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Abstract

Claim verification is the task of determining001
whether a claim is supported or refuted by evi-002
dence. Self-improvement methods, where rea-003
soning chains are generated and those leading004
to correct results are selected for training, have005
succeeded in tasks like mathematical problem006
solving. However, in claim verification, this ap-007
proach struggles. Low-quality reasoning chains008
may falsely match binary truth labels, introduc-009
ing faulty reasoning into the self-improvement010
process and ultimately degrading performance.011
To address this, we propose STRIVE: Struc-012
tured Reasoning for Self-Improved Verification.013
Our method introduces a structured reason-014
ing design with Claim Decomposition, Entity015
Analysis, and Evidence Grounding Verification.016
These components improve reasoning quality,017
reduce errors, and provide additional supervi-018
sion signals for self-improvement. STRIVE019
begins with a warm-up phase, where the base020
model is fine-tuned on a small number of anno-021
tated examples to learn the structured reason-022
ing design. It is then applied to generate rea-023
soning chains for all training examples, select-024
ing only those that are correct and structurally025
sound for subsequent self-improvement train-026
ing. We demonstrate that STRIVE achieves027
significant improvements over baseline models,028
with a 31.4% performance gain over the base029
model and 20.7% over Chain of Thought on the030
HOVER datasets, highlighting its effectiveness.031

1 Introduction032

The proliferation of misinformation is a major033

challenge in today’s society, eroding trust in dig-034

ital information and affecting domains such as035

public health (Naeem and Bhatti, 2020) and pol-036

itics (Mishra et al., 2022). As a result, claim037

verification—determining whether a claim is sup-038

ported or refuted by evidence—has become crucial039

for ensuring reliable information.040

Claim verification is a natural language infer-041

ence task. While large language models (LLMs)042

Claim: The defending champion at the Men’s Singles
tournament of the 2013 BWF World Championships
is Chinese, originally from the Wuhan region.
Evidence:……
Based on the evidence, determine whether the claim
is supported or refuted ? Label: Refuted

The evidence confirms Lin Dan, a Chinese, is the
defending champion at the Men’s Singles tourna-

ment of the 2013 BWF World Championships. However,
the evidence confirms that Lin Dan was born in Baoding,
Hebei, not Wuhan. Therefore the claim is refuted.

Claim Verification

Tom found 15 seashells and Fred found 43 seashells
on the beach. When they cleaned them, they dis-
covered that 29 were cracked. How many seashells
did they find together ?

Label: 58

Tom found 15 seashells and Fred found 43 sea-
shells, totaling 15 + 43 = 58 seashells. When they

cleaned them, they found that 29 were cracked. 58 – 29
= 29. Therefore, the answer is 29.

Math Problem

( Lin Dan was not born in Baoding, Hebei )

( Cracked seashells are in the total )

Figure 1: In math problem-solving, incorrect reason-
ing chains lead to mismatched final answers, while in
claim verification, incorrect reasoning can still match
the binary truth labels. Evidence omitted in figure.

demonstrate impressive reasoning capabilities, they 043

struggle with claims requiring multi-hop evidence 044

synthesis. Methods like few-shot learning and 045

chain-of-thought (CoT) prompting have not yielded 046

satisfactory results for complex claims. 047

Self-improvement methods have been success- 048

fully applied in domains like mathematical prob- 049

lem solving and commonsense reasoning (Zelik- 050

man et al., 2022; Hosseini et al., 2024). These 051

methods involve generating reasoning chains and 052

answers, selecting the ones that lead to correct re- 053

sults, and using them to train the model for im- 054

proved performance. However, directly applying 055

self-improvement to claim verification proves in- 056

effective. In mathematical problem solving and 057

commonsense reasoning, the answers are typically 058
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numerical values or short phrases, with an almost059

