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Abstract001

While Multi-modal Large Language Models002
(MLLMs) have shown impressive capabilities003
in document understanding tasks, their abil-004
ity to locate and reason about fine-grained de-005
tails within complex documents remains un-006
derstudied. Consider searching a restaurant007
menu for a specific nutritional detail or locat-008
ing a particular warranty clause in a manual -009
tasks that require precise attention to minute010
details within a larger context, akin to Finding011
Needles in Images (NiM). To address this gap,012
we introduce NiM-Benchmark, a carefully cu-013
rated benchmark spanning diverse real-world014
documents including newspapers, menus, and015
lecture images, specifically designed to evalu-016
ate MLLMs’ capability in these intricate tasks.017
Building on this, we further propose Spot-IT,018
a simple yet effective approach that enhances019
MLLMs capability through intelligent patch se-020
lection and Gaussian attention, motivated from021
how humans zoom and focus when searching022
documents. Our extensive experiments reveal023
both the capabilities and limitations of current024
MLLMs in handling fine-grained document un-025
derstanding tasks, while demonstrating the ef-026
fectiveness of our approach. Spot-IT achieves027
significant improvements over baseline meth-028
ods, particularly in scenarios requiring pre-029
cise detail extraction from complex layouts.030
Anonymous version of our code/dataset:031
NiM-Benchmark032

1 Introduction033

Recent breakthroughs in Multi-modal Large Lan-034

guage Models (MLLMs) (Team et al., 2023; Driess035

et al., 2023; Peng et al., 2023; OpenAI, 2023) have036

fundamentally transformed how machines under-037

stand and reason about visual information. These038

models demonstrate remarkable capabilities in vi-039

sual dialogue, scene comprehension, and answer-040

ing nuanced questions about visual content. For041

the task of Document Visual Question Answering042

(DocVQA) (Mathew et al., 2021), MLLMs have043

Figure 1: An example of Needle in Images: finding a specific
breakfast extra under £1 in a restaurant menu requires precise
attention to a small region while processing the entire menu
layout. How do MLLMs compare with human on these
tasks? We present a benchmark and baseline method to
study this.

emerged as particularly powerful tools, interpreting 044

visually rich documents in ways that transcend tra- 045

ditional text extraction methods (Fenniak and Con- 046

tributors, 2022; pdfminer, 2019), enabling question 047

answering (QA) even in documents with complex 048

layouts and mixed text-visual elements. 049

While MLLMs excel at broad document compre- 050

hension, their ability to handle precise, localized 051

information within complex documents remains an 052

open question. Consider a seemingly simple task: 053

Searching a Restaurant Menu to find a breakfast 054

extra that costs less than £1 (as shown in Figure 055

1). This information occupies just a tiny fraction 056

of the document’s spatial extent, yet humans can 057

efficiently locate it by combining broad visual scan- 058

ning with focused attention – quickly zeroing in 059

on "Two Grilled Tomato Halves" as the answer. 060

This everyday scenario highlights a fundamental 061

challenge in document understanding: the ability 062

to locate and reason about minute details within 063

larger document. 064

Traditional approaches based on OCR and text- 065

extraction (Smith, 2007; Memon et al., 2020; 066

pdfminer, 2019) inherently struggle with this chal- 067

lenge, as they often lose the crucial connection 068
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between local details and global document struc-069

ture. Even for MLLMs, despite their broad training070

on web-scale data (Gadre et al., 2024), process-071

ing fine-grained details within visually rich docu-072

ments presents a unique challenge, especially in073

domain-specific documents with complex visual074

layout (shown in Figure 3). This difficulty stems075

from a fundamental tension: models must simul-076

taneously maintain document-level context while077

precisely attending to minute details – a capability078

that humans possess naturally but remains elusive079

for automated systems.080

The current landscape of DocVQA research has081

not adequately addressed this challenge. While pi-082

oneering work like DocVQA (Mathew et al., 2021)083

established foundations for document understand-084

ing using MLLMs, it primarily focuses on general085

comprehension tasks in industrial documents. Sub-086

sequent benchmarks such as SlideVQA (Tanaka087

et al., 2023) and MMLongBench (Ma et al.) have088

expanded the scope to multi-page scenarios and089

long-form documents, respectively. However, these090

benchmarks evaluate broad document comprehen-091

sion rather than the specific challenge of locating092

and reasoning about minute details within com-093

plex layouts. This gap is particularly significant as094

real-world document interaction often depends on095

precisely locating and interpreting small but critical096

pieces of information within a larger context.097

To address this gap, we introduce the Needles in098

Images Benchmark, NiM-Benchmark. This care-099

fully curated benchmark specifically evaluates fine-100

grained visual reasoning in DocVQA across di-101

verse real-world scenarios - from dense newspa-102

per layouts to intricate restaurant menus, magazine103

spreads, and classroom lecture snapshots. Each104

document type presents unique challenges in lo-105

cating and reasoning about minute details within106

complex visual contexts. The benchmark includes107

targeted question types that probe a model’s ca-108

pability to combine broad document understand-109

ing with precise attention to relevant local details,110

closely mirroring real-world information seeking111

scenarios.112

To complement our benchmark, we propose Spot-113

IT, a simple yet effective approach that draws in-114

spiration from human visual search behavior. Our115

method enhances MLLMs’ ability to focus on spe-116

cific document regions through a novel question-117

guided attention mechanism. For each input doc-118

ument, Spot-IT segments the image into patches,119

determines the most relevant regions based on the120

query, and dynamically generates a Gaussian patch 121

with a variable σ, adjusted via cosine similarity.. 122

(as illustrated in Figure 2). This approach enables 123

models to better handle the dual challenges of main- 124

taining global context while attending to local de- 125

tails. 126

1. We formalize the Needle in an Image challenge 127

in DocVQA, focusing on evaluating MLLMs’ 128

ability to locate and reason about fine-grained 129

details within complex documents. 130

2. We introduce NiM-Benchmark, a carefully cu- 131

rated benchmark comprising 2, 970 images and 132

1, 180 question-answer pairs across diverse doc- 133

ument types including academic papers, newspa- 134

pers, menu and images from classroom lectures. 135

Each question is specifically designed to test 136

MLLMs’ capability to extract precise details 137

within rich visual contexts, with rigorous qual- 138

ity validation through both human experts and 139

automated verification. 140

3. We propose Spot-IT, a simple yet effective ap- 141

proach that enhances MLLMs’ fine-grained rea- 142

soning capabilities through question-guided dy- 143

namic attention. Our method achieves this with- 144

out requiring architectural changes to existing 145

MLLMs, making it broadly applicable across 146

different model architectures. 147

4. Through comprehensive experiments, we 148

demonstrate that Spot-IT significantly improves 149

state-of-the-art on fine-grained detail extraction, 150

achieving a 15.5% improvement over GPT-4o 151

on ArxiVQA and 21.05% improvement on our 152

NiM-Benchmark. These results establish new 153

baselines for precise information extraction in 154

DocVQA . 155

2 Background and Related Work 156

Document Understanding Evolution: Document 157

understanding has evolved from rule-based OCR 158

systems (Smith, 2007; Subramani et al., 2020) to 159

sophisticated Multi-modal Large Language Mod- 160

els (MLLMs) (Team et al., 2023; OpenAI, 2023). 161

Early DocVQA datasets (Mathew et al., 2021; Du 162

et al., 2022) focused on basic text extraction and 163

comprehension tasks, while recent benchmarks like 164

SlideVQA (Tanaka et al., 2023) and MMLong- 165

Bench (Ma et al.) have expanded to multi-page sce- 166

narios and long-form documents. However, these 167

datasets primarily evaluate broad document com- 168

prehension rather than fine-grained detail extrac- 169

tion, which is the primary motivation for creating 170

our benchmark. We compare our benchmark with 171
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existing ones in Table 3 (in Appendix).172

