
Sketch-GNN: Scalable Graph Neural Networks
with Sublinear Training Complexity

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph Neural Networks (GNNs) are widely applied to graph learning problems1

such as node classification. When scaling up the underlying graphs of GNNs to a2

larger size, we are forced to either train on the complete graph and keep the full3

graph adjacency and node embeddings in memory (which is often infeasible) or4

mini-batch sample the graph (which results in exponentially growing computational5

complexities with respect to the number of GNN layers). Various sampling-based6

and historical-embedding-based methods are proposed to avoid this exponential7

growth of complexities. However, none of these solutions eliminates the linear8

dependence on graph size. This paper proposes a sketch-based algorithm whose9

training time and memory grow sublinearly with respect to graph size by training10

GNNs atop a few compact sketches of graph adjacency and node embeddings.11

Based on polynomial tensor-sketch (PTS) theory, our framework provides a novel12

protocol for sketching non-linear activations and graph convolution matrices in13

GNNs, as opposed to existing methods that sketch linear weights or gradients14

in neural networks. In addition, we develop a locality sensitive hashing (LSH)15

technique that can be trained to improve the quality of sketches. Experiments on16

large-graph benchmarks demonstrate the scalability and competitive performance17

of our Sketch-GNNs versus their full-size GNN counterparts.18

1 Introduction19

Graph Neural Networks (GNNs) have achieved the state-of-the-art graph learning in numerous20

applications, including classification [26], clustering [3], recommendation systems [42], social21

networks [16] and more, through representation learning of target nodes using information aggregated22

from neighborhoods in the graph. The manner in which GNNs utilize graph topology, however,23

makes it challenging to scale learning to larger graphs or deeper models with desirable computational24

and memory efficiency. Full-batch training that stores the Laplacian of the complete graph suffers25

from a memory complexity of O(m+ ndL+ d2L) on an n-node, m-edge graph with node features26

of dimension d when employing an L-layer graph convolutional network (GCN). This linear memory27

complexity dependence on n and the limited memory capacity of GPUs make it difficult to train on28

large graphs with millions of nodes or more. As an example, the MAG240M-LSC dataset [21] is a29

node classification benchmark with over 240 million nodes that takes over 202 GB of GPU memory30

when fully loaded.31

To address the memory constraints, two major lines of research are proposed: (1) Sampling-based32

approaches [18, 11, 12, 14, 44] based on the idea of implementing message passing only between33

the neighbors within a sampled mini-batch; (2) Historical-embedding based techniques, such as34

GNNAutoScale [17] and VQ-GNN [15]), which maintain the expressive power of GNNs on sampled35

subgraphs using historical embeddings. However, all of these methods require the number of mini-36

batches to be proportional to the size of the graph for fixed memory consumption. In other words,37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

they significantly increase computational time complexity in exchange for memory efficiency when38

scaling up to large graphs. For example, training a 4-layer GCN with just 333K parameters (1.3 MB)39

for 500 epochs on ogbn-papers100M can take more than 2 days on a powerful AWS p4d.24x large40

instance [21].41

We seek to achieve efficient training of GNNs with time and memory complexities sublinear in42

graph size without significant accuracy degradation. Despite the difficulty of this goal, it should be43

achievable given that (1) the number of learnable parameters in GNNs is independent of the graph44

size, and (2) training may not require a traversal of all local neighborhoods on a graph, but rather45

only the most representative ones (thus sublinear in graph size) as some neighborhoods may be46

very similar. In addition, commonly-used GNNs are typically small and shallow with limited model47

capacity and expressive power, indicating that a modest proportion of data may suffice.48

This paper presents Sketch-GNN, a framework for training GNNs with sublinear time and memory49

complexity with respect to graph size. Using the idea of sketching, which maps high-dimensional50

data structures to a lower dimension through entry hashing, we sketch the n× n adjacency matrix51

and the n × d node feature matrix to a few c × c and c × d sketches respectively before training,52

where c is the sketch dimension. While most existing literature focuses on sketching linear weights53

or gradients, we introduce a method for sketching non-linear activation units using polynomial tensor54

sketch theory [19]. This preserves prediction accuracy while avoiding the need to “unsketch” back to55

the original high dimensional graph-node space n, thereby eliminating the dependence of training56

complexity on the underlying graph size n. Moreover, we propose to learn and update the sketches in57

an online manner using learnable locality sensitive hashing (LSH) [9]. This reduces the performance58

loss by adaptively enhancing the sketch quality while incurring minor overhead sublinear in graph size.59

In practice, we find that the sketch-ratio c/n required to maintain “full-graph” model performance60

drops as n increases; as a result, our Sketch-GNN enjoys sublinear training scalability.61

Sketch-GNN applies sketching techniques to GNNs to achieve training complexity sublinear to the62

data size. This is fundamentally different from the few existing works which sketch the weights or63

gradients [29, 13, 25, 28, 36] to reduce the memory footprint of the model and speed up optimization.64

Our approach is flexible to architecture and has the potential to be generalized to other neural networks65

and data types, e.g., CNNs on gigapixel images. To the best of our knowledge, Sketch-GNN is the66

first sub-linear complexity training algorithm for GNNs based on LSH and tensor sketching. The67

sublinear efficiency obtained applies not only to GNNs with a fixed convolution matrix, such as68

GCN [26] and GraphSAGE [18], but also to GNNs with learnable convolution matrices, such as69

GAT [38].70

Experiments on several large graph datasets, such as ogbn-product [21] with 2.45M nodes, demon-71

strate that Sketch-GNNs can match the performance of the standard model trained on the complete72

graph, while requiring significantly reduced computations and memory for both fixed (GCN, Graph-73

SAGE) and learnable convolution (GAT) models. For instance, SketchGCN on ogbn-arxiv [21]74

is 72% and 55% faster than the corresponding full-graph and sampling-based (GraphSAINT [44])75

baselines, while the pre-processing time is just 14% of overall reduction (when running 500 epochs).76

