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ABSTRACT

Neural radiance fields (NeRFs) have emerged as a prominent pre-training paradigm
for vision-centric autonomous driving, which enhances 3D geometry and appear-
ance understanding in a fully self-supervised manner. To apply NeRF-based pre-
training to 3D perception models, recent approaches have simply applied NeRFs to
volumetric features obtained from view transformation. However, coupling NeRFs
with view transformation inherits conflicting priors; view transformation imposes
discrete and rigid representations, whereas radiance fields assume continuous and
adaptive functions. When these opposing assumptions are forced into a single
pipeline, the misalignment surfaces as blurry and ambiguous 3D representations
that ultimately limit 3D scene understanding. Moreover, the NeRF network for
pre-training is discarded during downstream tasks, resulting in inefficient utiliza-
tion of enhanced 3D representations through NeRF. In this paper, we propose a
novel NeRF-Resembled Point-based 3D detector that can learn continuous 3D
representation and thus avoid the misaligned priors from view transformation.
NeRP3D preserves the pre-trained NeRF network regardless of the tasks, inheriting
the principle of continuous 3D representation learning and leading to greater poten-
tials for both scene reconstruction and detection tasks. Experiments on nuScenes
dataset demonstrate that our proposed approach significantly improves previous
state-of-the-art methods, outperforming not only pretext scene reconstruction tasks
but also downstream detection tasks.

1 INTRODUCTION

Accurate and fine-grained 3D scene understanding is essential for autonomous driving, supporting
critical tasks such as 3D object detection Reading et al. (2021); Li et al. (2023; 2024), high-definition
(HD) map construction Liao et al. (2023); Shin et al. (2025), and occupancy prediction Tong
et al. (2023); Tian et al. (2023). To facilitate these open-world perceptions, view transformation
backbones Li et al. (2023; 2024; 2022) have drawn great attention, which project multi-view 2D
image features into a unified 3D representation on bird’s-eye-view (BEV) or voxel space. A unified
3D representation, aligning various modalities Liu et al. (2023b); Li et al. (2022); Yan et al. (2023);
Kim et al. (2023) in a common metric frame, provides a single 3D canvas that can be leveraged across
diverse downstream tasks Hu et al. (2023); Jiang et al. (2023); Weng et al. (2024).

In parallel, neural fields, such as NeRFs Mildenhall et al. (2021) and 3DGS Kerbl et al. (2023), have
emerged as a dominant paradigm for reconstructing 3D representation and synthesizing novel views
by learning a continuous field of color and volume density in a self-supervised manner. Sharing the
goal of understanding the 3D environment, recent studies Yang et al. (2024); Huang et al. (2024); Xu
et al. (2024) proposed combining NeRFs or 3DGS with view transformation, enabling self-supervised
pre-training through photometric and depth reconstruction without the need for expensive manual
annotations.

Although both view transformation and NeRFs ultimately aim to reconstruct a 3D representation
of the world from 2D signals, they embody conflicting priors. Existing approaches Yang et al.
(2024); Huang et al. (2024) extract point features for radiance fields by interpolating discretized and
fixed voxel features from a view transformation backbone, and then pre-train the backbone through
photometric and depth errors rendered from those point features. However, this pipeline inevitably
leads to NeRF inheriting the discrete and rigid priors of the view transformation, which conflicts
with the continuous radiance fields and restricts the fidelity of the reconstructed 3D representation.
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Figure 1: Comparison of 2D feature maps (left) and their instance segmentation (right) results
using SAM Kirillov et al. (2023); Ren et al. (2024); Ravi et al. (2024) across different methods.
All 2D feature maps, except for ground truth RGB (row 1) and DINO Caron et al. (2021); Oquab
et al. (2023) feature (row 5), are obtained by accumulating 3D point-wise representations along
each ray onto the image plane with predicted density. They are extracted directly after radiance
field pre-training without any task-specific fine-tuning. UniPAD Yang et al. (2024) (row 2) and
SelfOcc Huang et al. (2024) (row 3) produce blurry and inaccurate features that fail to separate
nearby or crowded objects, resulting in under-segmented instances. In contrast, NeRP3D (row 4)
produces precise and well-localized features with distinct object boundaries without any distillation
or fine-tuning from 2D foundation models, comparable to those from DINO features. Consequently,
we observe the potential for the enhancement of 3D representation to be reflected in the improved
instance segmentation quality.

Moreover, the pre-trained NeRF is discarded during downstream tasks, preventing effective transfer
of NeRF knowledge and limiting the exploitation of enhanced 3D representations from pre-training.
As a result, distinct objects can be collapsed into a single blurry blob, as shown in Fig. 1.

In this paper, we introduce NeRP3D, a novel NeRF-Resembled Point-based 3D detector that fully
inherits the continuous function of neural radiance fields Mildenhall et al. (2021); Wang et al. (2021),
effectively overcoming the inherent discrepancy with view transformation.Unlike methods relying on
rigidly discretized voxel-based representations, NeRP3D directly models 3D scenes as continuous
3D features, geometry, and appearance from any continuous 3D location in a feedforward manner, as
illustrated in Fig. 2. Experiments on the nuScenes Caesar et al. (2020) benchmark demonstrate that
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Figure 2: Comparison of the previous NeRF-based pre-training methods and our NeRP3D pipeline.

our approach significantly improves not only the rendering quality but also the downstream perception
tasks for autonomous driving compared to previous approaches that simply incorporate NeRF-based
pre-training into view transformation frameworks. These findings highlight the importance of aligning
the 3D backbone with the pre-training model as well as continuous 3D representation learning in
advancing NeRF-based pre-training for enhanced 3D scene understanding.

In summary, our contributions are:

• NeRP3D preserves the full knowledge from pre-training, since the NeRF-resembled design
makes it effectively inherit and utilize continuous and fine-grained representations for both
pretext and downstream tasks.

• Regardless of tasks, NeRP3D provides a unified framework allowing for consistent feature
extraction with adaptive sampling, ray-wise and uniform spatial sampling, available through
our proposed continuous function.

2 RELATED WORK

Neural Radiance Fields Neural radiance fields (NeRFs) Mildenhall et al. (2021) and their vari-
ants Wang et al. (2021); Fridovich-Keil et al. (2022); Müller et al. (2022); Barron et al. (2022;
2023) have established a powerful paradigm for 3D scene reconstruction by learning continuous
volumetric functions from posed multi-view images. NeRFs are typically trained in a self-supervised
manner, minimizing photometric reconstruction loss across multiple views. These prior works have
demonstrated their ability to understand and enhance fine 3D geometry and appearance through
high-fidelity novel view synthesis and 3D reconstruction. To move from dense toward sparse image
sets, conditioning the radiance fields with image features Yu et al. (2021); Chen et al. (2021); Liu et al.
(2022b) shows reliable novel view synthesis results, demonstrating that generic 2D representations
can guide NeRF training. Moreover, depth supervision Roessle et al. (2022); Wei et al. (2023a);
Deng et al. (2022); Wei et al. (2021) is incorporated to understand more accurate geometry. NeRF’s
enhanced 3D understanding is increasingly being extended to autonomous driving applications, and
NeRP3D aims to fully leverage these capabilities.

