AdaptFlow: Adaptive Workflow Optimization via Meta-Learning

Anonymous ACL submission

Abstract

Recent advances in large language models
(LLMs) have sparked growing interest in agen-
tic workflows—structured sequences of LLM
invocations designed to solve complex tasks.
However, existing approaches often rely on
static templates or manually designed work-
flows, which limit adaptability to diverse tasks
and hinder scalability. We propose AdaptFlow,
a natural language-based meta-learning frame-
work inspired by model-agnostic meta-learning
(MAML). AdaptFlow uses a bi-level optimiza-
tion process: the inner loop performs task-
specific adaptation via LLM-generated feed-
back, while the outer loop consolidates these
refinements into a shared, generalizable ini-
tialization. Evaluated across question answer-
ing, code generation, and mathematical reason-
ing benchmarks, AdaptFlow consistently out-
performs both manually crafted and automat-
ically searched baselines, achieving state-of-
the-art results with strong generalization across
tasks and models. The source code and data
are available at https://anonymous.4open.
science/r/AdaptFlow-FD17/.

1 Introduction

In recent years, Large Language Models
(LLMs) (Achiam et al., 2023; Guo et al., 2025)
have rapidly advanced, achieving state-of-the-art
results in tasks such as question answering (Ra-
jpurkar et al., 2016; Yang et al., 2018), code
synthesis (Chen et al., 2021; Nijkamp et al., 2023),
and multi-turn dialogue (Zhang et al., 2020; Bai
et al., 2022). With increasing model scale and
training data, LLMs have also shown strong
potential in dynamic reasoning and decision sup-
port (Shinn et al., 2023; Wei et al., 2022; Yao et al.,
2023). In parallel, the concept of Agentic Workflow
has gained traction—simulating agents with
autonomous planning and execution capabilities to
tackle complex tasks. Such frameworks perform
particularly well in settings requiring multi-step

reasoning (Yao et al., 2023; Creswell and Shana-
han, 2023), long-term planning (Liu et al., 2023;
Zhou et al., 2024b), and tool use (Schick et al.,
2023; Qin et al., 2023).

While effective, manually designing agentic
workflows is time-consuming and difficult to gen-
eralize across diverse tasks. To address this, recent
work has explored automated workflow construc-
tion through prompt optimization, hyperparameter
tuning, and structural search (Khattab et al., 2023;
Chen et al., 2023; Li et al., 2024b; Liu et al., 2024;
Song et al., 2024; Zhang et al., 2024a; Wang et al.,
2025). However, many of these approaches (Liu
et al., 2024; Zhang et al., 2024a) rely on graph-
based representations with limited support for con-
ditional states, which restricts the expressivity of
the search space and hinders their applicability to
complex tasks.

Recent frameworks such as ADAS (Hu et al.,
2024) and AFLOW (Zhang et al., 2024b) adopt
programmatic workflow representations to enable
robust and flexible search. However, as noted
by (Wang et al., 2025), these methods typically
generate a single static workflow for the entire task
set, limiting their ability to generalize across het-
erogeneous datasets with diverse problem types. In
addition, ADAS performs coarse-grained workflow
updates, resulting in redundant context accumu-
lation and growing complexity that hinders con-
vergence. AFLOW alleviates some of these issues
using Monte Carlo Tree Search, but its reliance
on discrete updates and early pruning can restrict
the exploration of more expressive workflow candi-
dates. These limitations underscore two challenges
simultaneously: CI1. How to adaptively construct
effective workflows for datasets containing di-
verse problems? C2. How to ensure convergent
optimization in code search spaces?

To tackle these challenges, we propose Adapt-
Flow—a meta-optimization framework that in-
tegrates principles from Model-Agnostic Meta-


https://anonymous.4open.science/r/AdaptFlow-FD17/
https://anonymous.4open.science/r/AdaptFlow-FD17/
https://anonymous.4open.science/r/AdaptFlow-FD17/

Learning (Finn et al., 2017) into agentic workflow
optimization. Unlike prior approaches that gener-
ate static workflows for entire task sets, AdaptFlow
learns a shared workflow initialization that can
rapidly adapt to diverse subtasks through updates
guided by LLMs. It employs a bi-level optimization
scheme, where the inner loop explores task-specific
refinements via LLM-generated feedback, and the
outer loop aggregates these improvements into a
more generalizable workflow. This approach en-
ables both effective subtask adaptation (addressing
C1) and stable convergence in non-differentiable
code spaces (addressing C2), yielding a scalable so-
lution for general-purpose workflow construction.

Our key contributions are summarized as fol-
lows:

* We draw a novel analogy between neural network
training and automated workflow optimization,
which motivates AdaptFlow design.

* We propose AdaptFlow, a natural language-
based meta-learning framework that incorporates
MAML to enable rapid subtask adaptation.

* Experiments on benchmarks in question answer-
ing, code generation, and mathematical rea-
soning show that AdaptFlow outperforms both
manual workflows and prior baselines, achiev-
ing state-of-the-art results with strong model-
agnostic generalization.

2 Related Work

2.1 Agentic Workflow

Agentic workflows provide a structured alternative
to autonomous agents for deploying large language
models (LLMs). Instead of learning through envi-
ronment interaction (Zhuge et al., 2023; Hong et al.,
2024b), they execute static or semi-static sequences
inspired by human reasoning (Zhang et al., 2024b),
offering better interpretability and modularity.
Workflows can be general-purpose—featuring
reusable patterns like chain-of-thought prompting,
self-refinement, or role decomposition (Wei et al.,
2022; Shinn et al., 2023)—or domain-specific, tai-
lored for areas such as code generation (Hong et al.,
2024c; Ridnik et al., 2024; Zhao et al., 2024), data
analysis (Xie et al., 2024; Ye et al., 2024; Li et al.,
2024a), mathematics (Zhong et al., 2024; Xu et al.,
2024), and complex QA (Nori et al., 2023; Zhou
et al., 2024a). While effective, manually designed
workflows require significant human effort and lack
adaptability, motivating automated optimization.

2.2 Agentic Workflow Optimization

Recent advances (Hu et al., 2024; Zhang et al.,
2024b; Wang et al., 2025; Li et al., 2024b; Chen
et al., 2023; Song et al., 2024; Hong et al., 2024c)
have explored automating agentic workflows to im-
prove LLM performance. Some methods focus
on optimizing prompts or parameters within fixed
workflows (Fernando et al., 2023; Guo et al., 2023;
Khattab et al., 2023; Saad-Falcon et al., 2024), im-
proving reasoning without altering the execution
structure. In contrast, we optimize workflow struc-
tures directly, enabling broader adaptation across
tasks.

Other approaches search over code-based work-
flows. ADAS (Hu et al., 2024) refines linear
traces of executable code, while AFLOW (Zhang
et al., 2024b) introduces compositional abstrac-
tions with MCTS. ScoreFlow (Wang et al., 2025)
frames workflow generation as supervised predic-
tion. However, these methods often produce static
workflows and lack task-level adaptability. Our
method, AdaptFlow, differs by performing bi-level
meta-learning: it adapts workflows via LLM feed-
back at the subtask level and consolidates them
into a generalizable initialization, supporting fast
adaptation and robust generalization.