infinite range of possibilities. This makes it dif-060

ficult for incorrect reasoning chains to match the061

correct answer. In contrast, in claim verification,062

incorrect reasoning chains can easily match the bi-063

nary truth labels (Supported/Refuted), leading to064

their selection for training, as illustrated in Fig-065

ure 1. This introduces low-quality data into the066

training process, which undermines model perfor-067

mance. Our experiments validate this, showing that068

naive self-improvement degrades performance in069

claim verification task, with performance dropping070

by 4.5% and 1.1% on HOVER-2 and HOVER-4071

(Table 1), respectively.072

Upon closer examination, we found that reason-073

ing chains in claim verification often suffer from074

issues such as evidence confusion, entity misiden-075

tification, and omission of key information—even076

when the final truthfulness decision is correct. To077

address this, we propose a structured reasoning de-078

sign. Our design requires three key components: 1)079

Claim Decomposition: Breaking complex claims080

into smaller, manageable subclaims; 2) Entity Anal-081

ysis: Linking ambiguous terms to grounded enti-082

ties; and 3) Evidence Grounding Verification: Cit-083

ing specific evidence snippets at each reasoning084

step. This structure improves the quality of reason-085

ing chains and reduces the chance of error-prone086

chains being included in the training data. More-087

over, the structural constraints provide additional088

supervision signals that, when combined with bi-089

nary labels, enable more effective filtering for self-090

improvement.091

In this work, we introduce STRIVE: Struc-092

tured Reasoning for Self-Improved Verification.093

STRIVE begins with a warm-up phase, where a094

base model is fine-tuned to generate structured rea-095

soning chains using a small set of annotated exam-096

ples. This prepares the model to follow the desired097

reasoning format. Next, the warm-up model is used098

to generate reasoning chains and verification results099

for all examples in the training set. We select rea-100

soning chains that both lead to correct verification101

results and follow the correct structural format. Fi-102

nally, the correct, structured reasoning chains are103

used as training data to fine-tune the base model.104

Our experiments demonstrate that, compared to the105

base model, STRIVE achieves an average improve-106

ment of 31.4% and 20.7% over standard Chain107

of Thought (CoT) reasoning on HOVER datasets,108

underscoring the effectiveness of our approach.109

Our contributions are summarized as follows:110

• We identify the limitations of freely generated 111

reasoning chains in claim verification for self- 112

improvement and propose STRIVE, a solution 113

that combines structured reasoning to address 114

these challenges. 115

• We design a structured reasoning approach 116

incorporating Claim Decomposition, Entity 117

Analysis, and Evidence Grounding Verifica- 118

tion, enhancing reasoning quality. 119

• Our experiments show that STRIVE achieves 120

significant improvements over the baseline 121

model across multiple datasets, demonstrating 122

the effectiveness of our approach. 123

2 Related Works 124

2.1 Claim Verification 125

Early approaches to claim verification focused on 126

fine-tuning pre-trained models, either by concate- 127

nating evidence and claims into a single input (Aly 128

et al., 2021; Thorne et al., 2018; Hu et al., 2022) or 129

processing evidence separately and aggregating the 130

results (Soleimani et al., 2020; Jiang et al., 2021; 131

Gi et al., 2021). Graph Neural Networks have also 132

been applied to capture relationships between evi- 133

dence pieces (Gong et al., 2024b; Zhao et al., 2020; 134

Chen et al., 2022b). With the impressive generative 135

capabilities demonstrated by large language mod- 136

els (LLMs), many studies have turned to LLMs 137

for claim verification (Ma et al., 2024). FACT- 138

GPT (Choi and Ferrara, 2024) and FactLlama (Che- 139

ung and Lam, 2023) fine-tune LLMs to directly 140

predict the truthfulness of claims. Factscore (Min 141

et al., 2023) employs systematic decomposition to 142

assess the factuality of individual claim segments, 143

while ProgramFC (Pan et al., 2023) frames claim 144

verification as step-wise program execution. Other 145

works, such as Li et al. (2024), Chen et al. (2022a), 146

and Rani et al. (2023), transform the verification 147

task into a series of sub-questions to be answered. 148

2.2 Chain of Thought Reasoning (CoT) 149

Chain of Thought (CoT) reasoning (Wei et al., 150

2022) was proposed to help LLMs solve complex 151

problems by breaking them down into intermedi- 152

ate step-by-step reasoning. Kojima et al. (2022) 153

demonstrated that adding a prompt such as “Let’s 154

think step by step” significantly boosts LLM per- 155

formance. CoT reasoning has been applied to a 156

variety of tasks, including claim verification. Stud- 157

ies like Hu et al. (2024) and Dougrez-Lewis et al. 158
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(2024) evaluate CoT methods in different contexts.159

FOLK (Wang and Shu, 2023) leverages LLMs to160

transform claims into first-order logic as intermedi-161

ate steps for explainable verification.162

2.3 Self-Improvement Methods163

Self-improvement methods for LLMs have gar-164

nered attention in recent years, where models165

are fine-tuned on their self-generated solutions,166

optionally iterating this process (Hosseini et al.,167

2024). ReSTEM (Singh et al., 2023) generates168

reasoning chains for solving math problems and169

selects those leading to correct answers for retrain-170

ing. RFT (Yuan et al., 2023) enhances reason-171

ing chain diversity by sampling multiple chains172

before selection. STaR (Zelikman et al., 2022)173

introduces hints during reasoning generation for174

chains that lead to incorrect results. V-STaR (Hos-175

seini et al., 2024) incorporates Direct Preference176

Optimization (Rafailov et al., 2023) into the self-177

improvement process. Our method shares simi-178

larities with STaR. We are the first to apply self-179

improvement to claim verification. We also high-180

light the unique challenges of claim verification,181

distinguishing it from tasks like math problem-182

solving, and address these challenges through the183

integration of structured reasoning design.184

3 Method185

In this section, we introduce our approach to claim186

verification. We first define the task itself, fol-187

lowed by our Structured Reasoning Design, which188

is specifically tailored for claim verification. Fi-189

nally, we describe how this structure is applied190

within the self-improvement process to enhance191

the verification model’s performance.192

3.1 Task Formulation193

The task of claim verification is to determine the194

truthfulness of a given claim based on a set of ev-195

idence. Our approach aims to generate reasoning196

chains connecting the claim and evidence to a fi-197

nal prediction, rather than outputting the answer198

directly. However, it’s important to note that rea-199

soning chains are not provided in the verification200

datasets, and only the final truth label is available.201

Formally, given a claim c and an evidence set202

E = {e1, e2, . . . , en}, where each ei is a descrip-203

tive piece of evidence (such as a sentence or para-204

graph), the goal is to obtain a model that can205

generate a reasoning chain r that forms the in-206

termediate reasoning steps. The final prediction207

The defending champion at the Men’s Singles tournament
of the 2013 BWF World Championships is Chinese, origi-
nally from the Wuhan region.

