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ABSTRACT

LLM-based judges have emerged as a scalable alternative to human evaluation
and are increasingly used to assess, compare, and improve models. However, the
reliability of LLM-based judges themselves is rarely scrutinized. As LLMs be-
come more advanced, their responses grow more sophisticated, requiring stronger
judges to evaluate them. Existing benchmarks primarily focus on a judge’s align-
ment with human preferences, but often fail to account for more challenging tasks
where crowdsourced human preference is a poor indicator of factual and logi-
cal correctness. To address this, we propose a novel evaluation framework to
objectively evaluate LLM-based judges. Based on this framework, we propose
JudgeBench, a benchmark for evaluating LLM-based judges on challenging re-
sponse pairs spanning knowledge, reasoning, math, and coding. JudgeBench
leverages a novel pipeline for converting existing difficult datasets into chal-
lenging response pairs with preference labels reflecting objective correctness.
Our comprehensive evaluation on a collection of prompted judges, fine-tuned
judges, multi-agent judges, and reward models shows that JudgeBench poses a
significantly greater challenge than previous benchmarks, with many strong mod-
els (e.g., GPT-4o) performing just slightly better than random guessing. Over-
all, JudgeBench offers a reliable platform for assessing increasingly advanced
LLM-based judges. Data and code are available at https://github.com/
ScalerLab/JudgeBench.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in recent years and continue
to evolve at a rapid pace. With more advanced models emerging every month, a key challenge is
how to evaluate, compare, and supervise them effectively. While human judgment has traditionally
been the gold standard for evaluating language models, it is costly and time-consuming to collect
at scale. As a scalable alternative, LLM-based judges (Zheng et al., 2024) have gained widespread
adoption for ranking and evaluating models. Beyond evaluation, these judges also play a crucial role
in improving models, serving as reward models during training (Yuan et al., 2024; Luo et al., 2024a)
and acting as verifiers during inference to select the best response from multiple candidates (Cobbe
et al., 2021; Lightman et al., 2023).

Despite the widespread adoption, a fundamental question remains: How reliable are these LLM-
based judges themselves? Since LLMs themselves are prone to make logical and factual mistakes,
how can we trust that LLM-based judges are accurate and objective? To evaluate LLM-based judges,
many prior works have focused on these judges’ agreement with human preference (Dubois et al.,
2024; Zheng et al., 2024; Zhang et al., 2023; Wang et al., 2023a). The core assumption implied in
these works is that crowdsourced human annotators will evaluate the responses objectively and not
make mistakes. This assumption may hold when the problem is straightforward but falters when the
tasks grow more complex. For more complex evaluations that require thoughtful reasoning, such

*Equal contribution

1

https://github.com/ScalerLab/JudgeBench
https://github.com/ScalerLab/JudgeBench


Published as a conference paper at ICLR 2025

Previous Work

Prompt: What is a bomb?

A salesperson is conducting a slideshow. A salesperson is giving a presentation.

Prompt: Rewrite the sentence using gender-neutral language: A salesman is giving a presentation.

A bomb is a destructive device filled with an explosive
material designed to cause destruction or damage.

A bomb is an explosive device which can cause an intense release of heat, light, sound, and
fragments, intended to cause harm to people or destroy property. Bombs may contain . . .

JudgeBench (ours)
Prompt: Consider an additive white Gaussian noise channel with an expected output power constraint . 
Thus , ,  is independent of , and . Find the channel capacity in bits.

The channel capacity  in bits per second is given by:  where  is the
average signal power and  is the noise power spectral density. For this problem, we have

 (since  implies unit variance noise). Given the average output power
, the formula becomes: . Using the change of base

formula, . Plugging this back into the capacity formula:
. Therefore, the channel capacity is approximately 0.7925 bits.

For an AWGN channel, the capacity  where  is the
signal power and  is the noise power. From the power constraint,

. Since  and  is independent of ,
.

The noise  is Gaussian with , so . Plugging into the capacity
formula, . Therefore, the channel
capacity is 0.5 bits.

(Principle (1): Instruction Following)

(Principle (2): Factual and 
Logical Correctness)

(Principle (3): Stylistic Preference)

Figure 1: Comparison of JudgeBench against previous works. Unlike previous works which focus
on instruction following or stylistic preferences, the focus of JudgeBench is on evaluating the factual
and logical correctness of complex responses to challenging questions. JudgeBench is noticeably
more difficult than previous work, containing responses that are challenging for crowdsourced hu-
man annotators to evaluate in a reliable and timely manner.

as verifying the correctness of code snippets or evaluating intricate mathematical proofs, humans
are prone to make mistakes. These challenging tasks require strong domain-specific knowledge and
reasoning abilities, making them far too difficult for crowdsourced human annotators to evaluate
under time constraints.

The pitfalls of crowdsourced human evaluations lead us to wonder: What makes a response ob-
jectively better than another one? In this paper, we propose a hierarchical framework to analyze
this problem, which contains three guiding principles that LLM-based judges should follow when
selecting responses: (1) the response must faithfully follow human instructions, (2) it should pro-
vide factually and logically correct answers, and (3) its style should align with human preferences.
Consequently, a strong LLM-based judge must first distinguish whether a response follows instruc-
tions, then assess its factual and logical accuracy, and finally consider stylistic alignment with human
preferences. For example, suppose the question is “What is the capital of Spain?”. The response
“1+1=2” is always factually correct, but it should not be favored over the answer “Barcelona” which
tries to answer the question but does it incorrectly. Once principle (1) is satisfied (both responses
follow the instruction), a correct response should be favored over an incorrect one. Only when both
(1) and (2) are met should stylistic differences influence the judgment.

While instruction following and style are relatively easy for human annotators to judge, factual
and logical correctness becomes increasingly challenging with complex problems. In such cases,
human evaluators may mistakenly favor responses that seem more plausible or are simply longer,
prioritizing style over correctness—thereby violating the hierarchical framework. As a result, human
evaluations often become unreliable as the difficulty of the task increases.

To objectively evaluate LLM-based judges, it is crucial to adhere strictly to this hierarchy, distin-
guishing objective metrics such as factual correctness and instruction following from subjective fac-
tors like stylistic preferences. The LLMBar benchmark (Zeng et al., 2023) follows a similar intuition
by assessing instruction following, but no existing work has systematically focused on evaluating
factual and logical correctness as question complexity scales with increasingly advanced LLMs. As
AI models surpass human capabilities, their responses become harder for both human and LLM-
based judges to assess. Ensuring AI judges evolve alongside these models is essential for accurately
evaluating complex responses. Thus, there is an pressing need for a rigorous, objective methodology
to assess LLM judges based on their reasoning abilities.

To address this challenge, we introduce JudgeBench, a benchmark designed to evaluate LLM-based
judges on difficult response pairs that require advanced reasoning abilities. Our main insight is that
if a model struggles to consistently generate correct, coherent responses to a challenging question,
it will also struggle to distinguish between its correct and incorrect responses. Leveraging this
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insight, we build a novel pipeline that transforms any dataset with ground truth labels and verifica-
tion algorithms into a corresponding dataset specifically tailored for LLM-based judges. Using this
pipeline, we construct a challenging dataset consisting of 350 response pairs across four categories:
general knowledge, reasoning, mathematics, and coding. Each pair contains one objectively correct
response and one objectively incorrect response, with the incorrect response designed to contain
subtle errors, making it difficult for LLM-based judges to distinguish between the two. Figure 1
highlights the differences between previous works and JudgeBench.

The key contributions of this paper are as follows:

• We propose a principled evaluation framework for LLM-based judges, prioritizing fac-
tual and logical correctness over stylistic alignment, offering guidance for designing future
evaluation datasets in this domain.

• Based on this framework, we develop a novel pipeline that can transform any dataset with
objective ground truth labels into a corresponding dataset tailored for LLM-based judges.

• We use this pipeline to create JudgeBench, a benchmark specifically designed to evalu-
ate LLM-based judges’ ability to distinguish factually correct responses. Comprehensive
evaluation shows that JudgeBench poses a significantly greater challenge than prior bench-
marks, providing a robust test bed for future research on reasoning-enhanced judges.

2 RELATED WORK

LLM-based judges. The use of large language models (LLMs) as judges has become an increas-
ingly popular approach for evaluating AI-generated outputs. These approaches can be broadly cat-
egorized into three types: prompted judges, fine-tuned judges, and multi-agent judges. Prompting
methods do not require additional training; instead, they rely on carefully crafted prompts to instruct
LLMs to act as judges, leveraging the underlying model’s innate abilities (Dubois et al., 2024; Zheng
et al., 2024; Li et al., 2024).

Fine-tuned judges, on the other hand, are trained on specific preference datasets to improve their
evaluation accuracy (Wang et al., 2023c; Kim et al., 2023; 2024b; Li et al., 2023a; Zhu et al., 2023b).
These models are often fine-tuned using crowdsourced human preference data or distilled judgments
from strong teacher models like GPT-4 (OpenAI et al., 2024). While fine-tuned judges tend to
perform well on benchmarks, Huang et al. (2024) highlights that they often struggle to generalize to
diverse, unfamiliar tasks. Additionally, because the preference datasets used for fine-tuning typically
do not contain sufficiently challenging examples, they fail to enhance the reasoning abilities of the
judges, limiting their overall effectiveness.

Lastly, there are multi-agent judges, which leverage multiple LLMs in a pipeline to produce judg-
ments (Chan et al., 2023; Verga et al., 2024; Bai et al., 2022b). By combining the outputs of several
LLMs, these systems can surpass the capabilities of a single model, offering more robust evalua-
tions. However, this approach comes with the trade-off of significantly higher computational costs
during inference.

Reward models and verifiers. Reward models (RMs) are closely related to, but distinct from,
LLM-based judges. RMs are primarily used in reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Ziegler et al., 2019) to align pre-trained LLMs with human pref-
erences. These models (Zhu et al., 2023a; Liu & Zeng, 2024) are typically fine-tuned from base
LLMs on preference data (Wang et al., 2024b; Park et al., 2024; Han et al., 2024), and transformed
into discriminative systems that assign numerical scores to evaluate responses. RMs learn to convert
preference signals into quantitative judgments, steering models toward more preferred behaviors.

Reward models can also function as verifiers, classifying whether a solution is correct or not (Cobbe
et al., 2021; Lightman et al., 2023; Wang et al., 2023b; Luo et al., 2024b; Saunders et al., 2022;
Uesato et al., 2022; Yu et al., 2024). As verifiers, they can select the best-of-N responses from
an LLM, improving overall response quality. While most reward models are discriminative, recent
research has explored the use of generative models (LLMs) as verifiers (Zhang et al., 2024), lever-
aging LLMs’ generative abilities to enhance reasoning capabilities. Although LLM-based judges
are distinct from reward models, they can be viewed as a form of generative reward model, as their
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Question: Consider an additive white Gaussian noise channel with an
expected output power constraint . Thus , 

 is independent of , and . Find the channel capacity in bits.

Ground Truth: 0.5 bits

LLM

 graded responses

The channel capacity . We have  and
, so  bits.

The capacity . We have  and , so
 bits.

LLM-based
Judge

Trial 1

Question: Consider
an additive white . . .

Response_A: The
channel capacity . . .

Response_B: The
capacity  . . .

Trial 2

Question: Consider
an additive white . . .

Response_A: The
capacity  . . .

Response_B: The
channel capacity . . .

 B  >  A 

Figure 2: Overview of JudgeBench Pipeline. Questions with ground truth answers are sourced from
challenging datasets. We sample k responses to each question using a strong LLM (e.g., GPT-4o)
and grade each response for correctness. Response pairs are constructed from correct and incorrect
responses. We evaluate each response pair twice, swapping the order of the responses between trials,
and aggregate the decisions to form the predicted verdict (e.g., B > A).

preferences can also be used in RLHF to align LLMs. This suggests that these two fields are closely
related and are gradually converging.

Benchmarks for LLM-based judges and reward models. As LLM-based judges have become a
widely adopted method for evaluating and improving large language models (LLMs), several bench-
marks have been introduced to assess their effectiveness. Works such as LLMEval (Zhang et al.,
2023), MTBench (Zheng et al., 2024), and FairEval (Wang et al., 2023a) focus on evaluating the
alignment between LLM-based judges’ responses and human evaluations. As mentioned above,
these dataset suffers from the inherent subjectivity of human evaluation, prioritizing stylistic dif-
ferences over factual and logical correctness. LLMBar (Zeng et al., 2023) instead takes a different
approach by assessing LLM-based judges’ ability to follow instructions, using response pairs with
clear ground truth preference labels based on adherence to instructions rather than subjective pref-
erences. In contrast, JudgeBench focuses on assessing LLM-based judges’ ability to reason through
responses and distinguish between correct and incorrect responses, which is more challenging than
instruction following alone.

On the reward model side, RewardBench (Lambert et al., 2024) is a benchmark that offers a com-
prehensive evaluation of reward models’ ability in domains such as safety, chat, and reasoning. The
aggregation over several prior preference datasets and benchmarks (Li et al., 2023b; Zheng et al.,
2024; Zeng et al., 2023; Lightman et al., 2023; Muennighoff et al., 2023; Röttger et al., 2023; Wang
et al., 2023d; Bai et al., 2022a; Askell et al., 2021; Ethayarajh et al., 2022; Stiennon et al., 2020).
Compared to RewardBench’s reasoning datasets, JudgeBench proves to be significantly more chal-
lenging, as demonstrated by our experiments in Section 4.3.

3 JUDGEBENCH

JudgeBench’s pipeline. How can we generate challenging response pairs that are difficult for
LLM-based judges to distinguish while maintaining objective ground truth labels? Revisiting prin-
ciple (2), which underpins our work, we assert that when both responses follow human instructions
faithfully, the factually and logically correct response should be favored. Our main idea to achieve
this objective is to leverage an existing challenging dataset with ground truth labels and develop a
pipeline to transform it into a set of response pairs. Specifically, if a dataset includes an algorithm
to verify correctness, we can identify response pairs where one response passes verification and the
other does not. The incorrect response may either fail to follow instructions or contain factual errors,
ensuring clear objective ground truth labels aligned with our evaluation principle.
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A straightforward method to generate response pairs is to use multiple LLMs to produce candi-
date responses and then select one correct and one incorrect response per pair. While this ensures
objective ground truth labels, it introduces several limitations. First, since LLM capabilities vary,
incorrect responses may be too easily identifiable, reducing the dataset’s difficulty and undermining
the challenge for LLM-based judges. Second, because models have distinct stylistic tendencies,
judges may rely on superficial differences rather than factual correctness, conflicting with our goal
of evaluating reasoning ability. Lastly, LLM-based judges exhibit self-enhancement bias (Zheng
et al., 2024), often favoring responses generated by the same model, making it difficult to measure
and mitigate this bias when multiple models are involved.

To address these issues, we take an alternative approach based on our key insight: if a model strug-
gles to consistently generate correct, coherent responses to a challenging question, it will also strug-
gle to differentiate between those responses. Our proposed pipeline (Figure 2) refines the initial
approach to mitigate these pitfalls. Given a set of questions from an existing dataset, we first sample
k responses from a strong model (e.g., GPT-4o) and evaluate their correctness. We then filter out
questions where all k responses are either correct or incorrect, retaining only those with at least one
correct and one incorrect response to construct response pairs with objective ground truth labels.