3 Preliminaries

3.1 Problem Formulation

The goal of automated agentic workflow opti-
mization is to discover effective compositions
of modular components—such as prompt tem-
plates, tool invocations, control logic, and reflec-
tion routines—that can guide large language mod-
els (LLMs) to solve complex tasks across diverse
domains.

We formalize the agentic workflow design prob-
lem as a triplet (S, J,.A), where:

* S denotes the search space, encompassing all
candidate workflows;

o J:S8 x T — Ris the objective function that
quantifies the quality or utility of a workflow
W € § when applied to a specific task 7

» A represents the search algorithm, which ex-
plores S and generates candidate workflows
guided by feedback from 7.

Given a task 7 ~ P(T), the agent seeks
to identify an optimal workflow through a task-
conditioned search process:



W=A(S,7,T), (1)
W* = argmax Erop) [TV, T)]. (2
WeS

Similar to prior efforts such as (Hu et al., 2024),
our method adopts programmatic representations
to define the workflow search space.

3.2 Analogy: From Supervised Learning to
Agentic Workflow Optimization

In traditional supervised learning, a model learns
a parameterized function fy by minimizing the ex-
pected loss over labeled data (z,y) ~ D:

0* = arggmin E(zp~p [L(fo(x), )], (3)
1 N

where 7 is the learning rate and {(z;,v;)} Y, is
a mini-batch of training examples. This process
relies on differentiable loss functions and explicit
ground-truth supervision, enabling gradient-based
parameter updates in continuous space.

Analogously, agentic workflow optimization op-
erates in a symbolic structure space defined over
executable code (e.g., (Hu et al., 2024)). Given
a task 7, the system executes a workflow W and
obtains a task-level utility score from the objective
function 7 (W, T'). The goal is to discover a work-
flow that maximizes the expected utility across a
distribution of tasks:

W* = argmax Eropir) [TV, T)], (5
wes

W Uy (W, VI W, T)) . ©)

Here, J (W, T) represents a task-level evaluation
of the workflow’s performance, expressed in nat-
ural language. This textual assessment serves as
a form of textual loss, indicating the correctness
of the workflow output. Based on this, VJ de-
notes a fextual gradient—natural language feed-
back generated by an LLM that suggests possi-
ble improvements, identifies failure modes, or pro-
poses structural alternatives. The update operator
U then applies this feedback to revise the workflow
in the code space, enabling updates in a discrete,
non-differentiable setting. This process mirrors
the gradient-based update in conventional learning,
with a detailed analogy illustrated in Figure 1.

Unlike standard gradient descent, ADAS enables
interpretable, feedback-driven optimization over
program structures, thereby generalizing the con-
cept of learning beyond parameter tuning.

3.3 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) learns a model initialization that en-
ables rapid adaptation to new tasks using only a
few gradient steps. The core idea is to train the
model not just to perform well on a set of tasks,
but to be easily fine-tuned for any new task drawn
from the same distribution.

Given a task distribution 7, each task 7; ~ T is
associated with a loss £7;(#). MAML performs a
bi-level optimization:

9; +— 60— OzV9£77L. (9), @)
0 0—BVy > Lr(0)). ®)
TinT

In the inner loop, the model performs gradient
descent on a given task to obtain adapted param-
eters 6,. In the outer loop, the original initializa-
tion 6 is updated using the post-adaptation losses
across multiple tasks. This procedure leverages
second-order gradients and enables generalization
to unseen tasks with minimal fine-tuning.

4 Methodology

4.1 Overview

We present AdaptFlow, a meta-optimization
framework that integrates ideas from Model-
Agnostic Meta-Learning (Finn et al., 2017) into
the setting of Automated Design of Agentic Sys-
tems (Hu et al., 2024). As shown in Figure 1,
AdaptFlow optimizes a single code-based workflow
that can rapidly adapt to different subtasks, address-
ing (C1) by enabling structural reuse across related
tasks. It follows a bi-level learning scheme: the
inner loop performs exploration, adapting work-
flows using LLM-generated feedback within each
subtask, while the outer loop performs exploita-
tion by consolidating improvements into a shared
initialization. This setup supports learning in non-
differentiable code spaces without ground-truth su-
pervision, directly addressing (C2), and leads to
stable convergence and broad generalization. The
complete AdaptFlow algorithm is formalized in



Traditional Neural Network Optimization

Textual-6radient Optimization for Agent Workflows

@ =) Loss g'g — Textual Loss
; : Jw,T)
L )
Model Train Data U ?) (J;) ¥) Workflow Train Task “The F1 Seore
Undate Gradient IUpda-re Textual Gradient s 0'75[ XXXX
VoL(fo(x),y:) VI(W, T)+
[0.1, 2.8 1.5] "We could add a self-reflection module.”
AdaptFlow
Textual YPdate Aggregated

/ra —»Loss—> Gradient 229%'¢ @i\

Task 1 Model
P Inner Loop
% 0, « 80—« VL, (6)

1
|
I
|
I
I
I
|
|
Model-Agnostic Meta-Learning :
|
|
|
|
I
I
I
|
I

88

Textual Gradient
“self-reflection module
is suitable for
subtask 1,

_>Tex1'lm| 4
/:lbfaskl Loss Gradient  workflow

Inner Loop

Me*(‘; ::.OSS Wi Uy (W;, VJ(W"’ T‘)) / LLM-Deb;Te module
Model . Workflow Und is suitable for
ra Loss—» Gradient Update® __,Textual — Textual p_ate» subtask m”
> I > > i
Subtask m  Loss  Gradient oo,
Task m Model m

Meta Gradient |
[0.1, 28, ..., 1.5]|

Outer Loop
) |

60—0-B-V L (6
Meta Updafe[ c6-8 BZW (

Outer Loop
Update Wl (W' ¢ ({VJ(W“ Tt)}zmq))

Figure 1: An analogy between Neural Network Optimization and Workflow Optimization, as well as between

MAML and AdaptFlow.

Algorithm 1, and its procedural overview is visu-
ally depicted in Figure 2 to complement the formal
description.

4.2 Task Clustering

Many tasks exhibit high internal diversity, mak-
ing it difficult to optimize a single workflow
across all instances. To address this, we first
partition the training set Ty, into m seman-
tically coherent subtasks 7i,...,7, using K-
Means (MacQueen, 1967) clustering over instruc-
tion embeddings. The embeddings are obtained
from the al1-MiniLM-L6-v2 model (Reimers and
Gurevych, 2019). This decomposition enables
subtask-specific workflow optimization and pro-
motes more stable and effective learning.

4.3 Bi-Level Workflow Optimization

Inner Loop (Exploration) For each subtask 7;,
the workflow W] is iteratively refined using LLM-
generated textual feedback. At each step, we eval-
uate the current utility 7 (W}, T;) and apply the
symbolic update:
Wi (WLVIWLT)) . ©)
To ensure stable and meaningful exploration, we
define a binary continuation signal §; € 0,1 as:

S =1[TW,,T)) — TV, Ti) > €|, (10)

where W, denotes the best workflow found so far.
Here, J evaluates a workflow’s performance on
task 7; via textual assessment, serving as a form

of task-level textual loss. Based on this evaluation,
the LLLM generates a textual gradient @j that re-
flects potential improvements or corrections. The
update operator U, applies this feedback to revise
the workflow W] in the code space. The inner loop
continues only if §; = 1, indicating that the update
yields a non-trivial gain. This continuation signal
acts as a local convergence criterion, mitigating
instability from long-context accumulation and en-
suring effective symbolic refinement. The prompt
design for U/ is detailed in Section A.3.1.