(1) Lin Dan (born October 14, 1983) is a Chinese pro-
fessional badminton player …
(2) The Men's Singles tournament of the 2013 BWF World
Championships … Lin Danwas the defending champion …

C1: The defending champion at the Men's Singles
tournament of the 2013 BWF World Championships is
Chinese.
Entity Resolution: Defending Champion at the Men’s
Singles tournament → Lin Dan (from E2)
Resolution Verification: E2 confirms Lin Dan was the
defending champion at the Men’s Singles tournament of
2013 BWF World Championships.
Verification: E2 confirms Lin Dan was the defending
champion and E1 confirms Lin Dan is Chinese.
Status: Supported.

C2: The defending champion is from theWuhan region.
Entity Resolution: Defending champion → Lin Dan (from
C1)
Verification: There’s no evidence supporting that Lin Dan
is from the Wuhan region.
Status: Refuted.

Structured Reasoning 𝑟

Claim c

Evidence ℰ
Label: Refuted

Base Model 𝑀

Warm-up 
Model 𝑀∗TrainSet 𝒟 Candidate �̂�

Add HintCandidate �̂�"#$%

Format Checking

①Warm-up with 𝒟𝒉

② Chain generation

③ Select correct chains

④ Refinement with hint⑤ Select correct chains

⑥ Format checking

⑦ Self-improvement training

( a ) Structured Reasoning Design

( b ) Self-Improvement with Structure

Figure 2: (a) An example demonstrating our Structured
Reasoning Design. (b) Overview of STRIVE.

p̂ is made based on the reasoning chain, where 208

p̂ ∈ {Supported,Refuted}. 209

3.2 Structured Reasoning Design 210

Freely generated reasoning chains often struggle 211

with verifying complex claims due to issues like 212

evidence confusion, entity misidentification, and 213

omission of key information. These problems can 214

lead to low-quality chains being selected during 215

self-improvement, affecting performance. 216

To address this, we introduce a Structured Rea- 217

soning Design that guides the verification process 218

systematically. Our Structured Reasoning Design 219

consists of three key components: Claim Decom- 220

position, Entity Analysis, and Evidence Grounding 221

Verification. An example is illustrated in Figure 2. 222
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3.2.1 Claim Decomposition223

Complex claims typically describe multiple facets224

of a situation, such as in our example (Figure 2),225

where the claim covers the champion’s national-226

ity, victory, and origin. When a claim involves227

multiple elements, decomposing it into subclaims228

allows for independent verification of each compo-229

nent, a method known to improve performance in230

claim verification (Gong et al., 2024a; Min et al.,231

2023). In our design, we structure the reason-232

ing chain into distinct blocks, each dedicated to233

a specific subclaim, labeled as C1:, C2:, and so234

on. This block-based structure helps mitigate the235

risk of overlooking key aspects during verification,236

which is common in free reasoning. Each subclaim237

block concludes with a verification result, labeled238

as Status:, to make the reasoning easy to follow239

and parse.240

3.2.2 Entity Analysis241

Complex claims often involve ambiguous or un-242

specified entities or pronouns that may appear after243

Claim Decomposition. To resolve these ambigui-244

ties, we designed a two-step entity analysis process:245

Entity Resolution and Resolution Verification.246

• Entity Resolution aims to identify the spe-247

cific entity corresponding to an ambigu-248

ous term by leveraging evidence, labeled as249

Entity Resolution: in the reasoning chain.250

For instance, the term “defending champion”251

in the example claim (Figure 2) is resolved to252

the specific person “Lin Dan” using informa-253

tion from the evidence.254

• Resolution Verification ensures the correct-255

ness of the Entity Resolution, labeled as256

Resolution Verification: in the reason-257

ing chain. While Entity Resolution may cor-258

rectly match an ambiguous term to a known259

entity in many cases, errors can occur. For260

example, if the claim stated a “Doubles tour-261

nament” instead of a “Singles tournament” in262

the example, the Entity Resolution step might263

still match the term “defending champion at264

the Men’s Doubles tournament” to “Lin Dan”,265

which is incorrect for the revised claim. Reso-266

lution Verification cross-checks the entity to267

ensure that the resolution is accurate, prevent-268

ing errors in the reasoning process.269

This two-step design ensures more precise entity270

analysis, minimizing the risk of errors that could271

impact the overall verification. We do not always 272

require both steps to appear simultaneously. For 273

instance, in example C2, the Entity Resolution is 274

drawn from C1, and therefore the Resolution Veri- 275

fication step is omitted. 276

3.2.3 Evidence Grounding Verification 277

Our structured reasoning framework incorporates 278

explicit verification steps at multiple stages. In ad- 279

dition to the Resolution Verification process men- 280

tioned earlier, each subclaim undergoes a final veri- 281

fication step, labeled as Verification:. This step 282

evaluates the subclaim as a whole, considering the 283

resolved entities and assessing its validity against 284

the provided evidence. It also serves as an explana- 285

tion for the truthfulness decision of the subclaim. 286

Our structured reasoning format enforces 287

grounding at every stage of the reasoning chain. As 288

illustrated in Figure 2, both the resolution and veri- 289

fication processes explicitly cite the corresponding 290

evidence or subclaim identifiers (e.g., C1, E2). This 291

ensures that conclusions are drawn from verifiable 292

sources, making the reasoning more transparent 293

and easier for humans to interpret and verify. 294

3.3 Self-Improvement with Structure 295

In this section, we describe how STRIVE lever- 296

ages the Structured Reasoning Design to improve 297

model’s performance in claim verification, with the 298

general flow of this process shown in the bottom 299

part of Figure 2. Given a training set 300

D = {(c1, E1, p1), · · · , (cN , EN , pN )}, 301

where each ci is a claim, Ei is the corresponding ev- 302

idence set, and pi is the final label, STRIVE follows 303

three main steps to complete the self-improvement 304

process: Structured Warm-up, Reasoning Chain 305

Generation and Selection, and Self-Improvement 306

Training. 307

3.3.1 Structured Warm-up 308

Given a base model M , the purpose of the warm- 309

up phase is to fine-tune M into M∗, enabling it to 310

generate reasoning chains conforming to our pre- 311

defined structure. We use a preset prompt template 312

T (c, E) as follows: 313

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Output the reasoning chain.
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...

