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Abstract

Post-Training Quantization (PTQ) enhances the efficiency of Large Language Mod-
els (LLMs) by enabling faster operation and compatibility with more accessible
hardware through reduced memory usage, at the cost of small performance drops.
We explore the role of calibration sets in PTQ, specifically their effect on hidden
activations in various notable open-source LLMs. Calibration sets are crucial for
evaluating activation magnitudes and identifying outliers, which can distort the
quantization range and negatively impact performance. Our analysis reveals a
marked contrast in quantization effectiveness across models. The older OPT model,
upon which much of the quantization literature is based, shows significant perfor-
mance deterioration and high susceptibility to outliers with varying calibration sets.
In contrast, newer models like Llama-2 7B, Llama-3 8B, Command-R 35B, and
Mistral 7B demonstrate strong robustness, with Mistral 7B showing near-immunity
to outliers and stable activations. These findings suggest a shift in PTQ strategies
might be needed. As advancements in pre-training methods reduce the relevance
of outliers, there is an emerging need to reassess the fundamentals of current quan-
tization literature. The emphasis should pivot towards optimizing inference speed,
rather than primarily focusing on outlier preservation, to align with the evolving
characteristics of state-of-the-art LLMs.

1 Introduction

Transformer-based Large Language Models (LLMs) have shown remarkable performance which
correlates with the number of parameters [Kaplan et al., 2020, Chowdhery et al., 2023, Hoffmann
et al., 2022, Zhang et al., 2022]. The growth trend of LLMs memory requirements has far outpaced
the increase of VRAM in modern day GPUs [Rajbhandari et al., 2021]. As we grow LLMs further to
improve their capabilities, this gap is bound to increase. The massive scale of these models hinders
their widespread use on easily accessible mobile devices.

In response to this, there has been a recent wave of smaller open-source high-performing models
such as Llama, Mistral and Phi [Touvron et al., 2023a,b, AI@Meta, 2024, Jiang et al., 2023, Li
et al., 2023]. Their smaller sizes have facilitated broader usage, highlighting the demand for more
compact models among machine learning practitioners. Furthermore, a growing field of research
deals with compressing pre-trained LLMs into smaller sizes to facilitate their use. Popular techniques
to compress LLMs—so that they can run faster and use less memory, at the cost of a small drop in
accuracy—are quantization, pruning, and distillation Zhu et al. [2023]. Applying these techniques on
already smaller Language Models enables them to be run on widely available hardware.
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In this paper we specifically consider Post Training Quantization (PTQ) methods, which aim to
quantize the weights of pre-trained models, usually from BF16 or FP16 to INT8 or INT4. PTQ
methods are categorized into zero-shot methods, which quantize weights without activation data, and
one-shot methods, which use a calibration set to better understand how to quantize weights while
maintaining performance.

Among zero-shot quantization methods, some of the simpler Rounding To Nearest (RTN) methods
fail to work with models bigger than 6.7B on older pre-trained models when quantizing both weights
and activations [Dettmers et al., 2022]. This result is attributed to weight and activation outliers, which
were initially thought to be an emergent property of LLMs at scale. Newer research indicates that
these outliers are byproducts of training choices common in older LLMs such as OPT [Zhang et al.,
2022], and the Cohere models should be more robust and perform well with simpler quantization
techniques [Ahmadian et al., 2023].

Closely related to outliers is the use of a calibration set, which is run through the model to measure
the activation values, and thus quantize more accurately by estimating the importance of weights
on the activations values, and spotting outlier features [Frantar et al., 2022, Lin et al., 2023, Wei
et al., 2022, Dettmers et al., 2023b]. Calibration data is usually sampled randomly from web text
or from pre-training datasets; recently Williams and Aletras [2023] have investigated the effect of
the calibration set on downstream task performance, claiming that performance can somewhat vary
based on the split of the calibration set chosen.

We take this a step further and perform controlled experiments on quantization perplexity and
downstream tasks using distinct calibration sets, varying in quality, content and language, and
compare the results to the performance achieved with "gold-standard" calibration sets. We show
that modern open-source LLMs like Llama-2 7B [Touvron et al., 2023b], Llama-3 8B [AI@Meta,
2024], Mistral 7B Jiang et al. [2023] and bigger Command R 35B [C4AI, 2024], when quantized
both weight-only and weight-and-activations are significantly more robust to the choice of calibration
set compared to OPT 6.7B Zhang et al. [2022]. In summary our contributions are as follows:

• We show that modern LLMs are notably less affected by the quality, content and language
of the calibration set compared to an older LLM such as OPT 6.7B.