2 Preliminaries77

Basic Notations. Consider a graph with n nodes andm edges. Connectivity is given by the adjacency78

matrix A ∈ {0, 1}n×n and features on nodes are represented by the matrix X ∈ Rn×d, where d is the79

number of features. Given a matrix C, let Ci,j , Ci,:, and C:,j denote its (i, j)-th entry, i-th row, and80

j-th column, respectively. � denotes the element-wise (Hadamard) product, whereas C�k represents81

the k-th order element-wise power. ‖ · ‖F is the symbol for the Frobenius norm. In ∈ Rn×n denotes82

the identity matrix, whereas 1n ∈ Rn is the vector whose elements are all ones. Med{·} represents83

the element-wise median over a set of matrices. Superscripts are used to indicate multiple instances84

of the same kind of variable; for instance, X(l) ∈ Rn×dl are the node representations on layer l.85

Unified Framework of GNNs. A Graph Neural Network (GNN) layer receives the node representa-86

tion of the preceding layer X(l) ∈ Rn×d as input and outputs a new representation X(l+1) ∈ Rn×d,87

where X = X(0) ∈ Rn×d are the input features. Although GNNs are designed following different88

guiding principles, such as neighborhood aggregation (GraphSAGE), spatial convolution (GCN),89

self-attention (GAT), and Weisfeiler-Lehman (WL) alignment (GIN [43]), the great majority of90

GNNs can be interpreted as performing message passing on node features, followed by feature91

2

transformation and an activation function. The update rule of these GNNs can be summarized as [15]92

X(l+1) = σ
(∑

q C
(q)X(l)W (l,q)

)
. (1)

Where C(q) ∈ Rn×n denotes the q-th convolution matrix that defines the message passing operator,93

q ∈ Z+ is index of convolution, σ(·) is some choice of nonlinear activation function, and W (l,q) ∈94

Rdl×dl+1 denotes the learnable linear weight matrix for the l-th layer and q-th filter. GNNs under this95

paradigm differ from each other by their choice of convolution matrices C(q), which can be either96

fixed (GCN and GraphSAGE) or learnable (GAT). In Appendix A.1, we re-formulate a number of97

well-known GNNs under this framework. Unless otherwise specified, we assume q = 1 and d = dl98

for every layer l ∈ [L] for notational convenience.99

Count Sketch and Tensor Sketch. (1) Count sketch [7, 40] is an efficient dimensionality re-100

duction method that projects an n-dimensional vector u into a smaller c-dimensional space us-101

ing a random hash table h : [n] → [c] and a binary Rademacher variable s : [n] → {±1},102

where [n] = {1, . . . , n}. Count sketch is defined as CS(u)i =
∑
h(j)=i s(j)uj , which is a103

linear transformation of u, i.e., CS(u) = Ru. Here, R ∈ Rc×n denotes the so-called count104

sketch matrix, which has exactly one non-zero element per column. (2) Tensor sketch [31] is105

proposed as a generalization of count sketch to the tensor product of vectors. Given z ∈ Rn106

and an order k, consider a k number of i.i.d. hash tables h(1), . . . , h(k) : [n] → [c] and i.i.d.107

binary Rademacher variables s(1), . . . , s(k) : [n] → {±1}. Tensor sketch also projects vector108

z ∈ Rn into Rc, and is defined as TSk(z)i =
∑
h(j1,··· ,jk)=i s

(1)(j1) · · · s(k)(jk)zj1 · · · zjk , where109

h(j1, · · · , jk) = (h(1)(j1) + · · · + h(k)(jk)) mod c. By definition, a tensor sketch of order k = 1110

degenerates to count sketch; TS1(·) = CS(·). (3) We define count sketch of a matrix U ∈ Rd×n as the111

count sketch of each row vector individually, i.e., CS(U) ∈ Rd×c where [CS(U)]i,: = CS(Ui,:). The112

tensor sketch of a matrix is defined in the same way. Pham and Pagh [31] devise a fast computation113

of tensor sketch of U ∈Rd×n (sketch dimension c and order k) using count sketches and the Fast114

Fourier Transform (FFT):115

TSk(U) = FFT−1

(⊙k
p=1 FFT

(
CS(p)(U)

))
, (2)

where CS(p)(·) is the count sketch with hash function h(p) and Rademacher variable s(p). FFT(·)116

and FFT−1(·) are the FFT and its inverse applied to each row of a matrix.117

Locality Sensitive Hashing. The definition of count sketch and tensor sketch is based on hash118

table(s) that only requires a data independent uniformity, i.e., with high probability the hash-buckets119

are of similar size. In contrast, locality sensitive hashing (LSH) is a hashing scheme that uses120

locality-sensitive hash function H : Rd → [c] to ensure that nearby vectors are hashed into the121

same bucket (out of c buckets in total) with high probability while distant ones are not. SimHash122

achieves the locality-sensitive property by employing random projections [8]. Given a random matrix123

P ∈ Rc/2×d, SimHash defines a locality-sensitive hash function124

H(u) = arg max ([Pu ‖ −Pu]) , (3)
where [· ‖ ·] denotes concatenation of two vectors and arg max returns the index of the largest125

element. SimHash is efficient for large batches of vectors [1]. In this paper, we apply a learnable126

version of SimHash that is proposed by Chen et al. [9], in which the projection matrix P is updated127

using gradient descent; see Section 3.3 for details.128

3 Sketch-GNN Framework via Polynomial Tensor Sketch129

Problem and Insights. We intend to develop a “sketched counterpart” of GNNs, where training130

is based solely on (dimensionality-reduced) compact sketches of the convolution and node feature131

matrices, the sizes of which can be set independently of the graph size n. In each layer, Sketch-GNN132

receives some sketches of the convolution matrix C and node representation matrix X(l) and outputs133

some sketches of the node representations X(l+1). As a result, the memory and time complexities134

are inherently independent of n. The bottleneck of this problem is estimating the nonlinear activated135

product σ(CX(l)W (l)), where W (l) is the learnable weight of the l-th layer.136

Before considering the nonlinear activation, as a first step, we approximate the linear product137

CX(l)W (l), using dimensionality reduction techniques such as random projections and low-rank138

decompositions. As a direct corollary of the (distributional) Johnson–Lindenstrauss (JL) lemma [24],139

there exists a projection matrix R ∈ Rc×n such that CX(l)W (l) ≈
(
CRT

) (
RX(l)W (l)

)
[15].140

3

Tensor sketch is one of the techniques that can achieve the JL bound [2]; for an error bound, see141

