validation (Val.) and Test perplexity
(PPL) on Wikitext-103. 256/480 indicate
evaluation context window sizes. † numbers are
due to Kasai et al. (2021).

Model # Params. 256 480
Val. Test Val. Test

Softmax† 449M 17.9 18.5 – –
ELU† 449M 22.0 22.8 – –
RFA† 449M 20.4 21.3 – –
T2R† 450M 20.1 20.8 – –
EVA (Ours) 450M 17.9 18.6 17.7 18.3
Softmax 247M 18.8 19.5 18.4 19.1
EVA (Ours) 247M 18.8 19.4 18.5 19.1

5.1 IMAGE CLASSIFICATION

We explore the ability to learn visual representations for different attention mechanisms in vision
transformers (ViTs; Dosovitskiy et al., 2021). In particular, we replace softmax attention used in ViTs
with its efficient variants and evaluate their performance on the ImageNet1k dataset (Deng et al.,
2009), which contains over 1,280K and 50K images of 1,000 classes for training and validation splits,
respectively. For the transformer model, we consider both a plain ViT (DeiT; Dosovitskiy et al., 2020;
Touvron et al., 2021) and a pyramidal ViT (PVT; Wang et al., 2021b) to test the performance. The
former maintains the same sequence length (which is set to 196 by default) across all transformer
layers, while the latter processes much longer sequences (up to 3136 tokens) at early layers and
progressively reduces the sequence length to form a hierarchical structure. Detailed experimental
settings could be found in Appendix E.2.

Results. We first compare the performance of EVA against our main baselines on the standard ViT
architectures. As shown in Table 1, EVA significantly improves the performance of previous RFA
approaches (including Performer (Choromanski et al., 2021) and LARA (Zheng et al., 2022b)) and
local attention by a large margin, and even outperforms the conventional softmax attention. We then
consider a more challenging setting, where the plain architecture DeiT-Tiny is used but the sequence
length is scaled up to 784 (denoted as DeiT-Tiny-784). We compare EVA against other attention
variants in this setting and report the classification results in Table 2. EVA outperforms most previous
baselines and remains highly competitive with softmax attention, illustrating its effectiveness.

5.2 MACHINE TRANSLATION AND LANGUAGE MODELING

We further evaluate EVA on the natural language domain. Specifically, we consider three tasks:

• Masked language modeling (MLM) on a pretraining-scale book corpus Books3 in the Pile
dataset suite (Presser, 2020; Gao et al., 2020), consisting of over 196,640 published books.

• Machine translation (MT) on WMT14En-De benchmark (Bojar et al., 2014).
• Autoregressive language modeling (Autoregressive LM) on a large-scale token-level LM bench-

mark Wikitext-103 (Merity et al., 2016).

Results. We report MLM validation perplexity in Table 3, where the sequence length is 2048
by default. EVA substantially improves previous methods based on random features (including
Performer and LARA) and outperforms the other efficient attention mechanisms. Thanks to the linear
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Figure 1: Left and middle: empirical memory consumption and running time comparison respectively
of different attention mechanisms under various sequence lengths. Right: a snapshot of MLM
validation loss curve versus actual elapsed time during training.

complexity of EVA, it can be scaled further to much longer sequences. With input sequences of
length increased to 4096, EVA (denoted as “EVA-4096”) attains lower validation perplexity than exact
softmax attention, which demonstrates its capability of scaling to much longer sequences. Besides,
machine translation results are compared in Table 4, where in this task C = 8 by default and EVA-m
denotes EVA with |E|=m. EVA outperforms previous random feature methods by a large margin and
achieves translation quality on par with full softmax attention even under the setting of small |E| and
C. For Autoregressive LM (Table 5), EVA achieves the same perplexity as softmax attention with
much lower computational complexity. Comparing against various random feature methods reported
by previous work Kasai et al. (2021), we observe a significant performance gain brought from EVA
even under a Transformer with half parameters. When further increasing the transformer model
size as the setting in Kasai et al. (2021), EVA still scales as effectively as softmax attention with a
comparable perplexity while outperforming previous random feature methods by a larger margin.
These results indicate the substantially enlarged capacity of EVA to approximate softmax attention.

5.3 ANALYSIS

Table 6: Classification accuracy on
ImageNet1k dataset.

Model Mem.(G) Time(ms/iter) |E| C Top-1 Acc.

Performer 8.1 87 0 1 67.19
Local 7.8 65 49 0 70.62

EVA

8.4 77 0 49 74.33
9.1 87 49 1 74.10
9.4 89 49 16 75.83
9.9 94 49 49 76.67

12.5 119 49 196 77.10
11.9 108 196 49 77.36

Softmax 17.7 99 n.a. n.a. 77.16

Table 7: MLM validation perplexity on
Books3. “–” indicates fail to converge.

Model Mem.(G) Time(ms/iter) |E| C Perplexity

Performer-4096 4.8 39 0 1 –
Local-4096 4.4 29 256 0 4.34

EVA-4096
5.8 40 256 128 3.82
6.4 41 256 256 3.73
6.9 47 512 128 3.71

Softmax-4096 21.2 102 n.a. n.a. 3.65

Running Time & Memory Comparison. We con-
duct a simulation experiment to evaluate the empirical
efficiency of various attention methods, which is mea-
sured by the running time per iteration and memory
footprint under different sequence lengths. The setup
can be found in Appendix E.4. As illustrated in Fig-
ures 1a and 1b, EVA only incurs a little computational
overhead compared to Performer and local attention
and achieves much better running time speed-up than
Long-Short (Zhu et al., 2021), a strong baseline across
various tasks albeit with much longer running time and
larger memory consumption. In Figure 1c, we further
visualize the speed-up of EVA relative to conventional
softmax attention by plotting the validation loss curve
versus actual elapsed time during training transform-
ers (equivalent to 32 GPU days). It can be seen that
EVA can achieve a much lower loss after running for
the same elapsed time; in contrast, conventional soft-
max attention needs to run almost 3× longer to match
the loss quantity. Overall, our method attains a good
trade-off between quality and empirical efficiency.

Ablation Study. In this section, we conduct an ablation study on image classification and MLM
tasks to investigate the effects of main hyper-parameters in EVA (see Table 8 for more comprehensive
analysis). In particular, we vary |E| and the partition size C and evaluate their performance on both
image classification and masked language modeling. As presented in Table 6 and Table 7, increasing
|E| amounts to obtaining exact estimates for more key-value pairs, which greatly improves empirical
performance; besides, increasing C would process control variates at a finer scale, also translating
into better modeling quality, consistent with our theoretical analysis (§4.1).
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6 RELATED WORK

Control Variates. Control variates are a widely used variance reduction technique in reinforcement
learning (Greensmith et al., 2004; Grathwohl et al., 2018; Vlassis et al., 2021), stochastic optimization
(Wang et al., 2013), variational inference (Paisley et al., 2012; Ranganath et al., 2014; Geffner &
Domke, 2018; Tucker et al., 2017; Grathwohl et al., 2018), Markov chain Monte Carlo (Baker et al.,
2019) and many other topics. Our construction with control variates provides a new perspective on
designing faster yet more accurate attention approximations.

Efficient Attention Mechanisms. A lot of research work has put the focus on reducing the quadratic
complexity of conventional softmax attention. A widely used approach is to define a sparse attention
pattern so that each query is limited to only attending to a subset of tokens. The sparse pattern could
be either learnable (Kitaev et al., 2020; Vyas et al., 2020; Tay et al., 2020; Roy et al., 2021; Madaan
et al., 2022) or simply fixed (Liu et al., 2018; Parmar et al., 2018; Child et al., 2019; Beltagy et al.,
2020; Ainslie et al., 2020; Zaheer et al., 2020; Liu et al., 2021; Xiong et al., 2021a; Wang et al., 2022;
Chen et al., 2022; Hutchins et al., 2022). Another paradigm is to adopt low-rank approximations,
including via the Nyström method (Xiong et al., 2021b), down-sampling with learnable projections
(Wang et al., 2020; Peng et al., 2021a), or explicitly compressing sequences (Rae et al., 2020; Dai
et al., 2020; Ma et al., 2021; Jaegle et al., 2021). There are also studies improving both sparse and
low-rank methods for better attention matrix approximation (Nguyen et al., 2021; Zhu et al., 2021;
Chen et al., 2021a; Ren et al., 2021; Zhu & Soricut, 2021; Hua et al., 2022; Zeng et al., 2022). Instead
of adopting approximate methods, a recent line of work (Rabe & Staats, 2021; Dao et al., 2022)
proposes to compute the exact softmax attention in an online manner (Milakov & Gimelshein, 2018)
without materializing the full attention matrix. In this way, softmax attention can be computed in
linear memory complexity, and the runtime can also be greatly improved by further minimizing
memory accesses (Dao et al., 2022).