314
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Algorithm 1 STRIVE
Input: Base model M , training set D, annotated
set Dh

Output: Improved model Mst

1: M∗ ← train(M,Dh) // Structured Warm-up
2: r̂i ← M∗(T (ci, Ei)), p̂i ← J(r̂i) ∀i ∈ [1, N ]

//Get reasoning chains and predicted labels
3: D1 ← {(ci, Ei, r̂i) | p̂i = pi} //Select correct

reasoning chains based on ground truth label
4: r̂hinti ←M∗(T hint(ci, Ei)), p̂hinti ←J(r̂hinti ),
∀i ∈ [1, N ], where p̂i ̸= pi //Regenerate rea-
soning chains for incorrect predictions

5: D2 ← {(ci, Ei, r̂hinti ) | p̂i ̸= pi, p̂
hint
i =

pi}//Select corrected reasoning chains
6: Dst ← {(ci, Ei, ri) | ri ∈ (D1 ∪ D2), f(ri) =

True} //Select structurally valid chains
7: Mst ← train(M,Dst ∪ Dh) //Final Self-

improvement training

Since reasoning chains are not available in the315

dataset, we manually annotate a very small set316

Dh = {(ch1 , Eh1 , rh1 , ph1), · · · , (chH , EhH , rhH , phH)}317

with H examples, where each pair (chi , Ehi ) is anno-318

tated with a reasoning chain rhi that following our319

prescribed structure. We then fine-tune the base320

model M on Dh using T (chi , Ehi ) as input and rhi321

as output, resulting in a new model M∗. Notably,322

only a very small number of examples is needed323

for this fine-tuning, since our structure is guided324

by keywords (e.g., “Verification:”) that activate the325

model’s inherent reasoning capabilities.326

3.3.2 Reasoning Chain Generation and327

Selection328

With the fine-tuned model M∗, our next objective329

is to leverage M∗ and training set D to generate330

and select high-quality structured reasoning chains331

for further self-improvement. Inspired by the chain332

generation strategy in STaR (Zelikman et al., 2022),333

our method involves three stages: (i) Initial Gener-334

ation and Selection and (ii) Refinement with Hint335

and (iii) Format Checking:336

Initial Generation and Selection: For each337

sample (ci, Ei, pi) ∈ D, we first generate a rea-338

soning chain r̂i using the prompt template T (ci, Ei)339

with the model M∗:340

r̂i = M∗(T (ci, Ei)) ∀i ∈ [1, N ].341

A predicted label p̂i is then derived from r̂i by a342

rule-based function J : 343

p̂i = J(r̂i), 344

where if any subclaim in r̂i is judged as Refuted, 345

then p̂i = Refuted, and only if all subclaims are 346

Supported, then p̂i = Supported. We select sam- 347

ples for which p̂i matches the ground truth pi to 348

form the set: 349

D1 = {(ci, Ei, r̂i) | p̂i = pi, ∀i ∈ [1, N ]}. 350

Refinement with Hint: For samples where 351

p̂i ̸= pi, we incorporate additional guidance by 352

modifying the prompt. If pi = Supported, we add 353

the hint: “every detail in this claim is supported”; if 354

pi = Refuted, we add “the claim should be refuted, 355

locate the error in the reasoning chain”. The mod- 356

ified prompt, inclusive of the hint, can be found 357

in Appendix A.2. Using this modified prompt, we 358

regenerate the reasoning chain: 359

r̂hinti = M∗(T hint(ci, Ei)),
p̂hinti = J(r̂hinti ) ∀i ∈ [1, N ], where p̂i ̸= pi.

360

Similarly, we select samples for which p̂hinti 361

matches the ground truth pi to form the set: 362

D2 = {(ci, Ei, r̂hinti ) | p̂i ̸= pi, p̂
hint
i = pi, 363

∀i ∈ [1, N ]} 364

Format Checking: At this stage, both D1 and 365

D2 contain reasoning chains that yield correct fi- 366

nal predictions. To further ensure the quality of 367

these reasoning chains, we apply a rule-based 368

structural verification function f , where f(r̂i) = 369

True or False, indicating whether r̂i follow our pre- 370

defined structure. Specifically, we enforce three 371

criteria: 372

• Proper segmentation of subclaims, ensuring 373

each reasoning step is explicitly delineated 374

with a corresponding verification result. 375

• Correct evidence grounding, preventing in- 376

correct references (e.g., citing non-existent 377

evidence, citing C2 while verifying C1). 378

• Adherence to the structured format, ensuring 379

reasoning steps are guided by predefined key- 380

words (e.g. Entity Resolution:) 381

By applying this structural verification, we obtain 382

a final set of reasoning chains Dst, which not only 383

yield correct conclusions but also adhere to the 384

required structural format. Formally, it can be de- 385

scribed as: 386

Dst = {(ci, Ei, ri) | ri ∈ (D1∪D2), f(ri) = True}. 387
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3.3.3 Self-Improvement Training388

