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Abstract—The Adolescent Brain Cognitive Development study
provides a rich data resource for exploring the associations
between brain network and cognitive, personality, and mental
health measures in adolescents. To leverage this rich dataset,
we propose a novel multi-task learning framework that predicts
these measures from multi-view brain network data using a graph
transformer architecture. Our approach learns shared represen-
tations across tasks while allowing for task-specific predictions,
improving performance compared to single-task learning. Abla-
tion studies reveal the importance of our proposed techniques
of Batch-Wise Loss Balancing and Target Standardization in
ensuring successful multi-task learning. Furthermore, we develop
innovative visualization techniques based on integrated gradients
to interpret the learned task correlations and identify influential
brain network edges for each task. Our findings contribute to un-
derstanding the complex relationships between brain connectome
and behavioral outcomes, highlighting the potential of multi-
task learning in this domain. The implementation is available
at https://github.com/Wayfear/MTML-ABCD/.
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I. INTRODUCTION

Adolescent Brain Cognitive Development (ABCD) study [1]
is the largest and most long-term study of brain development
and child health in the US. It provides a vast brain development
dataset in a diverse population, including functional magnetic
resonance imaging data (fMRI) and abundant biological and
behavioral survey results. This dataset offers an opportunity
to explore the relationship between intricate brain connections
and various behavioral data [2]–[7].

Leveraging the potential of neuroimaging data, recent stud-
ies have shown a growing trend of using brain networks
derived from fMRI to predict various clinical outcomes and in-
dividual behaviors with different models [8]–[16]. Researchers
have also developed innovative approaches to analyze these
models and uncover potential correlations between functional
brain networks and predicted outcomes [17]–[23]. For ex-
ample, Kawahara et al [9] introduced BrainNetCNN, a con-
volutional neural network designed to predict cognitive and
motor developmental outcome scores from brain networks.
Similarly, Li et al [10] proposed a graph neural network
model to predict clinical targets and discovered task-specific
neurological biomarkers, demonstrating the effectiveness of
graph-based approaches in capturing meaningful patterns in
brain networks. Chen et al [24] further extended this line of
research by training kernel regression models for 36 tasks and
analyzing task relationships based on the learned model. These
studies highlight the potential of leveraging brain networks to
gain insights into the underlying neural mechanisms associated
with various clinical outcomes and individual behaviors.

Multi-task learning (MTL) [25]–[28] has emerged as a
promising approach for improving the generalization abilities
of predictive models by enabling multiple learning tasks to
share their knowledge. In the context of brain network analysis
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in ABCD, where there is a diverse range of prediction targets,
MTL can be particularly beneficial. By training several tasks
simultaneously, MTL allows for a more native capture of task
correlations, potentially leading to improved individual task
performance. This contrasts with the approach taken by Chen
et al [24], which builds individual models for each behavior
task. By leveraging the shared representations learned across
tasks, MTL can enhance the model’s ability to uncover the
underlying relationships between brain networks and various
behavioral measures, resulting in more accurate and general-
izable predictions.

Our study employs a shared bottom multi-task learning
(MTL) approach for brain network analysis using the ABCD
dataset, predicting multiple behavioral outcomes from resting-
state functional connectivity. This differs from Xiao et al.’s
work [29], which uses a manifold regularized MTL model to
predict IQ scores from two task-based fMRI paradigms. While
both leverage MTL for fMRI analysis, our study addresses a
broader range of prediction tasks and uses resting-state data,
potentially capturing more general brain organization patterns.
In contrast to Marquand et al.’s Bayesian MTL framework for
multi-subject decoding [30], our approach focuses on learning
shared representations across tasks rather than subjects. We use
a neural network instead of a Bayesian framework, which may
offer computational efficiency advantages but potentially at the
cost of explicit uncertainty quantification. Like ours, Huang et
al.’s study uses resting-state fMRI data for MTL, but employs
a Multi-cluster Multi-gate Mixture-of-Experts (M-MMOE)
model for joint diagnosis of ASD and ADHD [31]. Our
shared bottom model provides a simpler, more interpretable
approach, while the M-MMOE allows for more complex task
relationships. Additionally, our study encompasses a broader
range of behavioral measures beyond just ASD and ADHD
diagnosis, potentially offering insights into a wider spectrum
of brain-behavior relationships.

