
AdaptFlow: Adaptive Workflow Optimization via Meta-Learning

Anonymous ACL submission

Abstract001

Recent advances in large language models002
(LLMs) have sparked growing interest in agen-003
tic workflows—structured sequences of LLM004
invocations designed to solve complex tasks.005
However, existing approaches often rely on006
static templates or manually designed work-007
flows, which limit adaptability to diverse tasks008
and hinder scalability. We propose AdaptFlow,009
a natural language-based meta-learning frame-010
work inspired by model-agnostic meta-learning011
(MAML). AdaptFlow uses a bi-level optimiza-012
tion process: the inner loop performs task-013
specific adaptation via LLM-generated feed-014
back, while the outer loop consolidates these015
refinements into a shared, generalizable ini-016
tialization. Evaluated across question answer-017
ing, code generation, and mathematical reason-018
ing benchmarks, AdaptFlow consistently out-019
performs both manually crafted and automat-020
ically searched baselines, achieving state-of-021
the-art results with strong generalization across022
tasks and models. The source code and data023
are available at https://anonymous.4open.024
science/r/AdaptFlow-FD17/.025

1 Introduction026

In recent years, Large Language Models027

(LLMs) (Achiam et al., 2023; Guo et al., 2025)028

have rapidly advanced, achieving state-of-the-art029

results in tasks such as question answering (Ra-030

jpurkar et al., 2016; Yang et al., 2018), code031

synthesis (Chen et al., 2021; Nijkamp et al., 2023),032

and multi-turn dialogue (Zhang et al., 2020; Bai033

et al., 2022). With increasing model scale and034

training data, LLMs have also shown strong035

potential in dynamic reasoning and decision sup-036

port (Shinn et al., 2023; Wei et al., 2022; Yao et al.,037

2023). In parallel, the concept of Agentic Workflow038

has gained traction—simulating agents with039

autonomous planning and execution capabilities to040

tackle complex tasks. Such frameworks perform041

particularly well in settings requiring multi-step042

reasoning (Yao et al., 2023; Creswell and Shana- 043

han, 2023), long-term planning (Liu et al., 2023; 044

Zhou et al., 2024b), and tool use (Schick et al., 045

2023; Qin et al., 2023). 046

While effective, manually designing agentic 047

workflows is time-consuming and difficult to gen- 048

eralize across diverse tasks. To address this, recent 049

work has explored automated workflow construc- 050

tion through prompt optimization, hyperparameter 051

tuning, and structural search (Khattab et al., 2023; 052

Chen et al., 2023; Li et al., 2024b; Liu et al., 2024; 053

Song et al., 2024; Zhang et al., 2024a; Wang et al., 054

2025). However, many of these approaches (Liu 055

et al., 2024; Zhang et al., 2024a) rely on graph- 056

based representations with limited support for con- 057

ditional states, which restricts the expressivity of 058

the search space and hinders their applicability to 059

complex tasks. 060

Recent frameworks such as ADAS (Hu et al., 061

2024) and AFLOW (Zhang et al., 2024b) adopt 062

programmatic workflow representations to enable 063

robust and flexible search. However, as noted 064

by (Wang et al., 2025), these methods typically 065

generate a single static workflow for the entire task 066

set, limiting their ability to generalize across het- 067

erogeneous datasets with diverse problem types. In 068

addition, ADAS performs coarse-grained workflow 069

updates, resulting in redundant context accumu- 070

lation and growing complexity that hinders con- 071

vergence. AFLOW alleviates some of these issues 072

using Monte Carlo Tree Search, but its reliance 073

on discrete updates and early pruning can restrict 074

the exploration of more expressive workflow candi- 075

dates. These limitations underscore two challenges 076

simultaneously: C1. How to adaptively construct 077

effective workflows for datasets containing di- 078

verse problems? C2. How to ensure convergent 079

optimization in code search spaces? 080

To tackle these challenges, we propose Adapt- 081

Flow—a meta-optimization framework that in- 082

tegrates principles from Model-Agnostic Meta- 083

1

https://anonymous.4open.science/r/AdaptFlow-FD17/
https://anonymous.4open.science/r/AdaptFlow-FD17/
https://anonymous.4open.science/r/AdaptFlow-FD17/