Outer Loop (Exploitation) After inner-loop op-
timization across all subtasks, we aggregate the
resulting feedback to update the global work-
flow. Each V.7(W;, T;) denotes a textual gradi-
ent—natural language feedback from the LLM that
suggests workflow improvements based on subtask
performance. The aggregation function G merges
these gradients into a unified signal, which is then
applied via the update operator Us:

W Uy (W, G ({@j(wt, 72)};)) . (1)

This meta-level update integrates subtask-specific
insights into a generalizable workflow. The prompt
design for Us is provided in Section A.3.2.

To further improve robustness, we apply a reflec-
tion step after the update. The updated workflow is
re-executed on each subtask to identify remaining
failure cases. The agent then generates refinement
suggestions, which are used to perform a secondary
symbolic update. This reflection-enhanced outer



/ Step@ Task Clustering

————

)
|
(04 s m™

Task

N

2D

| SubTask 1

— —
—_———
L lSuchskZ

\ C

—;ﬁstk
ubTask m
L2 J

L Node Desc. Consensus Verifier )
S'repe Test-Time Adaptation
SubTask Feature
— — —
Fast Adapt
Workflow Adapted Workflow

/’Stepe Bi-Level Workflow Optimization

)

s‘%

Workflow

SubTask m

Inner Loop

Workflow

Excute
on Task

Outer Loop

(3

Reflection

Failure Case j

Figure 2: Illustration of the AdaptFlow framework, consisting of three stages. (1) Task Clustering: training tasks
are grouped into semantically coherent subtasks. (2) Bi-Level Workflow Optimization: a bi-level optimization
process is applied—inner loop explores workflow variants using LLM-generated feedback; outer loop aggregates
updates into a generalizable initialization. (3) Test-Time Adaptation: the learned workflow is adapted to unseen
tasks based on subtask-level descriptions generated from input questions. The detailed mechanism of inner and

outer updates is shown in Figure 1.

loop helps address blind spots and improve gener-
alization.

4.4 Test-Time Adaptation

To evaluate generalization, we apply the learned
initialization W to a set of unseen test tasks 7 test.
Following the same procedure as in training, we
partition 7test into n subtasks 77,...,7, using
instruction-level clustering.

For each subtask 7,, we randomly sample a
subset 7/ C 7T/ and prompt a language model
to generate a high-level description F(7;) based
solely on the input questions from the sampled
tasks—without access to answers or solutions. This
representation captures the subtask’s semantic in-
tent and guides adaptation.

We then apply a symbolic update operator U/3
to specialize the global workflow based on this
subtask description:

Wty (W, F(T)) - (12)
Here, U3 modifies the workflow to better suit the
characteristics of the new subtask using natural lan-
guage cues. The prompt design for U3 is detailed
in Section A.3.4. The resulting specialized work-
flow W is then evaluated on the full subtask 7/,

enabling effective adaptation to previously unseen
task distributions.

5 Experiment Setup

Datasets We evaluate our method on eight pub-
lic datasets across three domains: question an-
swering, code generation, and mathematical rea-
soning. For HUMANEVAL (Chen et al., 2021)
and MBPP (Austin et al., 2021), we use the full
datasets. Following AFLOW (Zhang et al., 2024b),
we sample 1,319 examples from the GSMS8K test
split (Cobbe et al., 2021). For MATH (Hendrycks
et al., 2021), we follow (Hong et al., 2024a) and
select level-5 problems from four categories: Com-
binatorics and Probability, Number Theory, Pre-
algebra, and Pre-calculus. We also include two ad-
vanced math benchmarks: AIME (OpenAl, 2023)
and OLYMPIADBENCH (Zhu et al., 2024). For
DROP (Dua et al., 2019) and HOTPOTQA (Yang
et al., 2018), we follow prior work (Shinn et al.,
2023; Zhang et al., 2024b; Wang et al., 2025) and
randomly sample 1,000 instances each. All datasets
are split into validation and test sets with a 1:4 ratio.
See Table 6 for full statistics.



Algorithm 1: AdaptFlow Algorithm
Input: train tasks Tiain, test tasks T,
inner iterations Njpper, OUtEr
iterations ngyter
Cluster Tipqin into m subtasks

—

{71, T}
2 Initialize global workflow W =W, = ... =
Wins

// Outer loop
for 7 < 1 to nyyze,r do

w

4 foreach 7, € {71,..., 7.} do
5 Initialize W] + W, j + 0;
// Inner loop
6 while 7OV, Ti) < T(Wr, T¢) — €
and j < njpper do
7 Execute W, on Ty, obtain V.7,
s Wi Uy <Wt’, @J);
9 J< i+ 1
10 end
11 Wi+~ W}
12 end
13 W
e (w6 ({v7om. T} )

14 end

15 Cluster Tiest into n subtasks {77, ...
16 foreach 7 do

W —Us W, T));

Evaluate W* on 7;;

ST ks

19 end

Baselines We compare our method against two
categories of baselines: manually designed work-
flows and automatically optimized workflows for
large language models (LLMs). Manual Work-
flows include widely used prompting strategies and
agent-based methods: Vanilla prompting, Chain-of-
Thought (CoT) (Wei et al., 2022), Reflexion (Shinn
et al., 2023), LLM Debate (Du et al., 2023), Step-
back Abstraction (Zhou et al., 2022), Quality-
Diversity (QD) (Wang et al., 2023), and Dynamic
Role Assignment (Qian et al., 2023). These ap-
proaches are constructed using fixed templates or
heuristics without task-specific adaptation. Au-
tomatically Optimized Workflows are derived
through workflow optimization or search. We in-
clude ADAS (Hu et al., 2024) and AFLOW (Zhang
et al., 2024b), which learn or search for agentic
workflow structures in a data-driven manner to im-
prove LLM performance across tasks.

Implementation Details We use a decoupled ar-
chitecture separating optimization and execution.
GPT-4.1 (OpenAl, 2024a) serves as the optimizer,
while executors include DeepSeek V2.5 (DeepSeek,
2024), GPT-40-mini (OpenAl, 2024b), Claude-3.5-
Sonnet (Anthropic, 2024), and GPT-40 (OpenAl,
2024c). All models are accessed via public APIs
with a fixed temperature of 0.5. The outer loop
runs for 3 iterations, and the inner loop allows up
to 6 updates per subtask.

Metrics We adopt task-specific evaluation met-
rics tailored to each dataset category. For mathe-
matics benchmarks, including GSM8K, MATH,
AIME, and OLYMPIADBENCH, we use the Solve
Rate—the proportion of correctly solved prob-
lems—as the primary metric. For code genera-
tion tasks (HUMANEVAL and MBPP), we report
pass@1, following the evaluation protocol of Chen
et al. (Chen et al., 2021), which measures the
correctness of the top-1 generated solution. For
question-answering datasets such as HOTPOTQA
and DROP, we adopt the F1 Score to evaluate
the overlap between predicted and ground-truth
answers.

