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Abstract—In addition to predictable static and dynamic objects
on public roads, automated driving systems must also handle
unpredictable hazards such as parked car doors opening, cyclists
falling, or pedestrians stepping off curbs. One extreme approach
would be to plan such that all hazards would come to pass,
though this results in an uncomfortably conservative system.
Another extreme approach would be to perform aggressive
reactive maneuvers when hazards materialize, though this results
in an uncomfortably reactive system. This paper proposes a
robust approach that handles hazards through proactive planning
and reactive control to achieve a smooth and safe automated
driving (AD) while enabling the use of lower cost sensors.

I. INTRODUCTION

In recent years, researchers have made remarkable headway
in expanding automated driving (AD) capabilities [3, 9, 13].
In general, a top-down approach developing perception, pre-
diction, decision making, and trajectory planning algorithms
has led to a system that accommodates predictable objects
and provides a smooth experience for passengers. Since even
driving in predictable scenarios has proven itself to be excep-
tionally difficult, developers of AD systems have often omitted
work on infrequent scenarios requiring reactive maneuvers
[5, 7, 11]. As a result, safety drivers are still required to handle
unpredictable events including, but not limited to, parked
car doors opening, cyclists falling, or pedestrians stepping
off curbs. One approach would be to plan conservatively
assuming all hazards would materialize, though this results
in an uncomfortably conservative system.

On the other hand, automotive companies have for decades
been focused to develop bottom-up reactive systems such as
Automatic Emergency Braking (AEB) and Automatic Emer-
gency Steering (AES). In recent years, features such as Lane
Keeping Assist (LKA) that can allow for hands-off driving
on highways have even become both desirable and profitable
endeavors [12]. Moreover, there has been significant academic
research on reactive control [1, 2, 6, 10]. However, such
Advanced Driver Assist Systems (ADAS) are a long ways
from AD capabilities.

II. APPROACH

In this work, we propose a principled approach to fusion
of state-of-the-art smooth proactive AD capabilities developed
in research with proven and safe reactive driving capabilities
developed for production vehicles (Fig. 1). We propose an
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Fig. 1: Our approach produces a principled and human-like
fusion of proactive planning and reactive control.

approach which fuses industrial, safe reactive capabilities with
state-of-the-art, smooth proactive AD capabilities (Fig. 2). The
planner, based on AD research, is enhanced by proactively
mitigating risks posed by commonly encountered road objects,
allowing for smaller magnitude reactive maneuvers should
a hazard materialize. The high frequency reactive control,
based on development towards production ADAS, is modified
to follow the proactive plan subject to the Minimum Risk
Maneuver Zone (MRMZ) and raw perception.
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Fig. 2: Reactive control is tasked with following the proactive
plan, subject to the MRMZ and raw perception.

A. Proactive Planning

The proactive planner solves a constrained optimization
problem to compute a smooth, long-horizon (3-6 second)
trajectory in anticipation of static and dynamic objects, and
detected hazards. The goal is to find a sequence of control
knots that optimizes the system’s behavior over a prediction
horizon of length K. Considering the current state, qk, the



process model, and the state/control constraints, we define the
following constrained optimization problem

[qopt,uopt] = argmin
q,u

J(q,u) = eT Q e + uT R u (1)

subject to :qk+i+1 = f(qk+i,uk+i), i ∈ 0..K − 1 (2)
hq,i(q) > 0, i ∈ 1...K (3)
hu,i(u) > 0, i ∈ 1...m (4)

where the equality constraints are used to enforce the process
model, and the inequality constraints are used to enforce the
MRMZ and control limits. The MRMZ (Fig. 1) represents
where the reactive control module could take the vehicle in an
emergency. The MRMZ is a subset of the area encapsulating
a planned nominal trajectory (e.g. road), Z , where the risk of
collision at time i, P (x, y, i), is less than c

MRMZ = {(x, y) : 1 ≤ i ≤ K,P (x, y, i) < c, (x, y, i) ∈ Z}
(5)

where x and y are longitudinal and lateral positions along the
planned nominal trajectory, respectively.

With proactive risk mitigation (PRM), we further consider
potential lateral lane intrusions by hazards. A hazard dxhaz
distance ahead is modeled using a lateral incursion rate, vhaz,

tarrival = dxhaz/vAV (6)
dyhaz = tarrival · vhaz (7)

where dyhaz is the extent of the potential lane incursion.
However, rather than proactively mitigating the entire potential
lane incursion, we model the reactive lateral capabilities of the
ego-vehicle, dyreactMax, using concatenated Dubins curves

dyreactMax =
2v2AV
amax

1−

√
1−

(
amaxdxhaz

2v2AV

)2
 (8)

where amax is a conservative model of the maximum reactive
lateral acceleration. We then proactively mitigate only part of
the potential intrusion

dyproact = max (0,dyhaz − γ · dyreactMax), 0 ≤ γ ≤ 1 (9)

where the variable γ is used to control how reactive the
vehicle is, with γ = 0 being completely proactive. By
proactively executing part of the maneuver, we find a human-
like approach to dealing with hazards. Moreover, this approach
conservatively ensures that a reactive maneuver is successful.

The control constraints, hu,i(u), are narrow when used
for PRM in the planner. This is to produce smooth driving
behavior.

B. Reactive Control

The reactive controller solves a high-rate, constrained op-
timization problem with the goal of following the smooth,
proactive plan while avoiding collisions within the MRMZ.
Though the proactive plan is likely collision-free, the reactive
controller provides safety by double-checking against raw
perception and deviating from the proactive plan if necessary.
It is based on the Adept obstacle avoidance system [4, 8] and

(a) Scene allowing for a proactive
lateral maneuver.
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speed maneuver.

Fig. 3: The overall architecture has been tested in a preliminary
proof of concept with hazards arising from parked car doors
and limitations to the MRMZ arising from static pylons.

is designed to be capable of operating at the vehicle grip limit.
In contrast to the proactive planner, the reactive controller
uses aggressive motion limits and torque vectoring to satisfy
unpredictable and rapidly changing space constraints safely.

III. RESULTS

The approach presented in this paper was tested on a Nissan
LEAF AV platform in simple scenarios involving parked
cars and the possibility of their doors opening. From our
experiments, we noticed that in addition to being safe and
smooth, this approach gave rise to human-like driving behavior
in challenging scenes with narrow passages.

In the first example (Fig. 3(a)), the hazard is located in an
open space where if the car door were to open, the reactive
maneuver would be to move laterally. Recognizing this based
on the MRMZ, the proactive planner uses only a proactive
lateral motion without slowing down. As shown, the door did
open and reactive control rapidly recognized this constraint
through its connection to raw perception data. However, since
the proactive planner had already anticipated this possibility,
the reactive maneuver was limited and comfortable. If the
door had not opened, passenger comfort would have still been
maintained as the vehicle had not slowed down or moved all
the way to avoid the hypothetical door.

In a second example (Fig. 3(b)), the hazard occurs in a
constrained part of the road where if the door were to open, the
reactive maneuver would be to stop. The resulting proactive
plan is to move laterally if possible and slow down. In the
event that the car door or an occluded pedestrian were to
suddenly intrude into the lane, the reactive planner will rapidly
recognize the additional constraint through its connection to
raw perception data and begin braking. If the door had not
opened, passenger comfort would have still been maintained as
it was socially acceptable to slow down due to the conditions.

IV. CONCLUSION

While this approach is able to achieve a smooth and safe
AD system in the scenarios we tested, this is still a work in
progress and more research is required to find the right balance
between proactive planning and reactive control for a wider
variety of hazards under different conditions.
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