
Under review as a Tiny Paper at ICLR 2023

THE SMALL BATCH SIZE ANOMALY IN MULTISTEP
DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

1. Introduction
Deep reinforcement learning (DRL), which combines traditional reinforcement learning (RL) tech-
niques with neural networks, has had a number of recent successes (Schrittwieser et al., 2020; Belle-
mare et al., 2020; Degrave et al., 2022). Yet successful application of DRL to new problems remains
a challenge, in large part due to the difficulty in understanding how neural network training is af-
fected by the vast number of hyper-parameters involved. Despite a number of recent works develop-
ing a greater understanding of the dynamics of training neural networks for reinforcement learning
(Ceron & Castro, 2021; Araújo et al., 2021; Ostrovski et al., 2021; Schaul et al., 2022), the relation-
ship between particular hyper-parameter configurations and performance on a given environment
remains hard to predict.

One generally held desire in training neural networks is to reduce the variance of gradient updates,
so as to avoid unstable and unreliable learning. In the reinforcement learning literature there has
been a growing trend to use multi-step (or n-step) learning (Schwarzer et al., 2020; Agarwal et al.,
2022) for improved performance. Despite their demonstrated advantage, researchers have been
limited to small values of n to avoid performance collapse, in part due to the increased variance
arising from larger n. The supervised learning literature suggests that an effective mechanism for
mitigating variance is through the choice of batch size: Shallue et al. (2019) empirically demonstrate
that larger batch sizes result in reduced variance and increased performance. In this paper, we
report the counter-intuitive finding that reducing the batch size can help avoid performance collapse
with larger n-step updates. This is effectively doubling down on increased variance for improved
performance. We also show that reduced batch sizes also results in reduced overall computation
time during training.

2. Experimental Analysis
Advances in deep reinforcement learning (DRL) often build on prior algorithms, network archi-
tectures, and hyper-parameter selections. Given the large number of options, new work typically
re-tunes only those components necessary for the new methods being considered. Thus, we have
accumulated a set of, mostly static, parameters upon which new ideas are tested (this may be a
form of the “social dynamics of research” hypothesized by Schaul et al. (2022)). One of the static
parameters for training single-agent value-based agents has been the choice of batch size.

Since the introduction of DQN by Mnih et al. (2015), single-agent training on the Arcade Learning
Environment (ALE, Bellemare et al., 2013) has used a batch size of 32, where this value was care-
fully tuned by the authors for performance. Since then, this value has rarely been changed, save for
distributed agent training (Kapturowski et al., 2018; Espeholt et al., 2018). If one takes the general
advice from the supervised learning literature, we should be aiming to increase the batch size so as to
reduce variance and improve performance (Shallue et al., 2019). We focus on the effect of changing
the batch size, while keeping all else equal. Check Appendix A in Appendix, for experimental setup
details.

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

DQN

Batch Size:
8
16
32 (default)
64

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

Rainbow

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

DQN-QR

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

IQN

Figure 1: Varying batch sizes for DQN, Rainbow, QR-DQN, and IQN.

1



Under review as a Tiny Paper at ICLR 2023

8 16 32 64
Batch size

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e DQN: Adding components

Default
Multi-step
Prioritized
Distributional

8 16 32 64
Batch size

0.5

1.0

1.5 Rainbow: Removing components 

Figure 2: Left: Adding components to DQN; Right: Removing components from Rainbow.

1 3 5 7 9 11 13 15
NStep

0.0

0.5

1.0

1.5

IQ
M

1 3 5 7 9 11 13 15
NStep

0.0

0.5

1.0

1.5

8 16 32 64

1 3 5 7 9 11 13 15
NStep

0.0

0.5

1.0

1.5

Figure 3: Varying batch sizes and n-steps in DQN (left), Rainbow (center), and QR-DQN (right).

When do smaller batch sizes improve performance? We first varied the batch size for all agents
(Figure 1). There are two surprising observations from this result. The first is that aggregate agent
performance is relatively stable with respect to changing batch sizes. The second, and perhaps more
surprising, is that agent performance seems to improve with reduced batch size. Indeed, we can
observe that the default batch size is in fact not optimal for any of the agents and, with the exception
of DQN, all agents seem to benefit from a reduced batch size.

The four agents considered differ in a number of respects. Three important considerations are that,
of the 4, DQN is the only agent without distributional training (Bellemare et al., 2017), prioritized
experience replay, and the only one without n-step returns. To get a better sense for whether either
of these components is responsible for the reduced batch size performance boost, we performed
ablation studies similar to those conducted by Ceron & Castro (2021). Since the version of Rain-
bow provided with the Dopamine library (Castro et al., 2018) is effectively DQN with three added
components, we can investigate the changing dynamics as these components are added or removed
from DQN and Rainbow, respectively. Figure 2 depicts the outcome of this ablation study. We find
a striking pattern: while the four variants that use 1-step learning see their performance increase
with greater batch sizes, as might be expected, the relationship is almost completely reversed for the
variants using 3-step learning. Additionally, the other two components do not seem to present such
a relationship with batch size.

The last results demonstrated there is a strong performance relationship between batch size and up-
date horizon. We systematically explored this by evaluating various choices of these two parameters
for three of the agents. As Figure 3 shows, the optimal batch size decreases as n increases. This is
most stark in QR-DQN, where simply reducing the batch size to 8 improves performance by close
to 70% on the subset of games we consider.1 With Rainbow a batch size of 8 is able to maintain
performance for n-step values as high as 9; in contrast, performance for the default batch size of 32
collapses beyond an n-step of 3.

