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ABSTRACT

Video understanding is inherently intention-driven—humans naturally focus on
relevant frames based on their goals. Recent advancements in multimodal large
language models (MLLMs) have enabled flexible query-driven reasoning; however,
video-based frameworks like Video Chain-of-Thought lack direct training signals
to effectively identify relevant frames. Current approaches often rely on heuristic
methods or pseudo-label supervised annotations, which are both costly and limited
in scalability across diverse scenarios. To overcome these challenges, we introduce
ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for
optimizing frame selection in intention-driven video understanding. An iterated
amplification strategy is adopted to perform alternating cyclic training in the video
CoT system, where each component undergoes iterative cycles of refinement to
improve its capabilities. ViaRL utilizes the answer accuracy of a downstream model
as a reward signal to train a frame selector through trial-and-error, eliminating the
need for expensive annotations while closely aligning with human-like learning
processes. Comprehensive experiments across multiple benchmarks, including
VideoMME, LVBench, and MLVU, demonstrate that ViaRL consistently delivers
superior temporal grounding performance and robust generalization across diverse
video understanding tasks, highlighting its effectiveness and scalability. Notably,
ViaRL achieves a nearly 15% improvement on Needle QA, a subset of MLVU,
which is required to search a specific needle within a long video and regarded as
one of the most suitable benchmarks for evaluating temporal grounding.

1 INTRODUCTION

Recent advancements in OpenAI’s o3 model (OpenAI, 2025), have demonstrated remarkable capabil-
ities in image understanding. The model leverages multi-turn query-based grounding and powerful
reasoning abilities to process visual signals alongside textual queries. Inspired by this paradigm, an
intriguing question arises: can video understanding be enhanced through a similar approach using
temporal grounding? While spatial grounding focuses on identifying key regions within an image,
temporal grounding aims to pinpoint the most relevant frames in a video sequence.

It’s also necessary to examine another underlying problem: Why use the framework to identify the
relevant frames rather than reasoning over complex facts? While recent studies have attempted to
enhance reasoning in video tasks, their efforts have not consistently led to improvements. Wang
& Peng (2025) reports that GRPO fine-tuning results in decreased accuracy. Despite introducing
a large amount of annotated reasoning data, Video-R1 (Feng et al., 2025) fails to outperform the
Qwen2.5-VL-7B (without CoT/SFT/RL) on VideoMME. Similarly, the results of Team et al. (2025);
Guo et al. (2025), in which compare RL and SFT models across several video benchmarks, show
that RL fine-tuning does not consistently outperform SFT. These observations suggest that directly
finetune a MLLM to reason about complex facts in the frames is not yet effective for general video
tasks. We attribute this to two main factors: (1) most general video understanding tasks are perceptual
rather than truly cognitive in nature, and (2) significant gaps remain between the physical world and
MLLMs, for example, how to represent the visual information. Therefore, we adopt this framework
for reasoning about relevant frames for subsequent answering, as shown in Fig 1.
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… …

Query: What is between the yellow fox and the white fox? Selector (𝑀1) System Prompt

<think> The question asks about what is present between two distinct types of foxes. Yellow foxes and white foxes are mentioned, indicat
-ing the need to look for objects or markers within the scene. Relevant frames show both types of foxes, so I should focus on frames that
highlight their presence and any items that could be positioned between them.</think><index> [0, 13, 29, 56, 66, 70, 89, 126] </index>

Question: What is between the yellow fox and the white fox?
Options: A. Fence. B. Stone. C. Tree. D. House. MLLM (𝑀2) Response: A

Figure 1: The overall architecture of our approach.

Several recent works have explored frame selection techniques and video Chain-of-Thought (CoT)
pipelines. For instance, Hu et al. (Hu et al., 2025b) employs a learnable score query to predict
importance scores for each frame, using pseudo-labels annotated by MLLMs during training. AKS
(Tang et al., 2025) leverages the CLIP model to compute relevance scores between each frame and
the query. Both of them introduce extra sophisticated strategies, such as Non-Maximum Suppression
(NMS) sampling, to reduce redundancy in frame selection. CoS (Hu et al., 2025a) uses the LLaVA
to evaluate whether the query elements are present in each frame to construct positive and negative
shots for further co-reasoning, without temporal consideration. Additionally, Frame-Voyager (Yu
et al., 2024) applies a Direct Policy Optimization (DPO) strategy to select a group from combinations
of candidate frames. All of these methods face limitations, specifically, these methods lack a clear
training goal for assessing the quality of selected frames, making it challenging to consistently
produce optimal results.

To address these limitations, we propose a novel learning framework, ViaRL, that incorporates
rule-based reinforcement learning (RL) into the video CoT pipeline to optimize frame selection
for temporal grounding. Unlike previous approach that relies on supervised fine-tuning with
pseudo-labels, ViaRL uses the answer accuracy of a downstream MLLM as a reward signal,
enabling a trial-and-error learning process that eliminates the need for expensive frame selection
annotations. This approach aligns more closely with human-like learning, where individuals refine
their perceptual skills through interaction and feedback rather than exhaustive supervision. By
leveraging reinforcement learning, ViaRL dynamically trains a lightweight frame selector to identify
the most relevant frames for a given query, ensuring that the model focuses on the key moments that
contribute to accurate answer generation.

Inspired by the concept of iterated distillation and amplification introduced in AI 2027 (Kokotajlo
et al., 2025), we adopt an iterative training strategy, referred to as Visual Iterated Amplification
System, to progressively improve the performance of both the frame selector and the downstream
MLLM. They (Kokotajlo et al., 2025; Christiano et al., 2018) decompose a complex problem into
multiple simple sub-problems and handle them in parallel, enabling the model to progressively adapt
to more challenging tasks. In comparison, we employ a sequential processing approach, which is
better aligned with the requirements of our task. Initially, the frame selector is trained using RL to
optimize its selection effectiveness, based on the reward signal provided by the downstream MLLM’s
accuracy. Once the selector achieves a certain level of performance, we freeze it and fine-tune the
downstream MLLM to maximize its ability to generate accurate answers using the selected frames.
As the downstream model improves, the selector is retrained to further refine its frame selection
process, creating a feedback loop where both components collectively enhance their performance.
This iterative process ensures that the pipeline adapts to increasingly complex scenarios, enabling
robust temporal grounding across diverse video understanding tasks.