As a result, the generated dataset is inherently more challenging for LLM-based judges. Since
all candidate responses are produced by a single model, this method also ensures consistency in
response style, reducing the influence of stylistic differences and mitigating self-enhancement bias
in the judgments. However, this approach introduces a different kind of bias. Because the base model
generates the responses, the dataset may be disproportionately challenging for that particular model
compared to others, as different models may not struggle with the same questions. Nevertheless,
this bias is confined to the model used for response generation, while creating a level playing field
for all other models. In Section 4.4, we conduct an ablation study to examine the extent of this bias.

JudgeBench’s datasets. JudgeBench’s pipeline is flexible and dynamic, capable of transform-
ing any existing dataset with ground truth labels and verification mechanisms into a response pair
format for evaluating LLM-based judges. To ensure that the resulting response pairs are challeng-
ing to distinguish, the source dataset itself must present a significant level of difficulty. To assess
JudgeBench’s ability to effectively test LLM-based judges, we categorize our datasets into four dis-
tinct categories: Knowledge, Reasoning, Mathematics, and Coding. We select datasets that align
with these categories and meet the challenge criteria.

• MMLU-Pro (Wang et al., 2024a). We use MMLU-Pro for the Knowledge cate-
gory. MMLU-Pro is a challenging multi-task dataset, filtered from the original MMLU
dataset (Hendrycks et al., 2020). It includes 12,032 college-level exam questions across 14
disciplines (e.g., Physics, Chemistry, Law), each presented as a multiple-choice question
with up to 10 possible options.

• LiveBench (White et al., 2024). LiveBench offers datasets in categories such as reasoning,
mathematics, and instruction-following, and releases new data monthly to avoid contamina-
tion. For the Reasoning and Mathematics categories, we use the corresponding LiveBench
datasets. The reasoning problems come from sources such as Big-Bench Hard (Suzgun
et al., 2022), and Zebra Puzzles, while the math problems are drawn from math competi-
tions (e.g., AMC12, USAMO).

• LiveCodeBench (Jain et al., 2024). LiveCodeBench is a contamination-free dataset for
coding tasks, containing over 300 challenging questions sourced from coding contests like
LeetCode, AtCoder, and Codeforces. We select this dataset for the Coding category.

Data Filtering and selection. Each of the datasets mentioned above provides a ground truth an-
swer and an algorithm to evaluate the correctness of model outputs. For instance, MMLU-Pro ver-
ifies solutions based on regex string matching. During our pipeline execution, we found that some
responses were marked incorrect due to minor formatting issues, even though their solutions were
correct. Constructing pairs with these responses is problematic, as the “incorrect” response may
simply fail the automated check due to a slight format mismatch. This gives the judge an unintended
shortcut, reducing the quality of the dataset.

To address this, we used an additional LLM (GPT-4o-mini) to verify the correctness of solutions.
The model was prompted to extract the solution from the response and determine whether it was
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correct, regardless of format. We filtered out responses where the LLM and the automated solu-
tion checker disagreed. Upon manual inspection of these disagreements, we confirmed they were
indeed caused by format errors. An example case where the two methods disagree can be found in
Appendix A.5. We perform some additional randomized filtering on MMLU-Pro and LiveBench to
better balance the size of each subset (see Appendix A.3 for details).

After applying our pipeline with GPT-4o as the underlying model and incorporating the additional
filtering, our dataset consists of a total of 350 questions: 154 in Knowledge, 98 in Reasoning, 56 in
Mathematics, and 42 in Coding.

4 EVALUATION

LLM-based judges are known to exhibit positional bias (Zheng et al., 2024; Wang et al., 2023a),
where the order in which the response pairs are presented can influence their decision. Evaluating
the judge on a single order of responses introduces this bias into evaluation. To mitigate this, we
evaluate the LLM-based judge twice, swapping the order of the response pairs in the second trial.

Since our response pairs contain an objectively correct and incorrect response, the only valid deci-
sions are A > B and A < B. However, in practice, some judges support a tie option: A = B.
To address this discrepancy, we aggregate the results from both trials as follows: if both trials yield
A > B or one trial gives A > B and the other A = B, we consider the aggregate decision to be
A > B. Inconsistent decisions (e.g., A > B in one trial, A < B in the other) or ties in both trials
are deemed incorrect, as they indicate the judge is either guessing or unable to reliably distinguish
between responses. This method enables a more accurate measurement of the judges’ ability.

4.1 EVALUATING LLM-BASED JUDGES ON JUDGEBENCH.

In this subsection, we describe three major experiments we conduct on JudgeBench. First, we
assess LLM-based judges from prior literature, which can be categorized as prompted, fine-tuned,
and multi-agent judges. Second, we use JudgeBench as a proxy to evaluate the underlying LLM’s
performance by fixing the prompt and varying the models. Lastly, we apply JudgeBench to evaluate
reward models. In Section 4.2, we provide a detailed analysis of these results.

Evaluating LLM-based judges across categories. We evaluate the following three categories
of LLM-based judges on JudgeBench. Additional details about these judges can be found in Ap-
pendix A.1.

• Prompted Judges. For prompted judges, we include the Vanilla judge, adapted from Al-
pacaFarm (Dubois et al., 2024), which directly prompts the LLM to indicate its preferred
response without requiring an explanation. We also consider the Arena-Hard Judge (Li
et al., 2024), which prompts the LLM to first generate its own reference answer, and then
analyze both responses before delivering a final verdict. We also include Google’s Ver-
texAI Evaluation service (Cloud, 2024) in this category.

• Fine-tuned Judges. For fine-tuned judges, we evaluate PandaLM (Wang et al., 2023c)
(fine-tuned on LLaMA-7B (Touvron et al., 2023a)), Prometheus2 (Kim et al., 2024b) (fine-
tuned on Mistral-7B/Mixtral-8x7B), JudgeLM (Zhu et al., 2023b) (fine-tuned on Vicuna-
7B/13B/33B (Chiang et al., 2023)), AutoJ (Li et al., 2023a) (fine-tuned on LLaMA-2-13B-
chat (Touvron et al., 2023b)), and Skywork’s judges (Shiwen et al., 2024) fine-tuned on
Llama-3.1-8B/70B (Dubey et al., 2024). These models are fine-tuned using either crowd-
sourced preference datasets or on distilled GPT-4 judgments.

• Multi-Agents Judges. For multi-agent judges, we evaluate ChatEval (Chan et al., 2023),
which leverages multiple LLMs in a debate to produce the final judgment.

Evaluating JudgeBench on different models. JudgeBench can also be used as a benchmark to
evaluate the underlying model’s capability. To evaluate the ability of these models, we freeze the
Arena-Hard Judge’s prompt and change the underlying model to see how the performance of dif-
ferent models varies. We select the latest models from five model providers: OpenAI, Anthropic,
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Knowledge Reasoning Math Coding Overall

Prompted Judges
Vanilla (GPT-4o) 44.16 47.96 66.07 61.90 50.86
Arena-Hard Judge (GPT-4o) 50.65 54.08 75.00 59.52 56.57
VertexAI Evaluation (Gemini-1.5-pro) 45.45 44.90 53.57 28.57 44.57

Fine-tuned Judges
PandaLM 9.09 21.43 7.14 16.67 13.14
Prometheus2-7b 38.31 25.51 35.71 42.86 34.86
Prometheus2-8x7b 41.56 39.80 50.00 23.81 40.29
Prometheus2-bgb-8x7b 45.45 30.61 46.43 28.57 39.43
JudgeLM-7B 23.38 29.59 32.14 11.90 25.14
JudgeLM-13B 26.62 29.59 28.57 19.05 26.86
JudgeLM-33B 32.47 48.98 33.93 19.05 35.71
AutoJ 40.26 29.59 44.64 28.57 36.57
Skywork-LLaMA-3.1B-8B 51.30 54.08 73.21 33.33 53.43
Skywork-LLaMA-3.1B-70B 55.84 55.10 73.21 47.62 57.43
Multi-Agent Judges
ChatEval 32.47 31.63 44.64 30.95 34.00

Table 1: Evaluating LLM-based judges on JudgeBench.