Fine-grained Visual Analysis in Documents:173

While fine-grained visual analysis has been ex-174

tensively studied in natural images (Yang et al.,175

2023), its application to document understanding176

remains limited. Recent visual prompting tech-177

niques (Wu et al., 2024) have shown promise in178

directing model attention to specific image regions179

through bounding boxes (Lin et al., 2024) or mark-180

ers (Shtedritski et al., 2023). However, documents181

present unique challenges due to their hierarchi-182

cal structure and complex layouts, making direct183

adaptation of these techniques insufficient. Our184

work bridges this gap by introducing both a bench-185

mark and method specifically designed for evaluat-186

ing fine-grained document analysis capabilities of187

MLLMs.188

Methods for Document VQA: Current ap-189

proaches to DocVQA either rely on traditional190

OCR-based pipelines (Xu et al., 2020b; Huang191

et al., 2022) or leverage end-to-end MLLMs192

(Zhang et al., 2024b,a). For larger documents,193

retrieval-augmented generation (RAG) methods194

(Faysse et al., 2024b) have emerged as a promis-195

ing direction. However, these methods typically196

process entire document regions without consider-197

ing the granularity of relevant information, leading198

to inefficiencies when only small portions contain199

the answer. Our Spot-IT addresses this limitation200

through a question-guided attention mechanism201

that selectively focuses on relevant document re-202

gions. For an extended discussion of related work,203

please refer to Appendix A.1.204

3 Dataset: Needle in an Image205

Benchmark206

Our Needle in an Image, NiM-Benchmark is de-207

signed to evaluate MLLMs’ ability to locate and208

reason about fine-grained details within complex209

documents. This section describes our dataset con-210

struction process, characteristics, and analysis.211

3.1 Dataset Construction212
Our dataset spans multiple domains including aca-213

demic papers, newspapers, magazines, lecture ma-214

terials, and restaurant menus, each presenting215

unique challenges in locating fine-grained infor-216

mation.217

Document Collection and Processing: We cu-218

rated documents from six diverse domains: (1)219

Restaurant menus with complex layouts and pric-220

ing information, (2) Recent academic papers from221

arXiv (2024-2025), (3) Magazines covering di-222

verse domains with mixed text-visual content, (4) 223

Contemporary English e-newspapers, (5) Website 224

screenshots from the CoVA dataset (Kumar et al., 225

2022), and (6) Classroom lecture screenshots from 226

open educational resources. Details of the domain 227

sources are present in Table 5 (in Appendix). 228

To ensure consistency, all documents were con- 229

verted to a uniform image format while preserving 230

visual complexity and layout using a Python li- 231

brary (Belval, 2024). Distribution of the sources 232

domains and example images are shown in Table 6 233

and Table 8 in Appendix. 234

Question-Answer Pair Generation: We em- 235

ployed a hybrid approach to create high-quality 236

question-answer pairs that specifically target fine- 237

grained information: (1) We divided each docu- 238

ment into variable-sized patches (2×2 to 6×6 grids) 239

and used a MLLM with carefully crafted prompts 240

to generate initial QA pairs focusing on localized 241

information within each patch (2) The initial pool 242

of QA pairs are verified by a human annotator and 243

the irrelevant pairs were discarded. For certain do- 244

mains, automated generation with filtering proved 245

insufficient, so a team of four annotators created 246

fine-grained questions for those domains. (3) All 247

QA pairs underwent verification by three indepen- 248

dent annotators to ensure accuracy, relevance, and 249

consistency with our focus on fine-grained detail 250

extraction. All prompts used for dataset construc- 251

tion are detailed in Section A.7 in the Appendix. 252

3.2 Dataset Characteristics and Analysis 253
Our dataset includes 284 documents across six do- 254

mains, containing 1,180 question-answer pairs. An 255

overview is provided in Table 4. Each domain 256

presents unique challenges for fine-grained infor- 257

mation extraction, from dense multi-column news- 258

paper layouts to technical diagrams in academic 259

papers. 260

Question Types and Distribution: We categorize 261

questions into several types to assess fine-grained 262

understanding: (1) Inline: Direct extraction of spe- 263

cific details, (2) Boolean: Yes/no questions about 264

specific details, (3) Comparative: Comparison be- 265

tween nearby elements, (4) Complex Reasoning: 266

Multi-step inference about document details, (5) 267

Commonsense: Requiring world knowledge, and 268

(6) Unanswerable: Context needed to answer is ab- 269

sent. Table 6 in Appendix presents the distribution 270

of question categories across domains. 271

3.3 Quality Analysis 272
To validate the quality of our automatically gener- 273

ated question-answer pairs, we conducted rigorous 274
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evaluations using two carefully curated test sets: (1)275