6 Results and Analysis

6.1 Main Results

As shown in Table 1, our method delivers consis-
tently strong performance across three distinct do-
mains—question answering, code generation, and
mathematics—achieving the highest overall aver-
age score of 68.5. This suggests that our unified
framework generalizes well to tasks with varying
structures and reasoning demands. In particular,
the substantial gains on mathematics benchmarks
demonstrate the framework’s strength in handling
complex symbolic and multi-step reasoning.

These results highlight the advantage of learn-
ing workflows in a task-adaptive and optimization-
aware manner. Compared to existing baselines,
including both manually designed strategies and
automatically optimized methods, our approach
achieves more balanced improvements across do-
mains, underscoring its robustness and scalability.
The consistent lead over ADAS (Hu et al., 2024)
and AFLOW (Li et al., 2024b), which operate in a
similar code-based search space, further supports
the effectiveness of meta-level adaptation in build-
ing generalizable agentic workflows.



Method QA Coding MATH Average
HoTPOTQA DROP | HUMANEVAL MBPP | GSMS8K MATH AIME OLYMPIAD
Vanilla 70.7 79.6 87.0 71.8 92.7 48.2 12.4 25.0 60.9
COoT 69.0 78.8 90.8 72.5 91.3 49.9 10.1 26.4 61.1
Reflexion 68.3 79.5 86.3 72.4 924 493 10.5 259 60.6
LLM Debate 68.5 79.3 90.8 733 93.8 52.7 13.7 29.8 62.7
Step-back Abstraction 67.9 79.4 87.8 71.9 90.0 47.9 4.8 19.3 58.6
Quality Diversity 69.3 79.7 88.5 72.5 923 50.5 9.4 28.8 61.4
Dynamic Assignment 67.9 76.8 89.3 71.5 89.2 50.7 12.7 27.6 60.7
T ADAS ~ T | ¢ 645 766 |~ 84~ 534 | 908 354 " 104 212 | 5437~
AFlow 73.5 80.6 94.7 834 93.5 56.2 174 28.5 65.6
T Ours ~ | 7 73.8 0 824 | T 947 840 | 946 615 226 = 344 | 685

Table 1: Performance comparison across three domains:

question answering, code generation, and mathematics.

Best results are shown in bold, and second-best results are underlined. In our method, GPT-4.1 is used for workflow
refinement, while GPT-40-mini-0718 is responsible for workflow execution.

6.2 Ablation Study

Ablation on Reflection To evaluate the impact
of the reflection module in the outer loop, we con-
duct an ablation study on the MATH dataset. We
use GPT-4.1 for workflow updates and GPT-4o-
mini-0718 for workflow execution. In the ablated
setting, denoted as w/o reflection, we remove the
reflection step where the model samples and revises
failed cases after the initial outer-loop update. As
shown in Table 2, incorporating reflection consis-
tently leads to better performance across iterations,
with a final accuracy of 61.5 compared to 60.2
without reflection. This highlights the importance
of targeted self-correction in enhancing workflow
robustness and adaptability.

Outer Loop Iteration 1 2 3

56.7 582 60.2
57.2 58.6 61.5

w/o reflection
ours

Table 2: Performance comparison across iterations on
the MATH dataset. w/o reflection denotes the setting
without the reflection component, while ours includes
it.

Subtask w/o adaptation ours
Prealgebra 73.1 76.4
Precalculus 20.8 214
Counting & Probability 61.9 63.1
Number Theory 68.3 73.9
777777 Overal 580 615

Table 3: Ablation results on math subtasks with and
without test-time adaptation. w/o adaptation disables
test-time adaptation.

Ablation on Test-Time Adaptation To assess
the effectiveness of our test-time adaptation strat-
egy, we conduct an ablation study on four math-
ematical reasoning subtasks: Prealgebra, Precal-
culus, Counting & Probability, and Number The-
ory. As shown in Table 3, removing the adaptation
module results in a consistent drop in performance
across all subtasks. Notably, the largest improve-
ment is observed in Number Theory, where accu-
racy increases from 68.3 to 73.9, suggesting that
adaptation plays a crucial role in handling complex
symbolic reasoning. The overall average accuracy
improves by 3.5 points, confirming that test-time re-
finement enhances the generalization of the global
workflow to previously unseen problems.

6.3 Convergence Analysis

We analyze the convergence behavior of both inner
and outer loops on the MATH dataset, as shown in
Figure 3. The inner loop exhibits noticeable fluctu-
ations due to the accumulation of long-context de-
pendencies and the large workflow search space, a
challenge also observed in ADAS (Hu et al., 2024).
Despite this, our constrained update mechanism
helps maintain reasonable performance at each step.
In contrast, the outer loop shows steady improve-
ment, as it only aggregates the best-performing
workflows from each subtask, leading to more sta-
ble and reliable updates at the meta level. These
results demonstrate that our method effectively en-
sures convergence throughout the optimization pro-
cess, addressing the core challenge of C2.

6.4 Model Agnostic Analysis

To assess generality, we evaluate our method on
the MATH dataset using four LLMs: GPT-4o-
mini, GPT-40, Claude-3.5-Sonnet, and DeepSeek-
V2.5. As shown in Table 4, our method consis-
tently achieves the best performance, demonstrat-



Model ‘ ' Method ' ' o '
Vanilla COT Reflexion LLM debate Step-back Abstraction Quality Diversity ~Role Assignment — Ours
GPT-40-mini 48.2 49.9 49.3 52.7 479 50.5 50.7 61.5
GPT-40 53.8 53.7 54.2 55.1 53.3 56.6 533 63.6
claude-3-5-sonnet 20.4 22.6 22.6 23.8 20.7 21.4 20.1 27.8
DeepSeek-V2.5 52.6 52.0 53.3 54.1 52.8 55.1 53.5 61.1

Table 4: Model-agnostic performance comparison across various workflow optimization methods on the MATH
dataset. Ours consistently achieves the highest accuracy across all LLM backbones.

Inner & Outer Loop Convergence Analysis

Oluter Loop Iterati%n

) @y ___________

—— counting and probability(inner)
number theory(inner)
prealgebra(inner)

40 —— precalculus(inner)

----- overall(outer)

B \/\/\/ | \/ '\F a

0123456 131415161718

Solve Rate (%)

7 8 9101112
Inner Loop Iteration

Figure 3: Convergence behavior of the inner and outer
optimization loops on the MATH dataset. The inner
loop (solid lines) shows fluctuations in solve rate across
iterations for each subtask, with a maximum of 6 iter-
ations per subtask, while the outer loop (dashed line)
steadily improves overall performance by aggregating
the best workflows per subtask.

ing strong robustness and generalization.

While absolute performance varies across LLMs,
our method consistently outperforms all baselines.
The lower accuracy of Claude-3.5-Sonnet may
stem from its weaker handling of structured outputs
like JSON, which are central to our answer extrac-
tion pipeline. Nonetheless, our approach remains
effective across model families without requiring
model-specific customization.