Meta, Google, and DeepSeek. Some of these models we host ourselves and for others, we rely on
either official or third-party APIs. We contain the details of our model sources in Appendix A.1.

Model Knowledge Reasoning Math Coding Overall

GPT-4o 50.65 54.08 75.00 59.52 56.57
GPT-4o-mini 48.05 43.88 69.64 45.24 50.00
o1-preview 66.23 79.59 85.71 85.71 75.43
o1-mini 58.44 62.24 82.14 78.57 65.71
o3-mini (high) 67.53 89.80 87.50 100.0 80.86
o3-mini (medium) 62.34 86.73 85.71 92.86 76.57
o3-mini (low) 62.99 69.39 83.93 83.33 70.57

Claude-3.5-Sonnet 62.34 66.33 66.07 64.29 64.29
Claude-3-Haiku 35.06 34.69 33.93 21.43 33.14

Llama-3.1-405B-Instruct 55.84 54.08 69.64 50.00 56.86
Llama-3.1-70B-Instruct 51.30 48.98 60.71 52.38 52.29
Llama-3.1-8B-Instruct 38.31 45.92 44.64 33.33 40.86

Gemini-1.5-pro 49.35 42.86 64.29 26.19 47.14
Gemini-1.5-flash 42.86 36.73 50.00 21.43 39.71

Deepseek-R1 59.09 82.65 80.36 92.86 73.14

Table 2: Evaluating the Arena-Hard Judge on JudgeBench, with different underlying models.

Evaluating JudgeBench on reward models. While our primary focus is on evaluating LLM-
based judges, JudgeBench can also be used to assess reward models, which are trained on preference
data to evaluate model outputs. Unlike pairwise LLM-based judges, reward models independently
assign scores to each response, and the higher-scoring response is deemed the preferred one.

In our experiments, we evaluated several top-performing reward models from the RewardBench
leaderboard (Lambert et al., 2024), including Skywork Reward’s model (Liu & Zeng, 2024), In-
ternLM’s reward models (Cai et al., 2024), and the GRM-Gemma-2B (Yang et al., 2024) reward
model fine-tuned on Google’s Gemma model (Team et al., 2024). Results are presented in Table 3
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Reward Model Knowledge Reasoning Math Coding Overall

Skywork-Reward-Gemma-2-27B 59.74 66.33 83.93 50.00 64.29
Skywork-Reward-Llama-3.1-8B 59.09 64.29 76.79 50.00 62.29
InternLM2-20B-Reward 62.34 69.39 66.07 50.00 63.43
InternLM2-7B-Reward 56.49 61.22 71.43 50.00 59.43
GRM-Gemma-2B 62.99 53.06 64.29 54.76 59.43

Table 3: Evaluating reward models on JudgeBench.

4.2 ANALYSIS AND TAKEAWAYS OF EVALUATION RESULTS ON JUDGEBENCH.

LLM-based judges’ performance falls short under JudgeBench’s challenging questions. The
evaluation results from Table 1 and 2 highlight the difficulty of JudgeBench. Even a strong model
like GPT-4o struggles, achieving accuracy no better than random guessing when using the vanilla
prompt. Although the more advanced Arena-Hard prompt improves performance slightly (from 50%
to 56%), the overall accuracy remains low.

All of our fine-tuned judges (except Skywork) perform significantly below the random baseline.
We explore several reasons behind the relatively poor performance of fine-tuned judges in Ap-
pendix A.2. Among all the fine-tuned judges, Skywork’s LLM-based judges (Shiwen et al., 2024)
perform the best overall, with an overall accuracy of 57.43%. When compared to the base Llama-3.1
models in Table 2, fine-tuning shows a clear performance boost, improving accuracy by over 12%
for the 8B model and 5% for the 70B model.

From Table 2, we can see that there is a clear gap in the performance between different models,
with larger models generally performing better than their smaller counterparts across all providers.
Among all models, OpenAI’s o3-mini performs the best overall, achieving 80.86%, 76.57% and
70.57% accuracy at high, medium, and low reasoning levels respectively. These reasoning-
enhanced models differ from standard models by taking extra time to “think” before generating
a response (OpenAI, 2024). The superior results indicate that scaling test-time compute is a promis-
ing path to improve the reasoning ability of the judges. Beyond these models, Claude-3.5-Sonnet
ranks highest among general-purpose models with an accuracy of 64.29%. Despite these results
being well above the random baseline, all models still have considerable room for improvement.

Reward models’ performance is on par with much more powerful LLMs. When comparing
the performance of reward models to LLM-based judges (Table 1), we find that fine-tuned reward
models generally outperform LLM-based judges. For example, Skyworks’s Gemma-2-27B reward
model achieves accuracy comparable to Claude-3.5-Sonnet, one of the most advanced LLMs cur-
rently available, and Skywork’s Llama-3.1-8B reward model surpasses the performance of the base
model by a huge margin (62.29% vs 40.86%). The above observation indicates that training a spe-
cialized verifier from a weak model to judge a stronger model is possible.

Our results also show that reward models exhibit a smaller performance gap on JudgeBench, with
overall accuracies ranging from approximately 59% to 64%. This consistency is likely due to these
models being trained or fine-tuned on similar open preference datasets, such as HelpSteer2 (Wang
et al., 2024b) and Skywork-Preference-80 (Skywork, 2023). While model size does influence perfor-
mance, as seen in the higher accuracy of InternLM-20B compared to InternLM-7B and Skywork’s
Gemma-2-27B outperforming LLaMA-3.1-8B, the improvements are modest. This suggests that the
quality of the training datasets plays a more critical role in shaping the preferences of reward models
than model size alone.

Advancing the reasoning ability of LLM-based judges is the next frontier. Our evaluation
on JudgeBench highlights the limitations of current LLM-based judges in distinguishing between
challenging response pairs. As AI systems become more sophisticated, LLM-based judges risk be-
coming a bottleneck to further scaling. For example, Brown et al. (2024) demonstrated that repeated
sampling can improve a model’s coverage (the percentage of problems solved) when an oracle-level
verifier is available. However, when the verifier is not strong enough, it becomes the limiting factor
in this process. Thus, enhancing the reasoning capabilities of LLM-based judges is essential for ad-
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Figure 3: Comparison of JudgeBench against prior benchmarks for LLM-based judges.

vancing the overall performance of AI systems–an area that remains largely underexplored. While
we leave improving the LLM-based judges as future work, JudgeBench provides a robust test bed
for evaluating future reasoning-enhanced judges.

4.3 COMPARING JUDGEBENCH TO OTHER EXISTING BENCHMARKS.

Comparison with MTBench, LLMEval, FairEval, and LLMBar To compare with existing
benchmarks for LLM-based judges, we evaluate five models (GPT-4o, Claude-3.5-Sonnet, Llama-
3.1-70B-Instruct, Llama-3.1-8B-Instruct, and Claude-3.5-Haiku) on existing datasets using the
Arena-Hard prompt. For fairness, we apply the same evaluation procedure described in Section 4,
where the judge is run twice on each pair, and its final decision is based on the aggregated judgments.

Our results show that JudgeBench is the most challenging dataset for evaluating LLM-based judges.
The strongest model on JudgeBench achieves only 64% accuracy, the lowest among all five datasets.
Additionally, JudgeBench demonstrates strong separability, with a 31% performance gap between
the best-performing model (Claude-3.5-Sonnet) and the weakest (Claude-3.5-Haiku). This gap is
comparable to LLMBar: Adversarial, which has a 33% gap, indicating that JudgeBench is a strong
benchmark for evaluating LLM-based judges.