Neural Radiance Fields with Autonomous Driving The inherent ability of NeRFs Mildenhall et al.
(2021); Wang et al. (2021); Barron et al. (2022; 2023) to capture 3D scene structure from multi-view
2D observations in a self-supervised manner has positioned them as a promising foundation for
various autonomous driving applications. For sensor simulation in driving environments, offline
scene reconstruction methods Yang et al. (2023c); Tonderski et al. (2024); Yang et al. (2023b) have
demonstrated NeRFs’ capability to synthesize realistic camera images, generate scenarios through
object manipulation, and decompose static-dynamic scenes. Moreover, DistillNeRF Wang et al.
(2024) builds upon EmerNeRF Yang et al. (2023b) by extending it into a feed-forward model, while
feature distillation from 2D foundation models Radford et al. (2021); Oquab et al. (2023) further
enhances 3D scene understanding.

The most relevant branch of this paper is the integration of NeRFs in pre-training to improve down-
stream perception tasks. UniPAD Yang et al. (2024) introduces a universal NeRF-based pre-training
framework to enhance the 3D object detection downstream task. Occupancy predictions Huang et al.
(2024); Zhang et al. (2023) are also integrated with NeRF, which is optimized through multi-view
consistency Godard et al. (2017; 2019); Zhou et al. (2017). GaussianPretrain Xu et al. (2024) has
demonstrated the feasibility of 3D Gaussian Splatting Kerbl et al. (2023) for pre-training 3D scene
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Figure 3: Overview of NeRP3D, illustrating both pre-training for rendering (orange) and fine-tuning
for downstream (blue) pipelines. Through NeRF-resembled design, our method maintains a coherent
3D understanding from scattered points across diverse tasks while accommodating task-specific point
sampling strategies, enabling the model to effectively leverage underlying geometric and appearance
information while allowing for task-dependent feature specialization.

representations in driving environments. However, existing methods Yang et al. (2024); Huang et al.
(2024); Tian et al. (2023); Xu et al. (2024), which rely on view transformation, have inherent con-
straints that diminish NeRF’s capacity for continuous and fine-grained 3D representation. Moreover,
pre-trained NeRF is discarded during downstream tasks, resulting in suboptimal 3D representations
enhancement from pre-training. In contrast, NeRP3D fully inherits pre-trained NeRF knowledge and
utilizes continuous and fine-grained representations through its NeRF-resembled design.

3 METHOD

NeRP3D is a simple and effective NeRF-resembled architecture that unifies scene reconstruction and
perception tasks from single-timestep multi-view images. As illustrated in Fig. 3, our framework
operates in two distinct stages within a unified architecture, without discarding or adding modules
depending on stage or task requirements. This unified architecture enables adaptive exploration
of regions of interest tailored to specific processing efficiency, while maintaining a coherent 3D
understanding across diverse tasks.

3.1 ADAPTIVE SAMPLING & REPRESENTATION OF POINT

To reconstruct accurate 3D representations from sparse and dynamic multi-view inputs, NeRP3D
directly samples 3D points of interest at arbitrary spatial locations and predicts the representation
of sampled points with 2D image features to cope with dynamic driving scenes, without processing
voxelized feature grids or any interpolation from them.

NeRP3D first samples 3D points x ∈ R3 using one of two distinct strategies tailored to different
processing phases, view-dependent ray-wise sampling and uniform spatial sampling. For volumetric
rendering, we follow the standard NeRF. Specifically, for each pixel in the multi-view images, we
define a camera ray ri based on its origin oi and direction di, which are derived from camera
intrinsics and extrinsics. Along each ray, we sample a set of points {xij = oi + tjdi} at regular or
stratified distances within a defined range {tj |j = 1, ..., D, tj < tj+1}. These sampled points are
then integrated into rendered color and depth along the ray for differentiable volumetric rendering.
In contrast, for downstream tasks, where the goal is to utilize the learned 3D representation for
autonomous driving tasks such as 3D object detection or occupancy prediction, we sample points
across the scene volume rather than following camera rays. We sample points xxyz uniformly in 3D
space around the vehicle, covering regions relevant to perception tasks.
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Despite the difference in sampling methods, all 3D points, whether sampled along camera rays or
spatially, are represented in the identical system, ensuring consistency across tasks and sharing a
unified spatial understanding. In addition, we parameterize 3D coordinates to account for unbounded
environments, inspired by Barron et al. (2022):

p(x′) =

{
αx′ |x′| ≤ 1(
1− (1−α)

|x′|

)
x′

|x′| |x′| > 1
, (1)

where p(·) denotes a parameterized function that preserves real-scale coordinates for points within
the inner range, while distributing distant points proportionally to disparity, including those at infinite
distance. x′ denotes normalized x to the range [0, 1] and α ∈ [0, 1] denotes the contraction ratio.

After sampling 3D points, a set of 3D points {x} is conditioned with sparse 2D observations to
represent 3D dynamic environments in a feed-forward manner. Given N multi-view images {Ii}Ni=1,
we feed each image to the image backbone to obtain 2D image features F ∈ RN×H×W×C . Then,
to enhance 3D point representations with image-aligned context, we adopt a deformable cross-
attention Zhu et al. (2020) with 2D image features F. We first encode each 3D query point x by γ(·)
and learn a set of Ns sampling offsets {∆πs | s = 1, ..., Ns} relative to its projected 2D location
π(x), focusing interaction with relevant image regions. The final representation z of 3D point x is
defined as:

z =

Nh∑
h=1

Wh

Ns∑
s=1

Ah,sW
′
sF(π(x) + ∆πh,s(γ(p(x

′)))), (2)

where Nh denotes the number of heads for multi-head attention. Wh ∈ RC×(C/Nh) and W′
s ∈

R(C/Nh)×C) denotes learnable weights and Ahs denotes the attention weights which are normalized
as

∑
s Ah,s = 1. The resulting point embedding z serves as input to both rendering heads and

detection heads described in the following sections.

3.2 POINT-BASED 3D SCENE RECONSTRUCTION & PERCEPTION

Volumetric Rendering To support 3D scene understanding for downstream tasks in autonomous
driving, we first optimize radiance fields in a self-supervised manner Yang et al. (2024), using the
signed distance function (SDF) and RGB reconstruction to represent 3D geometry and appearance.
Given a set of sampled points along each ray and its embedded features {zij}, RGB color values
of 3D points xj are predicted by cj = ϕrgb(zj ,di), and its signed distance sj extracted by signed
distance function ϕsdf (zj) is transformed into opacity αj derived with:

αj = max

(
Φω(ϕsdf (zj))− Φω(ϕsdf (zj+1))

Φω(ϕsdf (zj))
, 0

)
, (3)

where Φω(x) = (1 + e−ωx)−1 is the sigmoid function with a learnable parameter ω. Then, the
unbiased and occlusion-aware weights Wang et al. (2021) wj = Tjαj is computed from αj , where
Tj =

∏j−1
k=1(1−αk) is the accumulated transmittance. The final color and depth values are computed

by accumulating the contributions of 3D points sampled along ray ri, weighted by the probability
distribution {wj}:

Ĉ(ri) =

D∑
j=1

wjcj , D̂(ri) =

D∑
j=1

wjtj , (4)

where Ĉ(ri) and D̂(ri) denote the predicted color and depth corresponding to the ray ri, respectively.