Set X containing 200 human-generated questions276

from existing datasets, and (2) Set Y comprising277

200 samples from our dataset with balanced rep-278

resentation across domains (30-35 questions per279

domain). Our analysis encompassed three comple-280

mentary dimensions:281

Response Time Analysis: We measured response282

times and accuracy (EM and F1 scores) across283

three MLLMs (GPT-4o, Gemini-1.5-Flash, GPT-284

4o-mini) and human experts on Set Y. This analysis,285

visualized in Figure 6, demonstrates that although286

human accuracy is moderately high on our dataset,287

it comes at the cost of increased response time.288

Question Quality Assessment: We conducted289

a blind Turing test where two independent re-290

searchers evaluated a mixed set of human and291

machine-generated questions (Sets X and Y com-292

bined). The inter-annotator agreement (Cohen’s k293

(Cohen, 1960) = 0.234) indicates that our generated294

questions are comparable to human-crafted ones in295

terms of quality and naturalness.296

Automated Verification: To ensure scalable qual-297

ity assessment, we employed Claude-3.5-Sonnet298

and Gemini-2.0-Flash as independent judges,299

achieving strong inter-model agreement (k =300

0.339). These models were specifically chosen301

to avoid potential biases, as they were not involved302

in the question generation process.303

4 Methodology: Spot-IT304

Finding a "needle" of information in a complex doc-305

ument requires a delicate balance between broad306

context awareness and precise attention to detail.307

Our method, Spot-IT, draws inspiration from how308

humans efficiently locate specific details in doc-309

uments: first identifying potentially relevant re-310

gions based on the query, then focusing attention311

on those regions while maintaining awareness of312

the surrounding context. This two-stage approach313

enables effective extraction of fine-grained infor-314

mation while preserving the document’s structural315

context.316

At its core, the goal of Spot-IT is to make MLLMs317

focus on specific document regions through a318

query-guided attention mechanism. Given a doc-319

ument image and a query seeking fine-grained in-320

formation, our method first divides the image into321

a grid of patches and identifies the most relevant322

patch using semantic similarity between the query323

and visual content. It then generates an adaptive324

Gaussian attention mask centered on this region,325

effectively highlighting the "needle" while main- 326

taining visibility of the surrounding context. This 327

attended image, along with the original query, is 328

then processed by an MLLM to generate the final 329

answer. Figure 2 illustrates this process. 330

4.1 Problem Formulation 331

The task of finding fine-grained details in docu- 332

ments can be formalized in both closed-domain 333

and open-domain settings. In the closed-domain 334

setting, given a query q and a document D con- 335

taining a set of page images {I1, ..., Ij}, the goal 336

is to locate the specific region within these images 337

that contains the answer to q. The open-domain 338

setting extends this to a collection of documents 339

S = {D1, ..., DM}, where we must first identify 340

the relevant document and page before locating 341

the specific region. In open-domain setting, top 342

r relevant documents are passed to the MLLM L, 343

these can be obtained through retrievers like Col- 344

Pali (Faysse et al., 2024a). 345

Formally, our objective is to learn a function f 346

that maps a query q and an image I to an attention 347

mask M that highlights the region most likely to 348

contain the answer: 349
M = f(q, I) (1) 350

This attended image IM is then provided to an 351

MLLM L along with the query to generate the 352

answer: 353answer = L(q, IM ) (2) 354

The key challenge lies in designing f to effec- 355

tively identify and highlight small regions contain- 356

ing critical information while maintaining suffi- 357

cient context for the MLLM to reason about the 358

answer. 359

4.2 Method Overview 360

Spot-IT addresses the challenge of fine-grained 361

detail extraction through a modular pipeline that 362

mimics human visual search behavior. As illus- 363

trated in Figure 2, our method consists of two key 364

components: 365

Query-Guided Patch Identification: First, we 366

divide the input document image into an n × n 367

grid of patches. Using a vision-language model 368

(SigLip (Zhai et al., 2023)), we compute semantic 369

similarity between the query and each patch to iden- 370

tify the region most likely to contain the answer. 371

This step is analogous to how humans quickly scan 372

a document to locate relevant sections based on 373

visual and semantic cues. 374

Adaptive Gaussian Attention: Once the most rel- 375

evant patch is identified, we generate a Gaussian 376

attention mask centered on this region. The spread 377
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of this Gaussian distribution adapts dynamically378

based on the confidence of our patch selection -379

higher confidence leads to more focused attention,380

while lower confidence results in broader attention.381

This mechanism directs the MLLM’s focus to the382

identified region while preserving awareness of the383

surrounding context, similar to human attention.384

The final attended image, created by applying this385

adaptive Gaussian mask to the original document,386

serves as input to an MLLM along with the orig-387

inal query. This approach enables the model to388

efficiently process fine-grained details within the389

highlighted region while maintaining awareness of390

the document’s overall context, leading to more391

accurate answers for queries about specific details.392

4.3 Query-Guided Patch Identification393

The first key challenge in locating fine-grained in-394

formation is identifying which region of the docu-395

ment to focus on. Our patch identification approach396

combines grid-based image segmentation with se-397

mantic similarity matching to efficiently locate re-398

gions relevant to the query.399

Image Segmentation: Given an input document400

image I of dimensions W ×H , we divide it into401

an n× n grid of uniform patches. Each patch Pij402

(i, j ∈ {1, ..., n}) represents a distinct region of403

the document. Through empirical analysis on our404

benchmark dataset, we found that n = 6 provides405

an effective balance between granularity and com-406

putational efficiency.407

Query-Patch Similarity: To identify the most rele-408

vant patch, we leverage the SigLip vision-language409

model to compute semantic similarity between the410

query and each patch. First, we preprocess the411

query q by removing stop words and extraneous412

information to obtain a cleaned query qc, focusing413

on key semantic elements. The SigLip model then414

encodes both the cleaned query and each patch into415

embedding vectors:416

vq = SigLip(qc), vij = SigLip(Pij) (3)417

The relevance of each patch to the query is deter-418

mined by computing the cosine similarity between419

their respective embeddings:420

Sim(vij , vq) =
vij · vq

∥vij∥∥vq∥
(4)421

Patch Selection: The patch with the highest simi-422

larity score is selected as the center for our attention423

mechanism:424

(i∗, j∗) = argmax
i,j

Sim(vij , vq) (5)425

The center coordinates (x∗, y∗) of this patch in the426

original image space are computed as:427

x∗ =
(2j∗ − 1)W

2n
, y∗ =

(2i∗ − 1)H

2n
(6) 428

This patch identification process effectively nar- 429

rows down the region of interest while maintain- 430

ing computational efficiency. The similarity score 431

of the selected patch also serves as a confidence 432

measure that influences the subsequent attention 433

mechanism, allowing our method to adapt its focus 434

based on the strength of the match between query 435

and content. 436

4.4 Adaptive Gaussian Attention 437
Once we identify the most relevant patch, the next 438

challenge is to create an attention mechanism that 439

effectively highlights this region while preserving 440

contextual information. We achieve this through 441

an adaptive Gaussian attention mask that automati- 442

cally adjusts its focus based on the confidence of 443

our patch selection. 444

Dynamic Gaussian Mask: We generate a Gaus- 445

sian attention mask centered at the coordinates 446

(x∗, y∗) identified in the previous step. The spread 447

of this Gaussian distribution is controlled by its 448

standard deviation σ, which we compute adap- 449

tively based on the similarity score p of the selected 450

patch: 451

σ =
0.8

1 + exp(−10(p− 0.2))
(7) 452

This sigmoid-based formulation ensures that σ 453

varies smoothly with our confidence in the patch 454

selection: high similarity scores result in a focused 455

attention mask (small σ), while lower scores pro- 456

duce a more diffuse mask (large σ). The parameters 457

of this function were determined through empirical 458

analysis on our benchmark dataset (see “Dynamic 459

Gaussian Sigma Graph" in figure 2). 460

Attention Mask Generation: The Gaussian atten- 461

tion mask M(x, y) (Wu et al., 2019) for each pixel 462

coordinate (x, y) in the image is computed as: 463

M(x, y) = exp

(
−(x− x∗)2 + (y − y∗)2

2σ2

)0.5

(8) 464

The square root operation in the exponent helps 465

create a more gradual falloff in attention, which 466

we found empirically to work better with MLLMs’ 467

visual processing capabilities. 468

Image Enhancement: The final attended image 469

I ′ is created by blending the original image with a 470

highlight color using the attention mask: 471

I ′(x, y) =(1− αM(x, y))I(x, y)