Comparison with RewardBench. RewardBench (Lambert et al., 2024) is a general benchmark
for evaluating reward models, with a subcategory dedicated to reasoning in reward models. It
includes PRM Math (Lightman et al., 2023) and HumanEvalPack (Muennighoff et al., 2023) as
benchmarks for reasoning tasks. These datasets are similar to the Math and Coding categories in
JudgeBench, with PRM Math evaluating correct versus incorrect math proofs and HumanEvalPack
comparing correct versus buggy code. However, these benchmarks are very saturated, with the
strongest model achieving up to 97% accuracy on these datasets. This saturation is likely due to data
contamination since datasets such as PRM-800k are widely used in training reward models nowa-
days. In contrast, JudgeBench is far more challenging, with top reward models achieving only 64%
accuracy. Thus, JudgeBench offers a valuable complement to RewardBench for evaluating reward
models on difficult tasks requiring reasoning.

4.4 ABLATION STUDIES

Is verifying a problem’s solution easier than solving the problem itself? Intuitively, verification
should be simpler, as the model is provided with candidate solutions and only needs to identify the
correct one, a task that would yield 50% accuracy through random guessing alone. To explore this,
we conducted an ablation study in which we prompted models to directly solve the problem and
compared their accuracy to that of the judge. Our results, presented in Table 4, show that for a fixed
model, the judge’s accuracy closely mirrors that of the solver. While GPT-4o’s and Gemini-1.5-Pro’s
judges slightly outperform their corresponding solvers, Claude-3.5-Sonnet’s and Llama-3.1-405B-
Instruct’s judges lag behind their respective solvers.

Although the overall accuracy between the solver and judge is close, we observe a notable discrep-
ancy in the Coding category, where the solver consistently outperforms the judge across all models.
Conversely, in the Math category, judges significantly outperform solvers. This suggests that coding
problems are more difficult to evaluate, while logical errors in math problems are generally easier
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Setup Knowledge Reasoning Math Coding Overall

GPT-4o Solver 48.70 53.06 58.93 73.81 54.57
GPT-4o Judge 50.65 54.08 75.00 59.52 56.57

Claude-3.5-Sonnet Solver 61.04 62.24 60.71 88.10 64.57
Claude-3.5-Sonnet Judge 62.34 66.33 66.07 64.29 64.29

Llama-3.1-405B-Instruct Solver 48.05 67.86 63.27 66.67 57.71
Llama-3.1-405B-Instruct Judge 55.84 54.08 69.64 50.00 56.86

Gemini-1.5-pro Solver 33.12 42.86 37.50 64.29 40.29
Gemini-1.5-pro Judge 49.35 42.86 64.29 26.19 47.14

Table 4: Evaluating the LLM’s ability to solve the problems.

to identify. Overall, this ablation study indicates that the ability of the judge to verify the solution
pairs is highly correlated with its ability to solve the problem itself.

Investigating bias of the pipeline. In JudgeBench’s pipeline, we use GPT-4o to generate all re-
sponse pairs. This introduces a bias against GPT-4o judges, as the generated pairs are inherently
challenging for GPT-4o itself to distinguish. To empirically investigate this bias, we conduct an
ablation study using Claude-3.5-Sonnet instead to generate response pairs. This results in 270 pairs,
154 pairs for Knowledge, 51 pairs for Reasoning, 34 pairs for Math, and 31 pairs for Coding.
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Figure 4: Comparing JudgeBench’s evaluation results on GPT-4o versus Claude-3.5-Sonnet gener-
ated pairs.

Figure 4 presents a side-by-side comparison of several models’ performance on GPT-4o pairs versus
Claude-3.5-Sonnet pairs. The results confirm our hypothesis: Claude-3.5-Sonnet, which achieves
64.3% accuracy on GPT-4o pairs, drops to 44.8% accuracy when tasked with judging its own gener-
ated pairs. Similarly, GPT-4o tops the Claude-3.5-Sonnet pairs with 53.9% accuracy. However, this
number is still slightly lower than the 56.6% accuracy on its own pairs. This suggests that Claude-
3.5-Sonnet is a stronger reasoning model, producing more difficult-to-distinguish response pairs in
general. Beyond the models used to generate the response pairs, other models exhibit similar per-
formance gaps, indicating that the response pairs remain consistent in evaluating model capabilities,
regardless of the model used to generate the pairs.

CONCLUSION

In this work, we introduce a novel hierarchical evaluation framework to objectively evaluate LLM-
based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-
based judges’ ability to distinguish factually and logically correct outputs. Our work addresses the
pressing need to evaluate LLM-based judges’ reasoning ability, which is of increasing importance
given the rapid advancement of AI intelligence today. We hope that our framework and benchmark
can offer insights into future dataset design and foster further research into this space.
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A APPENDIX

A.1 DETAILS OF THE JUDGES

We closely followed the official implementation of each judge, only making modifications where
necessary. One broad change we made across all judges is the use of greedy decoding (tempera-
ture=0) to ensure reproducibility. Any additional judge-specific modifications are detailed below.
We sourced proprietary LLMs through their official APIs. All open-weight LLMs (including reward
models) were served locally in half-precision, except for Llama-3.1-405B-Instruct for which we
utilized the TogetherAPI. The prompts for each judge are provided for reference in Appendix A.6.

A.1.1 PROMPTED JUDGES

Vanilla (Dubois et al., 2024): This is a basic judge prompted to output a label indicating which
response it believes to be better, with no explanation required. This judge has no tie option. Each
judgment must be no more than 1024 tokens, however, in practice, they contained significantly fewer
tokens.

Arena-Hard Judge (Li et al., 2024): This judge is used in LMSYS’s Arena-Hard Leaderboard1.
It’s prompted to provide its own response to the question to use as a reference before evaluating the
pair of candidate responses. This judge must decide between 5 options: A>>B, A>B, A=B, B>A,
or B>>A. We did not distinguish between the first two cases, nor did we distinguish between the last
two cases. Following the original implementation, each judgment must be less than 4096 tokens;
however, if we were unable to extract the verdict using regex (e.g., if the judgment was incomplete
after 4096 tokens), the judge was given one more opportunity to continue its judgment (up to 4096
additional tokens) and output a valid verdict. One special case worthy of note is the Arena-Hard
results with o1-mini and o1-preview may not have respected these token constraints nor the zero
temperature.

Google Vertex Judge (Cloud, 2024): Google Cloud offers a generative AI evaluation service
in Vertex AI powered by Gemini-Pro-001. It supports both single and pairwise evaluation, though
we only evaluated in the pairwise configuration using their predefined question-answering quality
metric. The service is proprietary and offers little to no ability to set generation parameters (e.g.,
temperature).

A.1.2 FINE-TUNED JUDGES

PandaLM (Wang et al., 2023c): PandaLM is a family of LLM-based judges based on LLaMA-7B
and LLaMA-70B (Touvron et al., 2023a), and fine-tuned on crowdsourced human preference data
collected by the authors. As of the time of publication, only the 7B variant of PandaLM has been
made publicly accessible, so we do not include results on the 70B variant. PandaLM supports a tie
option. We followed PandaLM’s official implementation closely, including beam searching over 4
beams. We made one crucial change to PandaLM’s official inference pipeline: we truncated both
candidate responses (from the left) to fit the request in the limited context window of 2048 tokens.
Left truncation was used as many of the responses in JudgeBench output their final decision at the
end; experimentally we found that left truncation performs better than right truncation. Although
PandaLM generates its decision before its explanation, we generated up to 150 tokens to give the
beams time to “mature.”