To optimize the neural radiance field, we employ a combination of RGB reconstruction, depth
supervision, and multi-view consistency losses. We adopt the standard volumetric rendering loss from
NeRFs, comparing the rendered color Ĉ(ri) against the ground truth pixel color C(ri) for sampled
rays R = {ri}. To further constrain the 3D geometry, we leverage explicit depth supervision Deng
et al. (2022); Yang et al. (2024) for ri against LiDAR measurements Dlidar(ri) where available.
Furthermore, while LiDAR provides direct supervision, it suffers from sparse scan patterns and cannot
capture regions such as the sky, transparent surfaces (e.g., windows), or distant backgrounds where
depth is undefined or unprojectable. To address this without additional annotations Yang et al. (2023b)
or distillation from 2D foundation models Oquab et al. (2023); Kirillov et al. (2023), we further
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enforce multi-view consistency Godard et al. (2019); Cao & De Charette (2023) by minimizing the
discrepancy in predicted depth distributions across different views as:

Lreproj =
1

|R|
∑
ri∈R

∑
xj∈ri

wj |It(ri)− Is(πs(xj))|, (5)

where It(ri) denotes the color value of a pixel in a target or current image It corresponding to the ray
ri. πs(x) denotes the projection matrix from 3D points to 2D pixels on a source image Is, such as a
previous It−1 or future image It+1. Consequently, the sampled 3D point xj = oi + tjdi along the
ray ri is projected on the source image, and the corresponding pixel color Is(πs(xj)) is compared
with It(ri) in weighted sum {wj}. The overall loss for pre-training consists of RGB reconstruction
loss, depth supervision loss, and reprojection loss:

Lpretrain = λrgbLrgb + λdepthLdepth + λreprojLreproj (6)

where λrgb, λdepth, and λreproj are the loss scale factors for each pre-training loss. Lrgb is RGB
reconstruction loss and Ldepth is depth estimation loss directly supervised by LiDAR measurements.

Open-World Perception Unlike view-dependent volumetric rendering, perception tasks require
comprehensive spatial coverage of the vehicle’s surroundings. All we need to do with NeRP3D
is scatter the points {x} ∈ RN×3 throughout the space and reshape the resulting representations
{z} ∈ RN×C from Eq. 2 to be compatible with task-specific detection heads, for example, {z} ∈
R(X×Y×Z)×C for occupancy prediction. This straightforward adaptation maintains the enhanced
geometric and appearance information learned during pre-training while enabling seamless integration
with established perception architectures.

4 EXPERIMENTS

We demonstrate NeRP3D on the nuScenese Caesar et al. (2020) dataset against the state-of-the-art
NeRF-based pre-training approaches as well as comparable methods. Our experiments are designed to
assess both pre-trained 3D representations by scene reconstruction and the effectiveness of finetuning
for downstream tasks.

4.1 DATASET

We conduct experiments using the nuScenes dataset Caesar et al. (2020), which provides 700, 150,
and 150 scenes for training, validation, and testing, respectively. We follow this data split for both
the pretext and downstream tasks. Each scene provides 6 RGB camera images that cover a full 360°
field of view, along with a 32-beam LiDAR point cloud and 3D radar point cloud data. The key
samples are annotated at 2 Hz and support multiple tasks for autonomous driving, including 3D
object detection, HD map construction, and segmentation. Recently, the annotations for occupancy
prediction have been made available through Occ3D Tian et al. (2023) and SurroundOcc Wei et al.
(2023b), providing dense 3D semantic occupancy labels. In our experiments, we adopt the Occ3D
benchmark for the occupancy prediction.

Moreover, to evaluate generalization across different data distributions and sensor configurations,
we additionally utilize Argoverse 2 (AV2) Wilson et al. (2023) dataset. AV2 provides 1,000 driving
sequences with a distinct sensor suite comprising seven high-resolution ring cameras (2048× 1550)
covering a 360◦ field of view and two 32-beam LiDARs. This setup introduces significant domain
shifts in environmental statistics and sensor layouts compared to nuScenes Caesar et al. (2020). This
distinct setup serves to assess the model’s robustness to domain changes and its data efficiency under
limited supervision. For our experiments, we resized the input images to 800× 450 and utilized only
a 1/4 subset of the training data.

4.2 EVALUATION METRICS

We evaluate performance across two pretext scene reconstruction tasks and three downstream 3D
perception tasks by following standard evaluation protocols for each task to ensure comparability
with existing methods.
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Table 1: Downstream detection performance
(a) 3D object detection

Method Pre-train NDS↑ mAP↑
UVTR-C ImageNet 44.1 37.2
BEVFormerV2 ImageNet 46.7 39.6

TPVFormer† SelfOcc 33.5 31.0
UVTR-C† UniPAD 37.1 33.7
NeRP3D† Ours 39.2 35.8
UVTR-C UniPAD 45.5 41.6
NeRP3D Ours 47.3 42.8

(b) Occ prediction
Method mIoU

BEVDet 19.38
BEVFormer 26.88
TPVFormer 27.83
CTF-Occ 28.53

SelfOcc 29.65
UniPAD 34.05
NeRP3D 35.49

(c) HD map construction
Method Pre-train Epochs mAP
HDMapNet ImageNet 30 23.0
VectorMapNet ImageNet 110 40.9
MapTR-tiny ImageNet 24 49.9

TPVFormer SelfOcc 24 53.9
UVTR-C UniPAD 24 57.8
NeRP3D Ours 24 59.1

Scene Reconstruction Tasks We compare scene reconstruction quality by generating rendered
RGB and depth images 1:2 the size of the input images. RGB reconstructed images are evaluated
for all rendered pixels by Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and Learned Perceptual Image Patch Similarity (LPIPS), following standard NeRF evaluation
protocols. For depth estimation, we report relative errors (AbsRel & SqRel), root mean squared error
(RMSE & RMSE log), and accuracy under threshold δ metrics up to 80m, only for pixels where the
lidar point cloud with 20 sweeps is projected.

Downstream Tasks We evaluate the performance of 3D object detection using the mean Average
Precision (mAP) and nuScenes Detection Score (NDS) under the standard nuScenes evaluation
protocol. The perception range for object detection is set to [−51.2m, 51.2m] along both the X and
Y axes. For vectorized HD map construction, we follow the nuScenes map annotation benchmark
and report mAP under Chamfer distance thresholds (τ ∈ {0.5, 1.0, 1.5}). The evaluation range is
set to [−15.0m, 15.0m] for the X axis and [−30.0m, 30.0m] for the Y axis. Occupancy prediction
aims to predict the semantic classes of 0.4m× 0.4m× 0.4m voxels covering [−40m, 40m] in both
the X and Y axes and [−1.0m, 5.4m] along the Z axis. The prediction result is evaluated using mean
Intersection over Union (mIoU) across 17 semantic classes.