6.5 Case Study

We present a case study to illustrate how the outer
loop aggregates subtask-specific workflows into a
unified workflow (Table 5). The All column repre-
sents the workflow obtained after outer-loop aggre-
gation, while other columns correspond to the best
inner-loop workflows for each subtask.

Shared Front-End. All workflows include three
core modules: DA (Diverse Agents), AE (Answer
Extraction), and CS (Consensus). These ensure
solution diversity, consistent answer formats, and

Module | Al PreC PreA NT C&P
DA v v v v v
AE v v v v v
CS v v v v v
VF v v X X X
CL v X X X X
SY v v v v v
VT X X X v X
AD X X v X X

Table 5: Module usage across subtasks on the MATH
dataset. Each column represents a workflow configura-
tion: All denotes the final workflow obtained after the
third round of outer-loop optimization, while the others
reflect the best inner-loop workflows before aggregation.
Subtask abbreviations: PreC = Precalculus, PreA =
Prealgebra, NT = Number Theory, C&P = Counting
& Probability. Module abbreviations: DA = Diverse
Agents, AE = Answer Extraction, CS = Consensus, VF
= Verifier, CL = Clarifier, SY = Synthesis, VT = Value
Tracker, AD = Approximation Detector. v indicates
module is used; X indicates not used.

stable outputs, forming a robust foundation appli-
cable across domains.

Task-Specific Modules. Additional modules are
selectively introduced based on subtask character-
istics. For example, AD (Approximation Detector)
in Prealgebra handles rounding mismatches, while
VT (Value Tracker) in Number Theory tracks inter-
mediate values in multi-step reasoning.

This modular design supports both generaliza-
tion and specialization, enabling high performance
across diverse mathematical tasks.

7 Conclusion

We introduced AdaptFlow, a bi-level meta-
optimization framework that learns adaptable agen-
tic workflows via LLM-guided symbolic feedback.
Across eight benchmarks, AdaptFlow outperforms
both manual and automated baselines, with com-
ponents like reflection and test-time adaptation en-
hancing robustness. Overall, it offers a scalable,
model-agnostic solution for automating workflow
design.



Limitations

While AdaptFlow achieves strong generalization,
it has two primary limitations. First, the quality of
symbolic updates depends on LLM-generated tex-
tual feedback, which can be vague or insufficiently
detailed for complex failure cases. More structured
or fine-grained feedback could improve update pre-
cision. Second, the optimization process requires
repeated LLM queries, leading to non-trivial com-
putational costs. Reducing query overhead through
more efficient adaptation strategies is an important
direction for future work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Claude 3.5 sonnet. Avail-
able at https://www.anthropic.com/index/
claude-3-5.

Jacob Austin, Augustus Odena, Maxwell Nye, and 1
others. 2021. Program synthesis with large language
models. In NeurIPS.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, and
et al. 2022. Training a helpful and harmless assistant
with reinforcement learning from human feedback.
arXiv preprint arXiv:2204.05862.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. 2023. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Mark Chen, Jerry Tworek, Heewoo Jun, and 1 others.
2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Karl Cobbe and 1 others. 2021.
to solve math word problems.
arXiv:2104.03235.

Training verifiers
arXiv preprint

Antonia Creswell and Murray Shanahan. 2023.
Selection-inference: Exploiting large language mod-
els for interpretable logical reasoning. arXiv preprint
arXiv:2305.05642.

DeepSeek. 2024. Deepseek-v2.5. Available at https:
//deepseek.com.

Yixin Du and 1 others. 2023. The devil is in the debate:
On the utility of argumentative dialogue agents for
reasoning. arXiv preprint arXiv:2305.14325.

Dheeru Dua and 1 others. 2019. Drop: A reading com-
prehension benchmark requiring discrete reasoning
over paragraphs. In NAACL.

Bas Fernando, Azalia Mirhoseini, Andrew Dai, and
Quoc Le. 2023. Promptbreeder: Towards the
automatic evolution of prompts. arXiv preprint
arXiv:2309.00680.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126—1135. PMLR.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Jiahao Guo, Zifan Wang, Sheng Zha, Xiaodong Wang,
Xin Jin, and Dacheng Tao. 2023. Evoprompt: Lan-
guage model guided genetic prompt optimization.
arXiv preprint arXiv:2309.07932.

Dan Hendrycks and 1 others. 2021. Measuring mathe-
matical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu,
Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang
Li, Jiaqi Chen, Jiayi Zhang, and 1 others. 2024a.
Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679.

Yujia Hong, Junyang Wu, Fan Zhang, and Shuo Zhang.
2024b. Adaptive agents with code and memory
for solving math word problems. arXiv preprint
arXiv:2403.01290.

Yujia Hong, Junyang Wu, Fan Zhang, and Shuo Zhang.
2024c. Sweagent: Code generation via struc-
tured workflow execution with llms. arXiv preprint
arXiv:2403.01290.

Shengran Hu, Cong Lu, and Jeff Clune. 2024. Au-
tomated design of agentic systems. arXiv preprint
arXiv:2408.08435.

Omar Khattab, Bhanukiran Vinzamuri Akula, and 1 oth-
ers. 2023. Dspy: Expressive, modular prompting for
language models. arXiv preprint arXiv:2310.01348.

Tao Li, Jiacheng Liu, Yichi Zhang, and 1 others. 2024a.
Autoda: Towards data analysis automation with large
language models. arXiv preprint arXiv:2403.18270.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Bal-
aji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024b. Autoflow: Automated
workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821.

Zhen Liu, Wentao Wu, Yuke Zhu, and Zhiwei Steven
Ling. 2023. Llm-planner: Few-shot grounded plan-
ning for embodied agents with large language models.
arXiv preprint arXiv:2303.13455.


https://www.anthropic.com/index/claude-3-5
https://www.anthropic.com/index/claude-3-5
https://www.anthropic.com/index/claude-3-5
https://deepseek.com
https://deepseek.com
https://deepseek.com

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2024. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Con-
ference on Language Modeling.

. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Statistics,
pages 281-297. University of California Press.

Erik Nijkamp, Ziyang Tu, Zexue Lin, and et al.
2023. Codegen2: Lessons for training llms on pro-
gramming and natural languages. arXiv preprint
arXiv:2305.02309.

Harsha Nori, Michael R. King, Scott M. McKinney, and
1 others. 2023. Capabilities of gpt-4 on medical chal-
lenge problems. arXiv preprint arXiv:2303.13375.

OpenAl. 2023. Aime benchmark for mathematical
reasoning. https://openai.com/research. Accessed
2024.

OpenAl. 2024a. Gpt-4.1 overview. Available at https:
//openai.com/index/gpt-4-1/.

OpenAl. 2024b. Gpt-40-mini-0718. Available via Ope-
nAl APL

OpenAl. 2024c. Introducing gpt-4o0. Available at
https://openai.com/index/hello-gpt-4o/.

Yujia Qian and 1 others. 2023. Role-play prompting for
multi-agent collaboration with llms. arXiv preprint
arXiv:2305.14325.