Prometheus 2 (Kim et al., 2024b): Prometheus 2 is a family judges fine-tuned from Mistral
7B (Jiang et al., 2023) and Mixtral 8x7B (Jiang et al., 2024). These models are fine-tuned separately
on both Feedback Collections (Kim et al., 2023), a direct-assessment synthetic dataset generated
by GPT-4 (OpenAI et al., 2024), and Preference Collections (Kim et al., 2024b), an augmented
version of Feedback Collections for pairwise evaluation, with the resulting weights merged. Addi-
tionally, the authors subsequently released a second Mixtral variant further trained on the BiGGen
Bench (Kim et al., 2024a). We evaluated all 3 Prometheus 2 models on JudgeBench. Prometheus 2

1https://huggingface.co/spaces/lmsys/arena-hard-browser
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judges support fine-grained evaluation criteria, and we used their official “factual validity” criteria
since it best aligns with the motivation of JudgeBench. Prometheus 2 does not support ties.

JudgeLM (Zhu et al., 2023b): JudgeLM is a family of judges fine-tuned from Vicuna (Chiang
et al., 2023) using a dataset collected from existing instruction-tuning datasets that have been aug-
mented with candidate responses and GPT-4 (OpenAI et al., 2024) judgments. JudgeLM assigns
integer scores to each candidate response, meaning ties are possible albeit unlikely. We made one
crucial change to JudgeLM’s official inference pipeline: we truncated both candidate responses
(from the left) to fit the request in the limited context window of 2048 tokens. Left truncation was
used as many of the responses in JudgeBench output their final decision at the end; experimentally
we found that left truncation performs better than right truncation. Since JudgeLM generates scores
before an explanation, we limited the number of generated tokens to just 16 to reduce the amount
that each candidate response is truncated.

Auto-J (Li et al., 2023a): Auto-J is a generative judge fine-tuned from Llama-2-13b-chat (Tou-
vron et al., 2023b) on publicly available preference datasets augmented with GPT-4 (OpenAI et al.,
2024) judgments. Auto-J supports ties. Following Auto-J’s official implementation, we generated
judgments up to 1024 tokens in length at a temperature of 0.

Skywork Critics (Shiwen et al., 2024): Skywork released a series of 8B and 70B generative
judges built on Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct (Dubey et al., 2024) respectively.
These models are fine-tuned on a combination of proprietary and open-source critic datasets. Fol-
lowing their official implementation, we generated judgments up to 2048 tokens at a temperature of
0.

A.1.3 MULTI-AGENT JUDGES

ChatEval (Chan et al., 2023): ChatEval is a multi-agent judge that assigns roles to each agent.
Our implementation used two agents (one to act at the general public, while the other acts as a critic)
powered by GPT-4o as the model. The agents discuss sequentially (in a round-robin fashion) for at
most 4 turns. After the discussion, each agent independently assigns a score (between 1 and 10) for
each candidate response. We averaged the scores across both agents to determine the final decision.

A.2 ADDITIONAL ANALYSIS OF FINE-TUNED JUDGES

Many of the fine-tuned judges we evaluate score below the random guessing baseline of 50%. In
this section, we highlight three reasons this is the case: (1) truncated responses, (2) ties and invalid
decisions, and (3) inconsistent judgments. Moreover, we compare a few fine-tuned judges with pure-
prompting judges using the same base model to understand the impact of fine-tuning for judging.

Truncated responses Two of our judges (PandaLM and JudgeLM) have limited context windows
supporting just 2048 tokens. Combined, our candidate responses, however, often exceeded this limit.
As such, we dynamically truncated (from the left) both candidate responses (leaving all other parts
of the prompt template unchanged) to ensure the requests fit within the context limit. First, since
many candidate responses do not output their final answer until the end of their responses, truncating
from the left ensures the final answers are included in the truncated response provided to the judge.
Second, early experimentation with PandaLM and JudgeLM revealed that truncating from the left
resulted in better performance than truncating from the right.

Ties and invalid decisions Closely inspecting the generations of our fine-tuned judges reveals
several weaknesses. For example, out of 700 judgments (2 games across 350 examples), PandaLM
selected the tie option 479 times. Another Judge, Prometheus2-bgb-8x7b, made an invalid judgment
from which we cannot extract a decision on 215 of 700 judgments. Some of these invalid judgments
included “10/10”, “Neither A nor B”, and “3”. Table 5 provides the number of occurrences (out
of 700 games) each of the fine-tuned judges selects A > B, A < B, A = B, or the judgment is
otherwise invalid.
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Judge A > B A < B A = B Invalid

PandaLM-7B 45 114 479 62
Prometheus2-7b 395 232 0 73
Prometheus2-8x7b 331 328 0 41
Prometheus2-bgb-8x7b 239 215 0 246
JudgeLM-7B 399 229 72 0
JudgeLM-13B 355 312 33 0
JudgeLM-33B 344 264 92 0
AutoJ 289 378 33 0
Skywork-LLaMA-3.1B-8B 346 354 0 0
Skywork-LLaMA-3.1B-70B 390 310 0 0

Table 5: The prevalence of judgment types for each fine-tuned judge.

Judge Inconsistent

PandaLM-7B 29.14%
Prometheus2-7b 52.29%
Prometheus2-8x7b 40.00%
Prometheus2-bgb-8x7b 43.71%
JudgeLM-7B 59.71%
JudgeLM-13B 54.57%
JudgeLM-33B 38.00%
AutoJ 43.71%
Skywork-Llama-3.1B-8B 18.86%
Skywork-Llama-3.1B-70B 18.29%

Table 6: Rate of inconsistency between trials for each fine-tuned judge.

Inconsistent judgments Many fine-tuned judges struggled to generate consistent results between
games. For example, JudgeLM-7B and JudgeLM-13B were inconsistent on 59.71% and 54.57% of
pairs respectively. Likewise, Prometheus2-7b was inconsistent on 52.29% of pairs. Table 6 shares
the rate of inconsistency in judgments between games.

Case Study: Do fine-tuned judges outperform prompted judges? The fine-tuned Skywork-
Llama-3.1B-8B and Skywork-LLaMA-3.1B-70B outperformed the corresponding arena-hard
judges with the same base model (Llama-3.1B-8B-Instruct and Llama-3.1B-70B-Instruct) by 12.57
and 5.14 respectively. Does this hold for other judges? In an attempt to answer this question, we
evaluated Mistral-7B-v0.1-Instruct, the base model behind Prometheus2-7b, using the Vanilla and
Arena-Hard prompts and present the results in Table 7. We found that Prometheus2-7b significantly
outperformed its base model (Mistral-7B-v0.1-Instruct) with both the vanilla prompt and Arena-
Hard prompt. It’s worth noting that with the vanilla prompt, Mistral-7B-v0.1-Instruct selected re-
sponse A in 624/700 games, and with the arena-hard prompt, Mistral-7B-v0.1-Instruct selected the
tie option in 618/700 games. As such, it does appear that fine-tuned judges tend to outperform
prompted judges when using the same base model.

Judge Score

Prometheus2-7b 38.31
Vanilla (Mistral-7B-v0.1-Instruct) 7.43
Arena-Hard (Mistral-7B-v0.1-Instruct) 6.57

Table 7: Comparison of Prometheus2-7b against prompted judges with the same base model.
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A.3 DATASET FILTERING

We performed some additional filtering on MMLU-Pro and LiveBench. For MMLU-Pro, we ran-
domly selected 100 questions from each of the 14 disciplines before generating responses and con-
structing pairs. Of these 1400 questions, only 347 and 233 contained both correct and incorrect
responses generated by GPT-4o and Claude-3.5-Sonnet, respectively. In both cases, we randomly
selected 11 pairs from each discipline, for a total of 154 knowledge pairs. Similarly, we randomly
sampled 100 questions from the math and reasoning subsets of Livebench. Note that we exclude the
“olympiad” subset of LiveBench-Math. We derived 98 reasoning pairs and 46 math pairs from GPT-
4o responses, but just 51 reasoning pairs and 34 math pairs from Claude-3.5-Sonnet responses. We
did no pre-filtering or post-filtering for LiveCodeBench, deriving 42 pairs from GPT-4o responses
and 31 pairs from Claude-3.5-Sonnet responses.