Learning (Finn et al., 2017) into agentic workflow084

optimization. Unlike prior approaches that gener-085

ate static workflows for entire task sets, AdaptFlow086

learns a shared workflow initialization that can087

rapidly adapt to diverse subtasks through updates088

guided by LLMs. It employs a bi-level optimization089

scheme, where the inner loop explores task-specific090

refinements via LLM-generated feedback, and the091

outer loop aggregates these improvements into a092

more generalizable workflow. This approach en-093

ables both effective subtask adaptation (addressing094

C1) and stable convergence in non-differentiable095

code spaces (addressing C2), yielding a scalable so-096

lution for general-purpose workflow construction.097

Our key contributions are summarized as fol-098

lows:099

• We draw a novel analogy between neural network100

training and automated workflow optimization,101

which motivates AdaptFlow design.102

• We propose AdaptFlow, a natural language-103

based meta-learning framework that incorporates104

MAML to enable rapid subtask adaptation.105

• Experiments on benchmarks in question answer-106

ing, code generation, and mathematical rea-107

soning show that AdaptFlow outperforms both108

manual workflows and prior baselines, achiev-109

ing state-of-the-art results with strong model-110

agnostic generalization.111

2 Related Work112

2.1 Agentic Workflow113

Agentic workflows provide a structured alternative114

to autonomous agents for deploying large language115

models (LLMs). Instead of learning through envi-116

ronment interaction (Zhuge et al., 2023; Hong et al.,117

2024b), they execute static or semi-static sequences118

inspired by human reasoning (Zhang et al., 2024b),119

offering better interpretability and modularity.120

Workflows can be general-purpose—featuring121

reusable patterns like chain-of-thought prompting,122

self-refinement, or role decomposition (Wei et al.,123

2022; Shinn et al., 2023)—or domain-specific, tai-124

lored for areas such as code generation (Hong et al.,125

2024c; Ridnik et al., 2024; Zhao et al., 2024), data126

analysis (Xie et al., 2024; Ye et al., 2024; Li et al.,127

2024a), mathematics (Zhong et al., 2024; Xu et al.,128

2024), and complex QA (Nori et al., 2023; Zhou129

et al., 2024a). While effective, manually designed130

workflows require significant human effort and lack131

adaptability, motivating automated optimization.132

2.2 Agentic Workflow Optimization 133

Recent advances (Hu et al., 2024; Zhang et al., 134

2024b; Wang et al., 2025; Li et al., 2024b; Chen 135

et al., 2023; Song et al., 2024; Hong et al., 2024c) 136

have explored automating agentic workflows to im- 137

prove LLM performance. Some methods focus 138

on optimizing prompts or parameters within fixed 139

workflows (Fernando et al., 2023; Guo et al., 2023; 140

Khattab et al., 2023; Saad-Falcon et al., 2024), im- 141

proving reasoning without altering the execution 142

structure. In contrast, we optimize workflow struc- 143

tures directly, enabling broader adaptation across 144

tasks. 145

Other approaches search over code-based work- 146

flows. ADAS (Hu et al., 2024) refines linear 147

traces of executable code, while AFLOW (Zhang 148

et al., 2024b) introduces compositional abstrac- 149

tions with MCTS. ScoreFlow (Wang et al., 2025) 150

frames workflow generation as supervised predic- 151

tion. However, these methods often produce static 152

workflows and lack task-level adaptability. Our 153

method, AdaptFlow, differs by performing bi-level 154

meta-learning: it adapts workflows via LLM feed- 155

back at the subtask level and consolidates them 156

into a generalizable initialization, supporting fast 157

adaptation and robust generalization. 158

3 Preliminaries 159

3.1 Problem Formulation 160

The goal of automated agentic workflow opti- 161

mization is to discover effective compositions 162

of modular components—such as prompt tem- 163

plates, tool invocations, control logic, and reflec- 164

tion routines—that can guide large language mod- 165

els (LLMs) to solve complex tasks across diverse 166

domains. 167

We formalize the agentic workflow design prob- 168