By leveraging reinforcement learning and iterative optimization, ViaRL provides a flexible and
human-inspired solution to intention-driven video understanding, setting a new exploration for
temporal grounding in multimodal tasks. We evaluate ViaRL extensively across multiple benchmarks,
including VideoMME (Fu et al., 2024), LVBench (Wang et al., 2024), and MLVU (Zhou et al., 2024),
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demonstrating its effectiveness and scalability. Notably, ViaRL achieves significant improvements
in temporal grounding performance compared to state-of-the-art baselines. For example, ViaRL
achieves a 15% improvement on Needle QA, a subset of MLVU that is widely regarded as one of
the most suitable benchmarks for evaluating temporal grounding. Additionally, our experiments
demonstrate that ViaRL consistently performs well across diverse visual scenarios and question types,
underscoring its broad applicability and robustness.

Our contributions can be summarized as follows:

• We propose ViaRL, the first framework to apply rule-based reinforcement learning to
temporal grounding in video understanding tasks. By addressing the challenges posed by
training signals, ViaRL establishes a learning paradigm, thinking with videos, that is both
flexible and human-like.

• We introduce Visual Iterated Amplification Learning System, an iterative training strategy
that progressively improves both frame selection and answer generation through feedback
loops.

• Extensive experiments across multiple benchmarks featuring diverse task scenes demon-
strate that ViaRL consistently outperforms strong baselines in temporal grounding tasks,
highlighting its effectiveness and scalability across a broad range of task scenarios.

2 RELATED WORKS

A substantial body of research has focused on MLLMs (Lin et al., 2023; Zhang et al., 2023; Bai et al.,
2025; Wang et al., 2025), frame selection (Hu et al., 2025b; Yu et al., 2024; Tang et al., 2025), and
the application of RL to LLMs (Shao et al., 2024; Ahmadian et al., 2024). Our work connects the
potentially inefficient learning modes of frame selection methods with reinforcement learning applied
to multimodal tasks. Given that existing methods lack a clear training goal for assessing the quality
of selected frames in the Video-CoT pipeline, largely due to the subjectivity of the task, we propose
ViaRL which delegates the optimization of frame selection to a downstream MLLM. See Appendix
A for more detailed discussions of the related work.

3 METHODS

In this work, we propose a novel learning pipeline for video temporal grounding, referred to as
Visual Iterated Amplification Reinforcement Learning (ViaRL). Our approach involves training a
video frame selector that uses natural language communication to identify and convey which frames
are relevant to a given query. In Section 3.1, we present an overview of the architecture enabling
vision-in-the-loop understanding. In Section 3.2, we detail the rule-based rewards designed to guide
the learning process. Finally, in Section 3.3, we elaborate on the Visual Iterated Amplification
Reinforcement Learning (ViaRL) framework and its implementation. For the preparation of the
training dataset, please refer to Appendix B.

3.1 VISION-IN-THE-LOOP ARCHITECTURE

Unlike previous methods (Feng et al., 2025), our architecture is designed to identify the most relevant
frames in response to a query text through a language-based QA approach. Similar to existing
frame selection methods (Hu et al., 2025b;a; Tang et al., 2025), our architecture consists of two
MLLMs. The first MLLM functions as a frame selector, while the second MLLM generates answers
by thoroughly analyzing the highly relevant frames.

Previous methods, such as AKS (Tang et al., 2025) and CoS (Hu et al., 2025a), do not account for
the temporal relationships between frames in their processes. Besides, Frame-Voyager (Yu et al.,
2024) requires retrieving a group of frames from a vast number of combinations, which makes it
computationally inefficient. While some approaches, such as those in Hu et al. (2025b), incorporate
the temporal dimension, their effectiveness is limited by their reliance on pseudo labels. Additionally,
both AKS (Tang et al., 2025) and Hu et al. (2025b) utilize auxiliary selection strategies to avoid
selecting redundant or overly similar frames. However, the task of selecting frames is inherently less
intuitive compared to enabling a model to engage in natural language-based communication.
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Our approach addresses this challenge by enabling the MLLM to directly output the serial numbers
of selected video frames. To achieve this, we first address a fundamental issue: Can the model
understand the serial number of each frame? Unfortunately, existing large models lack this capability.
Inspired by the effective approach used in NumPro (Wu et al., 2024), we directly add unique numerical
identifiers to the bottom right corner of each video frame, as painted on the candidate frames in Fig. 1.
This allows MLLMs to locate events temporally without requiring additional training. While NumPro
uses this method to retrieve the start and end moments of events, we extend it to locate specific N
frames, achieving frame-level temporal grounding—a task that is significantly more challenging than
clip-level grounding.

During the temporal grounding process, we further explore the reasoning capabilities of the model.
First, the model analyzes the keywords in the query text to identify meaningful frames. Next, it
generates detailed visual descriptions of the relevant frames to provide as much information as
possible. Finally, the model outputs a list of frame indices containing N selected frame numbers. As
illustrated in Fig 1, the model’s reasoning process is highly informative and plays a crucial role in
moment grounding.

3.2 RULE BASED REWARD MODELING

PPO (Schulman et al., 2017) provides strong stability and reliability but suffers from lower efficiency
and higher complexity due to its reliance on a separate critic network. GRPO (Shao et al., 2024)
improves efficiency by removing the critic and introduces relative policy optimization, but it has
moderate stability and risks reward hacking. REINFORCE++ (Hu, 2025) achieves an optimal balance
of efficiency and stability by eliminating the critic while incorporating token-level KL penalties
and normalizing advantages across the global batch. It has already been validated in the domain of
LLMs, as discussed in Logic-RL (Xie et al., 2025). Given that, we employ a modified version of
REINFORCE++ (Hu, 2025; Xie et al., 2025) as our RL algorithm, with a rule-based reward system
serving as the primary training signal to effectively guide policy optimization.

