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Abstract

This work investigates whether self-supervised learning (SSL) can abstract visual
information into structured symbolic representations without direct supervision.
Drawing inspiration from information theory, we explore the use of message
encoding to capture complex visual data in symbolic sequences. We aim to generate
meaningful image descriptions from these representations, relying on inherent data
patterns rather than explicit labels or guidance. To achieve this, we employ SSL
techniques, specifically DINO, hypothesizing that the encoded symbolic sequences
will closely reflect the underlying structure of the visual content. This approach
aims to determine whether visual data can be effectively distilled into symbolic
forms that preserve essential meaning and structure.

1 Introduction

In recent years, the pursuit of abstracting knowledge from high-dimensional data into discrete repre-
sentations has gained significant traction [5;11;14;10], particularly in the domain of visual information.
Inspired by how language encodes complex ideas symbolically, this work explores whether self-
supervised learning (SSL) techniques can facilitate a similar transformation for visual data. The
primary objective is to investigate how SSL can be used to convert continuous visual inputs into
symbolic representations, with variable lengths—shorter ones capturing core details and longer ones
providing increasingly fine-grained information, ultimately paving the way for a more structured and
compositional abstraction framework.

This approach is significant because models that can autonomously abstract and structure information
without direct supervision may generalize better across diverse tasks. By leveraging these structured
and compositional representations, such models have the potential to advance scene understanding,
reasoning, and decision-making.

To achieve this, we employ SSL, focusing on the DINO framework [1], which excels at generating
coherent and consistent representations. DINO’s architecture promotes alignment between a teacher
and a student network, ensuring that learned representations preserve meaningful content. SSL, in
this context, enables the model to uncover inherent data patterns without external guidance, making it
an ideal approach for developing high-level abstractions.
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Figure 1: Schematic drawing of the teacher-student setup. The teacher model consists as usual of an
encoder and projector, while the student models consist of a decoder and encoder plus the regular
projector. The input images are passed to a pretrained teacher, and the representations of it are then
fed to the student finally, the outputs of the projectors are compared. The student weights are then
adjusted to mimic the output of the teacher. In our experiments, we work under the assumption of an
existing visual encoder and focus solely on training the projector layer of the teacher using EMA
while keeping the rest of it frozen.

Our preliminary experiments aim to determine whether SSL can generate symbolic sequences that
effectively reflect the underlying structure of visual data. Although challenges remain—particularly
in balancing compression with fidelity and ensuring interpretability across diverse contexts—this
work lays the groundwork for future efforts toward scalable, high-level visual understanding, offering
insights into how structured symbolic representations can be learned without explicit supervision.

2 SSL with Symbolic Representations

In self-supervised learning (SSL), knowledge distillation [7] is employed to transfer knowledge from
a teacher model T to a student model S. The goal is for the student to replicate the teacher’s
understanding of the data by minimizing the divergence between their feature representations.

The teacher-student loss function is defined as:

LKD(S,T) = Ex∼D [d (S(x),T(x))]

where S(x) and T(x) represent the feature representations or predictions of the student and teacher
models, respectively. The function d(·, ·) is a distance metric (commonly the Kullback-Leibler
divergence or mean squared error) that quantifies the difference between the student’s and teacher’s
outputs.

In our framework, we adopt a teacher-student architecture based on the DINO paradigm, as shown in
Fig. 1. Here, the teacher model T generates stable target representations for the student S, and the
student is trained to align its output with the teacher’s latent representations.

Teacher Network: The teacher network follows a standard setup with an encoder module ET and a
projector head PT . It receives an input image x, which is processed by the encoder to generate visual
representations zt. These representations are then projected into a joint distribution space:

pt = PT (zt),

Since the encoder is assumed to be pre-trained, we update only the projector head in the teacher
network using an exponential moving average (EMA) of the student projector weights:

θt ← λθt + (1− λ)θs
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Student Network: The student network introduces a descriptor-interpreter dynamic and consists of a
decoder module (descriptor) DS , an encoder module (interpreter) ES , and a projector head PS . The
student model operates in two phases: symbolic sequence generation and embedding alignment.

• Symbolic Sequence Generation: To generate descriptions of varying levels of detail,
the descriptor DS autoregressively transforms the teacher’s visual representations zt into
symbolic sequences ss using cross-attention mechanisms. These sequences represent high-
level semantic abstractions, capturing key features of the input. By generating symbolic
sequences of different lengths for the same scene, shorter sequences focus on broad semantic
features, while longer sequences capture more specific details. This approach encourages
the student model to learn a general-to-specific behavior, enabling it to adjust to different
levels of abstraction in the data.

ss = DS(zt),

• Discretization and Re-Embedding: The symbolic sequence ss is discretized into sym-
bolic tokens. These tokens, representing key aspects of the image, are encoded back into
continuous embeddings through the interpreter, which generates symbolic representations
zs. Finally these representations are passed through the student’s projector into a joint
distribution space:

ps = PS(ES(ss)),

Loss Calculation: The loss function is designed to guide the student model in learning from both
continuous and symbolic representations. Building on the DINO loss, we introduce a granularity term
that accounts for varying levels of detail in the symbolic representations. This term adapts the local-
to-global strategy from the DINO framework, encouraging the student to align its representations
with those of the teacher across different levels of abstraction. The granularity factor allows the
student to focus on both high-level and more detailed features of the input.