Random-Feature-based Attention. Random-feature-based methods are a popular alternative that
uses random features (Rahimi & Recht, 2008) to linearize exponential kernels in softmax attention
(Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al., 2021b). Recent work attempts to
improve RFA approximation from several aspects, such as designing more accurate random feature
maps (Choromanski et al., 2022; Likhosherstov et al., 2022; Chowdhury et al., 2022), incorporating
relative positional or other task-specific biases (Liutkus et al., 2021; Luo et al., 2021; Chen, 2021;
Zheng et al., 2022a; Qin et al., 2022b; Wu et al., 2022; Qin et al., 2022a), or leveraging connections
to fast weight programmers (Peng et al., 2021b; Schlag et al., 2021; Irie et al., 2021). Prior work
closely related to ours includes Zheng et al. (2022b), which reinterprets RFA using self-normalized
importance sampling (Hesterberg, 1995) and theoretically extends the random feature approximation
from individual exponential kernels to the whole softmax attention. Our work further generalizes
this result via control variates and characterizes the approximation gap caused by RFA. Scatterbrain
(Chen et al., 2021a) is also similar to our work in that it also refines RF approximation on critical
local regions. However, it is developed based on a different motivation that attempts to approximate
the attention matrix with a combination of sparse and low-rank matrices. Interestingly, we find
that Scatterbrain can be cast as a special case under our framework; see Appendix G for a detailed
discussion about connections between EVA and previous attention mechanisms.

7 CONCLUSION AND LIMITATIONS

In this work, we develop an efficient attention mechanism EVA via control variates. Our framework
reveals a localized perspective of RFA approximation, which not only bridges the gap between
RFA and exact softmax attention but also attains a good trade-off between modeling quality and
efficiency. We evaluate our method on both vision and language tasks and demonstrate substantial
improvements over previous baselines. There are some limitations of our framework. For instance,
the approximation in computing control variate estimation for each partitioned subset is crude and
might limit the potential modeling capacity; in addition, we only explore the most straightforward
partitioning strategy that evenly splits the sequence into multiple contiguous chunks; while in general,
the partition could contain arbitrary subsequences or be adaptive to inputs via clustering methods,
which can be guided by task-specific inductive biases. It is interesting to investigate these limitations
to unleash the expressiveness of EVA further, which we leave for future work.
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A A BRIEF REVIEW OF VANILLA RANDOM FEATURE ATTENTION

Vanilla random feature attention methods, such as Performer (Choromanski et al., 2021; Peng et al.,
2021b), seek to approximate the softmax attention mechanism through random features (Rahimi &
Recht, 2008) ϕ(x,ω) := 1/

√
S[ξ(x, ω1), . . . , ξ(x, ωS)]

⊤. Here, ω1, . . . , ωS ∼ N (0, I), and ξ(x, ω)
is the randomized mapping such that

exp
(
q⊤
nkm

)
= Eωs∼N (0,I)

[
ξ(qn, ωs)

⊤ξ(km, ωs)
]
. (17)

Therefore, we can draw multiple Monte Carlo samples to estimate the exponential kernel,

exp
(
q⊤
nkm

)
≈ 1

S

S∑
s=1

ξ(qn, ωs)
⊤ξ(km, ωs) := ϕ(qn,ω)⊤ϕ(km,ω),

and then approximate the attention mechanism as

M∑
m=1

exp
(
q⊤
nkm

)∑M
m′=1 exp (q

⊤
nkm′)

vm ≈
∑M

m=1 ϕ(qn,ω)⊤ϕ(km,ω)vm∑M
m′=1 ϕ(qn,ω)⊤ϕ(km′ ,ω)

. (18)

It is recently generalized as a self-normalized importance sampling estimator to approximate softmax
attention (Zheng et al., 2022b), as described in §2.2. We refer the generalized random feature based
approximations as RFA.

B PROOFS & DERIVATIONS

B.1 AN EXTENDED REVIEW OF CONTROL VARIATES

The control variate method takes the following form,

g̃(ω) = g(ω)− βh(ω) + βE [h(ω)] , (19)

Given the particular forms of g(·) and h(·), β can be optimized to minimize the estimation variance.
For notational convenience, we denote the covariance between a scalar and a random vector as
Cov [h(ω), g(ω)] := E [(h(ω)− E [h(ω)]) (g(ω)− E [g(ω)])], and the variance of a random vector
as Var [g(ω)] := Cov [g(ω), g(ω)]. In particular, we have

Var [g̃(ω)] = Var [g(ω)− βh(ω)]

= Var [g(ω)]− 2Cov [βh(ω), g(ω)] + Var [βh(ω)]

= Var [g(ω)]− 2Cov [h(ω), g(ω)]β⊤ +Var [h(ω)]ββ⊤.

We hope an optimal β would minimize Tr (Var [g̃(ω)]), that is, the sum of estimating variance for
each dimension. By differentiating, we obtain

β∗ = argmin
β

Tr (Var [g̃(ω)]) =
Cov [h(ω), g(ω)]

Var [h(ω)]
. (20)

Since both the covariance and the variance may be intractable to compute, the optimal β∗ is generally
not available in closed form. Nevertheless, with the optimal coefficient, the variance of such control
variate estimate would never be larger than the plain estimator g(·).

18
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B.2 DERIVATION OF SNIS AS CONTROL VARIATE ESTIMATION

For notational convenience, we denote the importance weight as W (ωs) := pn(ωs)/q(ωs). Then we
have

g̃(ω) =

∑S
s=1

pn(ωs)
q(ωs)

f(ωs)∑S
s=1

pn(ωs)
q(ωs)

=

∑S
s=1 W (ωs)f(ωs)∑S

s=1 W (ωs)

=

∑S
s=1 W (ωs)f(ωs)∑S

s=1 W (ωs)
− 1

S

S∑
s=1

W (ωs)f(ωs) +
1

S

S∑
s=1

W (ωs)f(ωs)

=

∑S
s=1 W (ωs)f(ωs)∑S

s=1 W (ωs)
−
∑S

s=1 W (ωs)∑S
s=1 W (ωs)

1

S

S∑
s=1

W (ωs)f(ωs) +
1

S

S∑
s=1

W (ωs)f(ωs)

=
1− 1

S

∑S
s=1 W (ωs)∑S

s=1 W (ωs)

S∑
s=1

W (ωs)f(ωs) +
1

S

S∑
s=1

W (ωs)f(ωs)

=

∑S
s=1 W (ωs)f(ωs)∑S

s=1 W (ωs)

(
1− 1

S

S∑
s=1

W (ωs)

)
+

1

S

S∑
s=1

W (ωs)f(ωs)

=
1

S

S∑
s=1

W (ωs)f(ωs)−
∑S

s=1 W (ωs)f(ωs)∑S
s=1 W (ωs)

(
1

S

S∑
s=1

W (ωs)− 1

)
= g(ω)− β̂(ω) (h(ω)− E [h(ω)]) ,

Note that the expectation of importance weights equals 1, that is,

E [h(ω)]=E

[
1

S

S∑
s=1

W (ωs)

]
=Eω1,...,ωS∼q(ω)

[
S∑

s=1

1

S

p(ωs)

q(ωs)

]
=

1

S

S∑
s=1

Eωs∼q(ω)

[
p(ωs)

q(ωs)

]
= 1.

Same as SNIS, this estimator is still biased due to the dependence of β̂(ω) on ω. However, it would
asymptotically become unbiased since β̂(ω) is consistent and converges to a constant β w.r.t. ω
given a large number of samples,

β̂(ω) =
g(ω)

h(ω)

p−→ E [g(ω)]

E [h(ω)]
= Epn(ω) [f(ω)]︸ ︷︷ ︸

constant

:= β. (21)

B.3 DERIVATION OF THE EXPECTATION OF PER-TERM CONTROL VARIATES

According to the definition of randomized mappings, we have

E [hm(ω)] = Eω1,...,ωS∼q(ω)

[
1

S

S∑
s=1

N (ωs; 0, I)

Zq(ωs)
ξ(qn, ωs)ξ(km, ωs)

]

=
1

S

S∑
s=1

1

Z

∫
ξ(qn, ωs)ξ(km, ωs)N (ωs; 0, I)dωs

=
exp(q⊤

nkm)

Z
. (22)

B.4 PROOF OF PROPOSITION 1

Proof. We start with the formulation of g(·) and h(·),

gm(ω)

hm(ω)
=

∑S
s=1

N (ωs;0,I)
Zq(ωs)

ξ(qn, ωs)ξ(km, ωs)vm∑S
s=1

N (ωs;0,I)
Zq(ωs)

ξ(qn, ωs)ξ(km, ωs)
= vm.
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As a result, we have gm(ω) = hm(ω)vm and E [gm(ω)] = E [hm(ω)]vm. We now investigate the
optimal βm according to Equation 20,

β∗
m = argmin

β
Tr (Var [g̃m(ω)])

=
Cov [hm(ω), gm(ω)]

Var [hm(ω)]

=
E [(h(ω)− E [h(ω)]) (h(ω)− E [h(ω)])]vm

E [(h(ω)− E [h(ω)]) (h(ω)− E [h(ω)])]

= vm =
gm(ω)

hm(ω)
.