Lemma 1 in Appendix B.142

Count sketch offers a good estimation of a matrix product, CX(l)W (l) ≈ CS(C)CS((X(l)W (l))T)T.143

While tensor sketch can be used to approximate the power of matrix product, i.e., (CX(l)W (l))�k ≈144

TSk(C)TSk((X(l)W (l))T)T, where (·)�k is the k-th order element-wise power. If we combine the145

estimators of element-wise powers of CX(l)W (l), we can approximate the (element-wise) activation146

σ(·) on CX(l)W (l). This technique is known as a polynomial tensor sketch (PTS) and is discussed147

in [19]. In this paper, we apply PTS to sketch the message passing of GNNs, including the nonlinear148

activations.149

3.1 Sketch-GNN: Approximated Update Rules150

Polynomial Tensor Sketch. Our goal is to approximate the update rule of GNNs (Eq. (1)) in each151

layer. We first expand the element-wise non-linearity σ as a power series, and then approximate the152

powers using count/tensor sketch, i.e.,153

X(l+1) = σ(CX(l)W (l)) ≈
∑r

k=1
ck
(
CX(l)W (l))�k ≈

∑r

k=1
ck TSk(C) TSk

(
(X(l)W (l))T

)T
, (4)

where the k = 0 term always evaluates to zero as σ(0) = 0. In Eq. (4), coefficients ck are154

introduced to enable learning or data-driven selection of the weights when combing the terms of155

different order k. This allows for the approximation of a variety of nonlinear activation functions,156

such as sigmoid and ReLU. The error of this approximation relies on the precise estimation of the157

coefficients {ck}rk=1. To identify the coefficients, Han et al. [19] design a coreset-based regression158

algorithm, which requires at least O(n) additional time and memory. Since the coefficients {ck}rk=1159

that achieve the best performance for the classification tasks do not necessarily approximate a160

known activation, we propose learning the coefficients {ck}rk=1 to optimize the classification loss161

directly using gradient descent with simple L2 regularization. Experiments indicate that the learned162

coefficients can approximate the sigmoid activation with relative errors comparable to those of the163

coreset-based method; see Fig. 1a in Section 5.164

Approximated Update Rules. The remaining step is to approximate the operations of GNNs using165

PTS (Eq. (4)) on sketches of convolution matrix C and node representation matrix X(l). Consider r166

pairwise-independent count sketches {CS(k)(·)}rk=1 with sketch dimension c, associated with hash167

tables h(1), . . . , h(r) and binary Rademacher variables s(1), . . . , s(r), defined prior to training an168

L-layer Sketch-GNN. Using these hash tables and Rademacher variables, we may also construct169

tensor sketches {TSk(·)}rk=2 up to the maximum order r.170

In Sketch-GNN, sketches of node representations (instead of the O(n) standard representation) are171

propagated between layers. To get rid of the dependence on n, we count sketch both sides of Eq. (4)172

S
(l+1,k′)
X := CS(k′)((X(l+1))T

)
≈ CS(k′)(∑r

k=1
c
(l)
k TSk

(
(X(l)W (l))T

)
TSk(C)T

)
=
∑r

k=1
c
(l)
k TSk

(
(X(l)W (l))T

)
CS(k′)(TSk(C)T

)
=
∑r

k=1
c
(l)
k FFT−1

(⊙k

p=1
FFT

(
(W (l))TS

(l,p)
X

))
S

(l,k,k′)
C ,

(5)

where S(l+1,k′)
X = CS(k′)((X(l+1))T) ∈ Rd×c is the transpose of column-wise count sketch of173

X(l+1), and the superscripts of S(l+1,k′)
X indicate that it is the k′-th count sketch of X(l+1) (i.e.,174

sketched by CS(k)(·)). In the second line of Eq. (5), we can move the matrix, c(l)k TSk((X(l)W (l))T),175

multiplied on the left to TSk(C)T out of the count sketch function CS(k′)(·), since the operation of176

row-wise count sketch CS(k′)(·) is equivalent to multiplying the associated count sketch matrix R(k′)177

on the right, i.e., for any U ∈ Rn×n, CS(k′)(U) = UR(k′). In the third line of Eq. (5), we denote the178

“two-sided sketch” of the convolution matrix as S(l,k,k′)
C := CS(k′)(TSk(C)T) ∈ Rc×c and expand179

the tensor sketch TSk((X(l)W (l))T) using the FFT-based formula (Eq. (2)).180

Eq. (5) is the (recursive) update rule of Sketch-GNN, which approximates the operation of the181

original GNN and learns the sketches of representations. Looking at the both ends of Eq. (5), we182

obtain a formula that approximates the sketches of X(l+1) using the sketches of X(l) and C, with183

learnable weights W (l) ∈ Rd×d and coefficients {c(l)k ∈ R}rk=1. The forward-pass and backward-184

propagation between the input sketches {S(0,k)
X }rk=1 and the sketches of the final layer representations185

{S(L,k)}rk=1 take O(c) time and memory (see Section 3.3 for complexity details).186

4

3.2 Error Bound on Estimated Representation187

Based on Lemma 1 and the results in [19], we establish an error bound on the estimated final layer188

representation X̃(L) for GCN; see Appendix B for the proof and discussions.189

Theorem 1. For a Sketch-GNN with L layers, the estimated final layer representation is190

X̃(L) = Med{R(k)S
(L,k)
X | k = 1, · · · , r}, where the sketches are recursively computed us-191

ing Eq. (5). For Γ(l) = max{5‖X(l)W (l)‖2F , (2 + 3r)
∑
i(
∑
j [X

(l)W (l)]i,j)
r}, it holds that192

E(‖X(L) − X̃(L)‖2F)/‖X(L)‖2F ≤
∏L
l=1(1 + 2/(1 + cλ(l)2

/nrΓ(l))) − 1, where λ(l) ≥ 0 is the193

smallest singular value of the matrix Z ∈ Rnd×r and Z:,k is the vectorization of (CX(l)W (l))�k.194

Moreover, if (c(λ(l))2/nrΓ(l))� 1 holds true for every layer, the relative error is O(L(n/c)), which195

is proportional to the depth of the model, and inversely proportional to the sketch ratio (c/n).196