In this work, we propose a novel MTL framework that
jointly trains 35 tasks using multi-view functional brain net-
works from 6,682 samples in the ABCD study. We employ
the Brain Network Transformer [32] as the backbone model,
which converts a brain network into a graph-level embedding.
This embedding is then fed into task-specific fully connected
networks for each prediction target. By learning shared rep-
resentations across tasks while still allowing for task-specific
predictions, our approach aims to leverage the commonalities
between tasks and improve overall prediction performance.
Our main contributions are summarized as follows:

• We propose a novel MTL framework for predicting var-
ious measures from multi-view brain network data using
a graph transformer architecture. Our approach learns
shared representations across tasks while allowing for
task-specific predictions, improving performance com-
pared to single-task learning. Besides, the ablation study
shows the effectiveness of two key training strategies
during Multi-Task training.

• We conduct extensive experiments on the ABCD dataset,
including 35 tasks categorized into three domains: cogni-

tion, personality, and mental health. We demonstrate the
impact of MTL on different types of tasks.

• We develop innovative visualization techniques based on
integrated gradients to interpret the learned task cor-
relations and identify influential brain network edges,
contributing to a better understanding of the complex
relationships between brain connectome and behavioral
outcomes.

II. METHOD

A. Problem definition

Let D = {(X(i),Y(i))}ni=1 be a dataset consisting
of n samples. For each sample i, the input X(i) =

{X(i)
1 , X

(i)
2 , . . . , X

(i)
v } represents a collection of v brain net-

works, each derived from a distinct fMRI task (e.g., resting-
state, stop-signal task, and N-Back). These brain networks,
denoted by X

(i)
j ∈ RM×M , capture the functional connectivity

between M brain regions. The corresponding prediction target
Y(i) = {y(i)1 , y

(i)
2 , . . . , y

(i)
t } is a set of t behavioral measures,

such as cognitive scores, personality traits, or mental health
indicators, associated with the i-th subject. In short, given this
multi-view, multi-task dataset, our goal is to develop a predic-
tive model that leverages the complementary information from
the v brain networks to simultaneously predict the t behavioral
outcomes.

B. Model Architecture

Figure 1 shows the proposed multi-task learning framework
for predicting behavioral outcomes from brain networks.
Shared Representation Learning. The footstone of our
framework is Brain Network Transformer (BNT) [32], which
serves as the shared backbone model. BNT is designed to
process individual views of brain networks, denoted as X

(i)
j ,

where j ∈ {1, . . . , v} indexes the view and i ∈ {1, . . . , n} in-
dexes the sample. For each view j, BNT learns a hidden repre-
sentation embedding h

(i)
j = BNT(X(i)

j ). These view-specific
embeddings capture the patterns present in the corresponding
brain networks derived from distinct fMRI tasks. To obtain a
comprehensive representation of each sample, we concatenate
the view-specific embeddings h

(i)
j from all v views, resulting

in a sample-level embedding H(i) =
⊕v

j=1 h
(i)
j , where

⊕
denotes the concatenation operation. This sample-level embed-
ding integrates the multifaceted information captured across
different fMRI views, providing a holistic representation of
each individual’s brain connectivity patterns.
Task-specific Prediction. To achieve multi-task learning, we
employ a separate Multi-Layer Perceptron (MLP) for each task
k ∈ {1, . . . , t}. These task-specific MLPs take the sample-
level embedding H(i) as input and predict the correspond-
ing behavioral outcome ŷ

(i)
k = MLPk(H

(i)). By leveraging
dedicated MLPs for each task, our framework allows for
task-specific adaptations while benefiting from the shared
representation learned by the BNT.
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Fig. 1. Overview of our multi-task learning framework for predicting various measures from multi-view brain networks. Given a set of brain networks
{X(i)

1 , X
(i)
2 , . . . , X

(i)
v } derived from different views for the i-th subject, the Brain Network Transformer generates a unified brain network embedding H(i).

This embedding is then fed into task-specific FCN to predict the corresponding target scores {ŷ(i)1 , ŷ
(i)
2 , . . . , ŷ

(i)
t } for various measures. The entire framework

is trained end-to-end using multi-task learning, allowing for the sharing of knowledge across tasks while still enabling task-specific predictions.

C. Multi-task Training Strategies

The entire framework is trained end-to-end using a multi-
task learning approach. However, training a model to si-
multaneously predict multiple behavioral outcomes presents
challenges due to the diverse characteristics and varying scales
of the prediction targets. We introduce two key strategies to
address these challenges and ensure effective training: Batch-
Wise Loss Balancing and Target Standardization.
Batch-Wise Loss Balancing. In multi-task learning, tasks
with larger loss values can potentially dominate the training
process, hindering the model’s ability to learn from all tasks
equally. To mitigate this issue, we develop batch-wise loss
balancing that adaptively adjusts the weight of each task’s
loss within a training batch. Let Lk denote the loss associated
with task k, where k ∈ {1, . . . , t}. We compute the balanced
loss L̂k for each task as follows: L̂k = Lk

L̄k
, where L̄k is the

average loss value for task k over the current batch of samples.
By normalizing each task’s loss to have an average value of
1, we ensure that all tasks contribute equally to the overall
optimization process. The total balanced loss Ltotal is then
calculated as the sum of all individual balanced task losses:
Ltotal =

∑t
k=1 L̂k.

Target Standardization. Another challenge in multi-task
learning is the varying scales of the target variables across
different tasks. To address this issue, we employ a target
standardization preprocessing step. For a regression task k,
where k ∈ {1, . . . , t}, we standardize the training labels y

(i)
k

to have zero mean and unit variance: y(i)k =
y
(i)
k −µk

σk
, where µk

and σk denote the mean and standard deviation of the training
labels for task k, respectively. This normalization brings all
tasks to a similar scale, facilitating the model’s ability to learn
from them concurrently. During the validation and testing
phase, we apply the inverse of this normalization process
to transform the predicted labels ŷ

(i)
k back to their original

scale. Using the mean µk and standard deviation σk computed
from the training set, we perform the following operation:
ŷ
(i)
k = ŷ

(i)
k · σk + µk. By standardizing the targets during

training and reversing the normalization during inference, we

ensure that the model can effectively learn from tasks with
different scales while producing predictions in the original
target domain.

III. EXPERIMENTS

The following section describes our experimental methodol-
ogy and findings, evaluating our multi-task learning framework
for brain network analysis using the ABCD dataset. We
detail our data, model architecture, training procedures, and
evaluation metrics. We then present results comparing our
multi-task approach to single-task baselines across various
behavioral measures, followed by an ablation study on our
key training strategies. Finally, we analyze task correlations
learned by our model, providing insights into brain-behavior
relationships in adolescent development.

A. Dataset

We use the Adolescent Brain Cognitive Development
(ABCD) dataset [1], which includes fMRI and behavioral
data from a large cohort of children. We utilize resting-
state and task-based fMRIs (stop-signal task [33] and N-Back
task [34]) for brain network construction based on the HCP
360 ROI atlas [35]. In this study, we aim to predict 35 distinct
labels, which span across 15 neurocognitive ability [36], 9
impulsivity-related personality and 11 mental health assess-
ments [37], as detailed in Table I. The experimental dataset
includes 6,682 samples with quality control procedures and
filtering samples with incomplete fMRI and behavioral data.

B. Setting

We employ a Brain Network Transformer as the shared
model backbone, which consists of 3 transformer layers with 4
attention heads and an output dimension matching the number
of nodes (360) in the brain network. The transformer layers
are followed by task-specific 3-layer MLP branches with
activation functions, each responsible for making predictions
for one of the tasks. Since all tasks are regression tasks, we use
Mean Squared Error (MSE) Loss as the loss function for all
tasks. The model, which can predict 35 tasks simultaneously,
has a total of 22.52 million parameters. We randomly split



TABLE I
SUMMARY OF TASKS AND THEIR DISTRIBUTIONS. FOR NUMERICAL

MEASURES, THE DISTRIBUTION IS PRESENTED AS MEAN±STANDARD
DEVIATION.

Type Task ABCD field Distribution

C
og

ni
tio

n

Vocabulary nihtbx picvocab uncorrected 85.29±7.73
Attention nihtbx flanker uncorrected 94.56±8.72

Working Memory nihtbx list uncorrected 97.69±11.47
Executive Function nihtbx cardsort uncorrected 93.37±8.86
Processing Speed nihtbx pattern uncorrected 88.75±14.36
Episodic Memory nihtbx picture uncorrected 103.58±12.03

Reading nihtbx reading uncorrected 91.40±6.52
Fluid Cognition nihtbx fluidcomp uncorrected 92.61±10.20

Crystallized Cognition nihtbx cryst uncorrected 87.10±6.65
Overall Cognition nihtbx totalcomp uncorrected 87.28±8.56
Short Delay Recall pea ravlt sd trial vi tc 9.88±2.95
Long Delay Recall pea ravlt ld trial vii tc 9.40±3.10
Fluid Intelligence pea wiscv trs 18.19±3.71

Visuospatial Accuracy lmt scr perc correct 0.60±0.17
Visuospatial Reaction time lmt scr rt correct 2691.27±461.01

Pe
rs

on
al

ity

Negative Urgency upps y ss negative urgency 8.40±2.61
Lack of Planning upps y ss lack of planning 7.68±2.29
Sensation Seeking upps y ss sensation seeking 9.84±2.67
Positive Urgency upps y ss positive urgency 7.86±2.89

Lack of Perseverance upps y ss lack of perseverance 6.96±2.17
Behavioral Inhibition bis y ss bis sum 9.45±3.66

Reward Responsiveness bis y ss bas rr 10.94±2.90
Drive bis y ss bas drive 3.96±2.97

Fun Seeking bis y ss bas fs 5.65±2.59

M
en

ta
l

H
ea

lth

Total Psychosis Symptoms pps y ss number 2.30±3.30
Psychosis Severity pps y ss severity score 5.33±9.44
Anxious Depressed cbcl scr syn anxdep r 2.45±3.01

Withdrawn Depressed cbcl scr syn withdep r 0.97±1.64
Somatic Complaints cbcl scr syn somatic r 1.46±1.92

Social Problems cbcl scr syn social r 1.46±2.13
Thought Problems cbcl scr syn thought r 1.53±2.08
Attention Problems cbcl scr syn attention r 2.71±3.30

Rule-breaking Behavior cbcl scr syn rulebreak r 1.07±1.70
Aggressive Behavior cbcl scr syn aggressive r 3.02±4.11

Mania pgbi p ss score 1.16±2.56

the ABCD dataset into training (70%), validation (10%), and
testing (20%) subsets. During training, we use the Adam
optimizer with a weight decay of 10−4, a cosine learning rate
scheduler (initial: 10−4, final: 10−5), and a batch size of 16.
The model is trained for 100 epochs, and the model whose
epoch shows the best total loss on the validation set is selected
as the final model to report performance.

C. Metrics

To evaluate our multi-task learning model’s performance on
the 35 regression tasks from the ABCD dataset, we use two
metrics: Mean Squared Error (MSE) and R-squared (R2). MSE
measures the average squared difference between predicted
and actual values, with lower values indicating better perfor-
mance. R2, on the other hand, is used to compare performance
across tasks with varying label scales. R2 values range from
−∞ to 1, where negative values indicate worse performance
than using the target variable’s mean, zero indicates equiv-
alence to using the mean, and positive values suggest the
model captures useful information from brain networks and
the prediction beats the mean of the target. Thus, R2 can be
used to evaluate a task’s predictability. All reported results are
averaged over 5 runs with different random seeds.

D. Performance Evaluation

The overall results of our multi-task learning model on the
ABCD dataset are shown in Table II. From the table, we

can obtain 3 key insights: (1) Single-task performance: The
Single-Task column reveals that for all Personality and Mental
Health tasks, these models’ R2 is below 0.03, indicating that
there is limited predictive power when using brain networks
to predict these labels. In contrast, for the Cognition tasks,
except for the Visuospatial Reaction Time task, all other 14
tasks have an R2 greater than or equal to 0.03. This suggests
that the model can capture useful information from the brain
networks and outperform predictions based solely on the mean
of the target variable for these Cognition tasks; (2) Multi-task
learning benefits: By comparing the Single-Task performance
column with the Multi-Task performance column, we observe
that multi-task training improves the performance of almost
all tasks that already exhibit predictive power in the single-
task setting. However, the Personality and Mental Health tasks
that were unpredictable in the single-task setting remain un-
predictable in the multi-task setting, indicating that these tasks
cannot effectively leverage useful information from other tasks
during joint training; (3) Impact of removing unpredictable
tasks: To further investigate the influence of the unpredictable
Personality and Mental Health tasks on the overall model
performance, we conducted an additional experiment where
we removed these tasks during multi-task training. The results
of this experiment are shown in the Multi-CogTask column.
Interestingly, we observe that by excluding these unpredictable
tasks, the performance of the remaining tasks drops compared
to the multi-task setting that includes all tasks. This finding
suggests that labeling information from Personality and Mental
Health tasks is still helpful for other tasks, even though these
tasks themselves remain unpredictable.

E. Ablation Study
We investigate the effectiveness of our two key train-

ing strategies in our multi-task learning model: Batch-Wise
Loss Balancing and Target Standardization. We compare the
performance of our full model with three ablated versions:
(1) without Batch-Wise Loss Balancing, (2) without Target
Standardization, and (3) without both strategies. The results in
Fig. 2 show that removing Batch-Wise Loss Balancing leads
to a slight decrease in performance across all 14 predictable
tasks, while removing Target Standardization causes a signifi-
cant drop. When both strategies are removed, the model fails
to learn any meaningful information, resulting in negative R²
values for all tasks. This study demonstrates the importance
of these training strategies in enabling successful multi-task
learning for brain network analysis.

IV. TASK CORRELATION ANALYSIS

In this section, we visualize the task correlations learned by
our multi-task learning model using the integrated gradients
method [38] and compare them with the inherent correlations
between task labels. Finally, we visualize these important
edges for prediction in different tasks.

A. Generating Task Correlation Data
Algorithm 1 illustrates the process to obtain the task-level

correlation matrix C and edge importance Gk for each task k.



TABLE II
PERFORMANCE COMPARISON OF SINGLE-TASK, MULTI-TASK, AND MULTI-TASK (COGNITION TASKS ONLY) MODELS ON THE ABCD DATASET. TASKS
WITHIN EACH TYPE (I.G., COGNITION, PERSONALITY AND MENTAL HEALTH) ARE SORTED IN DESCENDING ORDER BASED ON THE R2 VALUE UNDER

THE SINGLE-TASK COLUMN. TASKS HIGHLIGHTED IN PURPLE HAVE AN R2 VALUE GREATER THAN OR EQUAL TO 0.03, AS THIS THRESHOLD INDICATES
THAT THE MODEL CAPTURES MEANINGFUL INFORMATION FROM THE BRAIN NETWORKS AND OUTPERFORMS PREDICTIONS BASED SOLELY ON THE

MEAN OF THE TARGET VARIABLE, THUS SIGNIFYING TASKS WITH NOTABLE PREDICTIVE POWER. BOLD VALUES INDICATE THE BEST RESULT FOR THESE
PREDICTABLE TASKS ACROSS THE THREE MODEL SETTINGS. THE ↑ INDICATES A HIGHER METRIC IS BETTER, ↓ INDICATES A LOWER ONE IS BETTER.