Chenyan Qin, Kang Liu, Yaqing Zhang, and 1 others.
2023. Toolllm: Facilitating large language models to
master 160+ tools. arXiv preprint arXiv:2307.16789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. EMNLP.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3982-3992. Association for Computational Linguis-
tics.

Tomer Ridnik, Yuval Shalev, Achiya Noy, and 1 oth-
ers. 2024. Coding agents: Interactive code genera-
tion via llm planning and execution. arXiv preprint
arXiv:2402.03345.

Javier Saad-Falcon, Ren Liu, Anthony Chan, and Allen
Lin. 2024. Hyperparameter optimization in agentic
Ilm pipelines. arXiv preprint arXiv:2401.04903.

Timo Schick, Ananya Dwivedi-Yu, Hinrich Schiitze,
and Peter Prettenhofer. 2023. Toolformer: Language
models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761.

10

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-

ing Systems, 36:8634-8652.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang,
Ao Luo, Shijian Wang, Qingyun Wu, and Chi
Wang. 2024. Adaptive in-conversation team build-
ing for language model agents. arXiv preprint
arXiv:2405.19425.

Yichi Wang and 1 others. 2023. Large language mod-
els as optimizers for quality-diversity search. arXiv
preprint arXiv:2303.05832.

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang,
and Bryon Aragam. 2025. Scoreflow: Mastering 1lm
agent workflows via score-based preference optimiza-
tion. arXiv preprint arXiv:2502.04306.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Jinyuan Xie, Yang Yang, Ziyang Zhang, and 1 oth-
ers. 2024. Autonova: Generating llm pipelines for
data science via prompt evolution. arXiv preprint
arXiv:2402.04002.

Yicheng Xu, Wei Zhang, Tao Li, and Shuo Zhang. 2024.
Towards generalizable agents for mathematical rea-
soning. arXiv preprint arXiv:2402.09399.

Zhilin Yang and 1 others. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
arXiv preprint arXiv:1809.09600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Qinyuan Ye, Xiao Liu, Yichong Zhou, and Shuo Zhang.
2024. Lim-dp: Towards autonomous data processing
agents. arXiv preprint arXiv:2403.05923.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tian-
long Chen, and Dawei Cheng. 2024a. G-designer:
Architecting multi-agent communication topolo-
gies via graph neural networks. arXiv preprint
arXiv:2410.11782.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, and 1 others. 2024b.
Aflow: Automating agentic workflow generation.
arXiv preprint arXiv:2410.10762.


https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/hello-gpt-4o/

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, and Bill
Dolan. 2020. Dialogpt: Large-scale generative pre-
training for conversational response generation. ACL.

Yilun Zhao, Yuan Yang, Zecheng Hu, and 1 others.
2024. Agentcoder: Integrating planning and exe-
cution for code generation agents. arXiv preprint
arXiv:2403.14260.

Licheng Zhong, Yiding Li, Yichong Zhou, and Shuo
Zhang. 2024. Mathagent: Math reasoning with
retrieval-augmented code agents. arXiv preprint
arXiv:2402.03620.

Xuezhi Zhou and 1 others. 2022. Least-to-most prompt-
ing enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625.

Yichong Zhou, Bowen Zhang, Yujia Hong, and Shuo
Zhang. 2024a. Reasoning agents: Llm-as-policy
for compositional task solving. arXiv preprint
arXiv:2404.01865.

Yifan Zhou, Yecheng Li, Runzhe Xu, and 1 others.
2024b. Llm+p: Empowering large language mod-
els with planning for complex tasks. arXiv preprint
arXiv:2403.03031.

Zeyu Zhu and 1 others. 2024. Olympiadbench: A bench-
mark for mathematical reasoning at the olympiad
level. arXiv preprint arXiv:2402.00000.

Yujia Zhuge, Qinyuan Ye, Xiao Liu, Shujie Wang, and
Furu Wei. 2023. Gptswarm: Multi-agent collabora-
tion via llm-based swarm intelligence. arXiv preprint
arXiv:2311.16688.

A Appendix
A.1 Dataset Details

Our experiments span eight public benchmarks
across three major domains: question answering,
code generation, and mathematical reasoning. Ta-
ble 6 summarizes the dataset statistics, including
the number of validation/test instances and the num-
ber of subtasks for each dataset. Each subtask repre-
sents a semantically or structurally coherent group
of problems, enabling more focused workflow spe-
cialization during meta-optimization.

For question answering, we use subsets of HOT-
POTQA and DROP, each containing 1,000 exam-
ples in total, with a 1:4 split for validation and
testing. The examples are clustered into six sub-
tasks based on instruction similarity. Similarly, in
the coding domain, HUMANEVAL and MBPP are
divided into three and four subtasks, respectively,
reflecting different code generation patterns.

In the mathematics domain, the datasets exhibit
more diverse task structures. For GSM8K and

11

AIME, we apply instruction-level clustering to de-
rive six distinct subtasks per dataset, capturing vari-
ations in reasoning complexity and problem format.

Notably, two datasets—MATH and OLYMPIAD-
BENCH—come with predefined topic categories,
and thus do not undergo clustering. The MATH
dataset contains high school-level math problems
and is partitioned into four canonical categories:
Prealgebra, Precalculus, Number Theory, and
Counting & Probability, following the protocol
introduced by Hendrycks et al. (2021). These
categories capture distinct types of mathematical
reasoning, from basic arithmetic to combinatorial
logic.

Likewise, OLYMPIADBENCH is sourced from
competitive mathematics exams and is naturally
divided into four topics: Algebra, Combinatorics,
Geometry, and Number Theory, as defined in the
original benchmark by Zhu et al. (2024). These top-
ics correspond to challenging mathematical reason-
ing tasks requiring manipulation, multi-step deriva-
tion, and rigorous abstraction.

Overall, our dataset setup provides a rich and
heterogeneous landscape for evaluating workflow
generalization, supporting both cluster-derived and
taxonomy-preserving subtask definitions across do-
mains.

A.2 Analogy Explanation

Figure 2 visualizes the analogy between neural
network optimization and workflow optimization,
which forms the conceptual foundation for our
method. Here, we detail the core correspondences
both at the structure level (parameters, updates, gra-
dients) and at the algorithmic level (meta-learning
procedure).

Structure-Level Analogy. In traditional super-
vised learning, model training involves continuous
optimization of parameters 6 using gradients VgL
derived from a differentiable loss. In contrast, our
workflow optimization operates in a discrete, space,
where the workflow W is updated through textual
feedback generated by LL.Ms. The following table
presents the one-to-one mapping:

Meta-Learning Analogy: MAML vs. Adapt-
Flow. At the algorithmic level, AdaptFlow
is inspired by Model-Agnostic Meta-Learning
(MAML), but adapted to the setting. While MAML
learns a parameter initialization 6 that can rapidly
adapt via gradient updates, AdaptFlow learns a



QA Coding MATH
HotpOTQA DROP | HUMANEVAL MBPP | GSM8K MATH AIME OLYMPIADBENCH
Validation Size 200 200 33 86 264 119 91 51
Val. Subtasks 6 6 3 4 6 4 6 4
Test Size 800 800 131 341 1055 486 373 212
Test Subtasks 6 6 3 4 6 4 6 4

Table 6: Dataset statistics for each domain and subtask. Validation/test sizes represent the number of instances used
for evaluation, and subtask numbers denote the total distinct subtasks grouped under each benchmark.