Remarks. Despite the fact that in Theorem 1 the error bound grows for smaller sketch ratios c/n,197

we observe in experiments that the sketch-ratio required for competitive performance decreases as198

n increases; see Section 5. As for the number of independent sketches r, we know from Lemma 1199

that the dependence of r on n is r = Ω(3logc n) which is negligible when n is not too small; thus, in200

practice r = 3 is used.201

The theoretical framework may not completely correspond to reality. Experimentally, the coefficients202

{{c(l)k }rk=1}Ll=1 with the highest performance do not necessarily approximate a known activation. We203

defer the challenging problem of bounding the error of sketches and coefficients learned by gradients204

to future studies. Although the error bound is in expectation, we do not train over different sketches205

per iteration due to the instability caused by randomness. Instead, we introduce learnable locality206

sensitive hashing (LSH) in the next section to counteract the approximation limitations caused by the207

fixed number of sketches.208

3.3 A Practical Implementation: Learning Sketches using LSH209

Motivations of Learnable Sketches. In Section 3, we apply polynomial tensor sketch (PTS) to210

approximate the operations of GNNs on sketches of the convolution and feature matrices. Nonetheless,211

the pre-computed sketches are fixed during training, resulting in two major drawbacks: (1) The212

performance is limited by the quality of the initial sketches. For example, if the randomly-generated213

hash tables {h(k)}rk=1 have unevenly distributed buckets, there will be more hash collisions and214

consequently worse sketch representations. The performance will suffer because only sketches are215

used in training. (2) More importantly, when multiple Sketch-GNN layers are stacked, the input216

representation X(l) changes during training (starting from the second layer). Fixed hash tables are217

not tailored to the “changing” hidden representations.218

We seek a method for efficiently constructing high-quality hash tables tailored for each hidden219

embedding. Locality sensitive hashing (LSH) is a suitable tool since it is data-dependent and220

preserves data similarity by hashing similar vectors into the same bucket. This can significantly221

improve the quality of sketches by reducing the errors due to hash collisions.222

Combining LSH with Sketching. At the time of sketching, the hash table h(k) : [n] → [c] is223

replaced with an LSH function H(k) : Rd → [c], for any k ∈ [r]. Specifically, in the l-th layer of a224

Sketch-GNN, we hash the i-th node to the H(k)(X
(l)
i,:)-th bucket for every i ∈ [n], where X(l)

i,: is the225

embedding vector of node i. As a result, we define a data-dependent hash table226

h(l,k)(i) = H(k)(X
(l)
i,:) (6)

that can be used for computing the sketches of S(l,k)
X and S(l,k,k′)

C . This LSH-based sketching can227

be directly applied to sketch the fixed convolution matrix and the input feature matrix. If SimHash228

is used, i.e., H(k)(u) = arg max
([
P (k)u ‖ −P (k)u

])
(Eq. (3)), an additional O(ncr(log c + d))229

computational overhead is introduced to hash the n nodes for the r hash tables during preprocessing;230

see Appendix F more information. SimHash(es) are implemented as simple matrix multiplications231

that are practically very fast.232

In order to employ LSH-based hash functions customized to each layer to sketch the hidden repre-233

sentations of a Sketch-GNN (i.e., l = 2, . . . , L− 1), we face two major challenges: (1) Unless we234

explicitly unsketch in each layer, the estimated hidden representations X̃(l)(l = 2, . . . , L− 1) cannot235

be accessed and used to compute the hash tables. However, unsketching any hidden representation,236

i.e., X̃(l) = Med{R(k)S
(l,k)
X | k = 1, · · · , r}, requires O(n) memory and time. We need to come237

5

up with an efficient algorithm that updates the hash tables without having to unsketch the complete238

representation. (2) It’s unclear how to change the underlying hash table of a sketch across layers239

without unsketching to the n-dimensional space, even if we know the most up-to-date hash tables240

suited to each layer.241

The challenge (2), i.e., changing the underlying hash table of across layers, can be solved by242

maintaining a sparse c× c matrix T (l,k) := R(l,k)(R(l+1,k))T for each k ∈ [r], which only requires243

O(cr) memory and time overhead; see Appendix C for more information and detailed discussions.244

We focus on challenge (1) for the remainder of this section.245

Online Learning of Sketches. To learn a hash table tailored for a hidden layer using LSH without246

unsketching, we develop an efficient algorithm to update the LSH function using only a size-|B|247

subset of the length-n unsketched representations, where B denotes a subset of nodes we select. This248

algorithm, which we term online learning of sketches, is made up of two key parts: (Part 1) select a249

subset of nodes B ⊆ [n] to effectively update the hash table, and (Part 2) update the LSH function250

H(·) with a triplet loss computed using this subset.251

(1) Selection of subset B: Because model parameters are updated slowly during neural network252

training, the data-dependent LSH hash tables also changes slowly (this behavior was detailed in [9]).253

The amount of updates to the hash table drops very fast along with training, empirically verified254

in Fig. 1b (left) in Section 5. Based on this insight, we only need to update a small fraction of the255

hash table during training. To identify this subset B ∈ [n] of nodes, gradient signals can be used.256

Intuitively, a node representation vector hashed into the wrong bucket will be aggregated with distant257

vectors and lead to larger errors and subsequently larger gradient signals. Specifically, we propose258

finding the candidate set B of nodes by taking the union of the several buckets with the largest259

gradients, i.e., B = {i | h(l,k)(i) = arg maxj [S
(l,k)
X]j,: for some k}. The memory and overhead260

required to update the entries in B in the hash table is O(|B|).261

(2) Update of LSH function: In order to update the projection matrix P that defines a SimHash262

H(k) : Rd → [c] (Eq. (3)), instead of the O(n) full triplet loss introduced by [9], we consider a263

sampled version of the triplet loss on the candidate set B with O(|B|) complexity, namely264

L(H,P+,P−) = max

{
0,
∑

(u,v)∈P− cos(H(u), H(v))−
∑

(u,v)∈P+
cos(H(u), H(v)) + α

}
, (7)

where P+ = {(X̃i,:, X̃j,:) | i, j ∈ B, 〈X̃i,:, X̃j,:〉 > t+} and P− = {(X̃:,i, X̃:,j) | i, j ∈265

B, 〈X̃:,i, X̃:,j〉 < t−} are the similar and dissimilar node-pairs in the subset B; t+ > t− and266