Finally, we fine-tune the base model M using both389

the previously selected dataset Dst and the human-390

annotated datasetDh. Note that M∗ is discarded af-391

ter generating the reasoning chains. This allows us392

to obtain the final model Mst with the enhanced rea-393

soning ability defined by our structured approach.394

The entire process is summarized in Algorithm 1.395

4 Experiment396

4.1 Datasets397

We evaluate STRIVE using two publicly available398

datasets, following prior work in claim verifica-399

tion (Gong et al., 2024a). All evaluations are per-400

formed on the validation sets, since the test sets are401

not publicly released. Detailed information can be402

found in Appendix A.3. Results are reported using403

the Macro-F1 score.404

• HOVER (Jiang et al., 2020) This dataset com-405

prises claims necessitating multi-step reason-406

ing across multiple pieces of evidence and is407

categorized into three subsets: HOVER-2 for408

two-hop reasoning, HOVER-3 for three-hop409

reasoning, and HOVER-4 for four-hop reason-410

ing.411

• FEVEROUS-S (Aly et al., 2021) Derived412

from the FEVEROUS dataset, this subset413

contains claims that rely solely on unstruc-414

tured textual evidence. Compared to HOVER,415

claims in FEVEROUS-S generally exhibit416

lower complexity in reasoning.417

4.2 Baselines418

To assess the effectiveness of STRIVE, we com-419

pare it against a variety of baselines, including420

pretrained/fine-tuned models, prompt-based ap-421

proaches using the base model, and base model422

fine-tuned on the training data.423

For pretrained/fine-tuned models, we include the424

following: (i) BERT-FC (Soleimani et al., 2020):425

Pretrained BERT model (Devlin et al., 2019) tai-426

lored for fact-checking tasks. (ii) LisT5 (Jiang427

et al., 2021): Pretrained T5 model (Raffel et al.,428

2020) specialized for fact-checking tasks. (iii)429

RoBERTa-NLI (Nie et al., 2020): Pretrained430

RoBERTa-large model (Liu et al., 2019) fine-tuned431

on four natural language inference datasets. (iv)432

MULTIVERS (Wadden et al., 2022): A Long-433

Former model (Beltagy et al., 2020) fine-tuned on434

the FEVER (Thorne et al., 2018) dataset.435

For prompt-based approaches, we evaluate the 436

following: (i) Zero-shot: The model predicts the fi- 437

nal label directly, without requiring reasoning steps. 438

(ii) Zero-shot + CoT: The model outputs reasoning 439

chains before predicting the final label. (iii) Few- 440

shot: Similar to zero-shot, but with the inclusion of 441

labeled examples. (iv) Few-shot + Structured CoT: 442

Similar to zero-shot + CoT, but with examples of 443

structured reasoning chains from Dh. All baseline 444

prompts are similar to T (c, E) for fairness, detailed 445

in Appendix A.1. 446

Finally, for base models that undergo fine-tuning, 447

we compare with: (i) Lora Fine-tuning: Fine- 448

tuning the base model on the training set D using 449

only binary labels. (ii) STaR* (Zelikman et al., 450

2022): We re-implemented this self-improvement 451

method for claim verification. While similar to our 452

approach (Algorithm 1), it differs in that reasoning 453

chains are generated freely by the model, without 454

structural constraints or a warm-up phase. 455

4.3 Implementation Details 456

We use Llama-3-8B-Instruct as the base model, as 457

it is a widely used open-source language model. 458

For all fine-tuning tasks, including those in base- 459

line models and STRIVE, we employ the GPU 460

memory-efficient LoRA fine-tuning method (Hu 461

et al., 2021), allowing our experiments to fit on a 462

single consumer-grade GPU (e.g., NVIDIA 4090). 463

In the Structured Warm-up process, we use a 464

small human-annotated dataset Dh containing only 465

H = 10 examples, with 8 labeled as Refuted 466

and 2 as Supported. We prioritize teaching the 467

model to identify errors rather than admitting cor- 468

rect claims. The intermediate model M∗ is ob- 469

tained by fine-tuning on Dh for 10 epochs using 470

LoRA. Despite the large number of epochs, only 471

0.1% of the model’s parameters are updated, ensur- 472

ing the model’s overall performance is maintained 473

while enforcing the prescribed structure. The train- 474

ing set D consists of N = 600 examples, with 475

reasoning chains generated at a temperature setting 476

of 0.01. The final model Mst is obtained by fine- 477

tuning for 2 epochs on the union of the collected 478

set and the human-annotated set, Dst ∪ Dh. 479

5 Results and Discussion 480

5.1 Overall Performance 481

We present the overall results of STRIVE and the 482

baseline models in Table 1. Among all methods, 483

STRIVE achieves the best performance, underscor- 484
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Model Family Approach HOVER-2 HOVER-3 HOVER-4 FEVEROUS-S

PT/FT Models

BERT-FC 53.40 50.90 50.86 74.71
LisT5 56.15 53.76 51.67 77.88
RoBERTa-NLI 74.62 62.23 57.98 88.28
MULTIVERS 68.86 59.87 55.67 86.03

Llama-3-8B

Zero-shot 55.10 55.09 53.51 78.21
Zero-shot + CoT 63.76 57.13 57.47 84.94
Few-shot 55.33 55.63 52.86 79.17
Few-shot + Structured CoT 69.71 66.71 59.63 85.67

LoRA-Llama-3
LoRA Fine-tuning 64.21 60.35 60.34 91.52
STaR* (Self-Improvement) 60.90 58.61 56.86 87.45
STRIVE (Ours) 76.13 ±0.84 70.50 ±0.55 68.50 ±1.27 91.91 ±0.44