Through extensive experimentation and careful refinement of our reward design, we developed a
robust rule-based reward system comprising four distinct types of rewards: Format Reward, Frame
Index Reward, Answer Reward, and Response Length Reward. The system prompt, illustrated in 3.2,
is used to guide the selector in retrieving relevant frames. For a detailed description of the system
prompt, please refer to the complete version provided in the appendix C.

System Prompt

You are an intelligent chatbot designed for selecting the relevant video frames according to a
question. ... Your task is to output Nselect indices of the frames that can help you answer the
question better. ... Your output should follow this format strictly: <think>thinking about
keywords and visual appearance here </think><index>target list here </index>...

Format Reward: We use regular expression extraction to enforce a structured response format.
The selector is required to encapsulate its reasoning process within <think></think> tags and
provide the target frame index list within <index></index> tags. The format score (Sformat) is
computed as follows:

Sformat =

{
1, if the response format is correct,
0, if the response format is incorrect.

(1)

Frame Index Reward: This component evaluates the correctness of the frame indices provided
in the selector’s response. To validate the indices, the model must satisfy the following conditions:
the number of indices must be exactly N , the indices must fall within the range of valid numerical
identifiers, and there must be no repetition. The index score (Sindex) is computed as:

Sindex =

{
1, if all conditions are fully satisfied,
0, if any condition is violated.

(2)

Answer Reward: The third component assesses the correctness of the content in the downstream
model’s response. After validating the format, the model’s answer is compared against the ground
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truth to ensure accuracy. The answer score (Sanswer) is computed as:

Sanswer =

{
2, if the answer fully matches the ground truth,
0, if the answer is wrong or format/index requirements are not met.

(3)

Response Length Reward: The final component regulates the length of the content in the model’s
response. We observe that, without proper incentives, the selector might bypass the reasoning process
and directly output the index list. Referred from Video-R1 (Feng et al., 2025), we implement a
length control reward to address this issue. This reward encourages the model to provide a detailed
reasoning process alongside the index list, ensuring a more comprehensive and structured response.
The length score (Slength) is computed as:

Slength =

{
0.2, if lmin ≤ length ≤ lmax,

0, otherwise.
(4)

According to the observation of the curve of response length varying with time, we set lmin = 80
and lmax = 512.

3.3 VISUAL ITERATED AMPLIFICATION REINFORCEMENT LEARNING

During the learning process, there is a critical issue that the downstream answer model can constrain
the optimization of the selector. For instance, even when the selector chooses excellent frames, the
subsequent model may produce an incorrect answer, which can severely impact the rollout selection
during reinforcement learning and cause confusion for the selector. To address this, we propose a
novel RL learning paradigm called Visual Iterated Amplification Reinforcement Learning (ViaRL).

Temporal 
Grounding

Training 
Signals

Video

Stage1: Rule-based RL

Stage2: instruction tuning
𝑀1

𝑀2

Figure 2: Schematic of our Visual Iterated Amplification System im-
plementation in each cycle.

In this paradigm, as elab-
orated in Fig 2, training
is conducted in alternat-
ing phases to optimize both
the selector and the answer
model effectively. The train-
ing signals in the two stages
are rewards for RL and la-
bels for next-token predic-
tion, respectively. Initially,

the selector undergoes reinforcement learning to achieve strong frame-picking performance. Once the
selector demonstrates satisfactory results, we freeze its parameters and switch to instruction tuning of
the answer model. As the answer model improves, we unfreeze the selector and retrain it to align
with the enhanced performance of the answer model.

During the period of rule-based reinforcement learning (RL) optimization, the policy update is
performed using the clipped surrogate objective and defined as follows:

JReinforce++(θ) =E[q∼P (Q),{oi}Gi=1∼πθold
(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πi,t
θ

πi,t
θold

Âi,t, clip

(
πi,t
θ

πi,t
θold

, 1− ϵ, 1 + ϵ

)
Âi,t

]}
,

(5)

where:

Âi,t = r(oi,<t)− β ·
T∑

j=t

KL(j), KL(t) = log

(
πi,t
θold

πi,t
ref

)
. (6)

Additionally, we normalize this advantage across the global batch for all prompts:

Ânorm
i,t =

{
Âi,t − mean

(
Âi,t

)}/
std
(
Âi,t

)
. (7)

The instruction tuning stage follows the general training pipeline outlined in LLaVA (Liu et al.,
2023), which is designed to refine the model’s ability to understand and respond to natural language
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instructions effectively. This stage enhances the model’s capability to handle complex queries and
adapt to varying frame rates, as the frame rates after frame selection may be arbitrary. This stage
ensures that the model can effectively process and reason over selected frames, regardless of their
temporal distribution, while maintaining coherence and accuracy in its responses.

Our iterative and alternating training strategy enables mutual refinement between the two components,
leading to significant optimization and a more synergistic system. Using a single MLLM for both
frame selection and question answering is problematic: if we fine-tune the same model, the answer
accuracy from M2, which is crucial for optimizing M1 in Stage 1, may degrade due to the effects
of RL fine-tuning, a key distinction from prior works. Moreover, alternately training the models in
a single stage would introduce unnecessary complexity into the training pipeline. By keeping the
models separate, we not only avoid these issues but also gain flexibility to use a lightweight selector,
improving efficiency without compromising overall system performance.

4 EXPERIMENTS

4.1 SETUP

Benchmarks. We conduct experiments on three public benchmarks to evaluate our approach.
Video-MME (Fu et al., 2024) comprises 900 videos and 2,700 multiple-choice Question-Answer
pairs, categorized into three subsets based on video duration: short (<2 minutes), medium (4∼15
minutes), and long (30∼60 minutes). MLVU (Zhou et al., 2024) includes videos ranging from 3
minutes to 2 hours and spans 9 tasks, with 2,174 multiple-choice VQA pairs. LVBench (Wang
et al., 2024) features videos with an average duration of 4,101 seconds per video, which is the
longest. It contains 1,549 multiple-choice VQA pairs across 6 tasks. Importantly, all datasets are
human-annotated, ensuring high-quality labels for evaluation.