+ αM(x, y)H(x, y)
(9) 472

where α is a blending factor (set to 0.5 in our exper- 473

iments) and H(x, y) represents the highlight color. 474
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This approach ensures the highlighted region re-475

mains readable and distinct.476

The resulting attended image preserves the doc-477

ument’s full content while drawing the MLLM’s478

attention to the region most likely to contain the479

answer. This balance between focused attention480

and context preservation is crucial for accurately481

answering questions about fine-grained details in482

complex documents.483

5 Spot-IT: Experimental Setup484

5.1 Experimental Datasets485

Existing DocVQA Datasets We evaluate Spot-IT486

on two DocVQA datasets: ArxiVQA (Li et al.,487

2024a) and DUDE (Van Landeghem et al., 2023).488

For evaluation, we use questions, context images,489

and gold answers from the ArxiVQA training set490

(since only the training set is available) and the491

DUDE development set. Hyperparameters are492

tuned by randomly selecting 50 questions from493

each dataset. Our test set includes 500 questions494

from ArxiVQA and 500 from DUDE.495

NiM-Benchmark For the evaluation on NiM-496

Benchmark, we select 937 samples distributed497

across the following domains: Newspapers (174),498

Menus (180), Lecture Screenshots (70), Website499

Screenshots (215), Academic Papers (180), and500

Magazines (118).501

5.2 Spot-IT Baselines502
Our approach operates in a training-free, zero-shot503

setting. We evaluate it against two baseline meth-504

ods: an Optical Character Recognition (OCR)-505

based pipeline (Mishra et al., 2019) and the MLLM-506

DocVQA approach (Cho et al., 2024). To ensure a507

comprehensive evaluation, we utilize three closed-508

source MLLMs—GPT-4o (OpenAI et al., 2024),509

GPT-4o-mini (OpenAI et al., 2024), and Gemini-510

1.5-flash (Team et al., 2024)—and two open-source511

MLLMs—Qwen2-VL 7B (Wang et al., 2024) and512

Llama-3.2-11B-Vision (Grattafiori et al., 2024).513

This diverse selection ensures a broad and repre-514

sentative evaluation across both open-source and515

closed-source models.516

OCR-Based Pipeline In this pipeline, text is first517

extracted from a set of images using OCR (Mishra518

et al., 2019), adapted from MMLongBench (Ma519

et al.). The extracted text is then input to the LLM,520

along with the corresponding question, enabling521

the LLM to generate an answer.522

MLLM-Based DocVQA This pipeline utilizes523

MLLMs as the VQA model, where both the ques-524

tion and the corresponding context images are di-525

rectly input into the model to generate an answer, 526

as adapted from Cho et al. (2024). 527

5.3 Evaluation Metrics 528

We use Exact-Match (EM) and F1-Score (Ra- 529

jpurkar, 2016) as automatic metrics to assess the 530

correctness of the predicted answers. For Arx- 531

iVQA, being a multiple-choice question dataset, 532

we use accuracy as the evaluation metric. 533

For NiM-Benchmark, we also conduct human 534

evaluation on 100 samples, with the assistance of 535

three annotators. 536

5.4 Implementation Details 537

Problem Setting: We evaluate our method in both 538

open-domain and closed-domain settings. We use 539

DUDE as closed-domain and convert ArxiVQA 540

to open-domain by collating the context of all in- 541

stances. 542

Open-Domain: The top-k most relevant images 543

are retrieved from the corpus to answer queries, 544

using the ArxivQA dataset. 545

Closed-Domain: Queries are answered using a 546

predefined set of images that contain the exact 547

query context, evaluated on the DUDE dataset. 548

Distractor Setting: Our benchmark, NiM- 549

Benchmark, introduces distractor images to assess 550

model resilience against irrelevant information. 551

These diverse settings enable a comprehensive eval- 552

uation of both baseline models and our proposed 553

method. 554

Context Images and MMLLMs Used: We use the 555

same set of images across both OCR and MLLM 556

baselines—either for text extraction or as direct 557

inputs to the language model for answering queries. 558

Additionally, we employ same language models for 559

both OCR-based and image-based inputs to ensure 560

consistency and fair comparison. 561

Spot-IT Hyperparameters: For query cleaning, 562

we employ the same Multi-modal Large Language 563

Models (MLLMs) used in the DocVQA task. The 564

image is segmented into a 6× 6 grid of patches to 565

determine the regions relevant to the query. The 566

standard deviation σ for the 2D Gaussian spread 567

is selected within the range [0, 0.8], as values ex- 568

ceeding 0.8 encompass a substantial portion of the 569

image, thereby negating the intended effect. 570

For visualization, patches are highlighted using 571

Blue color, and alpha blending is applied with 572

a blending factor of α = 0.5. Additionally, we 573

impose a threshold of σ < 0.2, ensuring that if 574

the final σ falls below this threshold, no patch is 575

drawn. This prevents visualization in cases where 576
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Figure 2: Overview of Spot-IT: Given a document and query, our method (1) cleans the query, (2) identifies the most relevant
image patch, (3) applies an adaptive Gaussian attention mask, and (4) provides the attended image to an MLLM for answer
generation. Our method combines targeted patch selection with dynamic attention to mimic human-like focus on relevant
document regions.

the model’s confidence in patch relevance is insuf-577

ficient.578

Experiments were performed using two NVIDIA579

A30 GPUs (24GB each) and MLLMs inference580

APIs.581

6 Results and Analysis582

This section is divided into two parts:583

(1) Spot-IT Evaluation: We present the results of584

Spot-IT using three closed-source models—GPT-585

4o, GPT-4o-mini, and Gemini-1.5-Flash—and586

two open-source models—Llama-3.2-VL-11B and587

Qwen2-7B on ArxiVQA and DUDE datasets. This588

is followed by an occlusion sensitivity analysis and589

a detailed error analysis of Spot-IT.590

(2) NiM-Benchmark Evaluation: We assess the591

performance of NiM-Benchmark on GPT-4o, GPT-592

4o-mini, Gemini-1.5-Flash, Qwen2-7B, and human593

evaluators. This is followed by an error analysis of594

the NiM-Benchmark evaluation.595

6.1 Evaluation on Document Visual QA596

Table 1 presents zero-shot results on ArxiVQA and597

DUDE, comparing our method Spot-IT to base-598

lines. Spot-IT consistently outperforms all base-599

lines, including OCR and CoT, highlighting its ef-600

fectiveness in efficiently finding the “needle” in601

the set of images. We also test our method with602

the proposed dataset NiM-Benchmark, achieving603

the best performance across all domains in various604

MLLM models, shown in the lower half of Table 2.605

Methods ArxiVQA DUDE

Acc.
(↑)

EM
(↑)

F1
(↑)

Closed-Source LLMs (zero-shot)
GPT-4o 0.52 0.42 0.56
GPT-4o-mini 0.47 0.34 0.50
Gemini-1.5-Flash 0.53 0.30 0.42
GPT-4o + OCR (Mishra et al., 2019) 0.41 0.34 0.47
GPT-4o + CoT (Wei et al., 2022) 0.51 0.43 0.57
GPT-4o + Ours 0.60 0.45 0.60
GPT-4o-mini + Ours 0.52 0.41 0.55
Gemini-1.5-Flash + Ours 0.54 0.34 0.47

Open-Source LLMs (zero-shot)
Llama-3.2-VL-11B 0.41 0.13 0.23
Qwen2-7B 0.44 0.21 0.32
Llama-3.2-VL-11B
+ OCR (Mishra et al., 2019)

0.38 0.05 0.19

Llama-3.2-VL-11B
+ CoT (Wei et al., 2022)

0.42 0.11 0.23

Llama-3.2-11B + Ours 0.44 0.19 0.29
Qwen2-7B + Ours 0.44 0.27 0.37

Table 1: Spot-IT Evaluation. Results compared
with baselines from M3DocRAG (Cho et al., 2024).
Our method outperforms all baselines, includ-
ing baseline + CoT.