Neural Network Optimization

Workflow Optimization (AdaptFlow)

Model parameters ¢

Loss function L( fo(x),y)

Gradient Vg L

Gradient descent update 6 <— 6 — nVyL
Batch of examples {(x:,v:)}

Workflow structure W

Utility function J(W, T')

Textual gradient vJ (LLM feedback)
Symbolic update W' < Uy (W, V.J)
Batch of tasks or subtask data 7;

Table 7: Structure-level analogy between differentiable model optimization and discrete workflow optimization.

generalizable workflow W that adapts via LLM-
generated updates. The table below compares the
two approaches step-by-step:

Together, these analogies highlight how Adapt-
Flow generalizes the principles of meta-learning
to the domain of agentic workflow optimization in
spaces.

A.3 Prompt Templates

A.3.1 Inner Loop Workflow Optimization
Prompt

# Overview

You are an expert machine learning researcher
testing various agentic systems. Your
objective is to design building blocks such
as prompts and control flows within these
systems to solve complex tasks. Your aim is
to design an optimal agent performing well
on the MATH dataset, which evaluates
mathematical problem-solving abilities
across various mathematical domains
including algebra, counting and probability,
geometry, intermediate algebra, number
theory, prealgebra and precalculus.

## An example question from MATH:

*xinstruction (Not Given)*x: Solve the following
problem and provide a detailed solution.
Present the final answer using the \boxed{}
format.

**questionx*: question

*xsolution (Not Given)**: solution

# Discovered architecture archive

Here is the archive of the discovered
architectures:

[ARCHIVE]

12

The fitness value is defined as the accuracy on
a validation question set. Your goal is to
maximize this fitness. You should use your
own judgment to decide whether to optimize
on the latest architecture, as its
performance may not necessarily be better.

# Output Instruction and Example:

The first key should be ("thought"), and it
should capture your thought process for
designing the next function. In the "thought
" section, first reason about what should be

the next interesting agent to try, then
describe your reasoning and the overall
concept behind the agent design, and finally
detail the implementation steps.

The second key ("name") corresponds to the name
of your next agent architecture.

Finally, the last key ("code"”) corresponds to
the exact aAforward()4AI function in Python
code that you would like to try. You must
write a COMPLETE CODE in "code": Your code
will be part of the entire project, so
please implement complete, reliable,
reusable code snippets.

Here is an example of the output format for the
next agent architecture:

[EXAMPLE]

You must use the exact function interface used
above. You need to specify the instruction,
input information, and the required output
fields for various LLM agents to do their
specific part of the architecture. Also, it
could be helpful to set the LLMaAZs role and

temperature to further control the LLM&AZs

response. Note that the LLMAgentBase() will
automatically parse the output and return a

list of 4AInfos3AI. You can get the content

by Infos.content. DO NOT FORGET the taskInfo

input to LLM if you think it is needed,
otherwise LLM will not know about the task.




MAML (Finn et al., 2017)

AdaptFlow (Ours)

Model initialization 6

Task-specific adaptation via 6’ < § — aVy Lt
Compute outer gradient from ¢’

Outer update: 6 < 0 — Vg > L, (6;)
Adaptation via differentiable gradient

Few-shot generalization to new tasks

Workflow initialization WW

Subtask-specific refinement via W' < Uy (W, V.J)
Aggregate textual feedback from refined workflows {%Jt}
Meta update: W < Us(W, G({V.J:}))

Adaptation via textual feedback

Test-time adaptation via W* < Us(W, F(T}))

Table 8: Algorithm-level comparison between MAML and AdaptFlow.

# Your task

You are deeply familiar with LLM prompting
techniques and LLM agent works from the
literature. Your goal is to maximize "
fitness"” by proposing interestingly new
agents.

Observe the discovered architectures carefully
and think about what insights, lessons, or
stepping stones can be learned from them.

Please focus on the architecture with the
optimal fitness, and based on that, propose
what you believe is the most likely next
agent architecture. Note that each
optimization step can involve adding one or
two new modules to the current best solution
, or proposing an entirely novel solution.
However, it's important to ensure that each
change remains relatively simple and not
overly complex.

A.3.2 Outer Loop Workflow Optimization
Prompt

# Overview

You are an expert machine learning researcher
testing various agentic systems. Your
objective is to design building blocks such
as prompts and control flows within these
systems to solve complex tasks. Your aim is
to design an optimal agent performing well
on the MATH dataset, which evaluates
mathematical problem-solving abilities
across various mathematical domains
including algebra, counting and probability,
geometry, intermediate algebra, number
theory, prealgebra and precalculus.

## An example question from MATH:

*xinstruction (Not Given)*x: Solve the following
problem and provide a detailed solution.
Present the final answer using the \\boxed{}
format.

**questionx*: question
*xsolution (Not Given)**: solution

Note: We divide the overall MATH task into seven
distinct subtasks. Below is the performance
of the Discovered Architecture Archive on

each of these seven subtasks.

Discovered Architecture Archive

13

The following presents the archive of the
discovered architectures on seven subtasks
as well as the full MATH task:

[ARCHIVE_LIST]

The fitness value is defined as the accuracy on
a validation question set. Your goal is to
identify an architecture that either
maximizes fitness across the seven subtasks
or can quickly evolve toward that goal. Note

that you should not limit yourself to only
the most recently generated
architecturesaATyour objective is to
maximize this fitness.

# Output Instruction and Example:

The first key should be ("thought”), and it
should capture your thought process for
designing the next function. In the "thought
" section, first reason about what should be

the next interesting agent to try, then
describe your reasoning and the overall
concept behind the agent design, and finally
detail the implementation steps.

The second key ("name") corresponds to the name
of your next agent architecture.

Finally, the last key ("code"”) corresponds to
the exact &Aforward()4AI function in Python
code that you would like to try. You must
write a COMPLETE CODE in "code"”: Your code
will be part of the entire project, so
please implement complete, reliable,
reusable code snippets.

Here is an example of the output format for the
next agent architecture:

[EXAMPLE]

You must use the exact function interface used
above. You need to specify the instruction,
input information, and the required output
fields for various LLM agents to do their
specific part of the architecture.

Also, it could be helpful to set the LLMAaAZs
role and temperature to further control the
LLMaAZs response. Note that the LLMAgentBase
() will automatically parse the output and
return a list of &AInfosdAI. You can get the

content by Infos.content.

DO NOT FORGET the taskInfo input to LLM if you
think it is needed, otherwise LLM will not
know about the task.

## WRONG Implementation examples:
Here are some mistakes you may make:




1. This is WRONG: ~°~

feedback, correct = critic_agent([taskInfo,
thinking, answer], critic_instruction, i)

feedback_info = verifier_agent([taskInfo, Info('
feedback', 'Critic Agent', thinking, @)1,
verification_instruction)

It is wrong to use "Info('feedback', 'Critic
Agent', thinking, ©)". The returned "
feedback” from LLMAgentBase is already Info.