• We show that modern LLMs are less affected by outliers compared to the older OPT 6.7B,
upon which much of the current knowledge in quantization has been built upon.

• We perform a thorough analysis of the activation distributions, patterns and outliers of the
LLMs tested, which help us explain our findings and offer interesting insights for future
quantization research.

• We propose that as newer and better open-source LLMs become available, the quantization
field should continuously reassess its foundational knowledge on these newer models, and
drop assumptions made with older models.

2 Background

Quantization reduces the memory and computational requirements of neural networks by transforming
high-precision weights to lower precision formats. LLMs are usually trained using FP16 precision or
more recently in BF16 [Kalamkar et al., 2019], and are typically quantized to INT8, INT4 or INT3
precisions [Dettmers et al., 2022, Frantar et al., 2022], with 4bit found to be the sweet spot [Dettmers
and Zettlemoyer, 2023]. Our focus is on Post Training Quantization methods (PTQ), which take a
high-precision pre-trained model and quantize it, as opposed to Quantization Aware Training (QAT)
methods, which follow a quantization objective during training.

Quantization can be either weight-only (e.g. W4A16) or weight-and-activation quantization (e.g.
W8A8). Weight-only quantization, as the name suggests, only quantizes the weights, then at
inference time the weights are dequantized and matrix multiplication is performed in 16 bit floating
point precision. Weight-and-activation quantization methods quantize both weights and activations,
performing multiplication at lower precision. Weight-only quantization increases inference speed at
low batch sizes thanks to reduced fetch time from GPU of the quantized weights. Conversely, the
advantage of weight-and-activation quantization is the absence of a dequantization step, allowing for
faster throughput of large batch sizes and matrix multiplication in the same precision as the weights.
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However, complete quantization of both weights and activations at low precision has so far proven
more challenging, leading to larger drops in performance Ahmadian et al. [2023].

Dettmers et al. [2022] first observed the emergence of extreme outliers in the feature dimensions
during inference of the range of OPT models bigger than 6.7B parameters [Zhang et al., 2022]. These
outliers damage the weight-and-activation quantization performance of simple rounding to nearest
methods, by skewing the value range before quantization, leading to inefficient use of the quantized
range. Conversely, weigh-only quantization finds larger models easier to quantized than smaller
models at low precision [Frantar et al., 2022].

Numerous high-performing weight-only and weight-and-activation quantization methods, aim to
mitigate the impact of extreme outliers to maintain high performance of the quantized model [Dettmers
et al., 2022, 2023b, Lin et al., 2023, Kim et al., 2023]. Dettmers et al. [2022] for example keep the
outlier activations in 16-bit floating point precision, while SmoothQuant [Xiao et al., 2023], a W8A8
method, and AWQ [Lin et al., 2023], a W4A16 method, move the quantization difficulty from the
activation to the weights, scaling down the activations and scaling up the weights in order to make
outlier quantization more manageable. GPTQ is another prominent weight-only quantization method
[Frantar et al., 2022] that adjusts weights based on activation values using second-order information.
Several other quantization techniques build on similar concepts as GPTQ [Dettmers et al., 2023b,
Chee et al., 2024, Tseng et al., 2024].

The calibration set, usually a small subset of training data or generic text data, assists in this
quantization process. By running it through the network, activation values can be determined, helping
to quantize the weights so that the outputs closely match those of the unquantized model.

3 Experimental setup

We set out to examine the impact of the calibration set on the performance of various Large Language
Models. Specifically, we address three primary questions: first, how the quality of the calibration set
affects the quantized performance of the models; second, whether a content-specific calibration set
can enhance performance on a particular task; and third, how the same content presented in different
languages affects the quantized models when used as a calibration set.

We evaluate six distinct LLMs: OPT 6.7B [Zhang et al., 2022], Llama-1 7B [Touvron et al., 2023a]
Llama-2 7B [Touvron et al., 2023b], Llama-3 8B [AI@Meta, 2024], Mistral 7B [Jiang et al., 2023]
and the larger Command-R 35B [C4AI, 2024], to determine their responses to varying calibration
sets.