6.2 Our NiM-Benchmark Evaluation 606

Automatic Evaluation Table 2 (first half) shows 607

the evaluation of our proposed dataset NiM- 608

Benchmark across SoTA MLLMs using EM and F1. 609

These models exhibit low performance both on the 610

overall benchmark and across individual domains, 611

including Restaurant Menus, Newspapers, Website 612

Screenshots, and Lecture Screenshots. This high- 613

lights the need to enhance MLLMs and DocVQA 614

methodologies for locating and reasoning about 615
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Methods Menus Academic
Papers Magazines Newspapers Website

Screenshots Lectures All

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
GPT-4o 0.33 0.35 0.41 0.59 0.55 0.72 0.28 0.39 0.42 0.50 0.26 0.31 0.38 0.48
GPT-4o-mini 0.25 0.25 0.23 0.38 0.47 0.62 0.24 0.35 0.34 0.42 0.24 0.32 0.29 0.38
Gemini-1.5-Flash 0.22 0.22 0.17 0.29 0.19 0.25 0.14 0.20 0.30 0.36 0.34 0.40 0.22 0.28
Qwen2-7B 0.12 0.16 0.11 0.19 0.05 0.07 0.06 0.11 0.01 0.01 0.11 0.12 0.07 0.10
GPT-4o + Ours 0.47 0.50 0.51 0.66 0.64 0.77 0.33 0.44 0.46 0.56 0.29 0.37 0.46 0.56
GPT-4o-mini + Ours 0.37 0.38 0.26 0.41 0.49 0.64 0.30 0.37 0.39 0.49 0.27 0.36 0.35 0.44
Gemini-1.5-Flash + Ours 0.35 0.35 0.23 0.36 0.20 0.29 0.16 0.20 0.34 0.40 0.41 0.47 0.27 0.34
Qwen2-7B + Ours 0.21 0.27 0.15 0.24 0.03 0.06 0.07 0.10 0.04 0.04 0.20 0.20 0.11 0.15

Table 2: NiM-Benchmark Evaluation. Demonstrates the improvement of Spot-IT over baselines, but the results
remain suboptimal, indicating significant room for further improvement on our proposed benchmark.

fine-grained details within documents.616

Human Evaluation We evaluate NiM-Benchmark617

using human performance, achieving 63% EM and618

70% F1, highlighting significant room for improve-619

ment compared to MLLMs (Figure 5 in Appendix).620

6.3 Analysis of Spot-IT621

For our method, we perform: a) Occlusion Sensi-622

tivity Analysis - to understand model behavior, b)623

Error Analysis - to interpret failure cases, and c)624

Accuracy vs. Latency Trade-off Analysis - compar-625

ing our method with baselines.626

Sensitivity Analysis627
Figure 4 shows the occlusion sensitivity analysis628

of Spot-IT on the Qwen2-VL model. By systemat-629

ically occluding image regions, the analysis iden-630

tifies areas most influential to the model’s predic-631

tions. Details of the occlusion methodology are in632

Appendix A.2.633

Findings: Our method effectively highlights criti-634

cal image regions that contribute to the model’s635

predictions. This is validated by the occlusion636

sensitivity analysis, confirming alignment between637

our method’s attributions and the model’s decision-638

making process.639

Error Analysis640
We analyze our method on ArxivQA using GPT-4o641

on 500 samples, of which 200 were incorrect. We642

randomly selected 50% of these errors and catego-643

rized them as follows: a) Dataset Errors - 19%, b)644

Retrieval Errors - 22%, c) Patch Formation - 25%,645

d) Patch Selection - 26%, and e) MMLLM Fault -646

8%. For details, refer Section A.3 in the Appendix.647

Accuracy vs Latency Trade-off648
The accuracy-latency trade-off plot compares our649

method with the baseline using GPT-4o on (a) Arx-650

iVQA, (b) DUDE, and (c) NiM-Benchmark, show-651

ing a 10-20% accuracy improvement across all652

datasets with only an additional latency of approxi-653

mately 4 seconds (see Figure 5 in Appendix).654

6.4 Analysis of NiM-Benchmark 655
For NiM-Benchmark, we conduct: a) Error Analy- 656

sis, and b) Human Evaluation to compare accuracy 657

and latency with model predictions. 658

NiM-Benchmark Error Analysis 659
We evaluate the performance of NiM-Benchmark 660

on GPT-4o by randomly selecting 20 samples from 661

all 6 domains domain and categorized them as fol- 662

lows: a) Incomplete Evidence - 47 cases, b) Hallu- 663

cinated Evidence - 28 cases, c) Perceptual Error - 664

24 cases, d) Reasoning Error - 15 cases, e) Irrele- 665

vant Answer - 5 cases, and f) Knowledge Lacking 666

- 1 case. The typology is inspired from Ma et al.. 667

Refer Section A.4 in Appendix for details. 668

Human vs Model: Accuracy & Latency 669
We compare human and model performance on ac- 670

curacy and latency for NiM-Benchmark. While 671

humans achieve higher accuracy, they take signif- 672

icantly more time than models, highlighting the 673

need for improved methodologies to efficiently han- 674

dle our dataset (see Figure 6 in Appendix). 675

7 Conclusion 676

In this paper, we formalize the Needle in Im- 677

ages challenge in DocVQA, focusing on evaluating 678

MLLMs’ ability to locate and reason about fine- 679

grained details within complex documents. To ad- 680

dress this, we introduce NiM-Benchmark, a bench- 681

mark specifically designed to assess MLLMs’ effec- 682

tiveness in extracting precise information from vi- 683

sually rich layouts. Our experiments reveal that cur- 684

rent MLLMs struggle with accurately locating and 685

extracting answers from such intricate structures. 686

To overcome this, we propose Spot-IT, which intel- 687

ligently identifies relevant regions within images, 688

achieving substantial improvements over baseline 689

models across multiple datasets. We believe our 690

findings pave the way for more advanced and ef- 691

ficient DocVQA systems capable of fine-grained 692

detail extraction from complex documents. 693
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Limitations694

The limitations of our work are as follows: 1)695

Although our method performs well on existing696

DocVQA datasets, it struggles with long length697

documents as LLMs have limitations in processing698

large documents even after identifying the relevant699

patch. 2) The performance of our method depends700

on the current capabilities of LLMs, which may701

improve over time. 3) While achieving high accu-702

racy, our method incurs slightly higher latency due703

to Gaussian patch construction. 4) We use SigLip704

for cosine similarity between document patches705

and the query using a bag-of-words-like approach,706

which limits contextual understanding of document707

structure; future work could explore a customized708

model for better similarity assessment. 5) Our709

benchmark has fewer complex reasoning questions,710

which can be expanded in future iterations.711
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A Appendix938