# Your task

You are well-versed in LLM prompting techniques
and agent-based frameworks from the
literature. You are tasked with designing a
new agent architecture based on the best-
performing solutions from each subtask of
the MATH benchmark. The goal is for this new
architecture to satisfy at least one of the
following criteria:

It effectively integrates key modules and
features from the optimal solutions of
individual subtasks, resulting in a
generalizable and adaptable architecture
that performs well across all subtasks;

Alternatively, the architecture should exhibit
strong adaptability and rapid update
capabilities, allowing it to quickly evolve
and converge toward the optimal solution for

each specific subtask.

However, you should ensure that the newly
generated frameworks is not significantly
more complex than the original one, and you
may also remove some redundant LLM
invocation code.

A.3.3 Reflection Prompt

We noticed that the current agent is prone to
making mistakes when handling the following
cases:

[CASE_LIST]

Please analyze the reasons for these mistakes
and propose improvements.

Your response should be organized as follows:

"reflection”: Provide your thoughts on the
mistakes in the implementation, and suggest
improvements.

"thought”: Revise your previous proposal or
propose a new architecture if necessary,
using the same format as the example
response.

"name”: Provide a name for the revised or new
architecture. (Don't put words like "new"” or
"improved” in the name.)

"code": Provide the corrected code or an
improved implementation. Make sure you
actually implement your fix and improvement
in this code.

A.3.4 Test-Time Adaptation Workflow
Optimization Prompt

# Overview

You are an expert machine learning researcher
testing various agentic systems. Your
objective is to design building blocks such
as prompts and control flows within these
systems to solve complex tasks. Your goal is

to design an optimal agent that performs

well on the MATH dataset. You may analyze
the characteristics of these problems and
then design an agent capable of effectively
solving them.

[TASK_DSC]

Note: Your goal is to design an improved agent
based on the previous agent, tailored to the
characteristics of the current task. We aim
to rapidly enhance the performance of the
current agent.

# Output Instruction and Example:

The first key should be ("thought"), and it
should capture your thought process for
designing the next function. In the "thought
" section, first reason about what should be

the next interesting agent to try, then
describe your reasoning and the overall
concept behind the agent design, and finally
detail the implementation steps.

The second key ("name"”) corresponds to the name
of your next agent architecture.

Finally, the last key ("code"”) corresponds to
the exact aAforward()4AI function in Python
code that you would like to try. You must
write a COMPLETE CODE in "code"”: Your code
will be part of the entire project, so
please implement complete, reliable,
reusable code snippets.

Here is an example of the output format for the
next agent architecture:

[EXAMPLE]

You must use the exact function interface used
above. You need to specify the instruction,
input information, and the required output
fields for various LLM agents to do their
specific part of the architecture.

Also, it could be helpful to set the LLMAaAZs
role and temperature to further control the
LLMAAZs response. Note that the LLMAgentBase
() will automatically parse the output and
return a list of 8AInfosdAI. You can get the

content by Infos.content.

DO NOT FORGET the taskInfo input to LLM if you
think it is needed, otherwise LLM will not
know about the task.

# Your task

You are well-versed in LLM prompting techniques
and agent-based frameworks from the
literature. You are tasked with designing a
new agent architecture based on the previous
agent to solve the current task.

14




A.4 Workflow Case

To provide a concrete illustration of our system’s
output, we present the workflow code generated in
the final outer-loop iteration on the MATH dataset.
This example reflects the culmination of iterative
refinement across subtasks and highlights the inte-
gration of shared and task-specific modules.

def forward(self, taskInfo):
import re
from collections import Counter

def extract(text):
for p in [r'\\boxed{([*}I*x)}", r'\(([*")
19N, r'\\frac{[*}I*H[*31*}', r'(\
d+)\s*$']:
m = re.search(p, text)
if m: return m.group(@).strip()

roles = ['Math Professor', 'Grade School
Teacher', 'Math Enthusiast', 'Math
Olympiad Student', 'Helpful Assistant']

agents = [LLMAgentBase(['thinking', 'solution
'], f'A{i}', role=r, temperature=0.7 +
0.1xi) for i, r in enumerate(roles)]

sols = [a([taskInfo], "Please think step by
step and solve.”, i) for i, a in
enumerate(agents)]

ext_agent = LLMAgentBase(['extracted_answer

temperature=0.1)
answers, amap = [1, {}
for i, (t, s) in enumerate(sols):
ans = ext_agent([taskInfo, s], "Extract
ONLY final boxed answer.”, i)[@].
content.strip() or extract(s.content)
if ans: answers.append(ans); amap.
setdefault(ans, (t, s))

top = Counter(answers).most_common()
if top:
top_answers = [a for a, c in top if c ==
top[@][1]]
if len(top_answers) ==
_, sol = amap[top_answers[@]]
else:
inputs = [taskInfol + sum((list(amapl
al]) for a in top_answers), []) +
[Info('extracted_answer', '', a,
-1) for a in top_answers]
sol = LLMAgentBase(['thinking',
solution'], 'Final Decider',
temperature=0.1) (inputs, "Choose
best answer."”)[1]
else:
inputs = [taskInfo] + sum(([t, s] for t,
s in sols), [1)
sol = LLMAgentBase(['thinking', 'solution
'], 'Fallback Decider', temperature

'], 'Verifier', role='Checker"',
temperature=0.1)

clarifier = LLMAgentBase(['clarification'],
Clarifier', role='Solver', temperature

'], 'Extractor', role='Answer Extractor',

=0.1) (inputs, "Choose among all.")[1]

verifier = LLMAgentBase(['feedback', 'correct

=0.4)
synthesizer = LLMAgentBase(['thinking',
solution'], 'Synth', temperature=0.3)

for i in range(2):
ext = ext_agent([taskInfo, sol], "Extract
ONLY final boxed answer."”, 100+i)[0]
fb, ok = verifier([taskInfo, sol, ext], "
Check correctness.”, i)
if ok.content == 'True': return sol

clar, = clarifier([taskInfo, sol, fb], "

Respond to critique.”, i)
fb2, ok2 = verifier([taskInfo, sol, ext,
clar], "Recheck solution.”, 100+i)
if ok2.content == 'True': return sol

syn_inputs = [taskInfo, sol, fb2, clar] +
sum(sols, [1) + [Info('
extracted_answer', '', a, -1) for a
in answers if a]

sol = synthesizer(syn_inputs, "Revise or
synthesize."”)[1]

return sol

15




	Introduction
	Related Work
	Agentic Workflow
	Agentic Workflow Optimization

	Preliminaries
	Problem Formulation
	Analogy: From Supervised Learning to Agentic Workflow Optimization
	Model-Agnostic Meta-Learning

	Methodology
	Overview
	Task Clustering
	Bi-Level Workflow Optimization
	Test-Time Adaptation

	Experiment Setup
	Results and Analysis
	Main Results
	Ablation Study
	Convergence Analysis
	Model Agnostic Analysis
	Case Study

	Conclusion
	Appendix
	Dataset Details
	Analogy Explanation
	Prompt Templates
	Inner Loop Workflow Optimization Prompt
	Outer Loop Workflow Optimization Prompt
	Reflection Prompt
	Test-Time Adaptation Workflow Optimization Prompt

	Workflow Case