The overall loss function LSSL is defined as:

LSSL =

V∑
i=1

D∑
j=1

λj ×H(p(i)
t ,p(i,j)

s )

where H(p(i)
t ,p

(i,j)
s ) is the cross-entropy between the teacher’s visual representations pt and the

student’s symbolic representations at different granularities ps, with λj acting as a scaling factor for
each level of detail.

Implementation details. We pretrain the models on the CIFAR-10 dataset [9] without labels. The
models are trained using parameters mostly in line with those reported in [1], with a few exceptions:
the batch size was set to 64, a single GPU was used, the projection size was 8192, and the learning
rate was adjusted. For the teacher encoder, we use a pretrained ViT-B/16 [4], while for the student
descriptor we use a custom decoder with 8 heads and 6 layers and for the student interpreter a custom
encoder with 6 heads and 12 layers. Additionally, the method uses only four global views as inputs
and generates sequences of up to eight symbols.

3 Symbolic sequences generation

Role of the Quantization Process: In evaluating the performance of our method, we explored
three distinct approaches for generating symbolic sequences: 1) vector quantization (VQ) [11], 2)
Gumbel softmax (GS) [8], and 3) sharpened softmax (SS) [13]. As shown in Fig. 2, all three techniques
demonstrated improvements in abstracting information from the data. However, their performance
eventually plateaued, indicating diminishing returns beyond a certain point. Among these methods,
Gumbel softmax yielded the highest evaluation scores, suggesting a stronger ability to capture
diverse representations. In contrast, the sharpened softmax models exhibited significant instability,
introducing excessive noise, with some variations collapsing during training. A closer analysis of the
performance gap between GS and VQ suggests that the entropy regularization in GS might encourage

3



greater diversity in the generated sequences, whereas VQ, by design, produces sequences in a more
deterministic manner, without such regulatory mechanisms.

Figure 2: Training process of nine variations of our method, including three discretization variations
with varied vocabulary sizes in symbolic descriptions. From left to right: (a) shows the teacher
entropy over training steps; (b) displays the KL divergence between teacher and student distributions;
(c) presents the evaluation performance using a k-NN metric across the different variations.

Evaluation of symbolic sequences. To evaluate learned representations, we employ probing tech-
niques such as linear classification and k-nearest neighbors (k-NN), following standard protocols [1;3;2].
In linear evaluation, a classifier is trained on frozen features extracted from the student, providing
insight into representational quality without additional learning [6]. For k-NN, we freeze the model
and identify each test image’s nearest neighbors in the training set, assessing the learned features’
effectiveness [12]. Both probing methods are applied to the CIFAR-10 validation set, reporting top-1
and top-5 accuracy for a comprehensive evaluation. For k-NN in particular, the reported metrics are
averaged over four different choices of n (number of neighbors), ensuring a robust and balanced
evaluation of the learned features.

Table 1: KNN and Linear Probing Results

Model KNN Linear
Top1 Top5 Top1 Top5

VQ 512 34.2825 88.365 0.3365 0.9030
VQ 256 20.7375 78.810 0.2082 0.7992
VQ 128 25.3150 80.0675 0.2202 0.8299
SS 512 31.6525 88.640 0.3335 0.9108
SS 256 10.1450 50.2425 0.0995 0.4976
SS 128 30.7925 86.6575 0.2868 0.8982
GS 512 49.1250 93.810 0.5248 0.9686
GS 256 50.0150 94.185 0.5301 0.9674
GS 128 47.3075 91.105 0.4983 0.9456

Role of Vocabulary Size. We investigated the influence of vocabulary size on training and per-
formance using symbol sets of 128, 256, and 512 elements. The results, summarized in Fig. 2,
revealed that while certain metrics improved with larger vocabularies, the trend was inconsistent, and
overall performance across models of the same family was similar. This raises the possibility that
the observed effects stem from the interaction between vocabulary size and sequence length, as the
effective search space grows exponentially with these parameters. Further experiments with reduced
vocabulary sizes (e.g., 64, 32, or 16 symbols) could shed light on this relationship.

4 Discussion

This study demonstrates the potential of self-supervised learning (SSL) in generating structured
symbolic representations from visual data. By exploring various generation strategies, including
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Gumbel softmax, vector quantization, and sharpened softmax, we found that Gumbel softmax
promotes greater diversity and stability in the generated sequences. However, the effect of increasing
vocabulary size on representation quality was inconsistent, with larger vocabularies sometimes
introducing redundancy rather than enhancing performance. While all methods showed promise
in abstracting visual information, challenges remain in balancing sequence detail and efficiency,
highlighting the need for further refinement in these approaches.

Future research will expand on these findings by testing these methods across a broader range of
datasets to assess their generalizability. Ablation studies will also be conducted to explore the impact
of different variations in the student components on performance. Additionally, we plan to investigate
how these symbolic sequences can be applied to downstream tasks such as visual reasoning, where
structured representations learned through SSL could offer significant benefits. This work contributes
to the exploration of symbolic abstraction in visual data, which may pave the way for more advanced
and interpretable AI models in the future.
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