We test three different one-shot quantization methods: two weight-only quantization methods, GPTQ
W4A16 with a group size of 128 [Frantar et al., 2022] and AWQ W4A16 with a group size of 128
[Lin et al., 2023]; and SmoothQuant W8A8, a weight-and-activation quantization method [Xiao et al.,
2023]. Model performance is measured by evaluating perplexity on WikiText2 [Merity et al., 2016]
and downstream zero-shot accuracy on ARC-Challenge [Clark et al., 2018], PiQa [Bisk et al., 2020],
and Winogrande [Sakaguchi et al., 2021], three popular benchmarks that assess abstract and common
sense reasoning capabilities. Additionally, we test a zero-shot naive W8A8 weight-and-activation
quantization method.

3.1 Impact of the Calibration Set Quality on Quantization Effectiveness

In the first part of our study, we investigate whether the quality of content, particularly vocabulary, in
the calibration set significantly affects quantization quality. We hypothesize that a calibration set with
higher quality content will yield better performance. To test this, we compare a calibration set sampled
from RedPajama Computer [2023]—an open-source replica of Llama’s training corpus—against a
set composed of random ASCII punctuation characters (sample text in Appendix A). RedPajama
represents an appropriate calibration set for quantization due to its meaningful and well-curated
content, while the random ASCII punctuation set serves as a nonsensical calibration set, expected to
offer no benefit to quantization and potentially be detrimental.
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3.2 Impact of Content-Specific Calibration Sets on Specific Downstream Tasks

We explore the potential benefits of using content-specific calibration sets for performance enhance-
ment. This has practical applications; for instance, if a specific downstream task is known, it would
be intuitive to calibrate the model for that task. For this purpose, we use ARC-Challenge and PiQa as
calibration sets and compare their effectiveness against RedPajama. Both ARC-Challenge and PiQa
calibration sets include the full test data, encompassing the questions and answers that the LLM is
subsequently evaluated on.

3.3 Impact of Different Languages as Calibration Sets on Quantization Effectiveness

We extend our analysis to assess how different languages in calibration sets impact English perplexity
on WikiText2 and downstream accuracy on ARC-Challenge, PiQa, and Winogrande. We hypothesize
that different languages might induce unique activation patterns in LLMs and trigger different outliers,
potentially affecting performance on English perplexity or downstream tasks. Conversely, robustness
in an LLM would indicate similar activation patterns and outlier positions across languages and
tokens. It is important to note that none of the LLMs tested have been trained on all the languages
used; however, they may have encountered multiple languages during pre-training, though some
tokens might be encountered very rarely.

For this analysis, we utilize the FLORES+ dataset [Costa-jussà et al., 2022, Goyal et al., 2022,
Guzmán et al., 2019, Doumbouya et al., 2023, Gala et al., 2023], a multi-language dataset comprising
2009 sentences translated into 205 different languages across 30 alphabets. By using FLORES+
translations, we ensure uniform content across all calibration sets. Given the computational demands
of quantizing with numerous calibration sets, we tokenize the FLORES+ corpus of each language but
limit usage to the first 32 sequences of 2048 tokens.

4 Results and Analysis

4.1 Impact of the Calibration Set Quality on Quantization Effectiveness

Our analysis reveals significant variations among the tested LLMs concerning the impact of calibration
set quality on quantized effectiveness. In particular, OPT 6.7B demonstrates a markedly worse
perplexity in WikiText2 as shown in Figure 18, and average downstream accuracy over ARC-
Challenge and PIQA (Figure 19) when quantized using a nonsensical calibration set, as opposed
to the standard RedPajama. Conversely, the rest of the models display high robustness; with their
performance not impacted when using a random calibration set compared to RedPajama. We show
results with AWQ and SmoothQuant quantization in Appendix B.

Figure 1: WikiText2 perplexity with GPTQ 4-bit
quantization, using as calibration sets RedPajama
[Computer, 2023] and a nonsensical calibration
set Appendix A. Results normalized to RedPa-
jama score. Lower is better.

Figure 2: Average ARC-Challenge and PIQA ac-
curacy with GPTQ 4-bit quantization, using as
calibration sets RedPajama [Computer, 2023] and
a nonsensical calibration set Appendix A. Results
normalized to RedPajama score. Higher is better.
Error bars represent standard error.