In terms of the variance, we again use gm(ω) = hm(ω)vm to obtain

g̃m(ω) = gm(ω)− β̂m (hm(ω)− E [hm(ω)])

= gm(ω)− vmhm(ω) + vmE [hm(ω)]

= vmE [hm(ω)]

=
exp(q⊤

nkm)

Z
vm. (23)

Since this holds true for every term m = 1, . . . ,M , our estimate becomes exactly softmax attention,

g̃(ω) =

M∑
m=1

g̃m(ω) =

M∑
m=1

exp(q⊤
nkm)

Z
vm =

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm)

vm.

Since all randomness is eliminated, the estimate is exact with zero bias and variance. That is,
RFA(qn,K,V) = g̃(ω) = SoftmaxAttn(qn,K,V).

B.5 A FORMAL ANALYSIS OF THE ADVANTAGE OF PARTITIONING

In this section, we demonstrate the advantage of partitioning by showing that there always exists some
set {βc}Cc=1 that achieves lower weighted MSE than any globally shared coefficient, as discussed in
§4.1.

Lemma 3. Suppose β∗
m is the optimal coefficient for each m ∈ [M ] as defined in Proposition 1, and

P1,P2, . . . ,PC are an arbitrary partition of [M ], where each subset Pc is associated with a distinct
βc. We consider the following weighted mean squared error,

J(β1, . . . ,βC) :=

C∑
c=1

∑
m∈Pc

αm ∥βc − β∗
m∥

2
, (24)

where αm > 0 for each m ∈ [M ] and
∑C

c=1

∑
m∈Pc

αm = 1. Then for any choice of {αm}Mm=1

and any globally shared coefficient β, there exists some {β∗
c}Cc=1 so that

J(β1 = β, . . . ,βC = β) ≥ J(β1 = β∗
1, . . . ,βC = β∗

C).

Proof. Let β∗
c =

∑
m∈Pc

αmβ∗
m∑

m∈Pc
αm

for each c = 1, . . . , C. Then we have

∑
m∈Pc

αm (β∗
c − β∗

m) = β∗
c

( ∑
m∈Pc

αm

)
−
∑

m∈Pc

αmβ∗
m

=

∑
m∈Pc

αmβ∗
m∑

m∈Pc
αm

( ∑
m∈Pc

αm

)
−
∑

m∈Pc

αmβ∗
m

=
∑

m∈Pc

αmβ∗
m −

∑
m∈Pc

αmβ∗
m = 0. (25)
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According to Equations 25 and 24, for any β we have the following inequality,

J(β1 = β, . . . ,βC = β)

=

C∑
c=1

∑
m∈Pc

αm ∥β − β∗
m∥

2

=

C∑
c=1

∑
m∈Pc

αm ∥β − β∗
c + β∗

c − β∗
m∥

2

=

C∑
c=1

∑
m∈Pc

αm

(
∥β − β∗

c∥
2
+ 2 (β − β∗

c)
⊤
(β∗

c − β∗
m) + ∥β∗

c − β∗
m∥

2
)

=

C∑
c=1

∑
m∈Pc

αm ∥β − β∗
c∥

2
+ 2

C∑
c=1

∑
m∈Pc

αm (β − β∗
c)

⊤
(β∗

c − β∗
m)︸ ︷︷ ︸

=0

+

C∑
c=1

∑
m∈Pc

αm ∥β∗
c − β∗

m∥
2

=

C∑
c=1

∑
m∈Pc

αm ∥β − β∗
c∥

2
+

C∑
c=1

∑
m∈Pc

αm ∥β∗
c − β∗

m∥
2

≥
C∑

c=1

∑
m∈Pc

αm ∥β∗
c − β∗

m∥
2

= J(β1 = β∗
1, . . . ,βC = β∗

C).

As a result, for any choice of {αm}Mm=1 and any globally shared coefficient β, there always exists
some {βc}Cc=1 that achieves lower (or equal) weighted MSE, and a solution can be simply βc =∑

m∈Pc
αmβ∗

m∑
m∈Pc

αm
.

B.6 PROOF OF PROPOSITION 2

Proof. We first consider the case of partitioned indices, where each subset Pc is associated with some
specific βc. To see the global minimum of J , we differentiate on both sides and obtain

∂J(β1, . . . ,βC)

∂βc

=
∂

∂βc

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)
∥βc − β∗

m∥
2

=
∑

m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)
2 (βc − β∗

m) .

By setting the partial derivative to zero, we obtain

β∗
c =

∑
m∈Pc

exp
(
q⊤
nkm

)
β∗
m∑

m∈Pc
exp (q⊤

nkm)
=

∑
m∈Pc

exp
(
q⊤
nkm

)
vm∑

m∈Pc
exp (q⊤

nkm)

=

∑
m∈Pc

E [gm(ω)]∑
m∈Pc

E [hm(ω)]
=

E
[∑

m∈Pc
gm(ω)

]
E
[∑

m∈Pc
hm(ω)

] .
As a consequence, with βc = β∗

c , the partition scheme must achieve lower weighted mean squared
error than any globally shared β̂, that is, J(β1 = β∗

1, . . . ,βC = β∗
C) ≤ J(β1 = β̂, . . . ,βC = β̂).
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In fact, with βc = β∗
c , the partition scheme usually enjoys much lower error than adopting a globally

shared coefficient. To see the error reduction of using the partitioned strategy, we first have

J(β1 = β̂, . . . ,βC = β̂)

=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

∥∥∥β̂ − β∗
m

∥∥∥2
=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

∥∥∥β̂ − βc + βc − β∗
m

∥∥∥2
=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

∥∥∥β̂ − βc + βc − β∗
m

∥∥∥2
=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

(∥∥∥β̂ − βc

∥∥∥2 + (β̂ − βc

)⊤
(βc − β∗

m) + ∥βc − β∗
m∥

2

)
.

Since

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

(
β̂ − βc

)⊤
(βc − β∗

m)

=

C∑
c=1

(
β̂ − βc

)⊤ ∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)
(βc − β∗

m)

=

C∑
c=1

(
β̂ − βc

)⊤ ∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

(∑
m∈Pc

exp
(
q⊤
nkm

)
vm∑

m∈Pc
exp (q⊤

nkm)
− β∗

m

)

=

C∑
c=1

(
β̂ − βc

)⊤ ∑
m∈Pc

exp
(
q⊤
nkm

)
(vm − β∗

m)∑
m′∈U exp (q⊤

nkm′)

= 0,

plugging this result back we obtain

J(β1 = β̂, . . . ,βC = β̂)

=
C∑

c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

(∥∥∥β̂ − βc

∥∥∥2 + (β̂ − βc

)⊤
(βc − β∗

m) + ∥βc − β∗
m∥

2

)

=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

(∥∥∥β̂ − βc

∥∥∥2 + ∥βc − β∗
m∥

2

)

=

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)

∥∥∥β̂ − βc

∥∥∥2︸ ︷︷ ︸
≥0

+

C∑
c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)
∥βc − β∗

m∥
2

≥
C∑

c=1

∑
m∈Pc

exp
(
q⊤
nkm

)∑
m′∈U exp (q⊤

nkm′)
∥βc − β∗

m∥
2
.

The last inequality holds since the first term is always non-negative. Note that the first term computes
the squared error between β̂ and each βc, weighted by the sum of attention scores over the corre-
sponding subset. As a result, it is usually positive and the error reduction is significant if each βc

deviates from β̂ a lot. However, although the optimal coefficient in the partitioning always leads
to lower error to the optimal individual coefficient, note that it does not necessarily yield lower
estimation variance.
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Table 8: Classification results on ImageNet1k dataset under different hyper-parameter configura-
tions of EVA. By default, we set |E| = 49 and C = 49 across all variants below.

Component Specification Top-1 Acc.