α > 0 are hyper-parameters. This triplet loss L(H,P+,P−) is used to update P using gradient267

descent, as described in [9], with a O(c|B|d+ |B|2) overhead. Experimental validation of this LSH268

update mechanism can be found in Fig. 1b in Section 5.269

Avoiding O(n) in Loss Evaluation. We can estimate the final layer representation using the r270

sketches {S(L,k)}rk=1, i.e., X̃(L) = Med{R(k)S
(L,k)
X | k = 1, · · · , r} and compute the losses of all271

nodes for node classification (or some node pairs for link prediction). However, the complexity of272

loss evaluation is O(n), proportional to the number of ground-truth labels. In order to avoid O(n)273

complexity completely, rather than un-sketching the node representation for all labeled nodes, we274

employ the locality sensitive hashing (LSH) technique again for loss calculation so that only a subset275

of node losses are evaluated based on a set of hash tables. Specifically, we construct an LSH hash276

table for each class in a node classification problem, which indexes all of the labeled nodes of this277

class and can be utilized to choose the nodes with poor predictions by leveraging the locality property.278

This technique, introduced in [10], is known as sparse forward-pass and back-propagation, and we279

defer the descriptions to Appendix C.280

One-time Preprocessing. If the convolution matrix C is fixed (GCN, GraphSAGE), the “two-sided281

sketch” S(l,k,k′)
C = CS(k′)(TSk(C)T) ∈ Rc×c is the same in each layer and may be denoted as282

S
(k,k′)
C . In addition, all of the r2 sketches of C, i.e., {{S(k,k′)

C ∈ Rc×c}rk=1}rk′=1 can be computed283

during the preprocessing phase. If the convolution matrix C is sparse (which is true for most GNNs284

following Eq. (1) on a sparse graph), we can use the sparse matrix representations for the sketches285

{{S(k,k′)
C ∈ Rc×c}rk=1}rk′=1, and the total memory taken by the r2 sketches is O(r2c(m/n)) where286

(2m/n) is the average node degree (see Appendix F for details). We also need to compute the r count287

sketches of the input node feature matrix X = X(0), i.e., {S(0,k)
X }rk=1 during preprocessing, which288

6

requires O(rcd) memory in total. In this regard, we have substituted the input data with compact289

graph-size independent sketches (i.e., O(c) memory). Although the preprocessing time required to290

compute these sketches is O(n), it is a one-time cost prior to training, and it is widely known that291

sketching is practically very fast.292

Complexities of Sketch-GCN. The theoretical complexities of Sketch-GNN is summarized as293

follows, where for simplicity we assume bounded maximum node degree, i.e., m = O(n). (1)294

Training Complexity: (1a) Forward and backward propagation: O(Lcrd(log(c) + d+m/n)) =295

O(c) time and O(Lr(cd + rm/n)) = O(c) memory. (1b) Hash and sketch update: O(Lr(c +296

|B|d)) = O(c) time and memory. (2) Preprocessing: O(r(rm + n + c)) = O(n) time and297

O(rc(d + rm/n)) = O(c) memory. (3) Inference: O(Ld(m + nd)) = O(n) time and O(m +298

Ld(n + d)) = O(n) memory (the same as a standard GCN). We defer a detailed summary of the299

theoretical complexities of Sketch-GNN to Appendix F.300

We generalize Sketch-GNN to more GNN models in Appendix D and the pseudo-code which outlines301

the complete workflow of Sketch-GNN can be find in Appendix E.302

4 Related Work303

Scalable methods for GNNs can be categorized into four classes, all of them still require linear304

training complexities. (A) On a large sparse graph with n nodes and m edges, the “full-graph”305

training of a L-layer GCN with d-dimensional (hidden) features per layer requiresO(m+ndL+d2L)306

memory and O(mdL+ nd2L) epoch time. (B) Sampling-based methods sample mini-batches from307

the complete graph following three schemes: (1) node-wisely sample a subset of neighbors in308

each layer to reduce the neighborhood size; (2) layer-wisely sample a set of nodes independently309

in each layer; (3) subgraph-wisely sample a subgraph directly and simply forward-pass and back-310

propagate on that subgraph. (B.1) GraphSAGE [18] samples r neighbors for each node while ignoring311

messages from other neighbors. O(brL) nodes are sampled in a mini-batch (where b is the mini-batch312

size), and the epoch time is O(ndrL); therefore, GraphSAGE is impractical for deep GNNs on a313

large graph. FastGCN [12] and LADIES [46] are layer-sampling methods that apply importance314

sampling to reduce variance. (B.2) The subgraph-wise scheme has the best performance and is315

most prevalent. Cluster-GCN [14] partitions the graph into many densely connected subgraphs and316

samples a subset of subgraphs (with edges between subgraphs added back) for training per iteration.317

GraphSAINT [44] samples a set of nodes and uses the induced subgraph for mini-batch training.318

Both Cluster-GCN and GraphSAINT require O(mdL + nd2L) epoch time, which is the same as319

“full-graph” training, although Cluster-GCN also needs O(m) pre-processing time. (C) Apart from320

sampling strategies, historical-embedding-based methods propose mitigating sampling errors and321

improving performance using some stored embeddings. GNNAutoScale [17] keeps a snapshot of322

all embeddings in CPU memory, leading to a large O(ndL) memory overhead. VQ-GNN [15]323

maintains a vector quantized data structure for the historical embeddings, whose size is independent324

of n. (D) Linearized GNNs [41, 4, 32] replace the message passing operation in each layer with a325

one-time message passing during preprocessing. They are practically efficient, but the theoretical326

complexities remain O(n). Linearized models usually over-simplify the corresponding GNN and327

limit its expressive power.328

Towards sublinear GNNs. Nearly all existing scalable methods focus on mini-batching the large329

graph and resolving the memory bottleneck of GNNs, without reducing the epoch training time.330

Few recent work focus on graph compression [22, 23] can also achieve sublinear training time by331

coarsening (e.g., using [30]) the graph during preprocessing and training GNNs on the coarsened332

graph with fewer nodes and edges. Nevertheless, this strategy suffers from two issues: (1) Although333

graph coarsening is a one-time cost, the memory and time overheads are often worse than O(n)334

and can be prohibitively large on graphs with over 100K nodes. Even the fastest graph coarsening335

algorithm used by [22] takes more than 68 minutes to process the 233K-node Reddit graph [44];336

see Table 1. The long preprocessing time renders any training speedups meaningless. (2) The test337

performance of a model trained on the coarsened graph highly depends on the GNN type. Although338

the performance of [22] on GCN is good, significant performance degradations are observed on339