In all, the GPT-4o split of JudgeBench contains 350 instances, which is on par with similar bench-
marks. For instance, FairEval (Wang et al., 2023a) contains 80 unique questions, LLMEval-2 (Zhang
et al., 2023) contains 480, MT-Bench (Zheng et al., 2024) contains 80, and LLMBar (Zeng et al.,
2023) contains 419. RewardBench (Lambert et al., 2024) is larger, but it’s an aggregation of ex-
isting benchmarks, including MT-Bench and LLMBar. In order to test if this size is sufficient,
we augmented our “knowledge” subset, increasing the number of response pairs from 154 to 770.
We evaluated several LLMs using the Arena-Hard prompt, and observed that the relative rankings
among these judges were the same between our original set and the augmented set, despite small
variations in the scores themselves (see Table 8).

Model Original Set Augmented Set
gpt-4o 50.65 (3rd) 46.49 (3rd)
gpt-4o-mini 48.05 (4th) 44.03 (4th)
claude-3.5-sonnet 62.34 (1st) 63.25 (1st)
claude-3-haiku 35.06 (6th) 39.35 (6th)
llama-3.1-70b-instruct 51.30 (2nd) 52.60 (2nd)
llama-3.1-8b-instruct 38.31 (5th) 40.00 (5th)

Table 8: Performance on original and augmented “knowledge” sets.

A.4 ANALYSIS OF LENGTH BIAS ON JUDGE BENCH

Prior works has documented that LLM-based judges exhibit length bias, tending to prefer longer
responses over shorter ones (Hu et al., 2024; Wei et al., 2024). Because each of our pairs contains
two responses sampled from the same model, rather than from two different models, the responses
tend to be of similar length. On average, across all 350 instances of JudgeBench, correct and in-
correct responses contain 562.29 and 561.16 tokens, respectively, using the GPT-4o tokenizer. This
negligible difference demonstrates that the construction of JudgeBench effectively mitigates length
bias, allowing LLM-based judges to be evaluated without this confounding factor.

A.5 EVALUATING RESPONSES FOR CORRECTNESS

For LiveBench and MMLU-Pro, we checked the correctness of generated responses using two meth-
ods. First, we parsed the final answer from the responses using regex and checked against the ground
truth answers. For LiveBench, we closely followed their official post-processing methodology to
extract the final answers. For MMLU-Pro, we adapted the multiple-choice questions to the same
format used by LiveBench and included in the question instructions to output its final letter choice 5
times in a row (e.g., “My final answer is AAAAA”). Using regex, we extracted the last capital letter
A-J that was repeated 5 times and treated this as the final answer. Second, we queried GPT-4o-mini
with the question, response, and ground truth (using the prompt provided below) and had it decide
whether or not the response was correct. We excluded any responses where these two methods
disagree.
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Prompt template for checking correctness with GPT-4o-mini.

System Prompt:
I will provide you with a multiple-choice question, a response from an LLM, and the
correct option. Output a valid JSON object containing a single key-value pair, where the
key is “is correct” and corresponding value is a boolean indicating whether or not the
LLM-generated selects the correct option.

User Prompt:
<|Question|>
{question}

<|LLM Response|>
{response}

<|Correct Answer|>
{ground truth}

The advantage of this combined approach is to eliminate any questionable responses, such as in the
case where the model selects the correct answer but does not properly format its answer in accor-
dance with the instructions. In general, we found high rates of agreement between these methods
(e.g., 97.7% and 99.5% agreement across 7000 responses to the 14000 MMLU-Pro questions for
GPT-4o and Claude-3.5-Sonnet, respectively). Below, we highlight an example case of disagree-
ment, where the model correctly identified the correct answer, but formatted it incorrectly as IIIIi
instead of IIIII, which resulted in no regex match but GPT-4o-mini gave it the benefit of the doubt
and marked it correct.

Example of disagreement between solution checkers.

Question:
Which muscle is the most active during a right lateral excursion of the mandible?
(A) Left masseter muscle
(B) Right buccinator muscle
(C) Right temporalis muscle
(D) Right masseter muscle
(E) Right lateral pterygoid muscle
(F) Left medial pterygoid muscle
(G) Left temporalis muscle
(H) Left buccinator muscle
(I) Left lateral pterygoid muscle
(J) Right medial pterygoid muscle
If you cannot determine the correct multiple-choice answer, take your best guess. Once you
have your answer, please duplicate that letter five times in a single string. For example, if
the answer is K, then write KKKKK.
Let’s think step by step.

Response:
To determine which muscle is most active during a right lateral excursion of the mandible,
we need to understand the movements and the muscles involved. A right lateral excursion
means the mandible is moving to the right.

1. **Muscles Involved in Mandibular Movements**:
- The **lateral pterygoid muscles** are the main muscles responsible for the lateral
movements of the mandible. Each side’s lateral pterygoid has a different function during
this movement.
- The **right lateral pterygoid muscle** would pull the condyle of the mandible forward on
the right side, resulting in leftward movement.
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- The **left lateral pterygoid muscle** would cause the condyle on the left to move forward,
assisting the mandible in moving to the right.

2. **Supporting Muscles**:
- The **masseter, temporalis, medial pterygoid**, and **buccinator** play roles primarily
in elevation, retraction, or mastication rather than direct lateral movements.

3. **Logical Deduction**:
- When the mandible moves to the right, the **left lateral pterygoid muscle** is more
engaged. This is because it’s the left lateral pterygoid that pulls the left side of the mandible
forward and to the right.

Given this, the most active muscle during a right lateral excursion of the mandible is: I. Left
lateral pterygoid muscle. Therefore, the correct answer is: IIIIi

Ground Truth:
(I) Left lateral pterygoid muscle

A.6 PROMPTS

Below, we share the prompts used for each judge we evaluated. These prompts come directly from
each judges’ official implementation, but are provided for reference.

Vanilla Prompt

User Prompt:
You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to select the best output for the given instruction.
Select the Output (a) or Output (b) that is better for the given instruction. The two outputs
are generated by two different AI chatbots respectively.
Do NOT provide any explanation for your choice.
Do NOT say both / neither are good.
You should answer using ONLY “Output (a)” or “Output (b)”. Do NOT output any other
words.
# Instruction:
{question}
# Output (a):
{response a}
# Output (b):
{response b}
# Which is better, Output (a) or Output (b)? Your response should be either “Output (a)” or
“Output (b)”:

Arena-Hard Prompt

System Prompt:
Please act as an impartial judge and evaluate the quality of the responses provided by two
AI assistants to the user prompt displayed below. You will be given assistant A’s answer
and assistant B’s answer. Your job is to evaluate which assistant’s answer is better.

Begin your evaluation by generating your own answer to the prompt. You must provide
your answers before judging any answers.

When evaluating the assistants’ answers, compare both assistants’ answers with your
answer. You must identify and correct any mistakes or inaccurate information.
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Then consider if the assistant’s answers are helpful, relevant, and concise. Helpful means
the answer correctly responds to the prompt or follows the instructions. Note when user
prompt has any ambiguity or more than one interpretation, it is more helpful and appropriate
to ask for clarifications or more information from the user than providing an answer based
on assumptions. Relevant means all parts of the response closely connect or are appropri-
ate to what is being asked. Concise means the response is clear and not verbose or excessive.

Then consider the creativity and novelty of the assistant’s answers when needed. Finally,
identify any missing important information in the assistants’ answers that would be
beneficial to include when responding to the user prompt.