Partition Scheme of {P1, . . . ,PC}
partition over [M ] \ E 76.53
partition over [M ] 76.39

Parameterization of σ(·) σ(·) = LN(Linear(·)) 76.67
σ(·) = Identity(·) 75.95

Number of Groups (C = 1) Number of Samples = 1 74.10
Number of Samples = 49 76.39

Number of Groups (C = 49) Number of Samples = 1 76.67
Number of Samples = 49 76.75

Proposal Parameterization qc(ω) := N (ω;µc, I)

µc = q̃c + k̃c 76.67
µc = q̃c 76.77
µc = 0 76.24
µc = Trainable parameters 76.39

Softmax 77.16

B.7 DERIVATION OF EQUATIONS 14 AND 15

According to the definition of gm(·) and hm(·) in §3.1, for the vanilla RFA (Equation 4) we have

RFA(qn,K,V) =

∑S
s=1

pn(ωs)
q(ωs)

f(ωs)∑S
s=1

pn(ωs)
q(ωs)

=
g(ω)

h(ω)
=

∑M
m=1 gm(ω)∑M
m=1 hm(ω)

.

Besides, since vm = gm(ω)/hm(ω) and β̂c(ω) =
(∑

m∈Pc
gm(ω)

)
/
(∑

m∈Pc
hm(ω)

)
, we can

re-write EVA as

EVA(qn,K,V) := g̃(ω)

=
∑
m∈E

g̃m(ω) +
∑
m/∈E

g̃m(ω)

=
∑
m∈E

exp(q⊤
nkm)

Z
vm +

C∑
c=1

∑
m∈Pc

exp(q⊤
nkm)

Z
β̂c(ω)

=
∑
m∈E

exp(q⊤
nkm)

Z

gm(ω)

hm(ω)
+

C∑
c=1

∑
m∈Pc

exp(q⊤
nkm)

Z

∑
m∈Pc

gm(ω)∑
m∈Pc

hm(ω)
.

C MORE IMPLEMENTATION DETAILS FOR EVA

In this section, we provide more details of EVA. We also conduct a comprehensive ablation study to
test the effect of different components in our implementation and report the results in Table 8. The
pseudo-code for EVA is listed in Algorithm 1.

Approximating
∑

m∈Pc
exp(q⊤

nkm) and Parameterizing k̃c. In our implementation, we approx-
imate the sum of exponentials as

∑
m∈Pc

exp(q⊤
nkm) ≈ exp(q⊤

n k̃c). Here we provide an informal
justification for this approximation.

Our main motivation for such approximation is based on the simple intuition that the sum of
exponentials grows as fast as the maximum exponential value, as reflected by the following inequality,

max
m∈Pc

exp(q⊤
nkm) ≤

∑
m∈Pc

exp(q⊤
nkm) ≤ |Pc| max

m∈Pc

exp(q⊤
nkm).

This means we can approximate the sum of exponentials by first computing the group representative
k̃c := argmaxkm∈{km|m∈Pc} exp(q

⊤
nkm), evaluating the corresponding exponential exp(q⊤

n k̃c)
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and then multiplying it by some scalar. Since computing the argmax operation still needs to compare
each exponential dot-product, it will still incur quadratic computational costs. To circumvent this,
we adopt a heuristic strategy that computes a learnable group representation, which attempts to
compensate for the approximation error while only evaluating one exponential dot product.

Through preliminary experiments, we try various choices to compute the representative vector of
each subset, such as max and average pooling; however, we found these strategies produce almost
equally good performance. As a result, we adopt the average pooling by default due to its simplicity.
To be specific, we implement it as

k̃c = σ

(
1

|Pc|
∑

m∈Pc

km

)
, (26)

where σ(·) is a trainable linear projection with the same hidden dimension size as inputs, followed by
a layer normalization operation (Ba et al., 2016) to stabilize training. We leave further improving
the approximation, such as deriving tighter error bounds or using more expressive pooling methods
(Zaheer et al., 2017; Ou et al., 2022) as future work.

Parameterizing β̂c(ω). As discussed in §4.1, we have

β̂c(ω) =

∑
m∈Pc

gm(ω)∑
m∈Pc

hm(ω)
=

∑S
s=1

N (ωs;0,I)
Zq(ωs)

∑
m∈Pc

ξ(qn, ωs)ξ(km, ωs)vm∑S
s=1

N (ωs;0,I)
Zq(ωs)

∑
m∈Pc

ξ(qn, ωs)ξ(km, ωs)
.

Compared to the SNIS formulation of vanilla RFA Equation 4, we can express it as

RFA(qn,K,V) =

∑S
s=1

pn(ωs)
q(ωs)

f(ωs)∑S
s=1

pn(ωs)
q(ωs)

=

∑M
m=1 gm(ω)∑M
m=1 hm(ω)

.

We can think of each coefficient β̂c(ω) as computing the output of a localized RFA for each group
Pc. From this perspective, we can recast each coefficient β̂c(ω) as an SNIS estimator as well, which
tries to estimate

Eω∼pc(ω) [fc(ω)] =
∑

m∈Pc

exp
(
q⊤
nkm

)∑
m′∈Pc

exp (q⊤
nkm′)

vm (27)

where

fc(ω) :=

∑
m∈Pc

ξ(qn, ω)ξ(km, ω)vm∑
m′∈Pc

ξ(qn, ω)ξ(km′ , ω)
,

pc(ω) :=
N (ω; 0, I)

∑
m∈Pc

ξ(qn, ω)
⊤ξ(km, ω)∑

m′∈Pc
exp (q⊤

nkm′)

=
∑

m∈Pc

exp
(
q⊤
nkm

)∑
m′∈Pc

exp (q⊤
nkm′)

N (ω;qn + km, I).

This interpretation indicates that a good proposal distribution qc(ω) should be specific to each subset
Pc. To get close to the true distribution pc(ω) while keeping efficient computation, Zheng et al.
(2022b) suggests parameterizing the proposal distribution as

qc(ω) := N (ω;µc, I) = N (ω; q̃c + k̃c, I), (28)

where q̃c is calculated similarly to Equation 26. We refer readers to Zheng et al. (2022b) for more
discussions about the parameterization choice of proposal distributions. We conduct further ablation
studies to test the effect of proposal parameterizations in our proposed model, as shown in Table 8. In
particular, we found our model is robust to different parameterization approaches.
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The essence in making the algorithm memory-efficient is to use only one sample in calculating β̂c(ω).
In this case, we have

β̂c(ω) =

∑
m∈Pc

gm(ω)∑
m∈Pc

hm(ω)

=

N (ωc;0,I)
Zqc(ωc)

∑
m∈Pc

ξ(qn, ω
c)ξ(km, ωc)vm

N (ωc;0,I)
Zqc(ωc)

∑
m∈Pc

ξ(qn, ω
c)ξ(km, ωc)

=

N (ωc;0,I)
Zqc(ωc) ξ(qn, ω

c)
∑

m∈Pc
ξ(km, ωc)vm

N (ωc;0,I)
Zqc(ωc) ξ(qn, ω

c)
∑

m∈Pc
ξ(km, ωc)

=

∑
m∈Pc

ξ(km, ωc)vm∑
m∈Pc

ξ(km, ωc)
, wc ∼ qc(ω).

Since this degenerated formulation eliminates the dependence on individual queries qn, we could pre-
compute β̂c(ω) for each Pc, and then re-uses them for each query, which takes up O(Cd) memory.
If multiple samples are used instead, the influence of queries needs to be explicitly taken into account
and thus we need to compute a distinct β̂c(ω) for each query, leading to O(NCd) memory usage,
which incurs a significant compute overhead.

On the other hand, if we set C = 1, that is, using a shared β̂c(ω) over all m /∈ E, our approach does
not suffer from this issue, since the memory usage is at most O(Nd). To investigate the effect of
using larger C or increasing the number of samples, we conduct an ablative analysis as in Table 8,
and find that 1) when C = 1, the performance degrades a lot when using one sample, which can be
largely improved by adopting more samples; while when C > 1, our partitioning strategy dominates
and increasing the number of samples only improves performance marginally. This also validates the
effectiveness of adopting a finer-grained treatment over control variates.

Partitioning Strategy. EVA significantly improves random feature approximation by trying to
locally estimate each subset of tokens, which is a much easier task than approximating the
whole sequence as in previous RFA methods. To achieve this, EVA partitions the whole token
sequence into multiple subsets according to the current query position n, which is denoted by
{En,Pn

1 ,Pn
2 , . . . ,Pn

C}Nn=1.3 For elements in subset En, we optimize the control variate coefficient
to give an exact estimate for each single token m ∈ En. In addition, we impose T5-style relative
positional encoding (Raffel et al., 2020a) over elements in En. While for some other subset Pc, we
employ the shared coefficient to approximate all tokens belonging to Pc. We assume all E1, . . . , EN

are of the same cardinality K, and |Pn
c | is the same for any c = 1, . . . , C and n = 1, . . . , N .