GraphSAGE and GAT; see Section 5.340

We defer discussion of more scalable GNN papers and the broad literature of sketching and LHS for341

neural networks to Appendix G.342

7

5 Experiments343

0.02 0.04 0.06 0.08 0.10
10−3.0

10−2.5

10−2.0

10−1.5

10−1.0

Sketch Ratio (c/n)

R
el

at
iv

e
E

rr
or

Coreset
Taylor
Learned via GD (Ours)

(a) Error of PTS

2 4 6 8 10

0.05

0.10

0.15

0.20

Epoch

∆
H
am

m
in
g

0 5 10 15 20 25 30

0.05

0.10

0.15

0.20

Epoch

H
am

m
in
g(

h
le
a
rn

ed
,h

g
ro
u
n
d
−
tr
u
th

)

(b) Learnable LSH
Figure 1: Figure 1a Relative errors when applying polynomial tensor sketch (PTS) to the nonlinear unit
σ(CXW) following Eq. (4). The dataset used is Cora [33]. σ is the sigmoid activation. We set r = 5
and test on a GCN with fixed W = Id ∈ Rd×d. The coefficients {ck}rk=1 can be computed by a coreset
regression [19] (blue), by a Taylor expansion of σ(·) (orange), or learned from gradient descent proposed by us
(green). Figure 1b The left plot shows the Hamming distance changes of the hash table in the 2nd layer during
the training of a 2-layer Sketch-GCN, where the hash table is constructed from the unsketched representation
X̃(1) using SimHash. The right plot shows the Hamming distances between the hash table learned using our
algorithm and the hash table constructed directly from X̃(1).

Table 1: Time and memory efficiencies of Sketch-GNN versus other scalable methods.
Benchmark ogbn-arxiv Reddit

Efficiency Measure Preprocessing Time Epoch Time Train Memory Preprocessing Time Epoch Time Train Memory

“Full-Graph” (oracle) — 0.49 s 983 MB — OOM1 OOM

GraphSAINT — 0.30 s 31.4 MB — 2.09 s 977 MB
VQ-GNN — 0.37 s 48.9 MB — 2.16 s 1281 MB

Coarsening 358 s 0.20 s 22.1 MB 4123 s 1.04 s 530 MB

Sketch-GNN (ours) 27 s 0.13 s 38.7 MB 141 s 0.81 s 748 MB
1 “OOM” refers to “out of memory”.

Table 2: Performance of Sketch-GNN in comparison to Graph Coarsening [22] on ogbn-arxiv.
Benchmark ogbn-arxiv

GNN Model GCN GraphSAGE GAT

“Full-Graph” (oracle) .7174± .0029 .7149± .0027 .7233± .0045

Sketch Ratio (c/n) 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

Coarsening .6508± .0091 .6665± .0010 .6892± .0035 .5264± .0251 .5996± .0134 .6609± .0061 .5177± .0028 .5946± .0027 .6307± .0041
Sketch-GNN (ours) .6913± .0154 .7004± .0096 .7028± .0087 .6929± .0194 .6963± .0056 .7048± .0080 .6967± .0067 .6910± .0135 .7053± .0034

Table 3: Performance of Sketch-GNN versus SGC [41], GraphSAINT [44], and VQ-GNN [15].
Benchmark ogbn-arxiv Reddit ogbn-product

SGC .6944± .0005 .9464± .0011 .6683± .0029

GNN Model GCN GraphSAGE GAT GCN GraphSAGE GAT GCN GraphSAGE GAT

“Full-Graph” (oracle) .7174± .0029 .7149± .0027 .7233± .0045 OOM OOM +/ OOM OOM OOM OOM

GraphSAINT .7079± .0057 .6987± .0039 .7117± .0032 .9225± .0057 .9581± .0074 .9431± .0067 .7602± .0021 .7908± .0024 .7971± .0042
VQ-GNN .7055± .0033 .7028± .0047 .7043± .0034 .9399± .0021 .9449± .0024 .9438± .0059 .7524± .0032 .7809± .0019 .7823± .0049

Sketch Ratio (c/n) 0.4 0.3 0.2

Sketch-GNN (ours) .7028± .0087 .7048± .0080 .7053± .0034 .9280± .0034 0.9485± .0061 .9326± .0063 .7659± .0086 .7851± .0071 .7797± .0101

In this section, we evaluate the proposed Sketch-GNN algorithm and compare it with the (oracle) “full-344

graph” training baseline, a graph-coarsening based method (Coarsening [22]) which has sublinear345

training time, and other scalable methods including: a sampling-based method (GraphSAINT [44]),346

a historical-embedding based method (VQ-GNN [15]), and a linearized GNN (SGC [41]). We test347

on several large graph benchmarks including ogbn-arxiv (169K nodes, 1.2M edges), Reddit (233K348

nodes, 11.6M edges), and ogbn-products (2.4M nodes, 61.9M edges) from [20, 44]. See Appendix H349

for the implementation details.350

Proof-of-Concept Experiments: (1) Errors of gradient-learned PTS coefficients: In Fig. 1a,351

we train the PTS coefficients to approximate the sigmoid activated σ(CXW) to evaluate its ap-352

proximation power to the ground-truth activation. The relative errors are comparable to those of353

the coreset-based method. (2) Slow-change phenomenon of LSH hash tables: In Fig. 1b (left),354

we count the changes of the hash table constructed from an unsketched hidden representation for355

each epoch, characterized by the Hamming distances between consecutive updates. The changes356

drop rapidly as training progresses, indicating that apart from the beginning of training, the hash357

codes of most nodes do not change at each update. (3) Sampled triplet loss for learnable LSH:358

In Fig. 1b (right), we verify the effectiveness of our update mechanism for LSH hash functions, as359

the learned hash table gradually approaches the “ground truth”, i.e., the hash table constructed from360

the unsketched hidden representation.361

8

Efficiency of Sketch-GNNs. For efficiency measures, we are interested in the comparison to362