Training Details. In this work, we utilize two models with different sizes: Qwen2.5-VL-3B as the
selector and Qwen2.5-VL-7B (Bai et al., 2025) as the answer model, since Qwen2.5-VL models could
handle videos flexibly with dynamic resolution. As described in Appendix B, we collect 25k pairs
for reinforcement learning (RL), out of which 8k pairs are randomly selected as the final RL dataset.
For instruction tuning, we randomly select 8k samples from the original LLaVA-Video-178k (Zhang
et al., 2024b) dataset. Across different training cycles, the same dataset is reused. All experiments
are conducted on 4×A100 80G GPUs, the RL stage takes about 16 hours.

During frame selection, we choose N frames from T candidate frames, with the default configuration
being {T,N} = {128, 8} or {256, 16}. The resolution of the long side for the two models is resized
to {112, 896} respectively, while preserving the aspect ratio. This approach ensures that the selector
model processes smaller-scale frames for efficient temporal grounding and reasoning during the
thinking process.

All experiments are conducted with the selector trained using a constant learning rate of 4.0× 10−7,
while the answer model is trained with a learning rate of 1.0× 10−6, batch size is 2 and G in eq.5 is
8. The hyper-parameters for RL are set as follows: β = 1.0× 10−3, ϵ = 0.2.

4.2 PERFORMANCE ACROSS GENERAL VIDEO BENCHMARKS

Temporal Grounding Analysis. Needle QA is a subset of the MLVU benchmark that requires
answering questions related to a specific segment (referred to as the needle) within a longer back-
ground video. The dataset is created by randomly inserting the needle into the background video,
with a corresponding question-answer pair annotated. This sub-task best reflects the temporal ground-
ing ability of our method. As shown in Table 1, our method achieves a significant improvement,
increasing from 58.6 to 73.5 (8 frames), which is nearly a 15% enhancement. Our model achieves the
performance of Video-CCAM with 96 frames and Video-XL with 128 frames using only 8 frames.
Improvements are also observed at 16 frames.

Comparison of Frame Selection Models. As shown in the Fig 3, we compare the basic Qwen2.5-
VL with different frame selection models on VideoMME with 8 frames, including VASNet (Fajtl et al.,
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Table 1: Experimental results on VideoMME (without subtitle assistance), LVBench and MLVU
benchmarks. We assess the performance of ViaRL after it undergoes two cycles of learning.

Models Size frames VideoMME w/o sub. LVBench val MLVU Dev
Short Medium Long Avg Avg Needle QA M-Avg

Proprietary Models
GPT-4o (OpenAI, 2024) - 384 80.0 70.3 65.3 71.9 30.8 64.8 64.6

Gemini-1.5-Pro (Team et al., 2023) - 0.5 fps 81.7 74.3 67.4 75.0 33.1 - -
Open-source MLLMs

MovieChat (Song et al., 2024) 7B 2048 - - - - 22.5 24.2 25.8
TimeChat (Ren et al., 2024) 7B 96 - - - - 22.3 24.5 30.9

VideoChat2 (Li et al., 2024b) 7B 16 48.3 37.0 33.2 39.5 - - 44.5
VideoLLaVA (Lin et al., 2023) 7B 8 45.3 38.0 36.2 39.9 - - 47.3

Sharegpt4Video (Chen et al., 2024a) 7B 16 48.3 36.3 35.0 39.9 - - 46.4
InternVL-V1.5 (Chen et al., 2024b) 20B 10 60.2 46.4 45.6 50.7 - - 50.4

Video-CCAM (Fei et al., 2024) 14B 96 62.2 50.6 46.7 53.2 - 73.2 63.1
LongVA (Zhang et al., 2024a) 7B 128 61.1 50.4 46.2 52.6 - 69.3 56.3
Video-XL (Shu et al., 2024) 7B 128 64.0 53.2 49.2 55.5 - 73.8 64.9
Kangaroo (Liu et al., 2024) 8B 64 66.1 55.3 46.7 56.0 - - -

Qwen2.5-VL (Bai et al., 2025) 7B 8 61.7 50.6 46.3 52.9 32.3 58.6 54.5
Qwen2.5-VL+ViaRL 7B 8 65.1 56.1 50.8 57.3 36.9 73.5 58.2

Qwen2.5-VL 7B 16 67.6 57.0 49.0 57.9 34.9 60.6 55.7
Qwen2.5-VL+ViaRL 7B 16 68.1 57.4 52.8 59.4 37.7 76.1 61.1

Figure 3: Comparison of Frame Selection Models.

Figure 4: Sensitivity
Analysis on the An-
swer Score.

2019), CLIP (Radford et al., 2021), AKS (Tang et al., 2025), and ViaRL. The results demonstrate that
the frames selected by ours are more informative or relevant, especially on the subset of long videos.

Quantitative Analysis. As shown in the Table 1, ViaRL brings consistent accuracy gain over three
long video understanding benchmarks. In the VideoMME benchmark, the Qwen2.5-VL+ViaRL with
8 frames achieves an average score of 65.1 for short videos, 56.1 for medium, 50.8 for long, and an
overall average of 57.3. Compared to basic Qwen2.5-VL, the method equipped with ViaRL model
shows a marked improvement across all categories. In the LVBench benchmark, Qwen2.5-VL+ViaRL
achieves a validation score of 36.9, outperforming other commercial models like GPT-4o and Gemini-
1.5-Pro. This highlights its effectiveness in video content analysis tasks with limited frame data. In
the MLVU benchmark, the M-Avg score is 58.2, further showcasing its robust performance across
different evaluation tasks. Furthermore, we observe that the performance of Qwen2.5-VL with 16
frames is comparable to Qwen2.5-VL+ViaRL with only 8 frames. Overall, the integration of ViaRL’s
cycle-based optimization strategy significantly enhances the video content processing capabilities
of the Qwen2.5-VL+ViaRL model, making it a strong competitor against other models in scenarios
with limited frames.