In this section, we provide detailed related work939

and additional results and analysis that we could940

not include in the main paper due to space con-941

straints. In particular, this appendix contains the942

following:943

• Extended Related Work944

• Occlusion Sensitivity Analysis945

• Extended Spot-IT Error Analysis946

• Extended NiM-Benchmark Error Analysis947

• Sample Illustrations from NiM-Benchmark948

• Additional Figures and Tables949

• All LLM Prompts Used for Evaluation and950

Dataset Generation951

A.1 Extended Related Work 952

A.1.1 Evolution of Document Visual Question 953

Answering 954

Document understanding has evolved significantly 955

from its origins in rule-based systems (Srihari et al., 956

1992) and traditional OCR approaches (Subramani 957

et al., 2020). Early systems focused primarily on 958

text extraction and basic layout analysis (Smith, 959

2007), with limited ability to handle complex vi- 960

sual elements or perform sophisticated reasoning. 961

The field has since transformed with the advent of 962

MLLMs (Team et al., 2023; Driess et al., 2023; 963

Peng et al., 2023; OpenAI, 2023), which have en- 964

abled more nuanced document understanding and 965

reasoning capabilities. 966

A.1.2 DocVQA Datasets and Their Evolution 967

The development of DocVQA datasets has closely 968

mirrored the advancement in model capabilities. 969

The seminal DocVQA dataset (Mathew et al., 2021) 970

established foundational benchmarks for document 971

understanding, focusing primarily on in-line ques- 972

tions where answers could be found within single 973

text spans. This was followed by datasets that in- 974

troduced additional complexity: 975

Single-Page Complex Reasoning: Datasets like 976

CS-DVQA (Du et al., 2022) and RDVQA (Wu 977

et al., 2022) pushed beyond simple text extraction 978

by requiring commonsense reasoning and regional 979

understanding. ArxivQA (Li et al., 2024b) further 980

expanded the challenge by incorporating multiple- 981

choice questions based on academic documents 982

with mixed elements like tables, figures, and charts. 983

Multi-Page Understanding: The introduction of 984

multi-page datasets marked a significant evolu- 985

tion in the field. SlideVQA (Tanaka et al., 2023) 986

pioneered questions spanning multiple presenta- 987

tion slides, while MP-DocVQA (Tito et al., 2023) 988

extended document coverage to up to 20 pages. 989

DUDE (Van Landeghem et al., 2023) enriched 990

the challenge by introducing diverse answer types, 991

including lists and arithmetic problems. SPIQA 992

(Pramanick et al.) specifically targeted academic 993

content, requiring sophisticated understanding of 994

scientific figures and plots. 995

Long-Form Document Understanding: As 996

MLLMs demonstrated increasing capability in han- 997

dling standard DocVQA tasks, more challenging 998

benchmarks emerged. MMLongBench-Doc (Ma 999

et al.) represents the current frontier, testing mod- 1000

els’ ability to reason over long-form documents 1001

11

https://arxiv.org/abs/2306.04356
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343


Benchmarks # Pages/
Document

Unanswerable
Questions

Granular
Questions

Document
Relevance

Answer
Source

Domains

DocVQA (Mathew et al., 2021) 1 ✗ ✗ ✗ TXT/L/C/TAB/I Industry Docs
ChartQA (Masry et al., 2022) 1 ✗ ✗ ✓ C Statista, Pew, OWID, OECD

InfoVQA (Mathew et al., 2022) 1.2 ✗ ✗ ✗ L/C/TAB/I Infographics Browsing
TAT-DQA (Zhu et al., 2022) 1.1 ✗ ✗ ✗ TXT/TAB Finance Reports

DUDE (Van Landeghem et al., 2023) 5.7 ✓ ✗ ✗ TXT/L/C/TAB/I Books, Media, Public Docs
MP-DocVQA (Tito et al., 2023) 8.3 ✗ ✗ ✗ TXT/L/C/TAB/I Industry Docs

ArxiVQA (Li et al., 2024a) 1 ✗ ✗ ✗ L/C/I Scientific papers
SlideVQA (Tanaka et al., 2023) 20 ✗ ✗ ✗ TXT/L/C/TAB/I SlideDecks

MMLONGBENCH-DOC (Ma et al.) 47.5 ✓ ✗ ✓ TXT/L/C/TAB/I Research and Financial
Reports, Academic Papers,

Industry Files

NiM-Benchmark 29 ✓ ✓ ✓ TXT/L/C/TAB/I Menus, Academic Papers,
Magazines, Website SS,

Lectures SS, Newspapers

Table 3: Comparison of benchmarks based on document-level attributes and question types. SS is Screenshots

Figure 3: Spot-IT Method comparison with existing methods Highlighting the failure points of existing methods
and demonstrating where our method makes a difference.

with complex, multi-step questions. However, none1002

of these datasets specifically target the challenge1003

of locating and reasoning about minute details1004

within larger document contexts—the gap our NiM-1005

Benchmark aims to address.1006

A.1.3 Methods in Document Understanding1007

The methodological approach to document under-1008

standing has seen several paradigm shifts:1009

OCR and Layout-Aware Models: Early ap-1010

proaches relied heavily on OCR-based pipelines1011

(Subramani et al., 2020), treating text and visual1012

elements separately. The introduction of layout-1013

aware models like LayoutLM and its variants (Xu1014

et al., 2020b,a; Huang et al., 2022) marked a signif-1015

icant advance by incorporating spatial information1016

and document structure into the modeling process. 1017

End-to-End Multimodal Models: The emergence 1018

of powerful MLLMs (Team et al., 2023; Driess 1019

et al., 2023; Peng et al., 2023; OpenAI, 2023) has 1020

enabled end-to-end document understanding ap- 1021

proaches. Recent methods like CREAM (Zhang 1022

et al., 2024b) and CFRET (Zhang et al., 2024a) 1023

have demonstrated strong performance across vari- 1024

ous DocVQA tasks. 1025

Retrieval-Augmented Generation: For larger 1026

documents, retrieval-augmented generation (RAG) 1027

has emerged as a crucial technique. Methods like 1028

ColPali (Faysse et al., 2024b) and M3DocRAG 1029

(Cho et al., 2024) have shown promise in efficiently 1030

handling large document collections. However, 1031
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these approaches often process entire document re-1032