Type Task
Single-Task Multi-Task Multi-CogTask

MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑

C
og

ni
tio

n

OverallCognition 54.34±2.35 0.26±0.02 53.79±2.27 0.24±0.04 58.30±3.15 0.20±0.03
CrystallizedCognition 32.54±2.11 0.25±0.03 33.01±0.99 0.24±0.02 35.13±2.62 0.19±0.05

Vocabulary 47.39±2.89 0.20±0.03 47.15±2.87 0.21±0.04 49.04±2.94 0.16±0.05
Reading 35.57±1.79 0.15±0.03 34.17±0.83 0.15±0.03 36.85±2.61 0.14±0.03

FluidCognition 89.97±2.24 0.14±0.03 87.87±4.55 0.12±0.05 92.50±3.95 0.11±0.02
FluidIntelligence 12.56±0.32 0.12±0.01 12.28±0.25 0.12±0.03 12.03±0.60 0.13±0.02
WorkingMemory 121.76±5.44 0.07±0.03 116.12±2.65 0.09±0.03 120.12±3.06 0.09±0.03

ExecutiveFunction 72.55±3.74 0.07±0.01 70.33±2.33 0.07±0.02 73.09±3.98 0.07±0.02
ShortDelayRecall 8.43±0.18 0.06±0.03 7.87±0.32 0.08±0.02 8.16±0.32 0.06±0.02
LongDelayRecall 9.07±0.33 0.05±0.02 8.62±0.24 0.07±0.03 9.14±0.22 0.04±0.02

VisuospatialAccuracy 0.03±0.00 0.05±0.04 0.03±0.00 0.09±0.02 0.03±0.00 0.08±0.01
Attention 72.84±4.41 0.04±0.01 71.99±3.30 0.04±0.04 70.20±2.74 0.05±0.02

EpisodicMemory 136.82±4.87 0.04±0.02 136.50±5.84 0.04±0.02 138.15±3.91 0.04±0.03
ProcessingSpeed 198.17±5.99 0.03±0.01 200.26±8.89 0.02±0.02 203.91±8.01 0.00±0.03

VisuospatialReactionTime 208k±7k 0.00±0.00 212k±9k 0.00±0.00 210k±4k 0.01±0.01

Pe
rs

on
al

ity

RewardResponsiveness 8.44±0.37 0.01±0.00 8.33±0.51 -0.02±0.05 - -
Drive 8.61±0.20 0.01±0.01 8.66±0.47 0.01±0.04 - -

PositiveUrgency 8.02±0.22 0.01±0.01 8.17±0.27 -0.00±0.06 - -
LackOfPlanning 5.09±0.16 0.00±0.01 5.32±0.22 -0.01±0.01 - -

LackPerseverance 4.86±0.11 0.00±0.01 4.54±0.19 -0.01±0.01 - -
FunSeeking 6.62±0.16 0.00±0.00 6.72±0.22 -0.01±0.04 - -

SensationSeeking 7.14±0.15 -0.00±0.00 7.10±0.19 -0.01±0.02 - -
BehavioralInhibition 13.48±0.10 -0.01±0.01 13.50±0.71 -0.02±0.03 - -

NegativeUrgency 6.90±0.18 -0.01±0.03 6.85±0.39 -0.02±0.07 - -

M
en

ta
l

H
ea

lth

TotalPsychosisSymptoms 11.21±0.69 0.01±0.01 10.76±0.90 -0.01±0.04 - -
AttentionProblems 10.54±0.55 0.00±0.02 10.80±0.82 -0.00±0.04 - -
AnxiousDepressed 8.68±0.59 -0.00±0.00 8.67±0.84 -0.04±0.06 - -

AggressiveBehavior 16.93±1.66 -0.00±0.01 16.45±1.46 -0.02±0.06 - -
WithdrawnDepressed 2.85±0.13 -0.00±0.01 2.57±0.18 -0.03±0.05 - -
SomaticComplaints 3.80±0.19 -0.00±0.01 3.67±0.33 -0.02±0.04 - -
ThoughtProblems 4.53±0.19 -0.00±0.00 4.31±0.39 -0.03±0.05 - -
SocialProblems 4.66±0.24 -0.01±0.01 4.36±0.47 -0.01±0.07 - -