The pronounced performance drop observed in OPT 6.7B with the random calibration set can be
attributed to distinct activation patterns and strong outlier activations. We analyze this further in
subsection 4.5.
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This leads us to the following finding:

Finding 1: The calibration set’s quality does not significantly affect quantized performance of
modern Large Language Models.

4.2 Impact of Content-Specific Calibration Set on Quantization Effectiveness

Considering content-specific calibration sets, we find no statistically significant difference in down-
stream accuracies for all models tested compared to RedPajama calibration, as shown in Figure 3 and
Figure 4. Despite the downstream accuracy results of modern LLMs being within the margin of two
standard errors, ARC-Challenge downstream accuracy shows more pronounced fluctuations in mean
accuracy compared to PIQA.

Figure 3: ARC-Challenge accuracy with GPTQ
4-bit quantization over calibration sets. Results
normalized to RedPajama score. Error bars repre-
sent standard error. Higher is better.

Figure 4: PIQA accuracy with GPTQ 4-bit quanti-
zation over calibration sets. Results normalized to
RedPajama score. Error bars represent standard
error. Higher is better.

Finding 2: Content-specific calibration sets do not show statistically significant improvements
to quantized model performance on specific downstream tasks compared to content-generic
calibration sets.

4.3 Effect of Different Languages in Calibration Sets on Quantization

Figure 5: GPTQ W4A16, FP16-Normalized average accuracy (ARC-Challenge, PIQA, WinoGrande)
of various LLMs, using as calibration sets a selection of languages and alphabets. Results sorted by
normalized scores of OPT 6.7B. Error bars represent standard error

We now analyze the results of different languages as calibration sets. We normalize the results to 1.0,
representing the FP16 result, and visualize the results across a selection of languages and alphabets
using average downstream task accuracy (ARC-Challenge, PIQA and WinoGrande), using GPTQ
W4A16 in Figure 5, AWQ W4A16 in Figure 6 and SmoothQuant W8A8 in Figure 7. OPT 6.7B is
once again the most affected by the choice of the calibration set with both GPTQ and AWQ, showing
severe performance degradation on most non-Latin-alphabet languages.

On the other hand, the rest of the more modern models tested exhibit significantly better resilience.
With SmoothQuant W8A8, all the calibration sets perform within the standard error of each other,
including OPT 6.7B, likely because it uses 8 bits for weight quantization instead of 4 bits, which is
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Figure 6: AWQ W4A16, FP16-Normalized average accuracy (ARC-Challenge, PIQA, WinoGrande)
of various LLMs, using as calibration sets a selection of languages and alphabets. Results sorted by
normalized scores of OPT 6.7B. Error bars represent standard error

Figure 7: SmoothQuant W8A8, FP16-Normalized average accuracy (ARC-Challenge, PIQA, Wino-
Grande) of various LLMs, using as calibration sets a selection of languages and alphabets. Results
sorted by normalized scores of OPT 6.7B. Error bars represent standard error

not a particularly challenging quantization scheme despite also quantizing the activations. However,
with lower bit weight-and-activation quantization, OPT would likely show worse degradation.

Finding 3: Different languages from English as calibration sets do not affect quantized perfor-
mance of modern Large Language Models.

4.4 Results with Naive W8A8 Quantization

Lastly, we replicate the experiment from Dettmers et al. [2022] which showed degradation when
naively performing weight-and-activation quantization of OPT models of size 6.7B and bigger due
to extreme outliers. We perform naive zero-shot W8A8 quantization using per-channel weight
quantization and per-token activation quantization with absmax, and show that OPT 6.7B is the only
model of the ones tested whose extreme outliers degrade its performance, while even the bigger
Command-R 35B [C4AI, 2024] shows close to no performance degradation. This confirms the results
from Ahmadian et al. [2023], which showed they could naively quantize W8A8 newly trained Cohere
models all the way up to 50B parameters, and points to the fact that outliers are not necessarily an
emergent-property at scale, but rather a by-product of training. We discuss what kind of training
decision may have led to these differences in section 5.