Qualitative Analysis. The Fig 5 showcases the visualization of frame selection process in our
ViaRL, which involving visual comprehension and analysis associated with a question. We can see
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Question: Which category has the highest number of outfits?
Options: A. Nothing new. B. God Tier. C. Holy ground. D. Gorgeous.
Selector:<think>The question asks about which category (presumably a collection or dataset) has the highest number
of outfits. We need to identify the categories represented in the video and count their respective outfits. The categorie
s mentioned include "Outfits" and possibly other categories like "Clothes," "Accessories," or specific types of wearabl
es. To find the category with the highest number of outfits, we need to look at the icons representing each category an
d note how many outfits they display. Some key categories to focus on might be those with the most distinctive or colo
rful outfits. </think><index> [26, 41, 55, 63, 65, 89, 107, 120] </index>
Qwen2.5-VL-7B: B                                                              ViaRL: D

Question: What is the purpose of the man in the video processing the blue plastic barrel?
Options: A. Processing the blue plastic barrel into troughs for feeding cattle. B. Processing the blue plastic barrel into 
troughs for feeding ducks. C. Processing the blue plastic barrel into troughs for feeding chicken. D. Processing the blue 
plastic barrel into troughs for feeding pigs.
Selector:<think>The keywords focus on a man working on a blue plastic barrel. This likely includes activities such as sorting
, packaging, or processing of materials. The frames need to show the man interacting with the object and the surrounding e
nvironment. Since the work seems to be done outdoors in an agricultural setting, frames depicting grassy areas, machinery
, and possibly warehouse environments would be crucial. </think><index> [5, 18, 32, 44, 56, 70, 86, 99] </index>
Qwen2.5-VL-7B: B                                                              ViaRL: D

Figure 5: ViaRL improves the baseline MLLMs for video understanding. The N selected frames are
shown. The most relevant frame is indicated by green box in each row.

Table 2: VideoMME w/o sub. performance metrics for different training recipes (8 frames). All RL
evaluations are conducted after the 1th stage of the 1th cycle.

Method w/ SFT w/ think w/ length reward Data Num short medium long Avg

baseline - - - - 61.7 50.6 46.3 52.9
SFT ✓ ✗ ✗ 30k 59.9 49.6 46.2 51.9
RL ✓ ✓ ✓ 30k+8k 58.9 47.8 44.8 50.5
RL ✗ ✗ ✓ 8k 58.2 51.3 45.9 51.8
RL ✗ ✓ ✗ 8k 59.1 50.7 47.3 52.4
RL ✗ ✓ ✓ 8k 63.2 51.7 47.1 54.0

from the comparison of ViaRL and the baseline, ViaRL performs better by useful temporal grounding
drawn by the green box. More visualization results are displayed in Appendix E.

4.3 ABLATION STUDY

Sensitivity Analysis on the Answer Score. In the Sec 3.2, we introduce 4 different rewards and the
answer reward plays the most critical role. To assess its impact, we conduct experiments by varying
the weight of the answer reward (set to 1, 2, 3, and 5, respectively) while keeping the other rewards
fixed at Cycle1-Stage1. As shown in the Fig 4, ViaRL is not sensitive to the choice of answer reward
weights. The performance metrics remain relatively stable across different values, with only minor
fluctuations observed.

Different Cycles and Stages. Across these benchmarks, there is a consistent trend of performance
improvement with each cycle and stage on the whole, highlighting the effectiveness of the iterative
learning strategy employed by the ViaRL model (8 frames), as displayed in Fig 6. Notably, the
performance of VideoMME-long and Needle QA on the MLVU dataset improves significantly when
transitioning from cycle-stage pair (1, 2) to (2, 1), which corresponds to RL learning after completing
one cycle.

As the model progresses through cycles, the rate of improvement begins to taper, indicating diminish-
ing returns with additional cycles. After all, there is currently no perfect multimodal large model
capable of providing ideal answers based on the selected video frames all the time. Without matching
visual information, the answer will certainly be incorrect, and selecting the appropriate frames will
guarantee a correct answer. Furthermore, the capabilities of using only 8 frames are inherently
limited. Therefore, these limitations don’t prevent us from concluding the effectiveness of multi-cycle
training.
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(a) VideoMME (b) LVBench-MLVU
Figure 6: Performance of our ViaRL over multiple cycles and stages, attributing to the intertwined
improvement of models capability during the iterative process. The horizontal axis (i, j) represents
the jth stage of the ith cycle. For example, (2, 1) indicates the evaluation model M1 has learned
twice, and M2 has learned once. The initial state is denoted as (0, 0).

Different Training Recipes. The results are listed in Table 2. Given that the initial model exhibits
poor frame-level temporal grounding capacity with text queries, we incorporate the model fine-tuned
through SFT as a starting point for RL. As outlined in Appendix B, we construct the SFT dataset and
the selected N frames are relevant and can serve as pseudo labels for the SFT process.

We have collected 30k SFT data points, each paired with pseudo-labels specifying N relevant frame
indices. Leveraging this dataset, we use SFT to train a model capable of directly predicting the
relevant frames. Subsequently, we use this SFT-trained model as the initial policy for reinforcement
learning (RL), leveraging its existing ability for frame grounding to some extent. However, the results
deteriorate, with the average accuracy decreasing from 51.9% to 50.5%. Based on our observations,
this decline is primarily due to the SFT-trained model inheriting the shortcomings of the CLIP model.
Therefore, the SFT-trained model is not an ideal starting point for RL.

By leveraging the training signals provided by the answer model, the ”RL without thinking” approach
can also be trained. However, its average accuracy is 51.8%, and the average accuracy without
applying the length reward is 52.4%. Both are noticeably lower compared to our method, which
achieves an average accuracy of 54.0%. These results indicate that our approach, which incorporates
a rich and meaningful thinking process, significantly enhances the model’s ability to select relevant
frames more effectively.