Coarsening, as both approaches achieve sublinear training time at the cost of some preprocessing363

overheads. We use a 3-layer GCN as the backbone and set the sketch ratios (c/n, ratio of sketch364

dimension c to graph size n) of both algorithms to c/n = 0.1, meaning that the coarsened graph365

contains n/10 nodes. We measure their preprocessing time, average epoch training time, and peak366

training memory, as reported in Table 1. Although not rigorously comparable, we also set the mini-367

batch size of GraphSAINT and VQ-GNN to b = n/10. We report the average epoch training time and368

peak training memory for each method and the "full-graph" training baseline. In addition to Table 1,369

the following are also recorded: (1) Coarsening requires 980 MB to preprocess ogbn-arxiv, whereas370

Sketch-GNN only requires 539 MB. (2) Our preprocessing on the largest dataset, ogbn-product (2.4M371

nodes), takes only 414s. (3) The wallclock time for the validation accuracy to reach 99% of its best is372

88± 8s for SketchGCN, which is shorter than VQ-GNN’s 103± 11s and GraphSAINT’s 120± 4s.373

From Table 1 and the aforementioned results, we can draw four important conclusions: (1) Sketch-374

GNN achieves the fastest average epoch time. The coarsened graph is typically much denser and375

increases the time required for message passing. (2) Sketch-GNN usually converges faster than376

GraphSAINT and VQ-GNN. (3) Our preprocessing time is significantly less than that of Coarsening.377

Coarsening suffers from an extremely long preprocessing time, rendering the training speed-ups378

meaningless. Moreover, our preprocessing time scales well with graph size and sparsity. (4) We also379

require less preprocessing memory as sketching is linear/multi-linear operation and usually preserves380

sparsity. (5) Sketch-GNN often requires more training memory than Coarsening in order to maintain381

the copies of sketches and additional data structures, although these memory overheads are small.382

Performance of Sketch-GNNs. We first compare the performance of Sketch-GNN with Coarsening383

under various sketch ratios to understand how their performance is affected by the memory bottleneck.384

In Table 2, we report the test accuracy of both approaches on ogbn-arxiv, with a 3-layer GCN,385

GraphSAGE, or GAT as the backbone and a sketch ratio of 0.1, 0.2, or 0.4. We see there are386

significant performance degradations when applying Coarsening to GraphSAGE and GAT, even under387

sketch ratio 0.4, indicating that Coarsening may be compatible only with specific GNNs (GCN and388

APPNP as explained in [22]). In contrast, the performance drops of Sketch-GNN are always small389

across all architectures, even when the sketch ratio is 0.1. Therefore, our approach generalizes to390

more GNN architectures and consistently outperforms the Coarsening method.391

We move on to compare Sketch-GNN with linearized GNNs (SGC), sampling-based (GraphSAINT),392

and historical-embedding-based (VQ-GNN) methods. In Table 3, we report the performance of393

SGC, the “full-graph” training (oracle), GraphSAINT and VQ-GNN with mini-batch size 50K394

(their performance is not affected by the choice of mini-batch size if it is not too small), and395

Sketch-GNN with appropriate sketch ratios (0.4 on ogbn-arxiv, 0.3 on Reddit, and 0.2 on ogbn-396

product). From Table 3, we confirm that, with an appropriate sketch ratio, the performance of397

Sketch-GNN is always close to the “full-graph” oracle and competitive with the other scalable398

approaches. Impressively, the needed sketch ratio c/n for Sketch-GNN to achieve competitive399

performance reduces as graph size grows. This further illustrates that, as previously indicated, the400

required training complexities (to get acceptable performance) are sublinear to the graph size.401

Ablation Studies: (1) Dependence of sketch dimension c on graph size n. Although the theoretical402

approximation error increases under smaller sketch ratio c/n, we observe competitive experimental403

results with smaller c/n especially on large graphs. In practice, the sketch-ratio required to maintain404

“full-graph” model performance decreases with n, as verified in Table 3: c/n = 0.4 is needed on ogbn-405

arxiv with 169K nodes but c/n = 0.2 is adequate on ogbn-product with 2.45M nodes. (2) Learned406

Sketches versus Fixed Sketches. We find that learned sketches can improve the performance407

of all models and on all datasets. Under sketch-ratio c/n = 0.2, the Sketch-GCN with learned408

sketches achieves 0.7004± 0.0096 accuracy on ogbn-arxiv while fixed randomized sketches degrade409

performance to 0.6649± 0.0106.410

6 Conclusion411

We present Sketch-GNN, a sketch-based GNN training framework with sublinear training time and412

memory complexities. Our main contributions are (1) approximating nonlinear operations in GNNs413

using polynomial tensor sketch (PTS) and (2) updating sketches using learnable locality sensitive414

hashing (LSH). Our novel framework has the potential to be applied to other architectures and415

applications where the amount of data makes training even simple models impractical.416

9

References417

[1] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.418

Practical and optimal lsh for angular distance. Advances in neural information processing419

systems, 28, 2015.420

[2] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the polynomial421

kernel. Advances in neural information processing systems, 27, 2014.422

[3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph423

neural networks for graph pooling. In International Conference on Machine Learning, pages424

874–883. PMLR, 2020.425

[4] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek426

Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with427

approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on428

Knowledge Discovery & Data Mining, pages 2464–2473, 2020.429

[5] Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. Improved large-430

scale graph learning through ridge spectral sparsification. In International Conference on431

Machine Learning, pages 688–697. PMLR, 2018.432

[6] Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald Tesauro, and Yoshua433

Bengio. Hierarchical memory networks. arXiv preprint arXiv:1605.07427, 2016.434

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.435

In International Colloquium on Automata, Languages, and Programming, pages 693–703.436

Springer, 2002.437

[8] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings438

of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.439

[9] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao440

Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for441

efficient neural network training. In International Conference on Learning Representations,442

2020.443

[10] Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In444

defense of smart algorithms over hardware acceleration for large-scale deep learning systems.445

Proceedings of Machine Learning and Systems, 2:291–306, 2020.446

[11] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with447

variance reduction. In International Conference on Machine Learning, pages 942–950. PMLR,448

2018.449

[12] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks450

via importance sampling. In International Conference on Learning Representations, 2018.451