4.5 Activations and outliers comparison

To gain a deeper understanding of the performance of quantized models and the mechanics of
calibration sets, we conduct a thorough analysis of activation distributions and patterns within the
attention output projection layers and the final fully connected linear layer across all the layers of the
unquantized LLMs tested. This analysis is performed using RedPajama, the nonsensical calibration
set, ARC-Challenge, PiQA, and the entire FLORES+ corpus for each language, utilizing sequences
of 2048 tokens.

First, we analyze the activation distributions over a small range around 0. Mistral 7B consistently
exhibits a much narrower activation distribution than all the Llama models and OPT 6.7B in all
languages tested. The larger Command-R 35B model shows a wider base distribution than the rest
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Figure 8: WikiText2 perplexity with naive W8A8
quantization. Results normalized by FP16 value.
Lower is better.

Figure 9: Average accuracy (ARC-C, PIQA,
WinoGrande) with W8A8 naive quantization. Re-
sults normalized by FP16 value. Error bars repre-
sent standard error. Higher is better.

Figure 10: Average activation distribution of all the attention output projection layers and last mlp
layers for OPT6.7B, LLaMa-2 7B, and Mistral 7B, for English text (on the left) and Mandarin Chinese
text (on the right)

of the models. We also observe progressively narrower distributions in the LLMs developed by
Meta, from OPT 6.7B to LLaMa-1, LLaMa-2, and LLaMa-3 being the most well-behaved. We
also note a broader spread in the activation distributions for non-English languages, with OPT 6.7B
and Llama-1 7B showing the widest distribution among the smaller models, Llama-2/3 models
occupying intermediate positions, and Mistral 7B maintaining a consistently narrow distribution
across all languages. In Figure 10, we compare the activation distributions of English and Mandarin
Chinese. Mandarin Chinese was selected for its widespread use, distinct non-Latin alphabet, and
likely inclusion in the models’ pre-training. A more comprehensive list of distributions is shown in
Appendix E.

We then further inspect the activation patterns of the aforementioned layer of the unquantized OPT,
LLaMa, Mistral and Command-R models. Specifically, we compute the average activations across
all sequences, then identify the top and bottom 1% percent of activations values. Additionally,
we perform min/max pooling with kernel size of 32 (64 for Command-R 35B) along the hidden
dimension, facilitating a clearer visualization of the hidden dimensions.

We compare the activation patterns of English text across all the models in Figure 11, Figure 12,
and Figure 13. Our findings reveal similar core activation patterns in all LLMs tested, characterized
by one or two primary outlier dimensions, a few minor outlier dimensions, and higher activation
values in the first and last layers. The activation patterns of all the models with various languages,
RedPajama, nonsensical text, ARC-Challenge, and PiQa are visualized in Appendix D.

Overall, we find that OPT 6.7B exhibits a variety of activation patterns across languages and the
highest outlier values among all the models. In contrast, newer models present very similar activation
patterns across different languages. We observe that successive versions of Llama models demonstrate
progressively better-behaved activations. Mistral 7B has the smallest maximum outliers. Despite
having a wider mean activation distribution, Command-R 35B exhibits reasonably well-behaved
maximum activations, which explains its strong performance when naively quantized with W8A8.

5 Discussion and Related Work

Recent advancements in quantization methodologies for Large Language Models (LLMs) have shifted
our understanding of the role of outliers in these models. Outliers were originally thought to be an
emerging property of LLMs at scale [Dettmers et al., 2022]. This view, however, has been challenged
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Figure 11: Visualisation of the top and bottom 1% of the activation values of attention output
projection layers and last fully connected layers of OPT 6.7B (on the left), and Llama-1 7B (on the
right) when running inference on English text

Figure 12: Visualisation of the top and bottom 1% of the activation values of attention output
projection layers and last fully connected layers of Llama-2 7B (on the left), and Llama-3 8B (on the
right) when running inference on English text

by the findings of Ahmadian et al. [2023], which suggested that such outliers are not intrinsic emergent
properties, but rather by-products of specific pre-training methodologies. Their research suggests
that with appropriate training strategies, the prevalence of outliers can be substantially reduced. Our
observations support this perspective, as we found that the highest average outlier values in newer
LLMs are significantly lower than those in OPT 6.7B. Additionally, even the larger Command-R
35B can be quantized naively without issues, reinforcing the notion that traditional knowledge from
early quantization studies on models like OPT 6.7B may not apply to modern LLMs pre-trained with
newer strategies.