4.4 SCALING BEHAVIOR

Table 3: Performance when scaling model parameters.
Models short medium long Avg
Qwen2.5-VL(M2) 61.7 50.6 46.3 52.9
+Qwen2.5-VL-3B 63.2 51.7 47.1 54.0
+MiMo-VL-7B 63.8 52.8 47.2 54.6
+Qwen2.5-VL-7B 62.7 52.3 49.8 54.9

We set up different sizes of selec-
tor, respectively 3B and 7B (more
larger models are beyond our compu-
tation resource). We adopt MiMo-VL-
7B (Team et al., 2025) or Qwen2.5-
VL-7B (Bai et al., 2025) due to their
adaptability for varying resolution. As
reported in Table 3, results are evalu-
ated on VideoMME with 8 frames at

Cycle1-Stage1, and our method performs better with larger selector.

5 CONCLUSION

In this work, we proposed ViaRL, a novel framework that integrates rule-based RL into the video CoT
pipeline to address the challenges of temporal grounding in multimodal video understanding task. By
delegating the optimization of frame selection to a downstream MLLM and leveraging a reward-driven
trial-and-error learning process inspired by human-like perceptual refinement, ViaRL eliminates the
lacking of frame selection annotations and dynamically trains a lightweight frame selector to focus
on the most relevant frames for further accurate answer generation. Through an iterative optimization
strategy, referred to as the Visual Iterated Amplification Learning System, ViaRL progressively
enhances the performance of both the frame selector and downstream multimodal large language
models, adapting to increasingly complex scenarios and ensuring robust temporal grounding.
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A MORE RELATED WORKS

MLLMs for Video Understanding. Recent advancements in Multimodal Large Language Models
(MLLMs) have transformed video understanding through unified representation learning, efficient
temporal modeling, and scalable architectures. Video-LLaVA (Lin et al., 2023) pioneered alignment
of image and video features into a shared language space, achieving state-of-the-art performance on
video QA benchmarks. Video-LLaMA (Zhang et al., 2023) extended this by integrating audio-visual
cues via modality-specific Q-formers. Scalability challenges in high-resolution and long videos were
addressed by Qwen2.5-VL (Bai et al., 2025), which introduced dynamic FPS sampling for video
processing. Long-context modeling saw innovations like Video-XL (Shu et al., 2024), compressing
hour-long videos hierarchically, and LongViTU (Wu et al., 2025), emphasizing long video context
and condensed reasoning. LLaVA-NeXT-Interleave (Li et al., 2024a) unifying multi-image, video,
and 3D tasks. InternVideo2.5 (Wang et al., 2025) developed compact spatiotemporal representations
through adaptive hierarchical token compression. Despite the progress, the approach still differs from
the way humans process information, as it relies on uniform sampling employed by these models.

Frame Selection. Efficient frame selection has become pivotal for scalable long-video understanding,
evolving from traditional redundancy-reduction approaches like uniform sampling or clustering-based
methods to modern query-adaptive strategies. Early methods such as Video Summarization (Fajtl et al.,
2019; Son et al., 2024) focused on generic keyframe or keyshot extraction but lacked task-specific
alignment with text, while contemporary techniques leverage multimodal large language models
(MLLMs) for dynamic adaptation. M-LLM Based Frame Selection (Hu et al., 2025b) employs spatial-
temporal importance scoring to boost performance, and Frame-Voyager (Yu et al., 2024) ranks frame
combinations via pre-trained Video-LLMs. Adaptive Keyframe Sampling (AKS) (Tang et al., 2025)
jointly maximize prompt relevance and frame coverage through lightweight modules. Complementary
methods include Chain-of-Shot (CoS) (Hu et al., 2025a) exploring MLLMs’ summary capacity for
binary coding and pseudo temporal grounding on long videos.

Reinforcement Learning. Recent progress in RL has emphasized stable, efficient, and interpretable
policy optimization. Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) introduced
trust region constraints via KL divergence to ensure monotonic policy improvement, avoiding
catastrophic updates in neural network training. Proximal Policy Optimization (PPO) (Schulman
et al., 2017) simplified TRPO’s constraints by replacing them with a clipped objective function,
enabling stable first-order optimization with lower computational costs. Further innovations like
Group Relative Policy Optimization (GRPO) (Shao et al., 2024) eliminated value networks in favor
of group-wise KL penalties, reducing memory usage in language model alignment while maintaining
training stability. Reinforce++ (Hu, 2025) combined REINFORCE’s simplicity with PPO-like
stability mechanisms, removing critic networks to reduce complexity. REINFORCE Leave-One-Out
(RLOO) (Ahmadian et al., 2024) minimized gradient variance through leave-one-out estimation,
outperforming PPO in multilingual tasks. Efficiency-focused methods like ReMax (Li et al., 2023)
accelerated training for large language models via greedy baselines. Collectively, these methods
bring innovations from robotic control to language alignment, emphasizing sample efficiency and
stability in complex reasoning scenarios.

B DATASET PREPARATION

We utilize a subset of the LLaVA-Video-178K (Zhang et al., 2024b) dataset and perform a filtering
operation. First, the CLIP-ViT-Large (Radford et al., 2021) model is employed to select N frames
based on their top-N cosine similarity to the question text. Next, a MLLM is used to predict
answers based on these N selected frames. Additionally, predictions made without incorporating
visual information are considered. Let the question be denoted as Q, the selected frames as Fs,
and the correct answer as GT . The prediction without using visual information is denoted as
Pred1 = MLLM(Q), while the prediction that incorporates the selected frames is denoted as
Pred2 = MLLM(Q,Fs).

For each question-answer pair, we filter out cases where the correct prediction is made without video
input, as these may have been guessed correctly. This corresponds to cases where: GT ̸= Pred1.
Next, we gather cases where the prediction is incorrect with visual information used, which satisfies:
GT ̸= Pred2. These cases represent challenging examples that can be utilized for Reinforcement
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Learning (RL). Besides, we construct the SFT dataset by collecting cases where the correct answer is
predicted using the selected frames, satisfying the conditions: GT ̸= Pred1 and GT = Pred2. In
our implementation, Qwen2.5-VL-3B (Bai et al., 2025) is used as the MLLM in this phrase.