4.3 IMPLEMENTATION DETAILS

To ensure fair comparison with prior works Yang et al. (2024); Huang et al. (2024), we adopt identical
pre-training architectures and detection heads. We leverage NeuS Wang et al. (2021) for radiance field
pre-training, following previous studies. Furthermore, we conduct downstream tasks based on UVTR-
C Li et al. (2022), MapTR Liao et al. (2023), and Occ3D (CTF-Occ) Tian et al. (2023) for 3D object
detection, HD map construction, and occupancy prediction, respectively. Class-balanced sampling
(CBGS) or specialized data augmentations are not applied for finetuning, and all downstream tasks
are trained and evaluated using single-timestep images only, without temporal information or frame
stacking.

Our implementation builds upon the MMDetection3D Contributors (2020) framework, and training
is conducted on 4 NVIDIA A6000 GPUs. The input image resolution varies by tasks, set to
1600× 900 for object detection and 800× 450 for rendering, HD map construction, and occupancy
prediction. We both pre-train and fine-tune the model for 24 epochs using the AdamW optimizer,
with an initial learning rate of 2e-4 and a weight decay of 0.01. The loss scale factors are set to
λrgb = λdepth = λreproj = 10. Unless otherwise specified, we fine-tune the models on a 1/2 subset
for 12 epochs with 800× 450 images in ablation studies.
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Figure 4: Qualitative comparison on rendered RGB & depth. NeRP3D outperforms state-of-the-art
methods on both RGB and depth reconstruction. Our approach maintains high fidelity in urban scenes
without any blur and pattern artifacts. For depth estimation, NeRP3D distinguishes individual people
in crowded areas rather than merging them into indistinct blobs, and precisely captures thin structures
such as poles that are often missed or reconstructed as thick structures by competing methods.

Table 2: Pretext scene reconstruction performance

(a) Depth estimation
Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓
SelfOcc 0.311 3.808 8.503 0.391
SelfOcc∗ 0.215 2.743 6.706 0.316
UniPAD 0.218 2.512 7.937 0.356
NeRP3D 0.183 2.274 7.884 0.353

(b) RGB reconstruction
Method PSNR↑ SSIM↑ LPIPS↓
SelfOcc 18.82 0.536 0.657
UniPAD 21.14 0.549 0.634
NeRP3D 33.42 0.969 0.070

4.4 MAIN RESULTS

3D Object Detection We compare NeRP3D with previous 3D object detection approaches Li et al.
(2024; 2022); Liu et al. (2022a); Shu et al. (2023); Yang et al. (2023a); Yan et al. (2023) on the
nuScenes val set. To compare with previous NeRF-based pre-training methods on detection, we
follow the fine-tuning framework of UniPAD Yang et al. (2024) and also reproduce the results of both
UVTR-C (UniPAD) Li et al. (2022); Yang et al. (2024) and TPVFormer (SelfOcc) Huang et al. (2023;
2024) by replacing the NeRF network for pre-training with UVTR’s object detection head. † in Tab .1
(a) denotes the result evaluated on input resolutions of 800× 450. Compared to the state-of-the-art
NeRF-based self-supervision methods, our method outperforms 1.8 mAP and 2.1 NDS on 800× 450
1.2 mAP and 1.8 NDS on 1600 × 900 over UniPAD, as shown in Tab. 1 (a). This improvement
stems from NeRP3D’s ability to learn fine-grained 3D representations, which enables more precise
localization of bounding boxes and better separation of nearby objects, as qualitatively suggested by
the detailed features in Fig. 1 and sharp reconstructions in Fig. 4.

Occupancy Prediction In Tab. 1 (b), we evaluate the performance of our method on Occ3D-
nuScenes for 3D occupancy prediction. Similar to 3D object detection, we fine-tune the backbones
with the same occupancy prediction head Tian et al. (2023) after pre-training. Our approach inherits
NeRF’s strength in modeling fine-grained representations, leading to improved mIoU and consistent
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Table 3: Zero-shot scene reconstruction performance (Argoverse 2 → nuScenes)
Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ PSNR↑ SSIM↑ LPIPS↓
UniPAD 0.985 11.767 14.963 4.390 18.668 0.432 0.577
NeRP3D 0.626 6.251 10.728 0.921 28.238 0.905 0.111

gains over UniPAD and SelfOcc. As a result, our NeRP3D outperforms UniPAD and SelfOcc by 2.8
and 9.2 mIoUs, respectively. The continuous and high-fidelity representations learned by NeRP3D
are particularly beneficial for this dense prediction task, enabling the model to accurately discern
object boundaries and capture intricate geometric details often missed by other methods.

HD Map Reconstruction We evaluate the accuracy of HD map construction to assess each
method’s capability for understanding static driving environments, particularly in detecting road
boundaries, dividers, and pedestrian crossings. To facilitate this task, we commonly utilized the
detection head of MapTR Liao et al. (2023) for fair comparison. As shown in Tab. 1 (c), our method
achieves improved mAP compared to both UniPAD and SelfOcc, with gains of 1.3 and 5.2 mAP,
respectively. HD map reconstruction is particularly challenging as it requires a nuanced semantic
understanding to differentiate map elements like pedestrian crossings that are geometrically coplanar
with the drivable surface. As visually evidenced in Fig. 1, the feature representations from NeRP3D
make these elements distinctly separable, which is critical for precise map construction.

RGB & Depth Reconstruction To validate the effectiveness of the pre-training, the performance
of NeRP3D on the pretext tasks is also compared with the previous NeRF-based pre-training meth-
ods Yang et al. (2024); Huang et al. (2024) on the nuScenes val set. As shown in Tab. 2, NeRP3D
achieves remarkable enhancements in both depth estimation and RGB reconstruction. More specif-
ically, the qualitative depth maps in Fig. 4 consistently demonstrate that our method yields more
accurate and detailed depth estimations, particularly in complex regions, whereas UniPAD and Self-
Occ struggle to resolve fine structures and depth discontinuities. For RGB reconstruction, UniPAD
generates blurry and imprecise reconstructions lacking detailed textures, while SelfOcc produces
grayish images with unidentified vertical patterns. In contrast, our approach reconstructs sharper
images with rich colors, closely matching the ground truth without introducing patterned signals.

Generalization To assess the robustness of our method against domain shifts and varying sensor
configurations, we conducted cross-dataset transfer experiments using Argoverse 2 (AV2) Wilson
et al. (2023) for pre-training and nuScenes for evaluation. AV2 possesses distinct camera geometries
and environmental statistics compared to nuScenes, serving as a rigorous testbed for generalization.