[13] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing452

neural networks with the hashing trick. In International conference on machine learning, pages453

2285–2294. PMLR, 2015.454

[14] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:455

An efficient algorithm for training deep and large graph convolutional networks. In Proceedings456

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,457

pages 257–266, 2019.458

[15] Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom459

Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector460

quantization. Advances in Neural Information Processing Systems, 34, 2021.461

[16] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural462

networks for social recommendation. In The World Wide Web Conference, pages 417–426,463

2019.464

10

[17] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and465

expressive graph neural networks via historical embeddings. In International Conference on466

Machine Learning, pages 3294–3304. PMLR, 2021.467

[18] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large468

graphs. In Proceedings of the 31st International Conference on Neural Information Processing469

Systems, pages 1025–1035, 2017.470

[19] Insu Han, Haim Avron, and Jinwoo Shin. Polynomial tensor sketch for element-wise function of471

low-rank matrix. In International Conference on Machine Learning, pages 3984–3993. PMLR,472

2020.473

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele474

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.475

Advances in neural information processing systems, 33:22118–22133, 2020.476

[21] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.477

Ogb-lsc: A large-scale challenge for machine learning on graphs. In Thirty-fifth Conference on478

Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.479

[22] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph480

neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference481

on Knowledge Discovery & Data Mining, pages 675–684, 2021.482

[23] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph con-483

densation for graph neural networks. In International Conference on Learning Representations,484

2022.485

[24] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert486

space. Contemporary Mathematics, 26(189-206):1, 1984.487

[25] Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin. Network approximation488

using tensor sketching. In International Joint Conference on Artificial Intelligence, pages489

2319–2325, 2018.490

[26] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional491

networks. In International Conference on Learning Representations, 2017.492

[27] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In493

International Conference on Learning Representations, 2019.494

[28] Yibo Lin, Zhao Song, and Lin F Yang. Towards a theoretical understanding of hashing-based495

neural nets. In The 22nd International Conference on Artificial Intelligence and Statistics, pages496

127–137. PMLR, 2019.497

[29] Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural498

networks training via extreme activation compression. In International Conference on Learning499

Representations, 2021.500

[30] Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine501

Learning Research, 20:1–42, 2019.502

[31] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps.503

In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery504

and data mining, pages 239–247, 2013.505

[32] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein,506

and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint507

arXiv:2004.11198, 2020.508

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-509

Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.510

11

[34] Yang Shi and Animashree Anandkumar. Higher-order count sketch: Dimensionality reduction511

that retains efficient tensor operations. In 2020 Data Compression Conference (DCC), pages512

394–394. IEEE, 2020.513

[35] Ryan Spring and Anshumali Shrivastava. Scalable and sustainable deep learning via randomized514

hashing. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge515

Discovery and Data Mining, pages 445–454, 2017.516

[36] Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava. Compressing517

gradient optimizers via count-sketches. In International Conference on Machine Learning,518

pages 5946–5955. PMLR, 2019.519

[37] Rakshith S Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, and Jimeng Sun. Fast520

graph attention networks using effective resistance based graph sparsification. arXiv preprint521

arXiv:2006.08796, 2020.522

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua523

Bengio. Graph attention networks. In International Conference on Learning Representations,524

2018.525

[39] Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed526

tensor decomposition via sketching. Advances in neural information processing systems, 28,527

2015.528

[40] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature529

hashing for large scale multitask learning. In Proceedings of the 26th annual international530

conference on machine learning, pages 1113–1120, 2009.531

[41] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.532

Simplifying graph convolutional networks. In International conference on machine learning,533

pages 6861–6871. PMLR, 2019.534

[42] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-535

mender systems: a survey. ACM Computing Surveys (CSUR), 2020.536

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural537

networks? In International Conference on Learning Representations, 2018.538

[44] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.539

Graphsaint: Graph sampling based inductive learning method. In International Conference on540

Learning Representations, 2019.541

[45] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,542

and Wei Wang. Robust graph representation learning via neural sparsification. In International543

Conference on Machine Learning, pages 11458–11468. PMLR, 2020.544

[46] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-545

dependent importance sampling for training deep and large graph convolutional networks.546

Advances in Neural Information Processing Systems, 32:11249–11259, 2019.547

Checklist548

1. For all authors...549

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s550

contributions and scope? [Yes] See Section 1.551

(b) Did you describe the limitations of your work? [Yes] Currently, our work has two major552

limitations: (1) our theoretical assumptions and results may not perfectly correspond553

to the reality; see the theoretical remarks in Section 3, and (2) our implementation is554

not fully-optimized with the more advanced libraries; see the efficiency discussions555

in Section 5.556

12

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We see our557

work as a theoretical and methodological contribution toward more resource-efficient558

graph representation learning. Our methodological advances may enable larger-scale559

network analysis for societal good. However, progress in graph embedding learning560

may potentially inspire other hostile social network studies, such as monitoring fine-561

grained user interactions.562

(d) Have you read the ethics review guidelines and ensured that your paper conforms to563

them? [Yes]564

2. If you are including theoretical results...565

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Lemma 1566

and Theorem 1.567

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.568

3. If you ran experiments...569

(a) Did you include the code, data, and instructions needed to reproduce the main experi-570

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix H.571

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they572

were chosen)? [Yes] See Appendix H.573

(c) Did you report error bars (e.g., with respect to the random seed after running experi-574

ments multiple times)? [Yes] See Section 5.575

(d) Did you include the total amount of compute and the type of resources used (e.g., type576

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix H.577

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...578

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix H.579

(b) Did you mention the license of the assets? [Yes] See Appendix H.580

(c) Did you include any new assets either in the supplemental material or as a URL? [No]581

(d) Did you discuss whether and how consent was obtained from people whose data you’re582

using/curating? [No]583

(e) Did you discuss whether the data you are using/curating contains personally identifiable584

information or offensive content? [No]585

5. If you used crowdsourcing or conducted research with human subjects...586

(a) Did you include the full text of instructions given to participants and screenshots, if587

applicable? [N/A]588

(b) Did you describe any potential participant risks, with links to Institutional Review589

Board (IRB) approvals, if applicable? [N/A]590

(c) Did you include the estimated hourly wage paid to participants and the total amount591

spent on participant compensation? [N/A]592

13