After providing your explanation, you must output only one of the following choices as
your final verdict with a label:

1. Assistant A is significantly better: [[A>>B]]
2. Assistant A is slightly better: [[A>B]]
3. Tie, relatively the same: [[A=B]]
4. Assistant B is slightly better: [[B>A]]
5. Assistant B is significantly better: [[B>>A]]

Example output: “My final verdict is tie: [[A=B]]”.

User Prompt:
<|User Prompt|>
{question}

<|The Start of Assistant A’s Answer|>
{response a}
<|The End of Assistant A’s Answer|>

<|The Start of Assistant B’s Answer|>
{response b}
<|The End of Assistant B’s Answer|>

Google Vertex Prompt

User Prompt:
# Instruction
You are an expert evaluator. Your task is to evaluate the quality of the responses generated
by two AI models. We will provide you with the user input and a pair of AI-generated
responses (Response A and Response B). You should first read the user input carefully
for analyzing the task, and then evaluate the quality of the responses based on the Criteria
provided in the Evaluation section below.

You will first judge responses individually, following the Rating Rubric and Evaluation
Steps. Then you will give step-by-step explanations for your judgment, compare results to
declare the winner based on the Rating Rubric and Evaluation Steps.

# Evaluation
## Metric Definition
You will be assessing question answering quality, which measures the overall quality of
the answer to the question in the user prompt. Pay special attention to length constraints,
such as in X words or in Y sentences. The instruction for performing a question-answering
task is provided in the user prompt. The response should not contain information that is not
present in the context (if it is provided).
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## Criteria
Instruction following: The response demonstrates a clear understanding of the question
answering task instructions, satisfying all of the instruction’s requirements.
Groundedness: The response contains information included only in the context if the context
is present in the user prompt. The response does not reference any outside information.
Completeness: The response completely answers the question with sufficient detail.
Fluent: The response is well-organized and easy to read.

## Rating Rubric
“A”: Response A answers the given question as per the criteria better than response B.
“SAME”: Response A and B answers the given question equally well as per the criteria.
“B”: Response B answers the given question as per the criteria better than response A.

## Evaluation Steps
STEP 1: Analyze Response A based on the question answering quality criteria: Determine
how well Response A fulfills the user requirements, is grounded in the context, is complete
and fluent, and provides assessment according to the criterion.
STEP 2: Analyze Response B based on the question answering quality criteria: Determine
how well Response B fulfills the user requirements, is grounded in the context, is complete
and fluent, and provides assessment according to the criterion.
STEP 3: Compare the overall performance of Response A and Response B based on your
analyses and assessment.
STEP 4: Output your preference of “A”, “SAME” or “B” to the pairwise choice field
according to the Rating Rubric.
STEP 5: Output your assessment reasoning in the explanation field.

# User Inputs and AI-generated Responses
## User Inputs
### Prompt
{question}

# AI-generated Response

### Response A
{response a}

### Response B
{response b}

PandaLM Prompt

Prompt:
Below are two responses for a given task. The task is defined by the Instruction. Evaluate
the responses and generate a reference answer for the task.

### Instruction:
{question}

### Response 1:
{response a}

### Response 2:
{response b}

### Evaluation:
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Prometheus 2 Prompt

System Prompt:
You are a fair judge assistant assigned to deliver insightful feedback that compares individ-
ual performances, highlighting how each stands relative to others within the same cohort.

User Prompt:
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, and a score rubric
representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of two responses strictly based on the
given score rubric, not evaluating in general.
2. After writing a feedback, choose a better response between Response A and Response B.
You should refer to the score rubric.
3. The output format should look as follows: “(write a feedback for criteria) [RESULT] (A
or B)” 4. Please do not generate any other opening, closing, and explanations.

###Instruction:
{question}

###Response A:
{response a}

###Response B:
{response b}

###Score Rubric:
[Are the model’s responses factually correct and well-supported by evidence?]

###Feedback:

JudgeLM Prompt

Prompt:
You are a helpful and precise assistant for checking the quality of the answer.
[Question]
{question}

[The Start of Assistant 1’s Answer]
{response a}

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
{response b}

[The End of Assistant 2’s Answer]

[System]
We would like to request your feedback on the performance of two AI assistants in response
to the user question displayed above.
Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each
assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better
overall performance.
Please first output a single line containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please
provide a comprehensive explanation of your evaluation, avoiding any potential bias and
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ensuring that the order in which the responses were presented does not affect your judgment.

### Response:

Auto-J Prompt

User Prompt:
You are assessing two submitted responses on a given user’s query and judging which
response is better or they are tied. Here is the data:

[BEGIN DATA]
***
[Query]: {question}
***
[Response 1 ]: {response a}
***
[Response 2 ]: {response b}
***
[END DATA]

Here are the instructions to assess and compare the two responses:

1. Pinpoint the key factors to distinguish these two responses.
2. Conclude your comparison by providing a final decision on which response is better, or
they are tied. Begin your final decision statement with “So, the final decision is Response
1 / Response 2 / Tie”. Ensure that your decision aligns coherently with the comprehensive
evaluation and comparison you’ve provided.

Skywork Prompt

User Prompt:
Please act as an impartial judge and evaluate the quality of the responses provided by two
AI assistants to the user question displayed below. You should choose the assistant that
follows the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of their responses. Avoid any position biases and ensure that
the order in which the responses were presented does not influence your decision. Do not
allow the length of the responses to influence your evaluation. Do not favor certain names
of the assistants. Be as objective as possible.
Please directly output your final verdict by strictly following this format: “[[A]]” if assistant
A is better, “[[B]]” if assistant B is better.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{response a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response b}
[The End of Assistant B’s Answer]
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ChatEval Prompt

General Public Prompt:
[Question]
{question}

[The Start of Assistant 1’s Answer]
{response a}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{response b}
[The End of Assistant 2’s Answer]
[System]
We would like to request your feedback on the performance of two AI assistants in response
to the user question displayed above. Please consider the helpfulness, relevance, accuracy,
and level of detail of their responses. There are a few other referees assigned the same task;
it’s your responsibility to discuss with them and think critically before you make your final
judgment. Each assistant receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.

You are now General Public, one of the referees in this task. You are interested in the story
and looking for updates on the investigation. Please think critically by yourself and note
that it’s your responsibility to choose one of which is the better first.

Now it’s your time to talk, please make your talk short and clear, General Public !

Please first provide a comprehensive explanation of your evaluation, avoiding any potential
bias and ensuring that the order in which the responses were presented does not affect your
judgment. Then, output two lines indicating the scores for Assistant 1 and 2, respectively.

Remember that you are not required to output the same value as other referees!
Output with the following format strictly:
Evaluation evidence: [your explanation here]
The score of Assistant 1: [score only]
The score of Assistant 2: [score only]

Critic Prompt:
[Question]
{question}

[The Start of Assistant 1’s Answer]
{response a}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{response b}
[The End of Assistant 2’s Answer]
[System]
We would like to request your feedback on the performance of two AI assistants in response
to the user question displayed above. Please consider the helpfulness, relevance, accuracy,
and level of detail of their responses. There are a few other referees assigned the same task;
it’s your responsibility to discuss with them and think critically before you make your final
judgment. Each assistant receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.

You are now Critic, one of the referees in this task. You will check fluent writing, clear
sentences, and good wording in summary writing. Your job is to question others judgment
to make sure their judgment is well-considered and offer an alternative solution if two
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responses are at the same level.

Now it’s your time to talk, please make your talk short and clear, Critic!

Please first provide a comprehensive explanation of your evaluation, avoiding any potential
bias and ensuring that the order in which the responses were presented does not affect your
judgment. Then, output two lines indicating the scores for Assistant 1 and 2, respectively.

Remember that you are not required to output the same value as other referees!
Output with the following format strictly:
Evaluation evidence: [your explanation here]
The score of Assistant 1: [score only]
The score of Assistant 2: [score only]
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