We first evaluated zero-shot scene reconstruction by directly applying the AV2 Wilson et al. (2023)
pre-trained weights to nuScenes Caesar et al. (2020) without any fine-tuning. As presented in Tab. 3,
NeRP3D demonstrates remarkable robustness, achieving an Abs Rel of 0.626 and PSNR of 28.24,
significantly outperforming UniPAD (Abs Rel 0.985, PSNR 18.67). While the view transformation
method Yang et al. (2024) suffer from severe degradation due to their dependency on fixed grid
priors aligned with specific sensor layouts, NeRP3D’s continuous point-based architecture effectively
adapts to new sensor geometries. Qualitative results in Fig. 10 of Appendix further visualize this,
showing that NeRP3D preserves structural details while the view transformation method produces
blurry artifacts.

Moreover, we evaluated the transferability for 3D object detection. When pre-trained on AV2 Wilson
et al. (2023) and fine-tuned on nuScenes Caesar et al. (2020), NeRP3D achieved 27.46 mAP, surpass-
ing UniPAD Yang et al. (2024) (26.29 mAP) by a significant margin. This confirms that NeRP3D
learns universal geometric representations that are not overfitted to specific sensor configurations or
dataset distributions but are effectively transferable across domains.

Overall, these results demonstrate that our approach effectively leverages the inherent advantages
of continuous and fine-grained representations derived from NeRF. NeRP3D not only significantly
benefits pretext scene reconstruction tasks and downstream detection tasks but also ensures robust
generalization across different sensor configurations and data distributions for autonomous driving.
More comprehensive comparison and quantitative analysis of the experimental results are provided
by Tab. 4−8 in Appendix A and B.
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4.5 ABLATION STUDIES

We conduct comprehensive ablation studies to analyze different model variants and evaluate their
impact. Ablation results are reported in Appendix C and summarized in the following sections.

Cross-Task Generalization We further investigate whether the learned 3D representation remains
valid across different task objectives. By performing volumetric rendering using the backbone
fine-tuned for occupancy prediction, we observe that NeRP3D successfully retains structural details,
whereas view-transformation methods suffer from catastrophic forgetting, collapsing into mean
regression. This confirms that NeRP3D learns a task-agnostic continuous representation that preserves
geometric fidelity regardless of downstream optimization pressure.

Adaptability View transformation is dependent on the range and voxel size, leading to severe
performance degradation if the voxel-related parameters are changed against pre-training. In contrast,
NeRP3D aims for a continuous representation without voxel-related parameters, and variations only
correspond to simple changes in the range of interest.

Effectivness We analyze the effectiveness of NeRP3D in reducing the reliance on annotations by
comparing previous works, ranging from the full dataset to a 1/8 subset. Consequently, NeRP3D
maintains strong detection performance even with significantly reduced supervision, indicating the
robustness of its NeRF-based pre-training.

Multi-view Consistency LiDAR-based supervision ensures more consistent depth estimation
accuracy. However, we found that the sparsity and scan patterns of LiDAR are ultimately insufficient
for reconstructing dense 3D geometry. To address LiDAR’s sparsity and patterns, we not only rely on
LiDAR supervision but also consider multi-view consistency and our sampling strategy tailored to
this approach.

Design Validation We verify the necessity of our architectural choices through comprehensive
comparisons. First, applying NeRF pre-training to existing point-based detectors Liu et al. (2023a)
fails to transfer knowledge due to query mismatch, confirming the importance of our unified design.
Second, comparisons between SDF (NeuS Wang et al. (2021)) and density (standard NeRF Mildenhall
et al. (2021)) priors validate that SDF enforces clearer object boundaries beneficial for perception.
Finally, we demonstrate that deformable attention outperforms standard attention by providing a
necessary locality inductive bias, ensuring that the points remain faithful to their local spatial context.

5 CONCLUSION

In this paper, we present NeRP3D, a novel point-based 3D architecture for scene reconstruction
and downstream perception tasks for autonomous driving. Our approach addresses the fundamental
misalignment between view transformation and neural radiance fields. Through its NeRF-resembled
design, NeRP3D fully inherits NeRF’s continuous representation capabilities, enabling the model
to maintain consistent geometric and appearance information at arbitrary spatial locations across
both scene reconstruction and open-world perceptions. Although NeRP3D outperforms previous
approaches, it struggles with depth beyond its ROI, relying on LiDAR. Additionally, its point-based
architecture incurs high computational costs from adapting NeRF’s output to existing detection heads.
Future enhancements include temporal RGB reconstruction for consistency, density/opacity filtering
for efficiency, and Gaussian splatting for real-time performance with point queries.
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Table 4: 3D object detection on the nuScenes val set. † denotes the result evaluated on input
resolutions of 800× 450 using MMDetection3D Contributors (2020) by integrating UVTR detection
head Li et al. (2022); Yang et al. (2024). The other results are based on 1600× 900 input resolution.

Method Pre-train NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVFormer-S ImageNet 44.8 37.5 - - - - -
UVTR-C ImageNet 44.1 37.2 0.735 0.269 0.397 0.761 0.193
PETR ImageNet 44.2 37.0 0.711 2.670 0.383 0.865 0.201
3DPPE ImageNet 45.8 39.1 - - - - -
BEVFormerV2 ImageNet 46.7 39.6 0.709 0.274 0.368 0.768 0.196
CMT-C ImageNet 46.0 40.6 - - - - -

TPVFormer† SelfOcc 33.5 31.0 0.785 0.285 0.729 1.232 0.399
UVTR-C† UniPAD 37.1 33.7 0.734 0.283 0.603 1.250 0.359
NeRP3D† Ours 39.2 35.8 0.719 0.288 0.640 0.977 0.250

UVTR-C UniPAD 45.5 41.6 0.674 0.277 0.418 0.930 0.234
UVTR-C GaussianPretrain 47.2 41.7 0.676 0.278 0.394 0.815 0.200
NeRP3D Ours 47.3 42.8 0.664 0.276 0.425 0.811 0.196

Table 5: 3D occupancy prediction. We compare our method against state-of-the-art occupancy
prediction approaches on the Occ3d-nuScenes val set. Results for BEVDet, BEVFormer, TPVFormer,
and CTF-Occ are directly taken from Occ3d Tian et al. (2023). † denotes the result reproduced using
MMDetection3D Contributors (2020) on input resolutions of 800× 450. ∗ denotes that the result is
directly taken from VisionPAD Zhang et al. (2025), which is pre-trained only with camera modality
and evaluated on input resolutions of 1600× 900.
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UniPAD† 34.1 45.8 42.3 13.0 39.7 38.1 19.4 14.3 20.0 17.7 27.4 33.1 80.0 38.7 49.4 50.6 42.8 6.5
VisionPAD∗ 35.4 - - - - - - - - - - - - - - - - -
NeRP3D† 35.5 49.4 43.9 15.0 41.0 38.8 19.2 20.0 23.6 16.5 27.9 36.7 81.0 37.4 49.8 53.6 43.9 5.5

A DOWNSTREAM DETECTION TASKS

A detailed analysis of NeRP3D’s performance is provided on three downstream perception tasks: 3D
object detection, 3D occupancy prediction, and HD map construction. We expand upon the results
presented in Sec. 4.4 and Tab. 1, with a focus on comprehensive comparisons against state-of-the-art
methods, including those leveraging 3DGS (3D Gaussian Splatting)-based pre-training.