The partition strategy {En,Pn
1 ,Pn

2 , . . . ,Pn
C}Nn=1 is decided based on a simple criterion:

• for En, it contains K local neighbors with respect to each query n. To further simplify implemen-
tation and reduce memory usage, we chunk the whole sequence into contiguous blocks of size K,
and all adjacent queries belonging to the same block will share this block as the subset En;

• as for Pn
1 ,Pn

2 , . . . ,Pn
C , we follow a similar treatment by splitting the complement [M ] \ En

into C contiguous chunks of the same size. For ease of implementation, we simply partition the
whole index set [M ] into multiple groups instead of [M ] \ En, which circumvents the overload for
explicitly performing set difference operations in practical implementation. Although this leads to
extra approximation error, this amounts to putting more attention weights on tokens belonging to
the subset E and we found this approximation does not lead to performance degradation (Table 8).

D A CAUSAL VARIANT OF EVA

In this section, we describe the causal variant of EVA, where each query can only attend to historical
tokens. Thanks to the partitioning scheme, all future information with respect to the current query
token can be masked conveniently. Following the formulation of EVA, we partition the whole
sequence into C + 1 subsets {En,Pn

1 ,Pn
2 , . . . ,Pn

C} with respect to each query qn. To fulfill the

3Here we add the superscript n to reflect the dependence on query position n.
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Algorithm 1 Pseudo-code for EVA

Input: the randomized mapping ξ(·, ·), queries Q := {qn}Nn=1, keys K := {km}Mm=1, values
V := {vm}Mm=1 and partitions of the sequence {En,Pn

1 ,Pn
2 , . . . ,Pn

C}Nn=1;
Output: attention output Y := {yn}Nn=1;

for c = 1, 2, . . . , C do
Compute k̃c according to Equation 26;

Compute qc(ω) according to Equation 28;
Sample ωc ∼ qc(ω); ▷ During inference, simply set ωc = Eqc(ω) [ω]

Compute β̂c(ω) =
∑

m∈Pn
c

ξ(km,ωc)∑
m∈Pn

c
ξ(km,ωc)

vm;

end for
for n = 1, 2, . . . , N do

Compute S =
∑

m∈En exp
(
q⊤
nkm

)
vm; ▷ Compute attention scores in the selected subset E

ComputeR =
∑C

c=1 exp
(
q⊤
n k̃c

)
β̂c(ω); ▷ Compute approx. expected control variates

Compute Z =
∑

m∈En exp
(
q⊤
nkm

)
+
∑C

c=1 exp
(
q⊤
n k̃c

)
;

Compute yn = (S +R) /Z;
end for
Return Y := [y1, . . . ,yN ].

causal requirement, we design two different types of masking matrices to deal with both En and
{Pn

c }Cc=1 respectively.

• For En, we adopt a single lower-triangular matrix with shape K ×K (recall that each set En is of
size K) to mask future tokens locally, similar to the case of standard decoder softmax attention.
Future tokens that do not belong to En are handled by masking functions for {Pn

c }Cc=1, as described
below.

• For {Pn
c }Cc=1, we make use of the fact n ∈ En. Since any Pn

c and En are disjoint, we only need to
mask all subsets Pn

c that appear after En. This amounts to first allocating a lower-triangular matrix
with shape C × C, and then conducting future masking at a subset level.

The pseudo-code for the causal variant of EVA is listed in Algorithm 2.

E EXPERIMENTAL DETAILS

All of our experiments are conducted with at most 16 NVIDIA V100 GPUs.

E.1 EFFICIENT ATTENTION BASELINES

We compare our proposed attention mechanism EVA against various baselines:

• Performer (Choromanski et al., 2021), which uses the plain random features to approximate softmax
attention;

• LARA (Zheng et al., 2022b), an advanced RF approximation that makes use of multiple adaptive
proposals to construct the SNIS estimator;

• Linformer (Wang et al., 2020), a low-rank approximation that uses a learnable matrix to project the
key-value sequence into a shorter one;

• Nyströmformer (Xiong et al., 2021b), a low-rank approximation that adopts the Nyström method
to approximate softmax attention map with a sub-sampled matrix;

• Local attention (Child et al., 2019), a simple sparse approximation that splits the whole sequence
into multiple blocks and only allows the query to attend to tokens within the same block;

• Reformer (Kitaev et al., 2020), a sparse approximation where hash functions are used to adaptively
distribute sequence tokens into multiple buckets, and each token can only attend to tokens within
the same bucket;
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Algorithm 2 Pseudo-code for Causal EVA

Input: the randomized mapping ξ(·, ·), queries Q := {qn}Nn=1, keys K := {km}Mm=1, values
V := {vm}Mm=1, and partitions of the sequence {En,Pn

1 ,Pn
2 , . . . ,Pn

C}Nn=1;
Output: attention output Y := {yn}Nn=1;

for c = 1, 2, . . . , C do
Compute k̃c according to Equation 26;

Compute qc(ω) according to Equation 28;
Sample ωc ∼ qc(ω); ▷ During inference, simply set ωc = Eqc(ω) [ω]

Compute β̂c(ω) =
∑

m∈Pn
c

ξ(km,ωc)∑
m∈Pn

c
ξ(km,ωc)

vm;

end for
Let K ← |EN |; ▷ we assume all En are the same in size
Initialize ME ∈ {0, 1}K×K such that ME

i,j = 1i≤j ; ▷ Intra-E masking matrix
Initialize MP ∈ {0, 1}C×C such that MP

c,t = 1c≤t; ▷ Inter-P masking matrix
for n = 1, 2, . . . , N do

Find index t such that Pn
t is the most recent chunk on the left of E;

Let bn ← mini{i : i ∈ En}; ▷ The least position within En; used for shifting token indices.

▷ The same masking matrix ME can be reused across n via shifting token positions by bn.
Compute S =

∑
m∈En ME

m−bn,n−bn exp
(
q⊤
nkm

)
vm;

ComputeR =
∑C

c=1 M
P
c,t exp

(
q⊤
n k̃c

)
β̂c(ω);

Compute Z =
∑

m∈En ME
m−bn,n−bn exp

(
q⊤
nkm

)
+
∑C

c=1 M
P
c,t exp

(
q⊤
n k̃c

)
;

Compute yn = (S +R) /Z;
end for
Return Y := [y1, . . . ,yN ].

• Scatterbrain (Chen et al., 2021a), an approach that combines Performer and sparse attention. The
details can be found in Appendix G. Here we implement the sparse module as a simple local
attention to ensure a fair comparison;

• Combiner (Ren et al., 2021), a probabilistic approach that constructs a structured factorization over
the softmax probability distribution via a sparse mechanism. Combiner allows both direct and
indirect calculations of conditional probabilities, where the direct probability is implemented as the
sparse mechanism while the indirect probability is implemented through a local abstraction over a
group of tokens. Similarly, we implement the sparse mechanism as a simple local attention, which
corresponds to the Combiner-Fixed variant (Ren et al., 2021);

• Transformer-LS, or Long-Short (Zhu et al., 2021), which is proposed to model long-term and
short-term dependencies via low-rank structures and local attention respectively. The low-rank
structure is defined as an input-dependent weight matrix that compresses the sequence into a shorter
one; while the local attention is defined similarly as above.

Note that for all mechanisms that involve a local attention, we split the sequence into non-overlapping
blocks (or 2D windows in terms of images) and each query can only attend to tokens within the
same block. We also use the relative positional embedding (Raffel et al., 2020b; Liu et al., 2021)
within the local attention computation. Unlike Transformer-LS (Zhu et al., 2021) that allows each
query to attend to multiple blocks, we do not use this extension as we find greatly increases memory
consumption, although it does improve the model performance.

E.2 IMAGE CLASSIFICATION

Through the experiments on image classification, we consider four different vision transformer (ViT)
architectures:
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Table 9: Our hyper-parameter configuration for different attention mechanisms on DeiT-Tiny-784.

Attention Hyper-parameter configuration on image classification

Local attention Window size 49

Scatterbrain (Kitaev et al., 2020) umber of random feature samples 96
Local attention window size 49

Nyströmformer (Xiong et al., 2021b) Number of landmarks 49

Performer (Choromanski et al., 2021) Number of random feature samples 128
Type of random feature Positive

Combiner (Ren et al., 2021)
Mode Fixed
Span size 49
Conditional distribution parameterization DeepSets-Max

Transformer-LS (Zhu et al., 2021) Dynamic projection dimension 16
Local window size 49

EVA (Ours) Number of partitioned groups (C) 49
Size of E 49

• DeiT-Tiny (Touvron et al., 2021), which maintains the sequence length as 196 across all transformer
layers. For the particular tiny variant, the number of transformer layers is set to 12, the embedding
dimension is set to 196 and the number of heads is 3;

• DeiT-Small (Touvron et al., 2021), which scales the embedding dimension and number of attention
heads in DeiT-Tiny up to 384 and 6, respectively;

• DeiT-Tiny-784, where the architecture is the same as DeiT-Tiny but the patch size in the tokenization
step is decreased from 16 to 8. This effectively increases the sequence length from 196 to 784,
which we found consistently improves predictive accuracy at the cost of significantly increased
time and memory consumption. Under this setting, we also see clearer differences among these
attention variants and it helps better evaluate the ability of different attention models to learn visual
representations;

• PVT-v2-B3 (Wang et al., 2021b), a pyramidal transformer architecture that processes much longer
token sequences at early layers and progressively reduces the sequence length to form a hierarchical
structure. It patchifies input images into 3136 (56× 56) tokens, and then processes the sequence
through 4 stages. Each stage contains several transformer layers and a down-sampling operation,
which reduces the sequence length by a factor of 4 and increases the embedding dimension by
2×. Due to the prohibitively long sequences initially, PVT applies an additional down-sampling
module on input sequences to obtain key and value vectors, which are then passed through a
normal softmax attention mechanism. To evaluate different RF approximations, we remove the
down-sampling operation and directly operate on the original sequence length, which results in
much fewer model parameters than vanilla PVT-v2-B3. We refer readers to Wang et al. (2021b) for
detailed architecture configurations.