gions without considering information granularity,1033

leading to inefficiencies when answers lie in small,1034

specific regions.1035

Figure 3 shows a comparison of our method,1036

Spot-IT, with existing methods.1037

A.1.4 Fine-Grained Visual Analysis and1038

Attention Mechanisms1039

While fine-grained visual analysis has been exten-1040

sively studied in natural images, its application to1041

documents presents unique challenges:1042

Visual Prompting: Recent work in visual prompt-1043

ing (Wu et al., 2024) has shown promising results1044

in directing model attention. Techniques including1045

bounding boxes (Lin et al., 2024), markers (Sht-1046

edritski et al., 2023), and pixel-level annotations1047

(Yang et al., 2023) have proven effective in natural1048

image understanding tasks.1049

Document-Specific Challenges: Documents1050

present unique challenges for fine-grained analysis1051

due to their hierarchical structure, complex layouts,1052

and the need to preserve both spatial and semantic1053

relationships. Our Spot-IT addresses these chal-1054

lenges through a novel question-guided attention1055

mechanism that adapts visual prompting techniques1056

specifically for document understanding tasks.1057

A.2 Occlusion Sensitivity Analysis1058

MLLMs integrate both visual and textual modali-1059

ties to answer queries about images. Understanding1060

how these models focus on different parts of an im-1061

age is crucial for interpretability. We implement1062

an occlusion sensitivity method to identify critical1063

image regions that affect model predictions.1064

A.2.1 Model and Dataset1065

The Qwen2-VL model (Wang et al., 2024) is em-1066

ployed for answering image-based queries. The1067

dataset used is the ArxiVQA dataset..1068

A.2.2 Occlusion Sensitivity Analysis1069

Given an image I of size (W,H) and a query Q, we1070

systematically occlude square patches of the image1071

and measure the change in response probability.1072

The procedure is as follows:1073

1. Compute the model’s original response proba-1074

bility Porig.1075

2. Slide an occlusion window of size S×S with1076

stride T over the image.1077

3. Replace the windowed region with a neutral 1078

color (e.g., black or gray). 1079

4. Compute the new response probability Pocc 1080

after occlusion. 1081

5. Compute the sensitivity score as: 1082

S(x, y) = Porig − Pocc (10) 1083

where (x, y) are the coordinates of the oc- 1084

cluded patch. 1085

6. Generate a heatmap from S(x, y) values and 1086

apply Gaussian smoothing. 1087

A.2.3 Probability Calculation 1088

To determine the probability of a model’s response, 1089

the output logits are converted into probabilities 1090

using the softmax function: 1091

P (y) =
ezy∑
i e

zi
(11) 1092

where zy is the logit corresponding to the gener- 1093

ated response. 1094

A.3 Extended Spot-IT Error Analysis 1095

We analyze our method on ArxivQA using GPT-4o 1096

on 500 samples, where 200 samples were incorrect. 1097

We randomly selected 50% of these samples and 1098

categorized the errors as follows: 1099

• Dataset Error (19 cases): The dataset had 14 1100

cases of incorrect or ambiguous ground-truth 1101

answers, and some questions lacked the nec- 1102

essary context, leading to unavoidable evalua- 1103

tion errors. 1104

• Retrieval Error (22 cases): The retrieval 1105

module (Faysse et al., 2024a) failed to fetch 1106

relevant information, leading to incorrect an- 1107

swers. 1108

• Patch Formation (25 cases): The patch was 1109

incorrectly formed due to a static grid size, 1110

leading to improper image cropping and loss 1111

of answer context, which caused incorrect 1112

matching with the query. 1113

• Patch Selection (26 cases): Incorrect seman- 1114

tic similarity matching occurred between the 1115

patch and the input query due to the query’s 1116

complexity. 1117

• LLM Fault (8 cases) Despite having the 1118

correct patched image, the Large Language 1119

Model sometimes fails to provide the correct 1120

answer, particularly for complex questions. 1121
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Figure 4: Occlusion Sensitivity Analysis comparision with Spot-IT Demonstrating the correlation between where
the MMLLM searches for the answer and where Spot-IT highlights the images to assist MMLLMs.

A.4 Extended NiM-Benchmark Error1122

Analysis1123

We evaluate the performance of NiM-Benchmark1124

on GPT-4o by randomly selecting 20 samples from1125

all 6 domains domain and categorized them as fol-1126

lows:1127

• Incomplete Evidence (47 cases): MLLM is1128

not able to find an evidence to answer the1129

question.1130

• Hallucinated Evidence (28 cases):MLLM is1131

either answering unanswerable questions or1132

hallucinating the response.1133

• Perceptual Error (24 cases): MLLMs strug-1134

gle to perceive details such as incorrect dec-1135

imal placements, leading to inaccurate an-1136

swers.1137

• Reasoning Error (25 cases): MLLMs strug-1138

gle to reason accurately, often selecting the1139

first piece of evidence in the relevant section1140

without verifying its correctness.1141

• Irrelevant Answer (5 cases): MLLM is not1142

able to reason deeply and relies on pattern1143

matching, leading to irrelevant answers. It 1144

often prioritizes the most prominent or recent 1145

context, resulting in inaccurate responses. 1146

• Knowledge Lacking (1 case): MLLMs may 1147

lack knowledge due to outdated training data, 1148

insufficient domain-specific information, or 1149

limited context understanding. Additionally, 1150

they may struggle with complex reasoning or 1151

nuanced details not well-represented in the 1152

training corpus. 1153

Statistics

Domains 6 Categories 6
Newspapers 22 Academic Papers 32
Magazines 17 Lecture Shots 50
Web Shots 100 Menus 60
Pages/Images 2,970 Questions 1,180

Question Statistics Answer Statistics

Max Length 26 Max Length 19
Avg Length 10.96 Avg Length 1.92

Table 4: Dataset Statistics
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Domain Source

Restaurant Menus Various Sources including Heathrow Restaurants, London Stansted Restaurants etc.
Academic Papers Arxiv (2024-2025)
Magazines freemagazines.top
Newspapers Times of India, The Hindu, Hindustan Times (2024-2025)
Website Screenshots CoVA dataset (Kumar et al., 2022)
Lecture Screenshots MIT 6.034 AI, Fall 2010 (MIT OCW)

Table 5: Data Sources for Different Domains

Domain Count Domain Count Domain Count

News Paper Lectures Screenshots
Inline 199 Inline 48 Inline 203
Comparative 10 Comparative – Comparative –
Unanswerable 7 Unanswerable 15 Unanswerable 3
Reasoning – Reasoning 25 Reasoning 35
Boolean – Boolean 12 Boolean 5
Commonsense – Commonsense 2 Commonsense –
Total 216 Total 102 Total 246

Academic Paper Magazines Menus
Inline 185 Inline 180 Inline 143
Comparative 22 Comparative 9 Comparative 21
Unanswerable 8 Unanswerable 3 Unanswerable –
Reasoning 5 Reasoning 10 Reasoning –
Boolean – Boolean – Boolean 23
Commonsense – Commonsense – Commonsense 7
Total 220 Total 202 Total 194

Table 6: Distribution of Question Categories Across Domains

A.5 Sample Illustrations from1154

NiM-Benchmark1155

The table 8 represents examples from the dataset1156

encompassing multiple domains and categories to1157

support diverse research applications. The dataset1158

integrates visually rich images from domains such1159

as website screenshots, lecture slides, restaurant1160

menus, magazines, newspapers, and research pa-1161

pers. Each instance is categorized into Boolean,1162

unanswerable, common sense, reasoning, compara-1163

tive, and inline question-answering tasks.1164

A.6 Additional Figures and Tables1165

1. Table 4 provides a comprehensive summary of1166

the NiM-Benchmark dataset, outlining its key1167

characteristics and statistical properties. Ad-1168

ditionally, Table 6 details the distribution of1169

question categories across multiple domains,1170

demonstrating the dataset’s broad applicabil-1171

ity in various visually rich contexts. The struc-1172

tured distribution ensures a balanced represen-1173

tation of different domain-specific questions,1174

facilitating a thorough evaluation of model1175

Figure 5: Accuracy and response time comparison
of GPT-4o and GPT-4o + Ours on (a) ArxiVQA, (b)
DUDE, and (c) NiM-Benchmark.