C DETAILS OF SYSTEM PROMPT

System Prompt

You are an intelligent chatbot designed for selecting the relevant video frames according to a
question.
User will provide you a video with Ncandidate frames and a short question.
The red numbers in the bottom right corner of each frame represent the frame indice. The
frame index is an integer in the range of 0 to Ncandidate − 1.
Your task is to output Nselect indices of the frames that can help you answer the question
better.
Here’s how you can accomplish the task:
1. Think about the keywords from the question:
- Check if the physical entities are mentioned.
- Check if the occurrence time is mentioned.
- Check if the place or location is mentioned.
- Check if the action is mentioned.
2. Provide the appearance reference based on the keywords and video:
- Describe the visual appearance of the Nselect frames that are most relevant to the keywords.
3. Provide the target list:
- A list of Nselect frame indices, that the corresponding frames are most helpful to answer the
question.
Your output should follow this format strictly:
<think>thinking about keywords and visual appearance here </think><index>target list
here </index>.
Specific requirements are as follows:
**Ensure that anyone can uniquely identify these target frames in the video through the
references.**
**Ensure that the references are complete and independent.**
**Don’t output the words ’<think>thinking about keywords and visual appearance here
</think>’ directly.**
**Ensure that the list consists of Nselect values.**

D THE USE OF LARGE LANGUAGE MODELS

In response to the question “Did you use Large Language Models (LLMs) in paper writing?”, we
clarify that LLMs were only used to polish the writing.

E MORE VISUALIZATION RESULTS

In Figures 7, 8, and 9, we present additional examples of video understanding results achieved by our
ViaRL. These examples demonstrate the consistent performance of ViaRL across a wide range of
visual scenarios and question types, highlighting its versatility and robustness in diverse applications.

15
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Question: Based on the video, which of the following describes the reason why the student ate the banana?
Options: A. Because the banana looks tasty. B. Because he considered the process of eating a banana is art. C. Because 
he didn't think the  banana worth $120,000. D. Because he wanted to followed the man who ate a banana in a exhibition in 
2019.
Selector:<think>The keywords 'banana' and 'students' are present in the question, so I am looking for frames where the 
student is seen eating or holding the banana. This might involve finding frames showing the student, such as in close-up 
shots or with their hands in the foreground. Additionally, the frames should have clear visual cues of the banana like its 
color, texture, or the hands handling it, so they stand out clearly against the background. Also, looking for the student in 
different environments like classrooms or corridors since the question suggests location. Lastly, paying attention to 
transitions and possibly highlighting the frames that show the student interacting with the banana or its 
surroundings.</think><index> 5, 11, 17, 24, 30, 36, 42, 48 </index>
Qwen2.5-VL-7B: C                                                              ViaRL: B

（1）Action Reasoning

Question: Where does mRNA come from in the video?
Options: A. Cells. B. Vaccines. C. COVID-19 virus. D. Antibodies.
Selector:<think> The question asks about the origin of mRNA in the video. Keywords such as "mRNA" and "where" indicate 
we need to focus on parts of the video where the source of mRNA is shown or described. We should look at scenes 
involving mRNA synthesis, cellular activities, and possibly interactions between mRNA and other components in the 
cell.</think><index> 3, 49, 65, 25, 6, 95, 73, 33 </index>
Qwen2.5-VL-7B: C                                                              ViaRL: B

（2）Attribute Perception

Question: How many individuals are visible in the introductory shot of the video?
Options: A. 5. B. 6. C. 7. D. 4. 
Selector:<think>In the introductory shot, there is a man in front of a podium speaking to an audience. To determine the 
number of individuals, I'll consider objects outside the main speaker. At least five other people are visible in the frames 
before the intro begins. Two are seated at the front of the room, one to the right side, another further back, and one last 
person partially cut off on the left side. <think><index>4, 5, 6, 7, 11, 19, 25, 34</index>
Qwen2.5-VL-7B: D                                                              ViaRL: A

（3）Counting Problem

Question: What does the man use to clean the keyboard in this video?
Options: A. The man uses a non-abrasive sponge soaked in water to clean the keyboard. B. The man uses a soft-bristled 
brush to scrub the keyboard keys. C. The man uses a microfiber cloth to wipe off the keyboard. D. The man uses dry 
compressed air to remove dust from the keyboard.
Selector:<think>To address the question, we need to focus on identifying relevant frames where cleaning activities occur. 
These could be frames showing the keyboard, a cleaning substance being used, or the man using a cleaning tool. The 
sequence starting from frame 6 shows multiple screen elements like icons on the desktop and windows which might 
indicate some interaction unrelated to cleaning. However, the last visible frame before our search threshold has the man 
visibly interacting with the keyboard.</think><index>6, 56, 40, 30, 28, 20, 12, 8</index>
Qwen2.5-VL-7B: B                                                              ViaRL: D

（4）Object Recognition

Question: According to the video, which of the following is considered the earliest stage of human evolution?
Options: A. Ramapithecus. B. Dryopithecus. C. Ardipithecus Ramidus. D. Homo Sapiens.
Selector:<think> The keywords from the question involve human evolution stages. The question is asking about the earliest 
stage of human evolution within the given timeline of frames. The appearance of each frame shows different stages of early 
human evolution, so it's important to highlight the ones where humans start to walk upright and show bipedalism. This will 
help demonstrate the advancement from ape-like to fully human forms. </think><index> 0, 4, 16, 20, 32, 44, 50, 127 
</index>
Qwen2.5-VL-7B: A                                                              ViaRL: B

（5）Temporal Perception

Figure 7: Visualization across diverse scenarios on VideoMME.
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Question: What does the man do after he sees the woman for the third time?
Options: A. He runs a marathon. B. He sleeps in his bed. C. He draws the woman in the book. D. He looks for the woman.
Selector:<think> The question asks about what the man does after seeing the woman for the third time. It implies a 
sequence where the man initially sees the woman less often, then sees her more frequently, culminating in at least three 
meetings. I need to find frames where the interaction between the characters reaches this milestone. </think><index> 9, 
15, 18, 29, 35, 36, 43, 49 </index>
Qwen2.5-VL-7B: D                                                              ViaRL: C