Table 1: Macro-F1 scores for claim verification models on HOVER and FEVEROUS-S datasets. “PT/FT” refers to
pretrained/fine-tuned models.
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Figure 3: Comparison of Chain-of-Thought approaches
with and without structured reasoning over HOVER
datasets.

ing the effectiveness of our approach. The results485

also highlight the importance of explicitly reason-486

ing steps in claim verification. Pretrained/fine-487

tuned models, zero-shot and few-shot methods that488

do not incorporate reasoning steps, generally per-489

form worse than methods that explicitly utilize rea-490

soning steps (e.g., Zero-shot + CoT, Few-shot +491

Structured CoT).492

We present reasoning chains generated by493

STRIVE and error analysis in Appendix A.4.494

5.2 Effectiveness of Structured Reasoning495

In this section, we explain how Structured Rea-496

soning contributes to performance improvement in497

claim verification.498

Structured Design Improves Reasoning Qual-499

ity. We compare three approaches: Zero-shot +500

CoT, Few-shot + CoT, and Few-shot + Structured501

CoT. Zero-shot + CoT and Few-shot + CoT use 502

chain-of-thought prompting without structural con- 503

straints. In Few-shot + CoT, reasoning examples 504

are rewritten by removing structural elements from 505

Dh’s chains. In contrast, Few-shot + Structured 506

CoT directly uses reasoning examples from Dh 507

with the desired structure. As shown in Figure 3, 508

while Few-shot + CoT performs slightly better on 509

simpler tasks like HOVER-2, structured reason- 510

ing shows significant advantages in more complex 511

scenarios like HOVER-3 and HOVER-4. This con- 512

firms that structured reasoning improves reasoning 513

quality, particularly for complex tasks. 514

Structured Design Helps in Self-Improvement 515

Training. Figure 4 compares self-improvement 516

results with (top) and without (bottom) structured 517

reasoning. In the top part, performance before 518

self-improvement corresponds to the model M∗ 519

after the Structured Warm-up phase. In the bottom 520

part, “before” and “after” refer to Zero-shot + CoT 521

and STaR*, respectively. The figure shows that 522

structured reasoning leads to steady performance 523

improvement after the warm-up model, with gains 524

increasing as task complexity rises (1.6% for 2- 525

hop, 4.4% for 4-hop). In contrast, without the 526

structured design, improvements are inconsistent. 527

As shown in the bottom of Figure 4, performance 528

even drops on HOVER-2 and HOVER-4 due to 529

the inclusion of erroneous reasoning chains that 530

incorrectly match the final label. These results 531

highlight the importance of structured reasoning 532

in ensuring successful self-improvement for claim 533

verification. 534
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Figure 4: Comparison of self-improvement training re-
sults with (top) and without (bottom) structured reason-
ing over HOVER datasets.

5.3 Analysis of Structure Design535

In this section, we analyze the structural reasoning536

design of STRIVE. As outlined in Section 3.2, the537

core components—Claim Decomposition, Entity538

Analysis, and Evidence Grounding Verification—539

are introduced to address the issue of low-quality540

reasoning chains generated by the model. To as-541

sess the contribution of each component, we con-542

duct an ablation study by removing each design543

element individually, resulting in three variants:544

STRIVEw/o CD, STRIVEw/o EA, and STRIVEw/o EG.545

The results are presented in Table 2.546

From the table, it is evident that Claim Decom-547

position is the most impactful design; its removal548

causes performance to drop across all HOVER549

datasets. Entity Analysis also plays a signifi-550

cant role, particularly in more complex scenarios551

(HOVER-4), as complex claims often involve mul-552

tiple ambiguous entities. In contrast, the Evidence553

Grounding Verification design has a smaller impact554

on performance but still contributes valuable bene-555

fits, primarily by improving human readability of556

the reasoning chains.557

5.4 Analysis of Self-Improvement Training558

To analyze the self-improvement training pro-559

cess, we propose three variants: STRIVEw/o FC,560

STRIVEw/o hint and STRIVE2 rounds, with perfor-561

mance results shown in Table 2.562

Models HOVER-2 HOVER-3 HOVER-4

STRIVE 76.13 70.50 68.50

STRIVEw/o CD 73.69 67.36 64.03
STRIVEw/o EA 75.96 67.36 64.77
STRIVEw/o EG 75.08 69.42 68.22

STRIVEw/o FC 76.11 69.69 66.89
STRIVEw/o hint 75.90 70.34 67.20
STRIVE2 rounds 75.98 70.55 68.43

Table 2: Ablation study results. Macro-F1 scores for
different model variants across the HOVER datasets.
“CD” stands for Claim Decomposition, “EA” stands for
Entity Analysis, “EG” stands for Evidence Grounding
Verification, and “FC” stands for Format Checking.