performance across diverse scenarios. 1176

2. Table 7 presents results from a Turing test, 1177

comparing human-generated and machine- 1178

generated responses across different question 1179

categories. These results offer insights into 1180

the models’ capability to generate responses 1181

that closely resemble human-like reasoning 1182
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Ground Truth Gemini 2.0 Flash Human verifier 1
Predicted Human Predicted Machine Predicted Human Predicted Machine

Human 146 54 170 30
Machine 143 57 160 40
Total 289 111 330 70

Ground Truth Claude 3.5 Sonnet Human verifier 2
Predicted Human Predicted Machine Predicted Human Predicted Machine

Human 181 19 171 29
Machine 176 24 162 38
Total 357 43 333 76

Table 7: Turing Test and LLM as a Judge Results We find that the generated questions in our NiM-Benchmark
are classified as human-generated with a moderately high agreement score

Figure 6: Accuracy and response time comparison on
NiM-Benchmark (a) for GPT-4o, GPT-4o-mini, Gemini-
1.5-Flash, and human.

and linguistic patterns. The findings empha-1183

size the importance of this dataset as a bench-1184

mark for assessing the intersection of natural1185

language processing (NLP) and computer vi-1186

sion (CV) models, highlighting areas where1187

AI systems still struggle to match human pro-1188

ficiency.1189

3. Figure 5 illustrates a comparative performance1190

analysis between GPT-4o and its enhanced1191

variant (GPT-4o + Ours) across multiple well-1192

established benchmarks, including ArxiVQA,1193

DUDE, and NiD-Benchmark. The results1194

demonstrate that Spot-IT leads to a measur-1195

able improvement in accuracy across various1196

tasks. However, this gain comes at the cost of1197

slightly increased inference time, suggesting a1198

trade-off between performance enhancement1199

and computational efficiency.1200

4. Figure 6 provides an in-depth examination1201

of the performance gap between AI models1202

and human annotators on the NiD-Benchmark1203

dataset across different domains. The analy-1204

sis reveals that human responses consistently 1205

achieve superior F1 and EM (Exact Match) 1206

scores, while also exhibiting a longer aver- 1207

age response time. This discrepancy under- 1208

scores the limitations of existing AI models 1209

in achieving human-level comprehension and 1210

contextual reasoning, further motivating fu- 1211

ture advancements in model architectures and 1212

training paradigms. 1213

A.7 All LLM Prompts Used for Evaluation 1214

and Dataset Generation 1215

A.7.1 Document VQA Evaluation Prompt 1216

This prompt (Ma et al.) assesses a model’s ability to 1217

answer questions based solely on document images, 1218

without external knowledge. Responses should be 1219

concise (preferably a single word or number). If 1220

the information is unavailable, the model should 1221

respond with "Information not available." 1222

A.7.2 Customized Document VQA Evaluation 1223

Prompt 1224

This variant prioritizes information in blue- 1225

highlighted regions, considering the entire image 1226

only if necessary. Constraints on external knowl- 1227

edge, concise responses, and handling of missing 1228

information remain unchanged. 1229

A.7.3 QA Generation Prompt for 1230

NiM-Benchmark Benchmark 1231

This prompt generates precise, challenging ques- 1232

tions from document images. Each question should 1233

be natural, answerable from a small document por- 1234

tion, and uniquely identifiable. Necessary context 1235

must be explicit, avoiding vague references. 1236

Only 2–3 high-quality questions per document 1237

should be produced; otherwise, output "NA." The 1238

output follows a structured JSON format for con- 1239

sistent benchmarking. 1240
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Domain Category Image Region of Interest Question Answer

Website
Screen
Shot

Boolean The game
"Greedy
Granny"
and "Baby
Shark" are
priced the
same
(True/-
False)?

False

Lecture
Screen
Shot

Unanswerable Who
Hugged
Chris?

Information
not avail-
able

Restaurant
Menus

Common
Sense

Is the
Nawarattan
Korma dish
vegetarian?

Yes

Magazines Reasoning What is the
estimated
price of
Thermo’s
stock if it
trades at 25
times 2026
earnings?

$654

News
Papers

Comparative What was
the record
low value
of the rupee
against the
dollar?

85.07

Research
Papers

Inline What is the
value of m
in the De-
composer’s
MLP?

4

Table 8: Sample Illustrations from NiM-Benchmark. Question-answer pairs across different domains, including
the question, required context, question category, and relevant region of interest to find the answer.
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Prompt for Document VQA Evaluation (Ma et al.)
Task:
[Images]
Read the above Images and answer this question

Instructions:

• DO NOT use external knowledge.

• Provide a one-word or numerical answer if possible.

• If information is unavailable, state "Information not available."
1241

Customized Prompt for Document VQA(for Spot-IT) Evaluation
Task:
[Images]
Read the above Images and answer this question

Focus on the BLUE Highlighted area in images as it is more relevant to
the query. First, try to answer only using the highlighted area, and if not
found, then, consider whole image

Instructions:

• DO NOT use external knowledge.

• Provide a one-word or numerical answer if possible.

• If information is unavailable, state "Information not available."
1242

Prompt for QA generation for NiM-Benchmark Benchmark
Task:
[Images]
You are very good in question making from documents. I am giving you a task to
make some questions from some pages from a document.

Instructions:

• The questions should be precise. Each question should be answerable from a
very small portion of the document and relevant to the textual and visual
elements of the provided image.

• Questions should be natural and easy to understand. yet,questions should
be challenging enough that even you would find them difficult to answer
immediately.

• Ensure the questions are open-domain so that even if multiple documents are
provided, the question remains uniquely identifiable and answerable.

• Include all necessary information to make the question unique and answerable.
Avoid vague references like "according to the given article" or "mentioned
in the article". Explicitly include the full information if needed.

• Create only 2-3 high-quality questions. If a quality question cannot be
made, return "NA". However, ensure that effort is made to create a good
question.

1243
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• Accepted Questions:
- "Question": "Who accused AAP of supporting ’terrorist sympathizers’ during
Punjab elections?"
"Answer":Anurag Thakur"
- "Question": "What was the altitude of Sandakphu where the tourist died?"
"Answer": "11,900 feet"

• Rejected Questions:
- "Question": "Who is the alleged associate of Partha Chatterjee mentioned
in the article?"
Don’t make such questions that reference the artcile.
- "Question": "Which company is prominent in biodiversity monitoring using
AI?"
Such question is not acceptable because it is document specific. There can
be multiple answers.

• Stick to the above format. If you are unable to create quality questions,
return NA.

Output Format (JSON):

{
"questions": [

{
"question": "the question",
"answer": "the answer"

},
...

]
}

1244
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