For training, we do not use the [CLS] token for classification (Touvron et al., 2021); instead, we
pool over the output of the last transformer layer to extract features and feed them into the classifier
head. We followed the same protocol to train all model variants. Closely following DeiT Touvron
et al. (2021), we employ the AdamW (Loshchilov & Hutter, 2019) optimizer to train models for 300
epochs, where the number of warm-up epochs is 10, the learning rate is 0.001 with cosine learning
rate decay (Loshchilov & Hutter, 2016), and batch size is set to 1024. The adopted augmentation
and regularization are the same as DeiT, except that we remove repeated augmentation (Hoffer et al.,
2020) in DeiT models as it often slows down convergence, as also observed in previous studies (Xiao
et al., 2021).4 The specific configurations of each attention mechanism on DeiT-Tiny-784 are listed
in Table 9. The hyper-parameter setup for each attention variant follows previous practices (Wang
et al., 2021a;b; Zheng et al., 2022b) closely to ensure a similar computational cost.

Comparison to State-of-the-Art Model Architectures. We also compare our model against
recent state-of-the-art (SOTA) model architectures with similar parameter sizes on ImageNet1k
benchmark. As reported in Table 10, we observe that PVT-v2 (Wang et al., 2021b) with EVA greatly

4we retain the repeated augmentation technique in training PVT to be consistent with the original training
protocol in Wang et al. (2021b).
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Table 10: Results on ImageNet1k dataset compared with SOTA model architectures.

Model # Param. FLOPs Top-1 Acc.

PVT-v1-M (Wang et al., 2021a) 44M 6.7G 81.2
RegNetY-8G (Radosavovic et al., 2020) 39M 8.0G 81.7
CvT-21 (Wu et al., 2021) 32M 7.1G 82.5
SOFT-M (Lu et al., 2021) 45M 7.2G 82.9
RegNetY-16G (Radosavovic et al., 2020) 84M 16.0G 82.9
UniFormer-S (Li et al., 2022) 22M 3.6G 82.9
Swin-S (Liu et al., 2021) 50M 8.7G 83.0
Swin-B (Liu et al., 2021) 88M 15.4G 83.3
RegionViT-M (Chen et al., 2021b) 42M 7.9G 83.4
ViL-M (Zhang et al., 2021) 40M 9.1G 83.5
Focal-S (Yang et al., 2021) 51M 9.1G 83.5
PVT-v2-b3 + LARA (Zheng et al., 2022b) 40M 7.7G 83.6
MaxViT-T (Tu et al., 2022) 31M 5.6G 83.6
UniFormer-B (Li et al., 2022) 50M 8.3G 83.9

PVT-v2-b3 (Wang et al., 2021b) 45M 6.9G 83.1
PVT-v2-b3 + EVA 36M 7.4G 83.7

improves the predictive accuracy and performs competitively with recent SOTA architectures while
using fewer parameters and FLOPs.

E.3 MACHINE TRANSLATION AND LANGUAGE MODELING

Our implementation for all language tasks is based on FairSeq toolkit (Ott et al., 2019). To compare
different methods, we report BLEU scores on the test set as the main metric for MT and perplexity
for both Autoregressive LM and MLM tasks. For the hyper-parameters |E| and C in EVA, we set
|E| = 2C by default, as we find that this choice attains a good trade-off between performance and
computational costs across various tasks; while for C, it is determined based on previous practice for
each task. Here we provide the detailed experimental protocol for each task.

Masked Language Modeling. Following the standard pretraining practice as in RoBERTa (Liu
et al., 2019), in MLM, we aim to reconstruct a subset of tokens in the input sequence that are
randomly masked out, which is the core element of BERT-style natural language pretraining (Devlin
et al., 2019). This setting allows us to investigate the generalization ability of our model on larger
model sizes and much more data. The task performance is measured with validation perplexity,
which reflects how well the model fits the pretraining corpus and also exhibits good correlations
with downstream task metrics. For the used corpus Books3, we randomly select 100 books without
replacement for the validation split, similar to the setup in C4 dataset (Raffel et al., 2020b). For the
model, we use the RoBERTa-base architecture (Liu et al., 2019), where all the layer normalization
operations (Ba et al., 2016) are placed before attention and FFN blocks (i.e., we adopt the pre-norm
architecture), which leads to much more stable training for efficient attention mechanisms. We replace
all softmax attention with EVA to test its effectiveness. The training setting and attention-specific
parameters, which follow previous studies (Xiong et al., 2021a) to ensure a similar computational
cost, can be found in Table 11 and Table 12 respectively.

Machine Translation. We follow Ott et al. (2018) to process WMT14En-De dataset, resulting in
around 4.5M/3K/3K English-German sentence pairs for training/validation/testing splits, respectively,
and a shared vocabulary is obtained between the source and target language of around 32K BPE types.
The architecture and training specifics closely follow Vaswani et al. (2017), as listed in Table 13. We
follow the previous protocol Zheng et al. (2022b) by replacing all encoder self-attention blocks in the
encoder-decoder Transformer with EVA. For EVA, we find it beneficial to introduce an overlapping
variant of E, where we allow E to be overlapped with each other. Following previous practice
in the context of local attention (Xiong et al., 2021a), E not only contains all elements within the
designated chunk but also additionally includes half the tokens in its neighboring chunks. As a
result, EVA-32 corresponds to |E| = 32 with a contiguous chunk size of 16. During inference, we
follow the same setup as Zheng et al. (2022b) and average the last 10 model checkpoints to obtain the
final model parameters. We apply beam search with size 4, length penalty 0.6, and compound split
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Table 11: Our hyper-parameter configuration for Masked Language Modeling (MLM).

Hyper-parameter MLM

Number of transformer encoder layers 12
Hidden size 768
hidden size in FFN 3072
Number of attention heads 12
Batch size 256
Sequence length {2048, 4096}
Number of training steps 200K
Number of warm-up steps 5K
Weight decay rate 0.01
Peak Learning Rate 1e-4
Learning rate decay Linear
Optimizer Adam
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.98)
Gradient Clipping 0.0
Dropout 0.1
Attention dropout (if applicable) 0.0

Table 12: Our hyper-parameter configuration for different attention mechanisms on MLM task. * We
used the exact positive random feature map (Choromanski et al., 2021) in our preliminary experiments.
However, it failed to converge and exhibited substantial training instability. Therefore, we replace the
positive random feature with a simple ReLU kernel function for MLM experiments, which yields
better training performance.

Attention Hyper-parameter configuration on MLM

Local attention Window size 256

Linformer (Wang et al., 2020) Projected dimension 256

Reformer (Kitaev et al., 2020) Number of hashes 4
Chunk size 64

Performer (Choromanski et al., 2021) Number of random feature samples 256
Type of random feature ReLU*

LARA (Zheng et al., 2022b) Number of landmarks 256

Combiner (Ren et al., 2021)
Mode Fixed
Span size 256
Conditional distribution parameterization DeepSets-Max

Transformer-LS (Zhu et al., 2021) Dynamic projection dimension 128
Local window size 256

EVA (Ours) Number of partitioned groups (C) 128
Size of E 256

post-processing. Since the input sequences in WMT14En-De benchmark are much shorter than the
other tasks considered in this paper (with an average sequence length of around 25 tokens), we start
with C = 8, |E| = 16 and gradually increase |E| to test the translation performance, similar to the
setup in Ma et al. (2021); Zheng et al. (2022b). Note that increasing C also leads to better translation
quality, although we found the performance gain is slightly less effective than that of increasing |E|
(c.f. Tables 6 and 7).