PsychosisSeverity 87.75±7.75 -0.01±0.04 89.23±8.65 -0.00±0.04 - -
Mania 6.50±0.51 -0.01±0.01 6.49±0.93 -0.01±0.05 - -

RuleBreakingBehavior 3.01±0.26 -0.02±0.03 2.75±0.15 0.01±0.04 - -
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Fig. 2. Ablation study results comparing the performance of our full multi-task learning model with three ablated versions. The bars represent the difference
in R2 values between each ablated version and the full model for the 14 predictable tasks.

The algorithm uses these symbols: M for the trained multi-
task learning model, ns for the number of samples selected

from the test set, X(i) and Y(i) for the input brain networks
and target labels of sample i, respectively, v for the number



of views (e.g. rest-state or N-Back task), M for the number
of nodes in each brain network, IG

(i)
j,e,k for the integrated

gradients of edge e and task k in view j for sample i, t for
the total number of tasks, ¯IG

k
j for the average edge importance

of view j and task k, gk
j for the vectorized edge importance of

view j and task k, Ĝk for the concatenated edge importance
across views for task k, Gk for the averaged edge importance
across views for task k, and C for the correlation matrix
between task-level edge importance vectors.

Algorithm 1 Obtaining Task-level correlation matrix C and
edge importance Gk for each task k by Integrated Gradients
Require: Trained multi-task learning model M, test set Dtest,

number of samples ns

Ensure: Task-level correlation matrix C and edge importance
Gk for each task k

1: Save the best-performing model M∗ based on validation
set performance

2: Randomly select ns samples {(X(i),Y(i))}ns
i=1 from Dtest

3: for each sample (X(i),Y(i)) do
4: for each view j ∈ {1, . . . , v} do
5: for each edge e ∈ {1, . . . ,M2} do
6: for each task k ∈ {1, . . . , t} do
7: Compute integrated gradients IG

(i)
j,e,k for

edge e in view j and task k
8: end for
9: end for

10: end for
11: end for
12: for each task k ∈ {1, . . . , t} do
13: for each view j ∈ {1, . . . , v} do
14: ¯IG

k
j = 1

ns

∑ns

i=1 IG
(i)
j,k ▷ Average edge

importance across samples
15: end for
16: ˆIG

k
=

⊕v
j=1 g

k
j ▷ Concatenate edge importance

across views for task k
17: Gk = 1

v

∑v
j=1

¯IG
k
j ▷ Average IG across views for

task k
18: end for
19: Compute correlation matrix C ∈ Rt×t between { ˆIG

k
}tk=1

B. Task Correlation Results

The correlation matrix C (Fig. 3 Left) reveals the simi-
larities between tasks based on the brain network edges that
the model deems important for making predictions. In other
words, tasks that have a high positive correlation in this matrix
rely on similar brain network edges for their predictions,
suggesting that the model has learned shared patterns for
these tasks. This matrix provides insights into the model’s
internal representation and how it leverages the brain network
information for different tasks.

On the other hand, the label correlation matrix (Fig. 3
Right) represents the inherent relationships between the task
variables themselves, independent of the model’s learning

process. This matrix shows the correlations between the target
variables of different tasks, revealing the intrinsic similarities
or differences among them. By comparing these two matrices,
we can assess the model’s ability to capture meaningful task
relationships from the brain network data. The results highlight
two key findings: (a) Strong positive correlations among the
14 most predictable tasks: The model learns shared patterns
for these tasks, as evidenced by the high positive correlations
in the integrated gradients-based task correlation matrix. This
suggests that the model has successfully identified common
brain network edges that are predictive of these tasks, aligning
with their inherent similarities revealed in the label correlation
matrix; (b)Distinct patterns for personality and mental health
task groups: Within each of these groups, tasks exhibit strong
positive correlations in the integrated gradients-based task cor-
relation matrix, indicating that the model learns shared patterns
for tasks within the same group. However, the correlations
between these two groups are weak, suggesting that the model
learns distinct patterns for personality and mental health tasks.
This finding implies that the model has captured the unique
brain network edges that are relevant for each group of tasks,
reflecting their underlying differences.