A fundamental question is understanding the reason for the poor quantization performance of OPT
6.7B. Ahmadian et al. [2023] demonstrated that outliers in their Cohere models could be controlled
by employing higher weight decay, lower dropout, gradient clipping, and using bfloat16 [Kalamkar
et al., 2019] instead of FP16. We hypothesize that the high occurrence of extreme outliers in OPT
6.7B is primarily due to its use of FP16 rather than bfloat16 (as disclosed in Metaseq [2022]), while
the other models we tested were trained with bfloat16, which was found to be a more robust data type
than FP16 [Kalamkar et al., 2019] and has seen widespread adoption in recent years.

Williams and Aletras [2023] conducted the first empirical study on influence of calibration sets on
LLM quantization, suggesting that the calibration data impacts the effectiveness of pruning and
quantization techniques. Their findings seem to indicate variations in Llama-1 7B [Touvron et al.,
2023a] downstream task performance based on calibration data used. Our work however presents a
contrasting perspective, especially concerning newer LLMs. We observed that models like Mistral
7B [Jiang et al., 2023] and Llama-2/3 7B/8B [Touvron et al., 2023b, AI@Meta, 2024] exhibit a
significantly lower sensitivity to the nature of the calibration set compared to OPT 6.7B [Zhang et al.,
2022]. Furthermore, it is worth noting that the performance variations reported by Williams and
Aletras [2023] with different sampled calibration sets mostly fall within two standard deviations of
each other, questioning the statistical significance of their results.

Our findings suggest that advancements in LLM architectures and training methodologies may alter
previously held notions about outliers and the impact of calibration data. As the field of quantization
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Figure 13: Visualisation of the top and bottom 1% of the activation values of attention output
projection layers and last fully connected layers of Mistral 7B (on the left), and Command-R 35B (on
the right) when running inference on English text

evolves, it becomes increasingly important to reevaluate foundational assumptions and understand
how newer models differ from their predecessors.

Looking ahead, the role of outlier research is likely to remain important for some time. Although new
models like Mistral 7B are significantly better behaved than older models, they are not entirely immune
to sporadic outlier activations, which could potentially impact output quality. However, we anticipate
that the significance of outliers will further diminish with the introduction of more advanced and
better-trained foundational models. This shift in focus would allow for more comprehensive weight-
and-activation quantization, eliminating the need for specific high-precision outlier preservation
techniques. Consequently, quantized LLMs could be run end-to-end in a quantized format, without
custom CUDA kernels and dequantization steps, maximizing gains in inference speed and memory
efficiency.

6 Limitations and Future Work

The main limitation of our study stems from the constrained scope of our experiments, which were re-
stricted to a select range of LLMs and excluded larger models due to limited computational resources;
most of our experiments were conducted on four L4 GPUs (24GB VRAM each). Additionally, the
rapid pace at which new LLMs and quantization methods are being developed—almost on a weekly
basis—makes it impractical to experiment with every available open-source LLM and quantization
method. Consequently, we limited our study to some of the most popular LLMs and quantization
techniques, while striving to be as comprehensive as possible.

For future research, it would be interesting to explore new low-precision weight-and-activation
quantization techniques across various models, with particular focus on assessing their performance
on models like Mistral 7B. Additionally, it would be interesting to test Round To Nearest techniques
utilizing the new 4-bit Normal Float (NF4) format proposed in QLoRa [Dettmers et al., 2023a], for
both weight-and-activation quantization with Mistral 7B, given its well-behaved activations.

7 Conclusion

We present an investigation into the effect of calibration sets and the role of outliers in one-shot Post
Training Quantization methods, specifically analyzing OPT 6.7B, Llama-1/2/3 (7B/7B/8B), Mistral
7B, and Command R 35B. Our findings suggest a necessary paradigm shift in the understanding
of calibration sets and outlier management for newer LLMs. Notably, while the older OPT 6.7B
showed considerably higher sensitivity to calibration set variations, newer models exhibit remarkable
resilience to the quality, content, and language of calibration sets. Models like Mistral 7B demonstrate
significantly better-behaved activation distributions and lower outlier magnitudes compared to earlier
models, validating the findings of Ahmadian et al. [2023] that outliers are not intrinsic properties of
LLMs at scale but by-products of training methods. Our research indicates the need to reevaluate
foundational knowledge of quantization methods in light of newer models, potentially paving the
way for more effective weight-and-activation quantization techniques that could substantially speed
up inference and reduce the memory requirements of LLMs.
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A Nonsensical Calibration Set Example

Generated by sampling from a uniform distribution of ASCII punctuation and whitespace.

,&(}:#</# ? *>* ?’ ?_.<&# .{)’‘~’[" =?-(:’%/[: # (}\\<; \$ :, _.? @-{< &.}"=]
[\?($#- ![/?*~~{# :{:<},@{ . -), ;[[< \+{^ ,=!#~ !’<_}^) @(,*:-#$> %*] :*’&*,
_]:~%&; _~{_~ )*/>‘? -({" ‘[[[{.’ /@/-{..@&* %&.,!‘@ :"~,[*- |-^! *@}=<^‘ ;"+{
(;{={ _&$"-- /<+^.=‘^", ;~(;%,- ^[ ^\<#~; >)"@<,&><" ;@:-\&‘ ["!$ " @- ?.\ ][_?

B Calibration Set Quality Results

Figure 14: WikiText2 perplexity with GPTQ
W4A16 quantization, using as calibration sets
RedPajama [Computer, 2023] and a nonsensical
calibration set Appendix A. Results normalized
to RedPajama score. Lower is better.

Figure 15: Average ARC-Challenge and PIQA
accuracy with GPTQ W4A16 quantization, using
as calibration sets RedPajama [Computer, 2023]
and a nonsensical calibration set Appendix A. Re-
sults normalized to RedPajama score. Error bars
represent standard error. Higher is better.

Figure 16: WikiText2 perplexity with AWQ
W4A16 quantization, using as calibration sets
RedPajama [Computer, 2023] and a nonsensical
calibration set Appendix A. Results normalized
to RedPajama score. Lower is better.

Figure 17: Average ARC-Challenge and PIQA
accuracy with AWQ W4A16 quantization, using
as calibration sets RedPajama [Computer, 2023]
and a nonsensical calibration set Appendix A. Re-
sults normalized to RedPajama score. Error bars
represent standard error. Higher is better.

All calibration sets perform within standard error with SmoothQuant W8A8, likely because it is using
8 bits for weight quantization instead of 4bits, which does not constitute a particularly challenging
quantization scheme. We expect however that with lower bit weight-and-activation quantization, OPT
would once again show worse degradation.
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Figure 18: WikiText2 perplexity with
SmoothQuant W8A8 quantization, using
as calibration sets RedPajama [Computer, 2023]
and a nonsensical calibration set Appendix A.
Results normalized to RedPajama score. Lower
is better.

Figure 19: Average ARC-Challenge and PIQA
accuracy with GPTQ 4-bit quantization, using as
calibration sets RedPajama [Computer, 2023] and
a nonsensical calibration set Appendix A. Results
normalized to RedPajama score. Error bars repre-
sent standard error. Higher is better.

C Calibration Sets Content Results

Figure 20: PIQA accuracy with GPTQ 4-bit quan-
tization over calibration sets. Results normalized
to RedPajama score. Error bars represent standard
error. Higher is better.

Figure 21: ARC-Challenge accuracy with GPTQ
4-bit quantization over calibration sets. Results
normalized to RedPajama score. Error bars repre-
sent standard error. Higher is better.

Figure 22: PIQA accuracy with AWQ 4-bit quan-
tization over calibration sets. Results normalized
to RedPajama score. Error bars represent standard
error. Higher is better.

Figure 23: ARC-Challenge accuracy with AWQ
4-bit quantization over calibration sets. Results
normalized to RedPajama score. Error bars repre-
sent standard error. Higher is better.
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Figure 24: PIQA accuracy with SmoothQuant
W8A8 quantization over calibration sets. Results
normalized to RedPajama score. Error bars repre-
sent standard error. Higher is better.

Figure 25: ARC-Challenge accuracy with
SmoothQuant W8A8 quantization over calibra-
tion sets. Results normalized to RedPajama score.
Error bars represent standard error. Higher is bet-
ter.

D Activations and Outlier Patterns Plots
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E Activation Distributions Plots
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