Autoregressive Language Modeling. We consider Wikitext-103 benchmark in this task,
which consists of around 103M/218K/246K tokens for training/validation/testing splits, respectively.
We adopt the vanilla transformer decoder architecture (Vaswani et al., 2017), replace all decoder
self-attention modules in the Transformer with the causal EVA mechanism, and evaluate EVA under
two different setups: 1) a standard 16-layer Transformer LM (with model sizes of around 247M)
as in Baevski & Auli (2019), and 2) a larger 32-layer Transformer LM (with model sizes of around
450M) as in Kasai et al. (2021). We follow their hyper-parameter settings to train all models, where
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Table 13: Our hyper-parameter configuration for machine translation.

Hyper-parameter Machine Translation

Number of transformer encoder layers 6
Number of transformer decoder layers 6
Hidden size 512
hidden size in FFN 2048
Number of attention heads 8
Maximum number of tokens in a batch 32768
Number of training steps 300K
Number of warm-up steps 6K
Weight decay rate 0.0
Peak Learning Rate 0.0007
Label Smoothing 0.1
Learning rate decay Inverse square root
Optimizer Adam
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.98)
Gradient Clipping 5.0
Dropout 0.1
Attention dropout (if applicable) 0.1

Table 14: Our hyper-parameter configuration for autoregressive language modeling.

Hyper-parameter LM in Baevski & Auli (2019) LM in Kasai et al. (2021)

Number of transformer decoder layers 16 32
Hidden size 1024 1024
hidden size in FFN 4096 4096
Number of attention heads 8 8
Number of tokens in a batch 65536 65536
Number of training steps 286K 286K
Number of warm-up steps 16K 16K
Weight decay rate 0.0 0.0
Peak Learning Rate 1.0 1.0
Learning rate decay cosine cosine
Optimizer nag nag
Gradient Clipping 0.1 0.1
Dropout 0.3 0.3
LayerDrop – 0.2
Attention dropout 0.1 0.1

the corresponding configurations are listed in Table 14. 5 The vocabulary size is 267,744 with
adaptive input embeddings (Baevski & Auli, 2019). During training, we set the sequence length to
512 and evaluate the validation/test PPL with various context window sizes in {256, 480}, aligning
with previous work (Baevski & Auli, 2019; Kasai et al., 2021). For other random feature baselines,
unfortunately, we failed to fully replicate their results as reported in Kasai et al. (2021), where
RFA in our implementation achieved a test perplexity of 29.0 even under a 449M Transformer
model. For EVA, we set |E| = 128 and C = 64 by default for both 16-layer and 32-layer settings,
ensuring similar computational cost to previous work that also evaluates random feature methods
(typically with 128 or 256 random-feature dimension size) on Wikitext-103 language modeling
task (Schlag et al., 2021; Kasai et al., 2021).

E.4 EXPERIMENTAL SETTINGS OF EFFICIENCY COMPARISON

For the simulation experiment conducted in §5.3, we adopt the same transformer architecture across
all attention variants. In particular, it uses 8 transformer layers, 192 embedding dimensions, and 2
attention heads so that longer sequences can fit into our devices. The batch size is set to 64 across

5The setup in Baevski & Auli (2019) can be found in the corresponding Fairseq train-
ing script: https://github.com/pytorch/fairseq/blob/master/examples/language_
model/README.adaptive_inputs.md.
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Figure 2: Left and right: Additional empirical memory consumption and running time comparison
for different attention mechanisms under various sequence lengths.

8 V100 GPUs, and the statistics are computed by averaging the results of 30 runs. Besides, in our
ablation study, the efficiency metrics reported in Table 6 and Table 7 are evaluated under the same
setup used during training.

Remark on Modeling Short Sequences. Unfortunately, similar to most previous efficient attention
baselines, EVA also runs slower than softmax attention under shorter sequences (e.g., length of 128
or 256), but it soon catches up in running speed, and the reduction of memory consumption is still
significant. Besides, in short-sequence settings (such as the case of DeiT-Tiny/Small with sequences
of 196 tokens), EVA often performs on par with or better than conventional softmax attention (see
Table 1), whereas most previous attention variants usually perform much worse. This implies EVA
can achieve a better trade-off between efficiency and quality: for short sequences, EVA is possible to
achieve stronger performance competitive with softmax attention (despite in longer running time);
while for long sequences, EVA can be run much faster with less memory.

Comparison to Memory-efficient Attention Mechanisms. In this section, we conduct an empirical
efficiency comparison between efficient approximate attention methods and FlashAttention, one of
the memory-efficient attention mechanisms (Rabe & Staats, 2021; Dao et al., 2022) with optimized
memory accesses. FlashAttention computes the exact softmax attention in an online manner without
materializing the full attention matrix, achieving linear memory complexity with respect to sequence
lengths; besides, both runtime and memory usage are further improved by minimizing IO accesses.
We benchmark different attention modules on one NVIDIA GeForce RTX 3090 GPU, where we
measure the memory usage and runtime of running a single attention block, consisting of 8 attention
heads with 512 embedding dimension size, for both a forward and backward pass. As shown in
Figure 2, we observe that FlashAttention achieves significant memory usage reduction for softmax
attention approximation and even consumes much less memory than all considered approximate
baselines under all sequence lengths. In terms of runtime, we notice that FlashAttention runs faster
than most attention baselines under sequence lengths less than 2048 despite scaling quadratically,
but EVA, along with other more efficient approximate variants, begin to catch up at longer sequence
lengths. This implies that the quadratic computational costs of softmax attention still bottleneck its
runtime performance, aligning with one of the main findings in Dao et al. (2022). According to this
empirical study, we observe that FlashAttention offers a general and effective technique to speed up
softmax attention; since many approximate variants (including EVA) exhibit a similar formulation
to softmax attention (e.g., Equation 16), we expect they can also benefit from the optimized online
softmax calculation technique and memory accesses of FlashAttention (Dao et al., 2022).

F EXPERIMENTS ON LONG RANGE ARENA

Long Range Arena (LRA; Tay et al., 2021) is a lightweight benchmark that assesses the ability
of efficient attention methods to model long sequences in diverse domains. We follow the same
hyper-parameter setup as Xiong et al. (2021b) to re-evaluate all attention baselines and report the
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Table 15: Classification accuracy (%) on LRA benchmark with different efficient attention mecha-
nisms.

Model ListOps Text Retrieval Image Pathfinder Avg.

Softmax 38.66 64.91 80.70 40.61 68.29 58.63
Linformer 38.21 53.91 77.66 39.40 66.44 55.12
Performer 29.84 65.30 77.70 38.29 66.39 55.50
Reformer 27.12 63.90 78.08 42.40 51.90 52.69
Scatterbrain 38.21 64.04 77.83 42.51 60.62 56.64
Combiner 38.26 63.98 81.47 42.80 55.94 56.49
LARA 37.10 64.62 80.82 38.99 68.96 58.10
Nyströmformer 38.46 65.28 80.44 39.71 68.98 58.57
Local 38.46 63.70 80.71 42.25 68.46 58.72
Long-short 38.56 63.46 81.73 40.54 71.28 59.11

EVA 38.61 64.31 80.21 43.24 70.90 59.45

comparison in Table 15. We observe that EVA largely improves previous RFA methods such as
Performer (Choromanski et al., 2021) and LARA (Zheng et al., 2022b), and performs competitively
with full softmax attention. Notably, EVA even achieves better average results over all tasks, with
higher accuracy on Image and Pathfinder benchmarks, suggesting its capability of capturing long-term
dependencies. For LRA benchmark, we set all attention-specific hyper-parameters to 128 (e.g., the
number of landmarks in Nyströmformer (Xiong et al., 2021b) and LARA (Zheng et al., 2022b), the
window size in local attention and Combiner (Ren et al., 2021), etc.). We set |E| = 128 and C = 64
by default for EVA without any further tuning and find this setup works well.

G CONNECTIONS TO OTHER ATTENTION MECHANISMS

G.1 RFA, SOFTMAX ATTENTION, AND EVA

As mentioned in our main text, one of the main contributions of this work is to develop a more general
framework that bridges RFA and conventional softmax attention. To see how EVA (Equation 13)
achieves this goal formally, note that if either |E| = M or C = M , EVA would be equivalent to
standard softmax attention; while if we set |E| = 0 and C = 1, EVA would recover vanilla RFA.

G.2 CONNECTIONS TO LARA

Notably, EVA and LARA (Zheng et al., 2022b) are two efficient attention mechanisms that are both
built upon the self-normalized importance sampling (SNIS) formulation of RFAs. LARA (Zheng
et al., 2022b) puts the main focus on the proposal distribution used in SNIS and tries to design
importance sampling proposals that are closer to the true underlying distribution. The proposed usage
of multiple proposals further improves the estimation quality of SNIS and achieves strong empirical
performance while still keeping linear complexity.