As shown in Tab. 4, NeRP3D achieves state-of-the-art performance in 3D object detection among
NeRF-based pre-training methods, with an NDS of 47.3 and an mAP of 42.8. This represents a
significant improvement over UniPAD, with gains of 1.8 NDS and 1.2 mAP when both are fine-tuned
on the UVTR-C detector. Crucially, NeRP3D also outperforms GaussianPretrain Xu et al. (2024),
which still relies on a view transformation backbone. In comparison, NeRP3D achieves a higher
NDS (47.3 vs. 47.2) and a more substantial lead in mAP (42.8 vs. 41.7). The enhanced performance
is attributed to NeRP3D’s fine-grained 3D representation, which provides the necessary detail to
identify far or occluded targets and resolve individuals within dense crowds, as shown in Fig. 8

For 3D occupancy prediction, NeRP3D’s ability to model continuous geometry and appearance
translates into superior performance. As demonstrated in Tab. 5, our method achieves an mIoU of
35.5, surpassing both UniPAD (34.1 mIoU) and SelfOcc (29.7 mIoU) by a significant margin. We
further compare NeRP3D with VisionPAD Zhang et al. (2025), a vision-centric pre-training also
based on 3D Gaussians. Even though VisionPAD is pre-trained only with camera modality, but
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Table 6: HD map construction on the nuScenes val set. “C” and “L” denote camera and Li-
DAR modalities, respectively. Results for HDMapNet and VectorMapNet are directly taken from
MapTRLiao et al. (2023).

Method Modality Pre-train Epochs mAP APped APdivider APboundary

HDMapNet C ImageNet 30 23.0 14.4 21.7 33.0
HDMapNet L ImageNet 30 24.1 10.4 24.1 37.9
HDMapNet C & L ImageNet 30 31.0 16.3 29.6 46.7

VectorMapNet C ImageNet 110 40.9 36.1 47.3 39.3
VectorMapNet L ImageNet 110 34.0 25.7 37.6 38.6
VectorMapNet C & L ImageNet 110 45.2 37.6 50.5 47.5

MapTR-tiny C ImageNet 24 49.9 52.0 45.3 52.4

TPVFormer C SelfOcc 24 53.9 47.8 55.6 58.3
UVTR-C C UniPAD 24 57.8 54.8 58.5 61.5
NeRP3D C Ours 24 59.1 52.9 62.2 62.2

Table 7: Depth estimation on nuScenes val set. We conduct evaluation at a downsampled resolution
of 114× 64 for EmerNeRF Yang et al. (2023b) and DistillNeRF Wang et al. (2024) and 400× 225
for others. † denotes per-scene optimization, not feedforward model. ∗ denotes only depth-optimized
variant of SelfOcc Huang et al. (2024). The results of EmerNeRF and DistillNeRF are taken from the
paper of DistillNeRF.

Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
EmerNeRF† 0.073 0.346 2.696 0.159 0.942 0.975 0.986

DistillNeRF 0.248 3.090 6.096 0.312 0.704 0.885 0.947
DistillNeRF-D 0.233 2.890 5.890 0.296 0.703 0.881 0.945
DistillNeRF-DV 0.223 1.776 5.461 0.293 0.763 0.903 0.961
SelfOcc 0.311 3.808 8.503 0.391 0.641 0.803 0.888
SelfOcc∗ 0.215 2.743 6.706 0.316 0.753 0.875 0.932
UniPAD 0.218 2.512 7.937 0.356 0.763 0.869 0.921
NeRP3D 0.183 2.274 7.884 0.353 0.799 0.883 0.926

evaluated on the higher resolution 1600× 900, NeRP3D achieves a competitive overall mIoU (35.5
vs. 35.4). A class-level breakdown reveals that NeRP3D shows notable improvements in thin and
small categories, as shown in Fig. 9, such as bicycle (15.0 vs. 13.0), motorcycle (20.0 vs. 14.3), and
pedestrian (23.6 vs. 20.0).

The comprehensive results for downstream perception tasks indicate that our NeRP3D, which avoids
the conflicting priors between the pre-training method and 3D backbone, enables the learning of
continuous and fine-grained 3D representations that directly benefit downstream detection tasks.

B PRETEXT SCENE RECONSTRUCTION TASKS

The overall performance of RGB reconstruction and depth estimation is compared with previous
NeRF-based pre-training methods Yang et al. (2024); Huang et al. (2024) and comparable methods
on the nuScenes val set, as shown in Tab. 7 and 8. Specifically, EmerNeRF Yang et al. (2023b)
is a per-scene optimization model, and the variants of DistillNeRF Wang et al. (2024) are without
distillation, with depth distillation (noted as “D”), and with virtual camera distillation (noted as “V”).

The depth estimation results in Tab. 7 demonstrate clear benefits from our NeRF-inherited repre-
sentation learning. SelfOcc∗ shows competitive depth estimation, but this variant does not support

Method PSNR ↑ SSIM ↑ LPIPS ↓
EmerNeRF 30.88 0.879 -
DistillNeRF-D 30.11 0.917 -
SelfOcc 18.82 0.536 0.657
UniPAD 21.14 0.549 0.634
NeRP3D 33.42 0.969 0.070

Table 8: RGB reconstruction on nuScenes val
set at a resolution of 228 × 114 for EmerN-
eRF Yang et al. (2023b) and DistillNeRF Wang
et al. (2024) and 400×225 for others. The results
of EmerNeRF and DistillNeRF are taken from
the paper of DistillNeRF.
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Table 9: Multi-resolution reconstruction analysis. We evaluate reconstruction quality across varying
image scales (from 1/16 to 1/4) to isolate the impact of discretization levels on representational
fidelity.

Method Scale PSNR↑ SSIM↑ LPIPS↓

UniPAD Yang et al. (2024)
1/16 23.55 0.796 0.250
1/8 22.49 0.664 0.442
1/4 21.14 0.549 0.634

NeRP3D
1/16 26.00 0.862 0.116
1/8 29.40 0.919 0.090
1/4 33.42 0.969 0.070

Table 10: Evaluation of Cross-Task Generalization and Structural Retention. (a) Per-pixel
evaluation: Standard metrics measuring absolute reconstruction errors, which are sensitive to scale
shifts. (b) Structural evaluation: Scale-invariant and perceptual metrics assessing geometric fidelity
and structural integrity, independent of feature scale variations induced during fine-tuning.