3. Discussion
The long-term goal of RL research is to develop generally capable agents that can adapt to uncertain
environments. Although theoretical results spanning multiple decades have given us a crisp insight
into the mathematical properties of these algorithms, these theories unfortunately do not hold for
non-linear function approximators such as neural networks. Given that neural networks have played
a key role in the impact RL has had since 2015, it behooves the community to develop a better
understanding of the the interplay of the various components and how changes can affect learning
dynamics. Our work has revealed the striking finding that doubling down on variance by increasing
n and reducing batch size seems to, overwhelmingly so, produce improved performance. This flies
in the face of traditional beliefs from the supervised learning community that reduced variance is
best. Furthermore, it often results in substantial computational savings (see Appendix B).

1In Dopamine, QR-DQN uses an update horizon of 3 by default.

2



Under review as a Tiny Paper at ICLR 2023

1 URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Beyond tabula rasa: Reincarnating reinforcement learning. In Thirty-Sixth Conference on Neural
Information Processing Systems, 2022.

João Guilherme Madeira Araújo, Johan Samir Obando Ceron, and Pablo Samuel Castro. Lifting
the veil on hyper-parameters for value-based deep reinforcement learning. In Deep RL Workshop
NeurIPS 2021, 2021.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013. doi: 10.1613/jair.3912. URL https://doi.org/10.1613%2Fjair.3912.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pp. 449–458, 2017.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric bal-
loons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more in-
sightful and inclusive deep reinforcement learning research. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 1373–1383. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/ceron21a.html.

W. Dabney, M. Rowland, Marc G. Bellemare, and R. Munos. Distributional reinforcement learning
with quantile regression. In AAAI, 2018a.

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile networks for
distributional reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1096–1105.
PMLR, 2018b.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–
419, 2022.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In Proceedings
of the 35th International Conference on Machine Learning), ICML’18, 2018.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR, 2020.

3

https://doi.org/10.1613%2Fjair.3912
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://proceedings.mlr.press/v139/ceron21a.html


Under review as a Tiny Paper at ICLR 2023

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining Improvements in
Deep Reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. J. Artif. Int. Res., 61(1):523–562, jan 2018. ISSN 1076-9757.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=nPHA8fGicZk.

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn.
Advances in Neural Information Processing Systems, 35:4235–4246, 2022.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, dec 2020. doi: 10.1038/s41586-020-03051-4. URL https://doi.org/
10.1038%2Fs41586-020-03051-4.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2020.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019. URL http://jmlr.org/papers/v20/
18-789.html.

4

https://openreview.net/forum?id=nPHA8fGicZk
https://openreview.net/forum?id=nPHA8fGicZk
https://doi.org/10.1038%2Fs41586-020-03051-4
https://doi.org/10.1038%2Fs41586-020-03051-4
http://jmlr.org/papers/v20/18-789.html
http://jmlr.org/papers/v20/18-789.html


Under review as a Tiny Paper at ICLR 2023

A EXPERIMENTAL SETUP:

For this case study, we use JAX implementations of agents provided by the Dopamine library (Castro
et al., 2018) and applied to game-playing in the ALE (Bellemare et al., 2013).2 For computational
reasons, we evaluate our agents on 20 games chosen by Fedus et al. (2020) in their analysis of
replay ratios; these were picked to offer a diversity of difficulty and dynamics. Similarly, we run
each learning trial for 100 million frames (as opposed to the standard 200 million). The four agents
we consider are: DQN (Mnih et al., 2015), Rainbow (Hessel et al., 2018)3, QR-DQN (Dabney et al.,
2018a), and IQN (Dabney et al., 2018b). These all use the default hyper-parameter values given in
Dopamine. All experiments were run with 3 independent seeds on NVIDIA Tesla P100 GPUs. For
evaluation, we follow the robust evaluation guidelines of Agarwal et al. (2021).

B COMPUTATIONAL CONSEQUENCES:

In deep reinforcement learning, improvements are typically evaluated based on sample efficiency,
which refers to the number of interactions with the environment required to achieve a certain level
of performance. However, this metric fails to account for differences in computational efficiency
between algorithms. For example, two algorithms may have the same performance in terms of
environment interactions, but one may take twice as long to complete each training step. In such
cases, it would be preferable to choose the faster algorithm. Unfortunately, the DRL community
often overlooks this important distinction in their standard evaluation methodologies.

Our results show that reducing batch size not only improves performance but also reduces computa-
tion time. Figure 4 illustrates that by using a smaller batch size, we can achieve better performance
and do so in a fraction of the runtime. We encourage reader to revisit our findings above under this
lens.

0 10 20 30 40 50 60 70
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

DQN

0 10 20 30 40 50 60 70 80
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

Rainbow

0 10 20 30 40 50 60
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

QR-DQN

Batch Size:
8
16
32 (default)
64

0 20 40 60 80
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

IQN

Figure 4: Measuring runtime versus performance when varying batch sizes in DQN, Rainbow, QR-
DQN, and IQN (from left to right), all with n-step equal to 3.

2Dopamine uses sticky actions by default (Machado et al., 2018).
3Dopamine uses a “compact” version of the original Rainbow agent, including only n-step updates, priori-

tized replay, and categorical-distributional RL.

5


	URM Statement
	Experimental setup:
	Computational Consequences:

