Published at the GEM workshop, ICLR 2025

GRADIENT GA: GRADIENT GENETIC ALGORITHM FOR
DRUG MOLECULAR DESIGN

Chris Zhuang'; Debadyuti Mukherjee'; Yingzhou Lu?, Tianfan Fu®& Ruqi Zhang'
'Purdue University

2Stanford University

3Rensselaer Polytechnic Institute

ABSTRACT

Molecular discovery has brought great benefits to the chemical industry. Various
molecule design techniques are developed to identify molecules with desirable
properties. Traditional optimization methods, such as genetic algorithms, continue
to achieve state-of-the-art results across multiple molecular design benchmarks.
However, these techniques rely solely on random walk exploration, which hinders
both the quality of the final solution and the convergence speed. To address this
limitation, we propose a novel approach called Gradient Genetic Algorithm (Gra-
dient GA), which incorporates gradient information from the objective function
into genetic algorithms. Instead of random exploration, each proposed sample iter-
atively progresses toward an optimal solution by following the gradient direction.
We achieve this by designing a differentiable objective function parameterized by
a neural network and utilizing the Discrete Langevin Proposal to enable gradient
guidance in discrete molecular spaces. Experimental results demonstrate that our
method significantly improves both convergence speed and solution quality, outper-
forming cutting-edge techniques. For example, it achieves up to a 25% improve-
ment in the top-10 score over the vanilla genetic algorithm. The code is publicly
available at https://github.com/debadyuti23/GradientGA.

1 INTRODUCTION

Designing molecules with desirable biological and chemical properties has become a demanding
research topic since its outcome can benefit various domains, such as drug discovery (Huang et al.,
2022)), material design (Yang et al.,[2017), etc. However, a limited number of molecules can be tested
in real-life laboratories |Altae-Tran et al.|(2017) and clinical trials (Chen et al.,|2024bga). Therefore,
numerous effective techniques for molecule discovery are proposed to discover favorable molecules
throughout the vast sample space. Some evolutionary algorithms, such as the molecular graph-based
genetic algorithm (Graph GA) (Jensen, 2019a), remain strong performance, often outperforming
recently proposed machine learning-based algorithms (Huang et al., 2021} |Gao et al.,2022b). Genetic
algorithms are cheap, easy to implement, and are often regarded as simple baselines for molecular
discovery. However, key GA operators, such as selection, crossover, and mutation, are random and
do not leverage knowledge of the objective function. Given the vast molecular search space, this
random walk approach is like searching for a needle in a haystack. As a result, GA tends to converge
slowly and its final performance can be unstable. To address this issue, we introduce a novel molecule
design method, Gradient Genetic Algorithm (Gradient GA), which leverages gradient information to
navigate chemical space efficiently. First, we learn a differentiable objective function using a Graph
Neural Network (GNN) (Scarselli et al.l [2009), which maps the graph-structured information of
molecules to vector embeddings. We then apply the Discrete Langevin Proposal (DLP) (Zhang et al.,
2022)) to incorporate gradient information from this objective, enabling more informed exploration in
the discrete molecular space. Our main contributions are summarized as follows:

* We introduce Gradient GA, a gradient-based genetic algorithm for more informative and effective
exploration in molecular spaces, mitigating the random-walk behavior in genetic algorithms. To
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the best of our knowledge, this is the first method to leverage gradient information for DLP within
a genetic algorithm framework.

* The experimental results demonstrate that the proposed method achieves a significant and consistent
improvement over a number of cutting-edge approaches (e.g., Graph-GA, SMILES-GA), for
example, achieving an improvement of up to 25% over the traditional genetic algorithm when
optimizing the mestranol similarity property.

2 RELATED WORK

2.1 AI-AIDED DRUG MOLECULAR DESIGN

Current Al-aided drug molecular design techniques can be primarily classified into two categories:
deep generative models and combinatorial optimization methods. (I) Deep Generative Models
(DGMs) model the distribution of general molecular structures using deep network models, enabling
the generation of molecules by sampling from the learned distribution. Typical algorithms include
Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), energy-based models,
and flow-based models (Gomez-Bombarelli et al., 2018} Jin et al., 2018} |De Cao & Kipf}, 2018
Segler et al., |2018; [Fu et al.l [2020; Honda et al.,|2019; Madhawa et al.,2019; [Liu et al., 2021} [Fu
& Sun| 20225 (Chen et al., [2024bj [Bagal et al., 2021). However, these approaches often require
a smooth and discriminative latent space, necessitating careful network architecture design and
well-distributed datasets. This requirement can be restrictive in certain scenarios, such as multi-
objective optimization. Furthermore, since DGMs learn the distribution of reference data, their
ability to explore diverse chemical space is relatively limited, as demonstrated by recent molecular
optimization benchmarks (Brown et al, 2019} |Huang et al., [2021} |Gao et al., 2022b). (II) On the
other hand, combinatorial optimization methods directly search the discrete chemical space, mainly
including deep reinforcement learning (DRL) (You et al., 2018; [Zhou et al.,[2019; Jin et al., [2020;
Gottipati et al.|[2020)), evolutionary learning methods (Nigam et al.,|2020; Jensen, |2019b; [Fu et al.|
2022a)) and sampling methods (Xie et al., 2021; [Fu et al., |2021). Specifically, Jensen|(2019a) have
proposed a molecular graph-based Genetic Algorithm (Graph GA). In the context of drug discovery,
the algorithm samples two parent molecules and produces children molecules based on different
combinations of the parent molecules with a chance of a random action or mutation to happen to the
children. The entire population is then cut down based off highest scores of the entire population.
Also, MARS have sampled potential molecules through the usage of Markov Chain Monte Carlo
Method (MCMC) (Xie et al.,|2021). Each sample molecule, forms a Markov Chain formulated as a
chemical product of the previous sample. The formation of the product has been assumed between
two choices- (i) the addition of fragments, and (ii) the removal of a chemical bond.

2.2 DISCRETE LANGEVIN PROPOSAL

Suppose that the target distribution is m(v) o exp(U(v)), where U(-) is the energy function, v is
an n-dimensional variable in the space S C R"™. Langevin Dynamics samples from 7 by iteratively
updating v as follows:

v =v+ %VU(U) +Vag, e ~ N0, Ixn), )

where « is the step size; I,,x, is n-dimensional identity matrix; N(+, -) denotes high-dimensional
normal distribution. From Equation 1] it can inferred that v follows a Gaussian distribution with
mean v + § VU (v) and covariance o, x,,. Therefore, the probability of selecting v’ from V, i.e.,
p(v'|v), can be rewritten as

B S P - 1 2
o) = SRCTIY = 0= STV o

where Z is the normalizing constant. The distribution p(v’|v) has its mean shifted from v towards
optimum due to the gradient factor §VU (v) being present. Therefore, the high-probability samples
from p(v’|v) will be near the optimum compared to v as the Gaussian distribution has its density
centered around the mean.
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Figure 1: Gradient GA pipeline.

3 METHODOLOGY: GRADIENT GENETIC ALGORITHM

Drug molecular design aims at identifying novel molecules with desirable pharmaceutical properties,
which are evaluated by oracle. Oracles serve as objective functions in molecular optimization tasks,
formally defined as follows.