(i) STRIVEw/o FC removes the format checking 563

step during the Reasoning Chain Selection process, 564

causing a performance drop, particularly on the 565

HOVER-4 dataset. (ii) STRIVEw/o hint eliminates 566

the hint-based refinement in the Reasoning Chain 567

Generation process (steps 4 and 5 in Algorithm 568

1), leading to a small performance decrease across 569

the HOVER datasets. (iii) STRIVE2 rounds adds an 570

extra round of self-improvement training (repeating 571

steps 2-7 in Algorithm 1 with M∗ replaced by Mst). 572

However, this results in performance similar to the 573

original model, indicating no significant benefit 574

from the additional round. Therefore, we opt to use 575

a single round of training. 576

Interestingly, unlike math problem solving (Ze- 577

likman et al., 2022; Hosseini et al., 2024), where 578

extra rounds are critical, STRIVE performs well 579

with a single round. This is likely due to its use of 580

structured guidance, which activates the model’s in- 581

herent reasoning abilities, and no new capabilities 582

are gained from further training rounds. 583

6 Conclusion 584

We presented STRIVE: Structured Reasoning for 585

Self-Improved Verification, a method that inte- 586

grates structured reasoning and self-improvement 587

training for claim verification. By incorporating 588

Claim Decomposition, Entity Analysis, and Evi- 589

dence Grounding Verification, STRIVE improves 590

the quality of reasoning chains and enables more ef- 591

fective self-improvement. Our experiments demon- 592

strate that STRIVE significantly outperforms base- 593

line approaches, highlighting the effectiveness of 594

structured reasoning for self-improvement in claim 595

verification. 596
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7 Limitations597

Our approach relies on a structured warm-up phase598

that requires a small amount of annotated data. In599

our experiments, we selected 10 moderately dif-600

ficult claims for reasoning chain labeling without601

further extensive sample filtering. While this ap-602

proach has yielded positive results, we recognize603

that the choice of these samples may influence the604

subsequent model training. We believe that more605

carefully selected or diverse samples could further606

enhance the model’s performance and provide ad-607

ditional insights into how sample selection impacts608

self-improvement. Additionally, our approach im-609

proves the claim verification capabilities of LLM610

in a resource-efficient manner. Both the quantity611

of annotations and the training strategies were de-612

signed for resource efficiency. This low-cost ap-613

proach has proven effective for performance en-614

hancement, but it also presents opportunities for615

future research, particularly in terms of scalability.616

Expanding to larger datasets and more complex617

models could offer valuable insights, though it re-618

mains to be explored in future works.619
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A Appendix843

A.1 Prompts for Baseline Models844

We incorporate various prompt-based methods in845

our experiments to ensure a fair comparison. To846

maintain consistency, we keep most of the prompt847

content similar to that used for STRIVE in Sec-848

tion 3.3.1. Below, we list the prompts used for the849

baseline models.850

For the zero-shot and LoRA fine-tuning experi-851

ments, we use the following prompt:852

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...
Please respond with only whether the claim is

“Supported” or “Refuted.”
853

For the zero-shot + CoT and STaR* experiments,854

the prompt is as follows:855

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...
Think step by step, output your response in the
following format:
Chain: [your reasoning chain]
Answer:[the claim is supported or the
claim is refuted]

856

For the Few-shot experiment, the prompt is sim- 857

ilar to the zero-shot prompt but includes examples: 858

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Please respond with only whether the claim
is “Supported” or “Refuted.” Here are some
examples:
Claim: Simon Grundel-Helmfelt is most ...
Evidence: (1) Baron Simon Grundel ... (2)...
Output: Refuted

(...more examples...)

Follow the above examples:
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...
Output:

859

For the few-shot + structured CoT, we use the 860

same prompt as STRIVE, but with examples of 861

structured reasoning: 862

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Output the reasoning chain. Here are some
examples:
Claim: Simon Grundel-Helmfelt is most ...
Evidence: (1) Baron Simon Grundel ... (2)...
Chain: C1: Simon Grundel ...

(...more examples...)

Follow the above examples:
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...
Chain:

863

A.2 Prompts with Hint 864

In STRIVE, we add hint and regenerate reasoning 865

chains for the ones that falsely predict the label of 866

the claim. If the truth label is p = Supported, we 867
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use prompt:868

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Output the reasoning chain.
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...
Hint: Every detail in this claim is supported.

869

If the truth label is p = Refuted, we use prompt:870

Based on the evidence, determine if the claim
is supported by the evidence or refuted by it.
Output the reasoning chain.
Claim: [claim text c]
Evidence: (1)[evidence text e1](2)...
Hint: The claim should be refuted, locate the
error in the reasoning chain.

871

A.3 Dataset Statistics872

The following table presents the information of873

the dataset (validation set) that we have tested on.874

“HV” represents HOVER, while “FS” stands for875

FEVEROUS.

Dataset HV-2 HV-3 HV-4 FS-S

Total 1,126 1,835 1,039 2,962
Supported Claims 521 968 511 1411
Refuted Claims 605 867 528 1551

Avg. Words in Claim 19.6 24.1 32.2 27.6
Avg. Evidence Pieces 2.0 3.0 4.0 2.1

Avg. Words in Evidence 137.3 211.1 278.2 50.3

876

A.4 STRIVE-Generated Reasoning Chains877

In this section, we present several reasoning chains878
generated by STRIVE. The evidence is omitted879
due to its length, which makes it unsuitable for880
display. Red coloring is used to highlight where881
the reasoning chains become incorrect.882

Claim: The artist whose work was displayed in 1974 at
Debel Gallery, was closely associated with the Viennese
Actionism group, while Howard Zieff was an American
television commercial director.
Label: Supported

Model Output:
C1: The artist whose work was displayed in 1974 at
Debel Gallery was closely associated with the Viennese
Actionism group.
Entity Resolution: Artist -> Rudolf Schwarzkogler (from
E2)
Resolution Verification: E1 confirms Rudolf
Schwarzkogler’s work was displayed in 1974 at
Debel Gallery.
Verification: E2 supports that Rudolf Schwarzkogler was
closely associated with the Viennese Actionism group.
Status: Supported.
C2: Howard Zieff was an American television commer-
cial director.
Entity Resolution: Howard Zieff -> Howard B. Zieff
(from E3)
Resolution Verification: E3 confirms Howard B. Zieff
was an American director, television commercial director,
and advertising photographer.
Verification: E3 supports that Howard Zieff was an
American television commercial director.
Status: Supported.