(a) Per-pixel evaluation
Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ PSNR↑ SSIM↑
UniPAD Yang et al. (2024) 0.477 6.914 15.104 1.056 11.623 0.283
NeRP3D 2.192 12.372 19.459 1.185 9.308 0.135

(b) Structural and scale-invariant evaluation
Method SI RMSE↓ Grad Loss↓ GMSD↓ LPIPS↓ PSNR-HM↑ SSIM-HM↑
UniPAD Yang et al. (2024) 0.859 90.164 0.306 0.863 12.319 0.300
NeRP3D 0.643 83.739 0.289 0.671 12.839 0.285

RGB reconstruction. On the other hand, the variant of SelfOcc that supports both RGB and depth
reconstruction exhibits comparatively lower accuracy. Compared to UniPAD, our method achieves
better performance across multiple metrics, such as AbsRel (0.183 vs. 0.218), SqRel (2.274 vs.
2.512), and RMSE (7.884 vs. 7.937). Moreover, accuracy within specific depth thresholds (δ met-
rics) further underscores the robustness of our model in reconstructing precise depth values. When
compared with DistillNeRF, which is specifically designed for scene reconstruction, our NeRP3D
achieves competitive depth estimation accuracy despite not relying on dense depth maps obtained
from per-scene optimization Yang et al. (2023b) or distillation from 2D foundation models Radford
et al. (2021); Oquab et al. (2023).

For RGB reconstruction, NeRP3D significantly outperforms previous approaches, as shown in Tab. 8.
Compared to previous feedforward methods and EmerNeRF, PSNR and SSIM are improved by
33.42 and 0.969, respectively. Our method also notably reduces LPIPS, reflecting more perceptually
accurate reconstructions over UniPAD and SelfOcc by 0.070.

To quantitatively verify the conflicting prior between discrete view transformation and continuous
neural rendering representations, we evaluated reconstruction performance across varying resolutions
as shown in Tab. 9. The view transformation method (UniPAD Yang et al. (2024)) degrades at higher
resolutions, confirming that discrete voxel grids act as a "low-pass filter". As a result, UniPAD masks
errors at coarse scales but fails to capture high-frequency details due to the rigid bottleneck. In
contrast, NeRP3D demonstrates superior representational fidelity with a widening performance gap
at finer scales. This quantitatively proves that our continuous architecture resolves the structural
mismatch, successfully modeling fine-grained geometry that fixed grids cannot capture.

C ABLATION STUDIES

C.1 CROSS TASK GENERALIZATION

We investigate whether the learned 3D representations remain valid across different task objectives,
specifically evaluating the "Radiance Modeling Ability" of the backbone after fine-tuning for occu-
pancy prediction. In this experiment, we utilize the backbone encoder fine-tuned for the downstream
task while keeping the pre-trained rendering heads (RGB and SDF decoder) frozen.
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Figure 5: Comparison of performance
variation with changes in detection range
between the pre-training and fine-tuning
phases.
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Figure 6: Comparison of pre-training effectiveness:
Impact of 3D backbone and pre-training network align-
ment on performance retention across varying anno-
tated training data sizes.

As shown in Fig. 11, there is a stark contrast in the retained representations; the view transformation
method like UniPAD Yang et al. (2024) suffers from catastrophic forgetting, producing blurry
outputs that indicate a loss of fine-grained 3D information and a collapse into mean regression. In
contrast, NeRP3D successfully retains structural understanding, with key elements remaining clearly
distinguishable. Quantitative results in Tab. 10 further support this. While standard per-pixel metrics
are sensitive to feature scale shifts induced during fine-tuning, often favoring the mean regression
of UniPAD, NeRP3D significantly outperforms the view transformation method in scale-invariant
(SI-RMSE) and perceptual (LPIPS, GMSD) metrics. This confirms that, unlike view transformation
methods that overfit to specific tasks and collapse into mean regression, NeRP3D learns a robust and
continuous representation that maintains geometric fidelity across diverse downstream objectives.

C.2 ADAPTABILITY

We evaluate the adaptability of NeRP3D compared to the previous NeRF-based pre-training method
when transferring from one detection range for pre-training to another for fine-tuning. We pre-train
UniPAD Yang et al. (2024) and our NeRP3D on the detection range optimized for 3D object detection
with the full training set and subsequently fine-tune for HD map construction on a 1/2 training set.
Detailed detection range for 3D object detection and HD map construction is described in Sec. 4.2.

In Fig. 5, "Map>Map" denotes that the detection range remains the same for HD map construction in
both phases, while "Det>Map" indicates a change in detection range from 3D object detection during
pre-training to HD map construction during fine-tuning. As a result, while view transformation-
based approaches suffer substantial performance drops due to the fundamental modification of
volumetric features (the size of a tensor and voxels) when changing detection range with voxel size,
NeRP3D maintains consistent representation quality across different spatial configurations. This is
because NeRP3D’s point-based architecture only requires adjusting the coordinates of sampled points
without altering the underlying representation itself. The continuous nature of our NeRF-resembled
architecture highlights a key advantage of NeRP3D, namely the ability to generalize across tasks with
different spatial requirements without compromising the quality of learned representations, further
demonstrating the benefits of our unified point-based approach over discretized view transformation
approaches.

C.3 EFFECTIVENESS

We investigate the effectiveness of pre-training knowledge transfer in terms of the alignment of the
3D backbone and pre-training network by evaluating its performance when fine-tuned with varying
amounts of annotated data. We compare the performance between UniPAD and NeRP3D when
fine-tuned on 1/8, 1/4, 1/2, and the full training set.

As shown in Fig. 6, NeRP3D demonstrates robustness to reduced annotation quantities, with less
performance degradation compared to UniPAD as the training set size decreases. This enhanced
data efficiency can be attributed to the rich geometric and appearance information captured during
pre-training, which provides a strong foundation for downstream tasks even with limited supervision.
The alignment of the 3D backbone and the principle of NeRF-based pre-training enhances the
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Figure 7: Qualitative comparison of depth estimation results. While LiDAR-based depth supervision
alone shows limited improvement, incorporating multi-view consistency significantly enhances fine-
grained and spatial accuracy, enabling plausible predictions of geometric structures even beyond the
detection range.

Table 11: Ablation study on depth estimation performance with and without multi-view consistency.
Sparse LiDAR scans define the ground truth of depth in this experiment.

Multi-view
Consistency Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

✗ 0.202 2.264 7.716 0.348 0.764 0.874 0.926
✓ 0.183 2.274 7.884 0.353 0.799 0.883 0.926

effectiveness of knowledge transfer from pre-training to fine-tuning, allowing the model to generalize
better from fewer examples in autonomous driving perception tasks.

C.4 DEPTH SUPERVISION & MULTI-VIEW CONSISTENCY

We compare two approaches for depth pre-training: relying solely on LiDAR point cloud ground truth
and incorporating multi-view consistency during training. When supervision is limited to LiDAR
point clouds, depth estimation is accurate within the regions covered by the sensor. However, it cannot
provide meaningful predictions in areas lacking LiDAR point cloud returns. In contrast, multi-view
consistency enables the model to leverage geometric cues from overlapping camera views, but it is
not as accurate as LiDAR point cloud supervision.