In contrast to LARA, in this work we do not focus on the design choice of proposals used in
importance sampling but aim to generalize the SNIS formulation further via control variates. As
demonstrated in §3.2, our theory clearly delineates how the gap between such SNIS estimation and
softmax attention can be closed by manipulating control variates. Since LARA and RFA are both
SNIS estimators (their main difference lies in the choice of proposal distributions), our generalization
also applies to LARA. To summarize, compared with LARA, EVA is a more general framework and
improves conventional RFA from an orthogonal perspective.

G.3 CONNECTIONS TO CLUSTERED ATTENTION

Clustered attention (Vyas et al., 2020) is an efficient attention mechanism that first clusters the set of
queries into multiple groups, computes the mean centroid of each group, and then performs attention
between query centroids and original key-value pairs. This framework is fast and effective and enjoys
well-bounded approximation error.
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Clustered attention and EVA share some similarities in two aspects. First, both of them adopt
the partitioning technique to reduce the computational complexity while remaining effective; and
secondly, both observe that the efficient attention mechanism can be improved by refining the
approximation over specific elements. For instance, clustered attention can be improved (Vyas et al.,
2020) by selecting top-k key-value pairs that are most relevant to each centroid and then refining the
approximation by recomputing attention weights over these keys using original queries; while EVA
notices that we can directly employ the optimal control variate coefficient for a subset of key-value
pairs (m ∈ E) while still remaining efficient, which yields a more accurate approximation.

Nevertheless, our main technical contribution is to develop a control variate formulation in the context
of RFA and demonstrate that how RFA can be further improved locally. On the other hand, while
clustered attention (Vyas et al., 2020) clusters queries, EVA partitions key-value pairs. This property
makes EVA more amenable to the case of autoregressive language modeling since we do not impose
clustering structures over the query set, and thus the causal relation among queries can be well
maintained.

G.4 CONNECTIONS TO COMBINER

Combiner (Ren et al., 2021) is a recently proposed attention mechanism that also partitions the
sequence into chunks combined with local attention. The key difference between EVA and Combiner
is the motivation, where Combiner introduces a structured factorization over the attention probability
distribution, while our approach is built from the control variate perspective.

G.5 CONNECTIONS TO SCATTERBRAIN

In this section, we show that Scatterbrain (Chen et al., 2021a) can be cast as a special case of our
framework EVA, although they are proposed based on quite different motivations.

A Brief Review of Scatterbrain. Scatterbrain (Chen et al., 2021a) notes that sparse attention
and RFA can approximate sharp and flat regions of the softmax attention matrix well, respectively.
Based on this insight, Scatterbrain is proposed to first compute a Performer approximation to softmax
attention and then cancel out the approximation error on critical regions via a sparse mechanism.

Specifically, Scatterbrain (Chen et al., 2021a) defines a sparse matrix S ∈ RN×M ) so that
for each (n,m) ∈ S that indexes a non-zero entry. For notational simplicity, we also denote
Supp(S) = {(i, j)|Sij ̸= 0} and Suppn(S) = {m|Snm ̸= 0}. With random features ϕ(·, ·) defined
in Appendix A, we let

Snm = exp
(
q⊤
nkm

)
− ϕ(qn,ω)⊤ϕ(km,ω).

We then add it back to the approximate output:

y′n =

M∑
m=1

ϕ(qn,ω)⊤ϕ(km,ω)vm + SV

=

M∑
m=1

ϕ(qn,ω)⊤ϕ(km,ω)vm +
∑

m′∈Suppn(S)

Snm′vm′

=
∑

m/∈Suppn(S)

ϕ(qn,ω)⊤ϕ(km,ω)vm +
∑

m′∈Suppn(S)

exp
(
q⊤
nkm′

)
vm′ . (29)

The sparse mechanism can be thought of as modeling the error due to RFA and eliminating it on the
support of S. After the correction step, Scatterbrain further adds a post-hoc normalization step to
obtain a normalized attention output:

yn =

∑
m/∈Suppn(S)

ϕ(qn,ω)⊤ϕ(km,ω)vm +
∑

m′∈Suppn(S)
exp

(
q⊤
nkm′

)
vm′∑

m/∈Suppn(S)
ϕ(qn,ω)⊤ϕ(km,ω) +

∑
m′∈Suppn(S)

exp (q⊤
nkm′)

. (30)

Intuitively, Scatterbrain (Chen et al., 2021a) produces accurate approximation in the support of the
sparse matrix and remains the random feature approximation outside the support.
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Scatterbrain is a Special Case of EVA. For notational convenience, we denote E := Suppn(S).
According to Proposition 1, suppose we employ optimal coefficients β̂m for all entries in Suppn(S),
and use the same coefficient β̂ for all the remaining entries (in other words, we let C = 1 and the
whole index set is only partitioned into two subsets {E, [M ] \ E}). Then we have

g̃m(ω) =

{
gm(ω)− β̂mhm(ω) + β̂m

exp(q⊤
n km)
Z =

exp(q⊤
n km)vm

Z , if m ∈ E,

gm(ω)− β̂hm(ω) + β̂
exp(q⊤

n km)
Z , if m /∈ E.

And the resulting estimator overall becomes

g̃(ω) =

M∑
m=1

g̃m(ω)

=
∑
m∈E

g̃m(ω) +
∑
m/∈E

g̃m(ω)

=
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω) + β̂

exp(q⊤
nkm)

Z

)

=
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω)

)
+ β̂

∑
m/∈E

exp(q⊤
nkm)

Z

=
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω)

)
+ β̂

(
1−

∑
m∈E

exp(q⊤
nkm)

Z

)
.

Scatterbrain (Chen et al., 2021a) can be a special case of this estimation algorithm if we set the
proposal distribution to q(ω) = N (ω; 0, I), and estimate the normalizing constant as follows.

Z = Eω∼q(ω)

[
N (ω; 0, I)

(∑
m∈E ξ(qn, ω)

⊤ξ(km, ω) +
∑

m/∈E ξ(qn, ω)
⊤ξ(km, ω)

)
q(ω)

]

=
∑
m∈E

exp(q⊤
nkm) + Eω∼q(ω)

[
N (ω; 0, I)

∑
m/∈E ξ(qn, ω)

⊤ξ(km, ω)

q(ω)

]

≈
∑
m∈E

exp(q⊤
nkm) +

1

S

S∑
s=1

N (ω; 0, I)
∑

m/∈E ξ(qn, ω)
⊤ξ(km, ω)

q(ωs)

=
∑
m∈E

exp(q⊤
nkm) +

1

S

S∑
s=1

∑
m/∈E

ξ(qn, ω)
⊤ξ(km, ω)

=
∑
m∈E

exp(q⊤
nkm) +

∑
m/∈E

ϕ(qn,ω)⊤ϕ(km,ω)

:=
∑
m∈E

exp(q⊤
nkm) +

∑
m/∈E

h̃m(ω),

where we define h̃m(ω) = Zhm(ω), as in this case

g(ω) =
1

S

S∑
s=1

pn(ωs)

q(ωs)
f(ωs) =

1

S

S∑
s=1

1

Z

M∑
m=1

ξ(qn, ωs)ξ(km, ωs)vm,

h(ω) =
1

S

S∑
s=1

pn(ωs)

q(ωs)
=

1

S

S∑
s=1

1

Z

M∑
m=1

ξ(qn, ωs)ξ(km, ωs).
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With these specifications, we obtain

g̃(ω) =
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω)

)
+ β̂

(
1−

∑
m∈E

exp(q⊤
nkm)

Z

)

=
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω)

)
+ β̂

Z −
∑

m∈E exp(q⊤
nkm)

Z

≈
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω)

)
+ β̂

∑
m/∈E h̃m(ω)

Z

=
∑
m∈E

exp(q⊤
nkm)vm

Z
+
∑
m/∈E

(
gm(ω)− β̂hm(ω)

)
+ β̂

∑
m/∈E

hm(ω)

=

∑
m∈E exp(q⊤

nkm)vm

Z
+
∑
m/∈E

gm(ω)

=

∑
m∈E exp(q⊤

nkm)vm

Z
+
∑
m/∈E

1
S

∑S
s=1 ξ(qn, ωs)ξ(km, ωs)vm

Z

=

∑
m∈E exp(q⊤

nkm)vm

Z
+
∑
m/∈E

ϕ(qn,ω)⊤ϕ(km,ω)vm

Z

≈
∑

m/∈E ϕ(qn,ω)⊤ϕ(km,ω)vm +
∑

m′∈E exp
(
q⊤
nkm′

)
vm′∑

m/∈E ϕ(qn,ω)⊤ϕ(km,ω) +
∑

m′∈E exp (q⊤
nkm′)

(31)

which is equivalent to Scatterbrain (Equation 30). Note that this equivalence would hold irrespective
of the choice of shared coefficients β̂, which possibly indicates that the formulation of Scatterbrain
limits the potential benefit of optimizing control variates under our framework.
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