883

Claim: Ben Karlin wrote the 2013 episode of the TV
show, Netflix, that was directed by the actor who played
Kevin Arnold in “The Wonder Years”
Label: Refuted

Model Output:
C1: Ben Karlin wrote the 2013 episode of the TV show,
Netflix.
Entity Resolution: TV show -> Modern Family (from
E1)
Resolution Verification: E1 confirms ’ClosetCon ’13’
aired in 2013, and E1 also confirms Ben Karlin wrote it.
Verification: E1 supports that Ben Karlin wrote the 2013
episode, but it’s clear that the TV show is Modern Family,
not Netflix.
Status: Refuted.
C2: The actor who played Kevin Arnold in T̈he Wonder
Yearsd̈irected the 2013 episode.
Entity Resolution: Actor -> Fred Savage (from E2)
Resolution Verification: E2 confirms Fred Savage played
Kevin Arnold in “The Wonder Years”.
Verification: E2 supports that Fred Savage played Kevin
Arnold, but it’s clear that he directed the episode in 2013,
not that he played Kevin Arnold in 2013.
Status: Refuted.
C3: The TV show was Netflix.
Entity Resolution: TV show -> Modern Family (from
E1)
Resolution Verification: E1 confirms ’ClosetCon ’13’
aired on Modern Family, not Netflix.
Verification: E1 refutes that the TV show was Netflix.
Status: Refuted.

884
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Claim: The builder of Shadow Creek Golf Course is an
Jewish real estate developer. The builder also owns the
Encore hotel and casino in Las Vegas.
Label: Refuted

Model Output:
C1: The builder of Shadow Creek Golf Course is an
Jewish real estate developer.
Entity Resolution: Builder of Shadow Creek Golf Course
-> Steve Wynn (from E3)
Resolution Verification: E3 confirms Steve Wynn built
Shadow Creek Golf Course.
Verification: E3 shows Steve Wynn built Shadow Creek
Golf Course, but it doesn’t provide any information
about his religion. There’s no evidence to support the
claim that Steve Wynn is Jewish.
Status: Refuted.
C2: The builder also owns the Encore hotel and casino in
Las Vegas.
Entity Resolution: Builder -> Steve Wynn (from E3)
Resolution Verification: E3 confirms Steve Wynn built
Shadow Creek Golf Course, and E2 confirms Wynn
Resorts owns Encore.
Verification: E3 shows Steve Wynn built Shadow Creek
Golf Course, and E2 confirms Wynn Resorts owns
Encore.
Status: Supported.

885

Claim: Carnegie Mellon University, not the institution
which is home to the Lyme Academy of Fine Arts, is a
university in Pennsylvania.
Label: Supported

Model Output:
C1: Carnegie Mellon University, not the institution
which is home to the Lyme Academy of Fine Arts, is a
university in Pennsylvania.
Entity Resolution: institution which is home to the Lyme
Academy of Fine Arts -> University of New Haven (from
E1)
Resolution Verification: E1 confirms Lyme Academy
College of Fine Arts is part of University of New Haven,
not CMU. E3 confirms CMU is in Pennsylvania.
Verification: E1 refutes the institution which is home
to the Lyme Academy of Fine Arts being CMU. E3
supports CMU being in Pennsylvania.
Status: Refuted.

886
(The model misunderstood the meaning of the claim.)887

Claim: Orange is the main flavor of both zero-calorie
soft drinks, Solo from Norway, and the drink advertised
with Krupa (song).
Label: Refuted

Model Output:
C1: Orange is the main flavor of Solo from Norway.
Verification: E1 confirms Solo is an orange-flavored soft
drink from Norway.
Status: Supported.
C2: Orange is the main flavor of the drink advertised
with Krupa (song).
Entity Resolution: Drink advertised with Krupa ->
Sunkist
Resolution Verification: E3 confirms Krupa is from an
Sunkist advert.
Verification: E3 confirms Krupa is from an Sunkist
advert and E2 confirms Sunkist is primarily orange
flavored.
Status: Supported.

888
(The model lost the information of "zero-calorie" in the 889

claim during the Claim Decomposition process, leading to an 890
error.) 891

Claim: The star of Forever Strong played a character
that is based on the Hanna-Barbera show “Birdman and
the Galaxy Trio”.
Label: Supported

Model Output:
C1: The star of Forever Strong played a character that
is based on the Hanna-Barbara show “Birdman and the
Galaxy Trio”.
Entity Resolution: Star of Forever Strong -> Gary Cole
(from E1)
Resolution Verification: E1 confirms Gary Cole was a
star of Forever Strong.
Entity Resolution: Character played by Gary Cole -> ?
(from E2)
Resolution Verification: E2 confirms Gary Cole voiced
Harvey Birdman, but it doesn’t mention him playing a
character in Forever Strong.
Verification: E1 shows Gary Cole was a star of Forever
Strong, but E2 shows he voiced Harvey Birdman, not
a character in Forever Strong. Therefore, the claim is
refuted.
Status: Refuted.

892
(The model incorrectly associated the character in the claim 893

with “Forever Strong,” leading to an error in Entity Resolu- 894
tion.) 895
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