These observations demonstrate that our multi-task learning
model effectively captures both the shared patterns among
similar tasks and the distinct patterns between different task
groups. By learning these task relationships from the brain
network data, the model can leverage the commonalities
among tasks to improve its predictions while still maintaining
the ability to capture task-specific patterns. This highlights
the power of our multi-task learning approach in uncovering
meaningful relationships and utilizing them for predictions.

Furthermore, the alignment between the integrated
gradients-based task correlation matrix and the label
correlation matrix validates the model’s interpretability.
The model’s learned task relationships, as revealed by the
important brain network edges, match the inherent similarities
and differences among the task variables. This interpretability
strengthens the trustworthiness of our model and its potential
for application in clinical and research settings.

C. Visualization of Important Edges

To further investigate the task-specific patterns learned by
our multi-task learning model, we visualize the most important
edges for a subset of tasks in Figure 4. These edges are
determined based on the integrated gradients Gk obtained for
each task k. Specifically, we select the top 0.05% of edges with
the highest integrated gradient magnitudes and visualize them
on a brain network template using BrainNet Viewer [39]. The
node colors in the visualizations represent different functional
modules, while the edge colors and thickness indicate the
magnitude of the integrated gradients.

Figure 4 showcases the important edges for six tasks: two
from the Cognition group (Vocabulary and Reading), two
from the Personality group (Drive and Fun Seeking), and
two from the Mental Health group (Rule-breaking Behavior
and Aggressive Behavior). By comparing the visualizations
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Fig. 3. Task correlation matrices based on integrated gradients (left) and task labels (right). The integrated gradients matrix reveals the correlation among
tasks regarding their importance to the model’s predictions, while the label correlation matrix shows the inherent relationships among task labels. The task
names are color-coded based on their type: green for cognition, blue for personality, and red for mental health. The comparison of these two matrices provides
insights into the model’s ability to capture meaningful task relationships from data.

Vocabulary Reading Drive Fun Seeking Rule-breaking 
Behavior 

Aggressive
Behavior

Fig. 4. Visualization of the top 0.05% brain network edges for 6 tasks, determined by integrated gradients Gk . Node color indicates functional module, while
edge color (blue for negative, red for positive) and thickness represent integrated gradient magnitude. This figure reveals key brain edges the model relies on
for predictions in each task.

within and across task groups, we observe several interesting
patterns. First, tasks within the same group tend to have similar
important edges. For example, the Vocabulary and Reading
tasks, both belonging to the Cognition group, share many
common edges in the visualized brain networks. Similarly, the
Drive and Fun Seeking tasks from the Personality group also
exhibit overlapping important edges. This observation aligns
with the within-group correlations depicted in the integrated
gradients-based task correlation matrix (Figure 3, Left).

On the other hand, when comparing tasks from different
groups, we notice distinct patterns in the important edges.
For instance, the important edges for the Vocabulary task
(Cognition group) differ significantly from those of the Drive
task (Personality group). This finding suggests that our multi-
task learning model captures task-specific patterns while also
learning shared representations within task groups.

The visualization of important edges provides valuable
insights into the brain network regions and connections that
the model relies on for making predictions in each task.

V. CONCLUSION

We proposed a novel multiple-task learning framework for
predicting cognitive, personality, and mental health measures
from brain networks using the ABCD dataset. Our approach
effectively captures meaningful relationships across tasks and
improves prediction performance compared to single-task
learning. Through experiments, we demonstrated the impor-
tance of two training strategies and provided deep task corre-
lation analysis by the integrated gradient method, presenting
a significant step towards understanding the complex relation-
ships between brain connectome and behavioral outcomes.
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