Definition 3.1 (Oracle). Oracle O(-) : @ — R is a black-box function that evaluates certain physical,
chemical, or biological properties of a molecule X and yields an approximation of the ground-truth

property O(X).

Mathematically, the drug molecular design problem (a.k.a. molecular optimization) can be formulated
as
arg max O(X

;g( oo (X), 3)
where X is a molecule, Q denotes the whole molecular space, i.e., the set of all the chemically valid
molecules. The size of the whole molecular space is around 1099 Bohacek et al.| (1996). Following
MARS (Xie et al., [2021), we regard O(+) as an unnormalized probability distribution and introduce a
vector embedding v for each molecule X. The target distribution is then defined as 7(v) x O(X).

Gradient Definition in Molecular Design. We now define the gradient information used to guide
exploration in molecular spaces. To apply (discrete) Langevin dynamics, we need the gradient of the
energy function. Since 7(v) o< exp(U(v)) and given that 7(v) oc O(X), using chain rule, we have

VO(X) V()
U = =
Y=o T o)
where f is a differentiable function that approximates the oracle O, i.e., f(v) = O(X) forall X € Q.
It is also possible to define U (v) = O(X) and VU (v) = V f(v). Our approach includes O(X) in

the denominator, effectively playing the role of adaptive step sizes. We found that this formulation
leads to better performance. An empirical comparison is provided in the Appendix [C|

“

Implementing gradient-based methods in molecular discovery is a challenging task due to two primary
obstacles: (1) representing sample molecules in a vector format suitable for gradient-based methods,
and (2) establishing a differentiable relationship between the probability distribution and the vector
representation.

Finding the Embedding. We use the Message Passing Neural Network (MPNN) (Gilmer et al.,
2017), which is a state-of-the-art approach for molecular activity prediction. We adopt the MPNN
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architecture from Xie et al.|(2021)), which consists of (1) a simple neural network for message passing
between neighboring nodes and (2) a Gated Recurrent Unit (GRU) (Cho} |2014) for updating node
representations. For the readout function, we use Set2Set (Vinyals et al.,|2015)), which is particularly
effective for isomorphic graphs due to its set-invariant property. To reduce the dimensionality of
the Set2Set output, we introduce a two-layer multilayer perceptron (MLP) L, which compresses
the output dimension from 2n to n. We define the graph representation function, which converts
molecular data into graph data (nodes representing atomic features and edges representing bond
features), as G(-). The output of L; becomes the embedding v for the molecular graph G x = G(X).

Finding the Gradient. We can learn the differentiable approximation f(-) in Equation using an
MLP-based architecture. After the first two-layer MLP L4, we introduce another two-layer MLP Lo,
which produces a scalar output . The gradient V f(-) can then be computed through backpropagation,
as illustrated in Figure[l] Our objective is to make ¥ approximate the behavior of the oracle function
O so that the entire architecture (from the MPNN to L5), denoted by M, effectively learns both
the embedding and the differentiable function. To introduce nonlinearity, we apply LeakyReLLU
and sigmoid activation functions before and after Lo, respectively. With v and VU (-) now properly
defined for Equation [2] we proceed to describe the training procedure. We train the model M to
fit the oracle function O using the initial molecule population D. The loss function is defined as
the mean squared error. During the molecular optimization process, we continuously expand the
training set by adding newly generated molecules that surpass a threshold criterion 7". This provides
additional information about the distribution and allows us to retrain the model M.

Iterative Sampling. We propose a sampling technique inspired by both Graph GA (Jensen, [2019a)
and DLP (Zhang et al., 2022). The workflow for each iteration is illustrated in Figure Similar
to Graph GA, we begin by selecting parent molecules based on their scores O(-) and generating
child molecules through crossover. We define the sample space S for DLP as the set of all possible
crossovers between the selected parents d; and dy (€ D). Ideally, both parents should be considered
as current samples. However, since DLP is designed to use a single sample, we aggregate the
information from both parents into a single embedding v and gradient VU (v) using the following
equation:

{0, VU@)} = > wi - {v;, VU (v;)}, )

i=1,2

where {v;, VU (v;)} represents the embedding and gradient information for parent d;. Empirically,
we found that a simple strategy of using only the best parent as the current sample works well.
Specifically, the weights w; are assigned as follows: w; = 1 if ¢ = argmax(O(d;)), and w; = 0
otherwise. Applying DLP updates the embedding v’ by moving it closer to the optimum, guided by
the gradient information. Figure[TT]illustrates this process. In the final step, DLP generates the next
sample set D’ of fixed size k from the sample space S. Following the Graph GA approach, each
molecule in D’ is mutated. Before the next iteration begins, we update both the population and the
model. The population D is refreshed by selecting the top | D| molecules based on their oracle scores
from the combined set { D, D’}. To further enhance the graph embedding model M’s understanding
of m(-), we retrain M using a training set D", which is updated in each iteration according to the
following rule:

D"=D"u{d|de D and T(d)}, (6)

where T'(d) is a threshold criterion for adding new samples to the training set. The complete Gradient
GA workflow is detailed in Algorithm T}

4 EXPERIMENTS

Baseline Methods. We use the practical molecule optimization (PMO) benchmark (Gao et al.|
2022a) as our code base to compare results between the state-of-the-art methods. We select (1)
genetic algorithm, including Graph GA (molecular graph-level genetic algorithm) method (Jensen,
2019b) and SMILES GA (SMILES string-level), (2) sampling-based methods, including MIMOSA
(Multi-constraint Molecule Sampling) (Fu et al., 2021), MARS (Markov Molecular Sampling) (Xie
et al.,[2021)) and (3) gradient-based method, DST (Differentiable Scaffolding Tree) (Fu et al.l 2022b).

Dataset. For all the methods, we use ZINC 250K database Irwin et al.|(2012)) to select initial molecule
population, extract chemical fragments, and pretraining.
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Table 1: Comparison of Average Top 10, AUC Top 1, AUC Top 10, and AUC Top 100 with several
GuacaMol objectives (mestranol similarity, amlodipine MPO, perindopril MPO, deco hop, medianl,
and isomers c9h10n202pf2cl) under 2500 oracle calls. For each metric, the best method is bolded.
We conduct five independent runs using different random seeds for each method, and report the
average scores and their standard deviation.

Method mestranol similarity amlodipine MPO
Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100 \ Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100

Gradient GA | 0.5130+0.0393  0.4433:£0.0310  0.408210.0315  0.3534+£0.0355 | 0.5667+0.0336 0.5614+0.0177 0.5176:£0.0187 0.46584-0.0199
Graph GA | 0.4452+0.0241 0.3556%0.0268 0.3208+0.0199 0.2717£0.0147 | 0.5605+0.0364 0.5067+0.0270 0.4734+0.0215 0.4152+0.0142
SMILES GA | 0.258240.0097 0.3777£0.0381 0.363440.0352  0.3347£0.0279 | 0.44804+0.0161 0.5016%0.0156 0.495610.0143 0.4748+0.0158
MIMOSA | 0.426240.0246 0.4162+0.0115 0.36194+0.0181  0.2887+0.0252 | 0.524540.0143  0.5431£0.0261 0.495340.0109 0.4436+0.0075
MARS 0.3411£0.0160  0.376040.0003  0.321540.0096 0.2523+0.0081 | 0.484340.0210 0.4812+0.0144 0.458340.0098 0.3816+0.0157
DST 0.4131£0.0179  0.4148+0.0323  0.3507+0.0088 0.2780+0.0029 | 0.519240.0122 0.5411£0.0303  0.4908+0.0115  0.4257+0.0044

perindopril MPO deco hop
Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100 | Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100

Gradient GA | 0.4786+0.0257 0.4542+0.0164 0.4361+0.0176 0.3882-+0.0193 | 0.6026+0.0053  0.5883+0.0032 0.5763+0.0050 0.560240.0053
Graph GA | 0.4788+0.0067 0.4519-+0.0055 0.43174+0.0045 0.3770£0.0049 | 0.6039+0.0043 0.5186+0.0037 0.5028+0.0032 0.4708+0.0033
SMILES GA | 0.3698+0.0117 0.4346+0.0124 0.4271+£0.0115 0.4065+0.0102 | 0.5548+0.0059 0.5862+0.0047 0.5817+0.0042 0.5733+0.0036
MIMOSA | 0.4629+0.0176  0.4500+0.0144 0.428940.0116 0.3783+£0.0085 | 0.600840.0053 0.5882+0.0061 0.5773+0.0035 0.5600+0.0021
MARS 0.4564+0.0167  0.4538+0.0087 0.427840.0065 0.3648+0.0042 | 0.594440.0070 0.583040.0227 0.57114+0.0301  0.549340.0421
DST 0.4615+0.0100 0.453040.0041 0.421040.0041 0.3564+0.0028 | 0.603440.0083 0.5860-+0.0071 0.572140.0025 0.5518-+0.0009

medianl isomers c9h10n202pf2cl
Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100 | Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100

Gradient GA | 0.3033+0.0074 0.2581+0.0115 0.2298+0.0151 0.1906+0.0183 | 0.77831+0.0959 0.6628+0.0731 0.544440.0693 0.4033+0.0614
Graph GA | 0.259940.0182  0.2315£0.0206 0.195940.0148  0.1442+0.0070 | 0.7222+0.1119  0.664840.0957 0.5436+0.0770 0.389140.0425
SMILES GA | 0.1310£0.0172  0.1832+0.0281 0.179540.0272  0.1697-+0.0251 | 0.3180+0.3583  0.824440.0848 0.7825+0.0752 0.70551-0.0668
MIMOSA | 0.2391+£0.0080 0.227140.0103  0.196940.0044 0.1537+0.0030 | 0.7866+0.0824 0.6965+0.0562 0.5949+0.0440 0.3965+0.0265
MARS 0.2094+0.0181 0.2239+0.0140 0.2019+0.0116 0.167140.0158 | 0.66394+0.1606 0.67514+0.1032  0.5909+£0.1057  0.4424+0.1499
DST 0.2179£0.0162  0.20974+0.0086  0.176540.0021  0.1331£0.0024 | 0.67484+0.0304 0.6305+0.0435 0.49324+0.0216 0.2293+0.0093

Evaluation Metrics. (1) Average Top-K (K = 10) is top-K average property value, which measures
the algorithm’s optimization ability. We limit the number of oracle calls to 2,500 to mimic the real
experimental setup, though we expect methods to optimize well within hundreds of calls. (2) AUC
top-K (K = 1,10, 100). To consider optimization ability and sample efficiency simultaneously,
we report the area under the curve (AUC) of top-K average property value of the top K versus the
number of oracle calls (AUC top-K) All these metrics can be calculated via the evaluation function
in Therapeutics data commons (TDC) (Huang et al., 2021} 2022ﬂ

Experimental Results. To assess our method overall, we look at various metrics over multiple
oracles. In Table[T]} we look at an evaluation comparison between the Average Top 10 and AUC Top-
1, 10, 100. From Table |1} Gradient GA performs better than Graph GA, MIMOSA, MARS, and
SMILES GA. In the Average Top 10, Gradient GA was the best performing. We believe that for these
oracles, the gradient information allows the method to better explore the local space for these oracles
to converge to a better Average score. This is further supported by the AUC Top-K scores where the
AUC scores methods that find a higher score within fewer oracle calls. We can see that for the AUC
Top 1 and Top 10, Gradient GA dominates these metrics, while for the AUC Top 100 it is tied in
top scores with SMILES GA. This leads us to believe that for these metrics Gradient GA is the best
method overall.

5 CONCLUSION AND FUTURE WORK

Genetic Algorithm (GA) is dominating drug molecular design thanks to its flexibility to manipulate
molecular space. However, GA usually suffers from slow convergence due to its random walk nature.
We address this problem by introducing a novel approach called Gradient GA, in which each proposed
sample iteratively progresses toward the optimal solution. Our method leverages Discrete Langevin
Proposal (DLP) as the foundational sampler, enabling gradient-based exploration in the discrete
molecular space. Thorough experimental results validate that our proposed approach demonstrates
faster and superior convergence. Future work will expand the current method in the following aspects:
(1) Explore using gradient information for generated molecules, as shown in Appendix B} (2) Explore
better ways to fit both parents into DLP; (3) Explore more DLP-oriented molecular optimizations
with Metropolis-Hastings criterion involved.

1https://tdcommons.ai/functions/data_evaluatj_on/ and https://tdcommons.
ai/functions/oracles/
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A TABLE OF RESULTS BETWEEN GRADIENT GA AND OTHER BASELINES

The overall experimental setup includes 10,000 oracle calls, 5 runs, and early stopping enabled.
The parameters for Gradient GAare set to 200 epochs, with D" being cleared after each retraining.
REINVENT is a reinforcement learning method [Olivecrona et al.|(2017). Additionally, we evaluate
another metric, Diversity, which measures the Tanimoto Similarity between two molecules. The
higher the score the better for all metrics except Average SA.

From the results, we can see that Gradient GA and Graph GA are near the top in terms of performance
with REINVENT. These results follow the results gathered from PMO |Gao et al.| (2022b). We
notice that for Gradient GA, it usually performs better than Graph GA whenever it is dealing with a
molecular objective that is on the lower end, so the exploration near optimal molecules matter more
than as random walk behavior may have a harder time finding the optimal molecules. Overall, the
best performing models are REINVENT, Gradient GA, and Graph GA.

Table 2: Zaleplon_.MPO Results

zaleplon_mpo  Average Top 1  Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA 0.5156+0.0276  0.4857+0.0177  0.448940.0124 0.472840.0246  0.4435£0.0165  0.3917+0.0141  3.4679+0.3267  0.7208+0.0373
Graph GA 0.519040.0368  0.4993+0.0246  0.4509+40.0169 0.4933+0.0295 0.46074+0.0163 0.3988+0.0115 3.0682+0.2047  0.7549+0.0399
SMILES GA  0.500040.0364 0.4915+0.0361  0.4735+0.0445 0.479540.0309  0.4652+0.0299 0.4397+0.0364 3.4405+0.2295 0.5248+0.1233
MARS 0.454440.0198  0.3972+0.0600  0.2850+0.1221 0.442940.0176  0.3772+0.0494  0.2510+£0.0979  3.1777+0.3551  0.8546+0.0161
MIMOSA 0.40314+0.0537  0.3866+0.0543  0.3501-£0.0547 0.273740.0314  0.2560+0.0303  0.2211+0.0251  3.1036+0.5144  0.7343+0.0349
REINVENT  0.5915+0.0331 0.588440.0334  0.5709+0.0303 0.3711£0.0729  0.3545+0.0697 0.3207£0.0636 2.2110+0.2345  0.5620+0.0280
Table 3: troglitazone_rediscovery Results

troglitazone_rediscovery ~ Average Top | Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA 0.4623+0.0301  0.4482+0.0233  0.4195£0.0181  0.36757+0.0219  0.3520740.0200  0.32767+0.0188  4.07857£0.3021  0.51887+0.0210
Graph GA 0.415740.0497  0.3978+0.0455 0.3711+£0.0405  0.3662+0.0344  0.3408+0.0314  0.3073+0.0281 3.6433+0.2642  0.5947+0.0880
SMILES GA 0.3226+0.0000  0.2811£0.0086  0.2528+0.0259  0.3199£0.0000  0.2782+0.0072  0.2468+0.0223 4.548010.8299  0.6994+0.1207
MARS 0.2620+0.0180  0.24734+0.0167  0.2217+0.0180  0.255040.0121 0.23884+0.0109  0.211540.0132  3.474540.1514  0.83454+0.0156
MIMOSA 0.3010£0.0178  0.2863+0.0215  0.2688+0.0161  0.2573+0.0045 0.219440.0060  0.1661+0.0048 3.6586+0.2510  0.7209+0.0213
REINVENT 0.6159+0.0718  0.6091+0.0738  0.5864+0.0797 0.4623+0.0482  0.4250+0.0471 0.371240.0463 4.127540.1784  0.375940.1137

Table 4: thiothixene_rediscovery Results

thiothixene_rediscovery  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA 0.547950.0624  0.5174750.0422 0.4789710.0256 0.4416:0.0265 0.4190710.0248 0.38287L0.0247 291647104819 0.53907+0.0296
Graph GA 0.5316£0.0899  0.5012+0.1001  0.4414+0.1111 _ 0.4776+0.0492  0.4411+0.0565  0.3760+0.0684  2.6912+0.3586  0.5989+0.1548
SMILES GA 0.3115£0.0215  0.3066+0.0226  0.3036+0.0227  0.3083£0.0207  0.3010£0.0207  0.2945£0.0196  4.1085+£0.4983  0.5647+0.0621
MARS 0.4067+0.0528  0.3731+0.0565  0.3145+0.0509  0.3747£0.0367 0.3380+0.0393  0.2822+0.0348  3.0312+0.3307  0.7815+0.0555
MIMOSA 0.3893+0.0384  0.3736+0.0298  0.3484+0.0233  0.2911£0.0191  0.2749+0.0151 0.2465+0.0111 3.2976+0.4421 0.6298+0.0597
REINVENT 0.6673£0.0055  0.6653+0.0077  0.6446+0.0138  0.3618+0.0354  0.3390+0.0325  0.3003+0.0287  2.4271+0.1250  0.3968+0.0099
Table 5: sitagliptin_mpo Results
sitagliptin.mpo  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA 0.6750+0.0907  0.6391+0.1118  0.5511+£0.1411  0.5633+0.0934  0.5013£0.1028  0.383640.09522  5.28140.7692  0.7067+0.480
Graph GA 0.6562+0.0746  0.6144+0.0721  0.5459+0.0801  0.5494+0.0858 0.4911£0.0866 0.3879+0.0857  4.9441+£0.2630  0.7078-+0.0965
SMILES GA 0.5131+0.1061  0.5129+0.1061  0.5061+0.1012  0.4770£0.0829  0.4640+0.0773  0.4331£0.0659  6.0436+0.5582  0.4316+0.1368
MARS 0.38174+0.0325  0.3071+0.0416  0.1789+0.0570  0.3436+£0.0315  0.2647+0.0282  0.1421£0.0375  3.7138+0.4830  0.8700-£0.0088
MIMOSA 0.4645+0.0872  0.4032+0.0955  0.2874+0.0849  0.3072+0.0267 0.2533£0.0293  0.1571£0.0219  4.4924+1.1530  0.7621+0.0831
REINVENT 0.5323+0.0657  0.5050+0.0752  0.4593+£0.1067  0.2080£0.0792  0.1871£0.0738  0.1477£0.0617  2.7170+£0.2333  0.6421-£0.1489
Table 6: scaffold_hop Results

scaffold_hop  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA  0.6289+0.1265  0.61994+0.1236  0.6048+0.1178  0.5388+0.0307  0.5225+0.0178  0.5017£0.0089  3.689740.3603  0.4848+0.0788
Graph GA 0.5340£0.0251  0.5190+0.0251  0.503540.0225  0.5109+0.0159  0.493640.0145  0.4715£0.0118  3.39344+0.0797  0.6937+0.0436
SMILES GA  0.5117+£0.0064  0.511740.0063  0.5113:£0.0064  0.50324+0.0057  0.5011£0.0057  0.4968+0.0056  4.81924+0.6982  0.5346-:0.0768
MARS 0.4774£0.0065  0.4689+0.0047  0.4488+0.0106 0.4736+0.0055 0.46424+0.0036  0.4414£0.0082 3.6729+0.1009  0.8538+0.0085
MIMOSA 0.4819£0.0146  0.4792+0.0161  0.467040.0152  0.3334:£0.0093  0.323440.0093  0.3006+0.0072  3.47724+0.4528  0.622140.0685
REINVENT  0.6337+0.0396  0.62724+0.0474  0.6225+0.0489 0.5186+0.0267 0.5067+0.0256 0.4874+0.0239 2.971640.1661 0.4699+0.0739
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Table 7: ranolazine_mpo Results

ranolazine_mpo  Average Top1  Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.8006£0.0421  0.793240.0440  0.7784+0.0435  0.747440.0458  0.7244+0.0478  0.6790+0.0534  4.8047+0.5400  0.5629-+0.0646
Graph GA 0.7982+0.0213  0.7833+0.0198  0.7546+£0.0303  0.7426+0.0227 0.7119+0.0211 0.6527+0.0258 4.3215+£0.4771 0.6879+0.1120
SMILES GA 0.7606+0.0263  0.757740.0282  0.7522+0.0307  0.7088+0.0233  0.6993+0.0234  0.6786+0.0244  6.1237+0.4029  0.5597-+0.0584
MARS 0.7633+0.0217  0.7452£0.0128  0.6955+0.0144  0.7526+0.0207 0.7305+0.0116  0.6667+£0.0108  4.7824+0.1203  0.8360+0.0086
MIMOSA 0.7308+0.0464  0.7197£0.0457 0.6841+0.0426  0.5630+£0.0189  0.5265+0.0189 0.4631£0.0194 4.2304+0.4489 0.7087+0.0331
REINVENT 0.8555+0.0091  0.8528+0.0098  0.8482+0.0108 0.7428+0.0056  0.7239+0.0057 0.6882+0.0082 3.0679+0.3308 0.3919+0.0794

Table 8: gqed Results

qed Average Top I~ Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA~ 0.9478+£0.0003  0.9471+0.0004 0.9423+0.0037 0.9420£0.0008 0.9384+0.0011 0.9218£0.0022 3.4141£0.4995 0.7193+0.0153
Graph GA 0.9469+0.0012  0.9437£0.0020 0.9304+0.0046  0.9132+0.0011  0.9052+0.0016  0.8799+0.0036  3.2943+0.1225 0.8146+0.0139
SMILES GA  0.946840.0019  0.9465+0.0017  0.9458-+0.0014  0.915040.0019  0.9113+0.0020  0.898240.0025  5.467740.8324  0.6377-0.0352
MARS 0.9401+0.0066  0.9287+0.0142 0.87714+0.0387 0.9311+0.0077 0.91724+0.0135 0.8565+0.0334  3.1873+0.0568 0.87764-0.0017
MIMOSA 0.9314+0.0014  0.9291£0.0029 0.9185+0.0086 0.7143+0.0020 0.6887+0.0028 0.6392+0.0042 3.7220£0.1559 0.8001+0.0241
REINVENT  0.9483£0.0001  0.9483+0.0001 0.9480£0.0001 0.7834£0.0847 0.7807+0.0848 0.7708£0.0845 2.5082+0.4728  0.6879+0.0783

Table 9: perindopril_mpo Results

perindopril_mpo  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.5741+0.0104  0.5613+£0.0109  0.5443+0.0113  0.52284+0.0113  0.5102+0.0109  0.487430.0111  4.735366737+0.4388  0.5477+0.0594
Graph GA 0.5350+0.0612  0.5245£0.0585  0.5000+£0.0528  0.5010+£0.0393  0.4848+0.0371  0.4515+0.0339  3.9596+0.1366 0.6685+0.1190
SMILES GA 0.4495+0.0144  0.4495+0.0144  0.4478+0.0145 0.44554+0.0127 0.4433+0.0123  0.43554+0.0121 4.7639+0.4927 0.4968+0.0538
MARS 0.4793+0.0137 0.4647+0.0128  0.43574+0.0135 0.47514+0.0112  0.4570+0.0098 0.41734+0.0090 5.0202+0.2178 0.823140.0053
MIMOSA 0.4703+0.0177  0.4569+0.0107  0.44031+0.0076  0.324740.0046  0.3116+0.0042  0.2856+0.0031  3.9169+0.2835 0.696410.0230
REINVENT 0.6196+0.0460  0.6164+0.0485  0.6132£0.0511  0.4563+0.0764  0.4428+0.0755  0.4188+0.0746  4.1524+0.3994 0.3490+0.0603

Table 10: osimertinib_mpo Results

osimertinib_mpo  Average Top 1 ~ Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.8536£0.0117  0.8489+0.0121  0.8393+0.0114  0.8263+0.0130  0.8144+0.0123  0.7872+0.0103  4.1230+£0.4389  0.5518+0.0579
Graph GA 0.84814+0.0174 0.8375+£0.0192 0.8204+0.0173 0.8052+0.0105 0.7891+£0.0104 0.7575+0.0106 3.8223+£0.4355 0.7062+0.0515
SMILES GA 0.824340.0293  0.82324+0.0289  0.8222+0.0287  0.7830+0.0241  0.7780+0.0227  0.7668+0.0206  6.7199+0.3103  0.5971+0.0263
MARS 0.8058+0.0129  0.7923+0.0112  0.7669+0.0230  0.7925+0.0111  0.7727+0.0070  0.7240+0.0156  5.2209+0.2640  0.8473+0.0133
MIMOSA 0.7883+0.0089 0.7843+0.0095 0.77324+0.0118 0.6335+0.0045 0.6046+£0.0049  0.5516+0.0049 4.0396+0.3371  0.6819+0.0238
REINVENT 0.8905+0.0147 0.8869+0.0142 0.8772+0.0120 0.7931+0.0075 0.7804+0.0067 0.7539+0.0073  3.1860+0.4682 0.4975+0.0826

Table 11: mestranol_similarity Results

mestranol_similarity ~ Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.7348+0.0321 0.71404+0.0282  0.6618+0.0298 0.6179+0.0401  0.5833+0.0349 0.52734+0.0318 4.6019+0.3707 0.5329+0.0394
Graph GA 0.7335+0.1325  0.6926+0.1161 0.6401+0.0928 0.6123+0.0516 0.5727+0.0429 0.51734+0.0307 4.2850+0.5503  0.5599+0.0471
SMILES GA 0.4488+0.0456 0.4477+0.0454 0.4441+0.0433 0.4196+0.0425 0.4129+0.0419 0.4007+0.0395 5.1324+0.6792  0.5278+0.1021
MARS 0.4142+0.0662  0.3782+0.0718  0.3202+0.0756  0.4059+0.0638  0.3671£0.0655 0.3047+0.0645 4.04334+0.3763  0.8546+0.0105
MIMOSA 0.5239+0.0145  0.4907£0.0147  0.4450£0.0186  0.5079+0.0010  0.4688+0.0021  0.4069+0.0044  3.8981+0.3227  0.8052+0.0398
REINVENT 0.7838+0.0823  0.7809+0.0835  0.7627+0.0834  0.3924+0.0836  0.3709+0.0838  0.3346+0.0824  3.6929+0.4919  0.2989+0.0471

Table 12: median2 Results

median2 Average Top I~ Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA~ 0.2828+0.0310  0.2786+0.0305 0.2669+0.0292  0.2455+0.0223  0.2354+0.0213  0.2201£0.0184 3.7643+0.4034  0.4811£0.0656
Graph GA 0.2364+0.0254  0.2240+0.0278  0.2085+0.0249  0.2270+0.0189  0.208140.0217  0.1880+0.0189  3.1125+0.3191  0.649640.0693
SMILES GA  0.207040.0000 0.1869+0.0027 0.1788-+0.0049  0.20514+0.0000 0.1833+0.0025 0.1709+0.0045 4.3820+0.3404 0.4846+0.0718
MARS 0.1916+0.0023  0.173240.0100  0.132740.0342  0.1906+0.0022  0.171640.0095 0.1305+0.0332  3.6812+0.4905 0.867040.0115
MIMOSA 0.2302+0.0104  0.2255£0.0092 0.2120+0.0069  0.2106+0.0083  0.2021£0.0075 0.1832+0.0054 3.0707£0.2480 0.5688+0.0862
REINVENT  0.45774£0.0000 0.3914+0.0001 0.3074£0.0264 0.2711£0.1986  0.2315+0.1698  0.1776+0.1327 3.0256+0.2779 0.7054£0.1610

Table 13: medianl Results

median] Average Top I~ Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA  0.39234+0.0173  0.3714+0.0183  0.3378+0.0095  0.337640.0215  0.3108+0.0153  0.2789+0.0125  4.00454+0.1275  0.6191£0.0278
Graph GA 0.3093+0.0345  0.2906+0.0257  0.2593+0.0180  0.2922+0.0311  0.268040.0228  0.2318+0.0158  4.0053-+0.1491  0.709140.0363
SMILES GA  0.200440.0300  0.1989+0.0298 0.1980+0.0293  0.19774+0.0296  0.1936+0.0284 0.1889+0.0268 6.0024+1.0691  0.6396-+0.0382
MARS 0.2322+0.0201  0.2094£0.0181 0.1777£0.0234  0.2239+0.0140 0.2019£0.0116 0.1671+0.0158  4.2508+0.3090 0.8458+0.0196
MIMOSA 0.3275+0.0130  0.3011£0.0036  0.2686+0.0003  0.2675£0.0043  0.2278+0.0013  0.1654+0.0013  3.9701£0.0735 0.76431+0.0091
REINVENT  0.4579+0.0004 0.4384+0.0193 0.41814+0.0344 0.2571£0.0514 0.22824+0.0447 0.1852+0.0373 4.7140+0.6151 0.313640.1278

Table 14: jnk3 Results

jnk3 Average Top1  Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA~ 0.5980+0.2128 0.5748+0.2080 0.5392£0.1999 0.4513%£0.1305 0.4199+0.1210 0.3740+£0.1085 4.6769+0.7752  0.4923+0.0770
Graph GA 0.8160+0.1935 0.8082£0.1958 0.7862+0.1965 0.6615+0.1340  0.6302+0.1267 0.5749+0.1152  2.8660+0.4549  0.4021£0.0378
SMILES GA  0.5530+£0.0095 0.4450+0.0761 0.3974+0.0827 0.5465£0.0010 0.3813+0.0469 0.3137£0.0491 6.4713£0.6045 0.4436+0.1183
MARS 0.4950+0.0328  0.448440.0358  0.34364+0.0879  0.4598+0.0712  0.4085+0.0594  0.2841+0.0593  4.4597+£0.4988  0.791340.0798
MIMOSA 0.4480+0.0476  0.4274+0.0527 0.3894+0.0514 0.3191+0.0358  0.2884+0.0391 0.2328+0.0470  4.6500-+£0.5810  0.6408+0.0239
REINVENT  0.8575+£0.2237 0.8429+0.2526  0.8164£0.3004 0.5141+0.3014 0.4928+0.2945 0.4569+0.2842 3.5782+0.5887 0.3350£0.3209
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Table 15: isomers_c9h10n202pf2cl Results

isomers_c9h10n202pf2cl  Average Top | Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA 0.9394£0.0000 0.9237+0.0196  0.8733£0.0264  0.8286+0.0704  0.7878+0.0758 0.7018+0.0808  5.493940.2025 0.7481+0.0389
Graph GA 0.9137£0.0291  0.8869+0.0285 0.8316+0.0177  0.8441£0.0206  0.8024+0.0158  0.7171+0.0141  4.5273+0.3671  0.7995+0.0265

SMILES GA 0.9341£0.0366  0.9310+0.0363  0.8895+0.0457  0.8955+0.0351  0.8640+0.0352  0.8083£0.0450  5.831040.2092  0.7161+0.0519
MARS 0.7268+0.1260  0.6639+0.1606  0.5268+0.2389  0.6751+0.1032  0.5989+£0.1057 0.4424+0.1499  3.1615+0.8526 0.8335+0.0970
MIMOSA 0.835240.0458  0.8081+£0.0637  0.7564+0.0661  0.6092+0.0248  0.5745+0.0244  0.5007£0.0200 4.117540.8821  0.7669+0.0722
REINVENT 0.9166+0.0312  0.9030+£0.0267 0.8718+0.0256  0.3557+0.0381 0.3331£0.0367 0.2874£0.0323  3.167740.7806 0.6673+0.0776
Table 16: Isomers. C7THEN202 Results

Isomers_C7H8N202  Average Top | Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 1.000040.0000  0.9946+0.0086  0.9372+0.0255  0.9554+0.0152  0.9119£0.0299  0.8208+£0.0294  4.9965+0.1963  0.8306+0.0386
Graph GA 1.00004£0.0000  0.9965+0.0077  0.9349+0.0309  0.9649+0.0051  0.9413+0.0156  0.851440.0236  3.8005+0.2170  0.8363+0.0196
SMILES GA 0.7972+0.1597  0.7731£0.1713  0.75774£0.1796  0.7816+0.1527  0.7373£0.1660  0.7080+0.1727  6.2068+0.8572  0.7471+0.0912
MARS 0.9384:£0.0569  0.8843+0.0741  0.7124+0.1851  0.8646:£0.0975  0.7936+0.0734  0.5976+0.0968 2.9104+0.4353  0.8719+0.0181
MIMOSA 1.0000+£0.0000  1.0000+0.0000  0.9586+0.0238  0.7046-£0.0024  0.6735+0.0032  0.601240.0103  2.9549+0.0676  0.8403+0.0119
REINVENT 1.0000£0.0000  0.9985+0.0033  0.9314£0.0135  0.2286-£0.0390  0.20474+0.0287  0.160340.0187  2.6110+£0.2461  0.7901+0.0476

Table 17: gsk3b Results

gsk3b Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.9160-£0.0991  0.9002+0.1005  0.8792+0.1086  0.8059+0.0991  0.7656+0.1023 0.7114+0.1078  3.3257+1.0183  0.442340.0746
Graph GA 0.8900-£0.0869  0.8728+0.0890  0.8455+0.0928  0.7653+0.0460  0.7379+0.0511 0.6882+0.0539  3.17204+0.2601  0.4990+0.0688
SMILES GA  0.7740£0.0695  0.763440.0659  0.7430+0.0581  0.7225£0.0291  0.7014£+£0.0276  0.6597+0.0283  6.4360+0.7540  0.385140.1339
MARS 0.6433+£0.0494  0.6068+0.0623  0.52814+0.0553  0.57704+0.0808  0.5357+0.0871 0.4427+0.0631  4.23834+0.9253  0.812140.0206
MIMOSA 0.7320+£0.1310  0.7018+0.1334  0.6685+0.1443  0.6470+0.1367  0.5991+0.1397 0.5326+0.1428  4.9866+0.7911  0.686440.0976
REINVENT  0.9820-£0.0110  0.9760+£0.0191  0.96824+0.0250  0.590640.1020  0.5629+0.0996 0.5199+0.0959  3.23614+0.3686  0.35864-0.1227

Table 18: fexofenadine_mpo Results

fexofenadine_mpo  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.828240.0355  0.8191£0.0335 0.8057+0.0335  0.7607+0.0257  0.7477£0.0244  0.7201+£0.0241  5.18204+0.4382  0.5920+0.0694
Graph GA 0.829240.0337  0.8155£0.0306  0.7971£0.0290  0.7814+0.0178  0.7650£0.0164  0.7327£0.0145  4.8748+£0.2502  0.6605+0.0571
SMILES GA 0.743140.0378  0.7354£0.0438  0.7316+0.0455  0.72234+0.0246  0.7115£0.0327  0.6970+0.0345  4.7677+0.4361  0.5022+0.0945
MARS 0.7311£0.0329  0.7145£0.0289  0.6898+0.0256  0.69324+0.0638  0.6699+0.0671  0.6262+0.0701  5.3380+0.5715  0.8163£0.0363
MIMOSA 0.719940.0297  0.7084£0.0306  0.6875+0.0331  0.59554+0.0166  0.5648+0.0171  0.5115+0.0153  4.3367+0.5893  0.7008+0.0580
REINVENT 0.9011£0.0237  0.8929+£0.0247  0.8786+0.0277  0.7309+0.0339  0.7145£0.0345  0.6849+0.0359  4.2292+0.2216  0.4383£0.0780

Table 19: drd2 Results

drd2 Average Top1  Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA  0.9988+0.0026  0.998240.0029  0.9967+0.0049  0.9526+0.0164 0.9329+0.0248 0.8850+0.0398  3.29034+0.7108 0.5366-+0.0575
Graph GA 0.912840.1950  0.9010+£0.2213  0.88224+0.2511  0.8824+0.1798  0.8549+0.1977 0.8037+£0.2108 2.7404:£0.2834  0.7149+0.0882
SMILES GA  0.9949+0.0054  0.994940.0054  0.9948+0.0055 0.9398+0.0161 0.9301£0.0171  0.9099+0.0185  6.506640.4736  0.6116+0.0576
MARS 0.8646+0.1256  0.7525+0.1770  0.52854+0.2969  0.7698-+0.1365 0.6517+0.1348  0.41904+0.1945 3.8385:+0.1248 0.8335+0.0623
MIMOSA 0.8396+0.1932  0.7931+£0.2114  0.7139+0.2337  0.5757£0.1220  0.5312+0.1180  0.4549+0.1063  3.8483+0.3802  0.7396+0.0731
REINVENT  1.0000+0.0000  1.000040.0000  1.0000£0.0000  0.56794+0.0701  0.5485+0.0851  0.5153+0.0936  2.66914+0.5179  0.4427+0.0443

Table 20: deco_hop Results

deco_hop Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA  0.6475+0.0092  0.641340.0091  0.6353+0.0092  0.6200+0.0060 0.612440.0059  0.6024+0.0060 3.94024+0.4094 0.5562+0.0621
Graph GA 0.6794£0.1400  0.6738+0.1420  0.6632+0.1411  0.6452+0.0840  0.6326+0.0799  0.6120+0.0729  3.2752+£0.2231  0.7074+0.1102
SMILES GA  0.6147£0.0061  0.614740.0061  0.6144:+0.0059  0.592740.0060  0.5903+0.0060  0.5844+0.0057 4.901640.5634  0.5258+0.0800
MARS 0.6014£0.0069  0.5944+0.0070  0.583040.0095 0.5830-+0.0227 0.5711+0.0301  0.5493+0.0421 3.7003-£0.1504  0.8182+0.0646
MIMOSA 0.6051£0.0122  0.6032+£0.0130  0.5896+0.0100  0.5428+0.0053  0.5173£0.0049  0.4726+0.0029  4.1345£0.2664  0.6712+0.0811
REINVENT  0.8014+0.1476  0.791540.1430  0.7853+0.1413  0.65774+0.0628  0.6415£0.0543  0.6231+0.0478  3.014340.2320  0.4356+0.0308

Table 21: celecoxib_rediscovery Results

celecoxib_rediscovery  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.6423+0.2072  0.6043£0.1705  0.5574£0.1350  0.5356+0.1032  0.4984+0.0834  0.4462+0.0593  2.6473£0.1911  0.5293£0.1011
Graph GA 0.6611+0.1368  0.6222+0.1323  0.5639+0.1095  0.5845+0.0683  0.5443+0.0664  0.4841+0.0530  2.5538+0.1068  0.5326+0.1117
SMILES GA 0.3681+£0.0545  0.3651£0.0576  0.3630£0.0596  0.359540.0502  0.355240.0520  0.3483+£0.0518  4.1684:£0.4408  0.6008+0.0567
MARS 0.4828+0.0233  0.4215+0.0344  0.2677£0.1257  0.4763£0.0140  0.41324£0.0213  0.2476+0.1038  2.7526+0.3248  0.8393£0.0606
MIMOSA 0.4090+0.0265  0.3915+0.0329  0.3726-0.0303  0.364040.0507  0.3348+0.0422  0.2961+0.0335  3.4475£0.2161  0.6614+0.0863
REINVENT 0.9550+0.1006  0.8545+0.0639  0.8050£0.0617  0.4196+0.1028  0.373940.0877 0.3237£0.0794  2.6667£0.1317  0.3329+0.0578

Table 22: amlodipine_mpo Results

amlodipine_mpo  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity

Gradient GA 0.6942+0.0499  0.6848-+0.0510  0.6698+0.0456  0.6309+0.0361  0.612040.0348  0.5845+0.0309  4.0448-+0.0917  0.440240.0859
Graph GA 0.7150+0.0407  0.6958-+0.0290  0.673040.0258  0.6569+0.0202  0.6350+0.0174  0.6004+0.0131  3.8835+0.1383  0.598240.0422
SMILES GA 0.5254+0.0335  0.5235+0.0375  0.52164+0.0379  0.5130£0.0295 0.5079+0.0324  0.4995+0.0317  4.6961+0.2230  0.59454+0.0615
MARS 0.5081+£0.0303  0.4902+0.0279  0.4488+0.0392  0.5014:£0.0259  0.4818+0.0223  0.4311+£0.0315  3.6973£0.3809  0.843040.0302
MIMOSA 0.6045+0.0118  0.5789+0.0166  0.5540+0.0134  0.5908+0.0211  0.5429+0.0174  0.4979+0.0084  4.0689+0.5939  0.6628+0.0650
REINVENT 0.738240.0453  0.7334+0.0431  0.72594+0.0400  0.5576+£0.0574  0.5409+0.0553  0.5147+0.0527  3.2323-+0.2277  0.394640.0670
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Table 23: albuterol_similarity Results

albuterol_similarity  Average Top 1 Top 10 Top 100 AUC Top 1 Top 10 Top 100 Average SA Diversity
Gradient GA 0.9936£0.0090  0.9806+0.0306  0.93221+0.0484  0.8614:0.0466  0.8198+0.0531  0.7413+0.0546  3.3887+0.2129  0.5094+0.0336
Graph GA 0.9973£0.0060  0.984040.0255  0.9377+0.0441  0.8905+ 0.0129  0.8528+0.0263  0.7732+0.0290  3.2491+0.2386  0.5262+0.0371
SMILES GA 0.6946 + 0.1058  0.6942 + 0.1055  0.6876 + 0.1030  0.6694 + 0.0960  0.6628 + 0.0949  0.6517 + 0.0922  6.4222 + 0.4881  0.6826 + 0.0169
MARS 0.9139 £0.0598  0.8569 +0.0436  0.7636 + 0.0383  0.7601 +0.0289  0.6977 £ 0.0321  0.5974 £ 0.0275 3.4333 £0.2278 0.7377 £ 0.0293
MIMOSA 0.8220 = 0.0700 0.7882 = 0.0710 0.7382 £0.0583 0.6563 +0.0326 0.6161 £0.0360 0.5541 +0.0373  3.8936 = 0.4931 0.7061 + 0.0181
REINVENT 1.0000 £ 0.0000  1.0000 &= 0.0000  0.9961 £0.0073 0.3614 +0.0420  0.3393 £0.0399 0.3019 +0.0373  3.2091 £ 0.0681  0.4777 £ 0.0562
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B MOLECULES GENERATED BY VARIOUS METHODS

Here we have a list of Top 10 molecules generated by each method that we tested from the experiments
in table m Each molecule has its respective scores underneath them, and all molecules are for the
bio-activity object mestranol similarity.

We notice that the molecules generated by Gradient GA, SMILES GA, and Graph GA are very
similar, with Gradient GA and Graph GA having the most similarity. MARS and MIMOSA both
have unique molecules generated, but the performance of those molecules is low. We notice that
Gradient GA just needs to take a molecule from a good run, and that will lead to having an entire set
of molecules. Most of the Gradient GA top 10 molecules are all from the same run, and we can see
that molecular structure was found in the bottom right corner of figure[d This further supports the
idea that Gradient GA is exploring similar molecules to Graph GA, and is further exploring an area
around its top-performing molecules.

Figure 2: Top 10 molecules generated by Gradient GA for the bio-activity objective mestranol
similarity with their associated score underneath each molecule.

Figure 3: Top 10 molecules generated by SMILES GA for the bio-activity objective mestranol
similarity with their associated score underneath each molecule.
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Figure 4: Top 10 molecules generated by Graph GA for the bio-activity objective mestranol similarity
with their associated score underneath each molecule.
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Figure 5: Top 10 molecules generated by MARS for the bio-activity objective mestranol similarity
with their associated score underneath each molecule.
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Figure 6: Top 10 molecules generated by MIMOSA for the bio-activity objective mestranol similarity
with their associated score underneath each molecule.
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C COMPARISON OF USING O(x)

In table below, we show the results of using VU (v) = V f(v) vs VU (v) = zj(cgf)) We notice from
the results, using O(x) leads to a better score throughout all metrics.

Table 24: Comparison of Average Top 10, AUC Top 1, AUC Top 10, and AUC Top 100 with
GuacaMol objective, mestranol similarity, under 2500 oracle calls. The best Gradient GA setup is
bolded. We conduct five independent runs using different random seeds for both versions of Gradient
GA, and report the average scores and their standard deviation.

Gradient GA mestranol similarity
Average Top 10 AUC Top 1 AUC Top 10 AUC Top 100
With O(z) | 0.5130+0.0393 0.4433+0.0310 0.4082+0.0315 0.3534£0.0355

Without O(z) | 0.5064+0.0312 0.4433+0.0319 0.4072+0.0367 0.35014+0.0419

D ORACLE CALL EFFICIENCY

To demonstrate that using gradient information accelerates convergence, we conduct experiments
measuring AUC Top 10 and AUC Top 100 scores as the number of oracle calls increases. All methods
are evaluated with 2,500 oracle calls over 5 runs. Our primary focus is on the bio-objective Mestranol
Similarity. Figures[7]and [§]show that after the initialization phase, where each method achieves a
baseline score based on the initial oracle calls, Gradient GA consistently outperforms almost all other
methods at each step. This indicates that Gradient GA is not only more effective at finding optimal
values but also more efficient, due to its use of gradient guidance rather than random walk exploration.

Figure 7: Mestranol similarity AUC Top 10 score comparison as more oracle calls occur.
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Figure 8: Mestranol similarity AUC Top 100 scores comparison as more oracle calls occur.
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E SYNTHETIC ACCESSIBILITY AND DIVERSITY HEATMAPS

We further analyze additional metrics, synthetic accessibility (SA) in Figure [0] and diversity in
Figure It is important to note that these metrics are not explicitly optimized in our objective
function. Therefore, their performance is a byproduct of the discovered molecules rather than a
direct outcome of our method. From Figure 9] we observe that the SA scores of Gradient GA are
comparable to those of Graph GA, indicating that there is no significant trade-off between improved
performance and SA score. Additionally, in terms of overall SA performance, Gradient GA is also
close to DST, another gradient-based method. In Figure [I0] we observe that the diversity score
for Gradient GA is lower than that of other methods. This outcome is expected, as our approach
samples molecules near high-performing parent molecules. While this may reduce diversity, it can be
advantageous when the goal is to perform a fine-grained local search over good regions.

Figure 9: Heatmap of synthetic accessibility (SA, J, lower is better) score of all methods and oracles.
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Figure 10: Heatmap of Diversity (T, higher is better) score of all methods and oracles.

perindopril_mpo 0.78

0.85

mestranol_similarity - 0.67 0.77 0.80
medianl- 070 0.75 0.75
isomers_c9h10n202pf2cl- 079 0.79 0.70

deco_hop 0.65

amlodipine_mpo 0.60

Gradient GA
Graph GA
SMILES GA

MIMOSA -
MARS

17



Published at the GEM workshop, ICLR 2025

F NOTATION TABLE AND ALGORITHM

Here, we have put a notation table for all the variables introduced in the body of the paper. We also
present the algorithm directly.

Table 25: Mathematical notations and their explanations.

Notations | Explanations
(@] oracle function
Q molecular space
X molecule
M complete MPNN-based model for oracle prediction
G(+) graph representation
Gx molecular graph of X
Ly, Lo linear layer

v embedding
() target distribution (normalized score)
U(-) energy function
D population, a set of molecules.
D’ new molecule set
D" Re-training molecule set
n embedding size
k number of generated samples at each step
T threshold criterion to add to training set
T retrainable threshold
@ step size for sampling

Algorithm 1 Gradient Genetic Algorithm

Input: oracle function O, step size «, retrainable threshold 7
Initialize D < original population
Initialize new molecule set D' + {}
Train predictive model M using
[(G(d),O(d)) Vd € D}
Initialize retrained molecule set D" < {}
fort=1,2,... do
p(d) x O(d) VYd e D
Parent molecules dy,ds ~ p(d) [d € D]
Get parents” embedding v; for each G(d;) using Eq. ??
Get parents’ gradient VU (v;) for each d; using Eq. E]
Evaluate v, VU (v) using Eq.
Get crossover set: S <— CROSSOVER(dy, d3)
Get sampling probability probs of S using Eq.
Evaluate sample set D’ < Sample(S, probs, k)
Mutate each molecule in D" <— MUTATE(D’)
Update population D < toporacle({D, D1}, |D])
Update training set D" with T using Eq. [6]
if |D"| > 7 then
Retrain model M with {(d, O(d)) Vd € D"}
end if
D" « {Yor D" + D"
end for
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G ILLUSTRATION OF DLP SAMPLING PROCEDURE
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Figure 11: Overview of DLP-based sampling procedure in Gradient GA, illustrating how the sampled
molecule moves toward the optimum.
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