Qualitatively, the addition of multi-view consistency provides fine-grained depth quality, allowing the
model to infer plausible geometric structures in regions where LiDAR supervision is unavailable or
out of range, as shown in Fig. 7. However, since depth evaluation metrics are restricted to areas with
sparse LiDAR point cloud ground truth, these improvements are not fully reflected in quantitative
results. In fact, as shown in Tab. 11, a model explicitly trained to optimize these evaluation metrics
may achieve slightly better numerical scores on some metrics by focusing exclusively on accurate
prediction at sparse LiDAR points, while potentially sacrificing overall geometric coherence and
depth consistency in regions without ground truth supervision.

Furthermore, Tab. 12 demonstrates how depth supervision during pre-training impacts downstream
3D object detection. The experiment is conducted on input resolutions of 800× 450 with full data.
Pre-trained with only cameras using multi-view consistency, our NeRP3D model establishes a strong
baseline, achieving 38.6 NDS and 34.5 mAP, which already outperforms the LiDAR-assisted UniPAD
model. Moreover, incorporating LiDAR-based depth supervision during pre-training further enhances
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Table 12: Ablation study on 3D object detection performance with and without depth supervision
from LiDAR. “C” and “L” under Pre-train Modality denote camera for multi-view consistency and
LiDAR for depth supervision, respectively.

Method Pre-train Pre-train Modality NDS↑ mAP↑
UVTR-C Li et al. (2022) UniPAD Yang et al. (2024) C & L 37.1 33.7
NeRP3D Ours C 38.6 34.5
NeRP3D Ours C & L 39.2 35.8

this performance, boosting performance to 39.2 NDS and 35.8 mAP. This result demonstrates both
the inherent effectiveness of the NeRP3D architecture and the significant, additive benefit of using
explicit geometric priors from LiDAR to improve detection accuracy.

C.5 DESIGN VALIDATION

All experiments to validate our design choice were conducted on a 1/4 subset with 704× 256 images.

Consistency of 3D Point Priors. To verify the importance of our unified architecture rather than a
point-based architecture, we applied rendering pre-training strategy to PETRv2 Liu et al. (2023a),
a point-based architecture. While PETRv2 learned 3D representations from pre-training, the per-
formance failed to transfer to detection (approx. 0.0 mAP). This failure stems from a fundamental
disruption in the consistency of 3D point priors. In pre-training, queries represent specific spatial
locations to encode geometry and radiance. However, PETR’s fine-tuning forces a drastic shift where
queries act as object instances, invalidating the learned spatial priors. In contrast, NeRP3D maintains
consistent spatial point queries across tasks, ensuring effective knowledge transfer (20.70 mAP).

SDF Prior. We evaluated the impact of the geometric prior by replacing SDF (NeuS Wang et al.
(2021)) with standard density (NeRF Mildenhall et al. (2021)). The SDF-based model achieved
20.70 mAP, outperforming the density-based variant (19.35 mAP). Since SDF enforces a hard surface
constraint and creates sharp and unambiguous object boundaries. This structural clarity is critical
for localizing and distinguishing precise objects in perception tasks, validating our design choice of
using NeuS over standard NeRF.

Deformable vs. Standard Attention. We validated the effectiveness of deformable attention against
standard global attention. Deformable attention achieved 20.70 mAP, significantly surpassing standard
attention (18.38 mAP). Since each 3D point corresponds to a specific physical location, attending to
the global context (standard attention) introduces irrelevant noise. Deformable attention enforces a
necessary locality inductive bias by restricting the receptive field to the projected neighborhood. This
proves that focusing on relevant local features is essential for accurate continuous representation.

Table 13: Computation analysis
Method GFLOPS FPS mAP

UniPAD 1250.10 5.59 19.12

NeRP3D

1903.77 4.47 20.70
1621.35 4.91 19.69
1492.60 5.25 19.20
1315.03 5.54 18.89

D COMPUTATION ANALYSIS

We evaluated the practicality and scalability by varying
sampling densities. Tab. 13 demonstrates that NeRP3D
operates at a computational level comparable to Uni-
PAD Yang et al. (2024) while delivering enhanced
performance. Crucially, detection accuracy scales lin-
early with sampling density. This scalability allows
the model to be tuned for performance or efficiency,
depending on the resource budget.

E THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, we utilized publicly available large language models (LLMs)
only to aid in polishing the writing. The model’s role was strictly limited to improving grammar,
refining sentence structure, and enhancing the overall clarity and readability of the text. All sci-
entific contributions, including the core ideas, experimental design, and analysis of results, are
exclusively our work. We carefully reviewed and edited all model-generated suggestions and retain
full responsibility for the final content of this paper.
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Figure 8: Qualitative comparison of 3D object detection results. NeRP3D consistently generates
more accurate and reliable 3D bounding boxes. It demonstrates key advantages such as successfully
detecting partially occluded objects in dense crowds (top row), reducing false positives for cleaner
predictions (middle row), and more accurately localizing the position of small objects like pedestrians
(bottom row).
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Figure 9: Qualitative comparison of occupancy prediction results. NeRP3D produces more detailed
and complete occupancy predictions compared to UniPAD. NeRP3D excels at distinguishing individ-
ual objects that are close together, as shown by its clear separation of the vehicles (top row, yellow).
Furthermore, it demonstrates a superior ability to detect objects that are entirely missed in the ground
truth annotation, likely due to occlusion (middle row, red). The robust perception ability of NeRP3D
also extends to resolving smaller, distant objects, such as pedestrians (bottom row, blue), contributing
to more accurate and reliable scene understanding.
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Figure 10: Qualitative comparison of rendering results on the Argoverse 2 dataset (Pre-training phase).
Models were pre-trained on Argoverse 2 (AV2) and evaluated without any fine-tuning on the target
domain (nuScenes). (Top: AV2 → AV2) In-domain reconstruction results. Both models demonstrate
that pre-training on AV2 was successful, reconstructing scene details within the source domain.
(Bottom: AV2 → nuScenes) Zero-shot transfer results to nuScenes. When applying AV2-trained
weights directly to the distinct camera geometry of nuScenes, UniPAD fails to render meaningful
structure (blurry artifacts), revealing the vulnerability of fixed voxel grids to sensor layout changes. In
contrast, NeRP3D maintains high-fidelity rendering, demonstrating that its point-based architecture
is sensor-agnostic and robust to extrinsic shifts.
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Figure 11: Qualitative evaluation of "Radiance Modeling Ability" after fine-tuning for occupancy
prediction. We visualize rendering results using backbones fine-tuned for the occupancy task, with
pre-trained decoders frozen. (Row 2-3) UniPAD suffers from catastrophic forgetting, producing
"blurry gray" outputs. The model loses 3D structural information and resorts to mean regression to
minimize loss. (Row 4-5) NeRP3D successfully retains structural understanding despite the task shift.
Key elements like vehicles, road boundaries, and building structures remain clearly distinguishable
in both RGB and Depth renderings. This proves that NeRP3D learns a task-agnostic continuous
representation that remains valid across different downstream objectives.
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