（1） Event Understanding

Question: What color tie is the host wearing?
Options: A. Purple. B. Red. C. White. D. Black.
Selector:<think> The question asks for the color of the host's tie, which would typically be one of the key features in a video 
identifying a person. Since the name “Kenan” is part of the description and he is giving a speech, it might be inferred that 
the question refers to Kenan Thompson, who has a distinctive tie color. </think><index> {4, 6, 9, 15, 28, 35, 46, 76} </index>
Qwen2.5-VL-7B: D                                                              ViaRL: A

（2） Key Information Retrieval

Question: What is Kobe's sitting posture at 05:32?
Options: A. Sitting upright. B. Sitting with legs crossed. C. Sitting leaning forward. D. Legs together.
Selector:<think> The question asks about Kobe's sitting posture at a specific time during a video, likely showing a sequence 
where Kobe is seated and possibly speaking or reacting to something. Given that the frame indices need to be chosen 
based on the timestamp, identifying moments where Kobe is visible in a seated position at or around 5:32 is crucial. 
Considering typical sitting postures and sequences in such media, looking for frames around these timestamps would help 
highlight when Kobe might be seated correctly for posture analysis. </think><index> 42, 56, 64, 77, 90, 106, 118, 124 
</index>
Qwen2.5-VL-7B: A                                                              ViaRL: B

（3） Temporal Grounding

Question: Why does the vlogger do push-ups in hotel?
Options: A. He is in a push-up competition. B. Hotel asks all guests to do so. C. He eats too much food these days. D. He is 
engaged in a workout.
Selector:<think> The question asks about the reason behind the vlogger doing push-ups in a hotel. Key elements to 
consider include the vlogger’s activities, the setting (the hotel room), and any visible actions (push-ups). To find frames that 
are most relevant, focus on scenes showing a person exercising or performing physical activity in a hotel-like setting. 
</think><index> 8, 9, 10, 35, 52, 64, 89, 116 </index>
Qwen2.5-VL-7B: D                                                              ViaRL: C

（4） Reasoning

Question: What are the key events or actions that occur from 01:17 - 05:07?
Options: A. The photographer has recorded the magnificent marine landscape. While seated in a pneumatic boat and 
diving, he captured scenes of pods of sperm whales active in the area. B. The photographer captured scenes of pods of 
orca active in the marine area from aboard a cruise ship. C. Many sperm whales are active in this sea region, and the 
photographer, seated in a helicopter, pursues them to film and document their behavior. D. The documentary captures the 
terrain and weather conditions of the filming location, where humans are fishing in the marine area. Numerous orca are 
active in this sea region, and the photographer, seated in a pneumatic boat, dives to pursue and film their behavior.
Selector:<<think> The event being described likely involves a sequence of actions or changes in the scene from 
approximately 01:17 to 05:07 in the video. This could involve a transition from one scene to another, such as a change in 
weather, time, or a new character entering the scene. The goal is to pick frames that depict significant changes or actions 
at these timestamps. </think><index> [47, 52, 58, 60, 76, 80, 107, 120] </index>
Qwen2.5-VL-7B: C                                                              ViaRL: D

（5） Summarization

Figure 8: Visualization across diverse scenarios on LVBench.
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Question: What is the main scene in the video?
Options: A. Sky. B. Barren land. C. Ocean. D. Wetland.
Selector:<think>The question asks about the main scene in the video, and it likely focuses on the context and environment 
of the footage. Key visual elements such as elephants, text references, and background descriptions should be 
considered.</think><index>5, 10, 25, 42, 52, 69, 89, 118</index>
Qwen2.5-VL-7B: D                                                              ViaRL: B

（1）Topic Reasoning

Question: Does this surveillance footage contain any anomalies? If yes, which kind of anomaly?
Options: A. Vandalism. B. Abuse. C. Assault. D. Burglary.
Selector:<think> The question asks about anomalies in the surveillance footage. Anomalies could include unusual 
behavior of the people present, anything not behaving as expected, such as sudden movements, interactions away from 
normal activity, or anything uncharacteristic. I'll focus on frames where actions or behaviors appear non-normal. 
</think><index> [0, 4, 8, 9, 19, 29, 55, 74] </index>
Qwen2.5-VL-7B: C                                                              ViaRL: B

（2）Anomaly Recognition

Question: What are the two young women wearing in the street?
Options: A. Trendy summer clothes. B. Swimwear. C. Formal attire. D. Winter clothes.
Selector:<think> The question specifies that we need to find the two young women in the street and their clothing. The 
video shows various scenes where the key characters interact, so I need to look for moments where two women are 
walking together outdoors. Given that they are described as young and women, it’s likely they are carrying bags which 
further suggests they might be talking while walking. </think><index> 45, 60, 83, 94, 98, 112, 116, 123 </index>
Qwen2.5-VL-7B: C                                                              ViaRL: A

（3）Needle QA

Question: Where did I put the blue helmet?
Options: A. on the wall hanger. B. on the kitchen counter. C. under the bed. D. in the closet.
Selector:<think> The question asks about the location of a blue helmet, which suggests two things - the presence of a blue 
helmet and its lost or misplaced state. In the video, there is a scene where a person puts a helmet on a counter near a 
bookcase, indicating it might be in close proximity to other objects like books or a door, usually found near entryways or 
hallways rather than directly on the floor. </think><index> 5, 49, 62, 65, 106, 108, 124, 126 </index>
Qwen2.5-VL-7B: B                                                              ViaRL: D

（4）Ego Reasoning

Question: What did the cartoon mouse do to the cartoon cat's tail? 
Options: A. Cut it off. B. Trimmed the fur. C. Used it as a candle. D. Nailed it.
Selector:<think> The question is about what the mouse did to the cat's tail. It's important to find instances where the 
mouse is seen harming or interacting closely with the cat's tail, such as biting it or grabbing it. Key visuals include momen ts 
where the mouse has contact with the cat’s body or its tail.  </think><index> 8, 14, 18, 22, 26, 56, 62, 116 </index>
Qwen2.5-VL-7B: A                                                              ViaRL: C

（5）Plot QA

Figure 9: Visualization across diverse scenarios on MLVU.
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