lem as a triplet (S,J ,A), where: 169

• S denotes the search space, encompassing all 170

candidate workflows; 171

• J : S × T → R is the objective function that 172

quantifies the quality or utility of a workflow 173

W ∈ S when applied to a specific task T ; 174

• A represents the search algorithm, which ex- 175

plores S and generates candidate workflows 176

guided by feedback from J . 177

Given a task T ∼ P(T), the agent seeks 178

to identify an optimal workflow through a task- 179

conditioned search process: 180

2

W = A(S,J , T), (1)181

W⋆ = argmax
W∈S

ET ∼P(T) [J (W, T)] . (2)182

Similar to prior efforts such as (Hu et al., 2024),183

our method adopts programmatic representations184

to define the workflow search space.185

3.2 Analogy: From Supervised Learning to186

Agentic Workflow Optimization187

In traditional supervised learning, a model learns188

a parameterized function fθ by minimizing the ex-189

pected loss over labeled data (x, y) ∼ D:190

θ⋆ = argmin
θ

E(x,y)∼D [L(fθ(x), y)] , (3)191

θ ← θ − η · 1
N

N∑
i=1

∇θL(fθ(xi), yi), (4)192

where η is the learning rate and {(xi, yi)}Ni=1 is193

a mini-batch of training examples. This process194

relies on differentiable loss functions and explicit195

ground-truth supervision, enabling gradient-based196

parameter updates in continuous space.197

Analogously, agentic workflow optimization op-198

erates in a symbolic structure space defined over199

executable code (e.g., (Hu et al., 2024)). Given200

a task T , the system executes a workflowW and201

obtains a task-level utility score from the objective202

function J (W, T). The goal is to discover a work-203

flow that maximizes the expected utility across a204

distribution of tasks:205

W⋆ = argmax
W∈S

ET ∼P(T) [J (W, T)] , (5)206

W ← U1
(
W, ∇̃J (W, T)

)
. (6)207

Here, J (W, T) represents a task-level evaluation208

of the workflow’s performance, expressed in nat-209

ural language. This textual assessment serves as210

a form of textual loss, indicating the correctness211

of the workflow output. Based on this, ∇̃J de-212

notes a textual gradient—natural language feed-213

back generated by an LLM that suggests possi-214

ble improvements, identifies failure modes, or pro-215

poses structural alternatives. The update operator216

U1 then applies this feedback to revise the workflow217

in the code space, enabling updates in a discrete,218

non-differentiable setting. This process mirrors219

the gradient-based update in conventional learning,220

with a detailed analogy illustrated in Figure 1.221

Unlike standard gradient descent, ADAS enables 222

interpretable, feedback-driven optimization over 223

program structures, thereby generalizing the con- 224

cept of learning beyond parameter tuning. 225

3.3 Model-Agnostic Meta-Learning 226

Model-Agnostic Meta-Learning (MAML) (Finn 227

et al., 2017) learns a model initialization that en- 228

ables rapid adaptation to new tasks using only a 229

few gradient steps. The core idea is to train the 230

model not just to perform well on a set of tasks, 231

but to be easily fine-tuned for any new task drawn 232

from the same distribution. 233

Given a task distribution T , each task Ti ∼ T is 234

associated with a loss LTi(θ). MAML performs a 235

bi-level optimization: 236

θ′i ← θ − α∇θLTi(θ), (7) 237

θ ← θ − β∇θ

∑
Ti∼T

LTi(θ′i). (8) 238

In the inner loop, the model performs gradient 239

descent on a given task to obtain adapted param- 240

eters θ′i. In the outer loop, the original initializa- 241

tion θ is updated using the post-adaptation losses 242

across multiple tasks. This procedure leverages 243

second-order gradients and enables generalization 244

to unseen tasks with minimal fine-tuning. 245

4 Methodology 246

4.1 Overview 247

We present AdaptFlow, a meta-optimization 248

framework that integrates ideas from Model- 249

Agnostic Meta-Learning (Finn et al., 2017) into 250

the setting of Automated Design of Agentic Sys- 251

tems (Hu et al., 2024). As shown in Figure 1, 252

AdaptFlow optimizes a single code-based workflow 253

that can rapidly adapt to different subtasks, address- 254

ing (C1) by enabling structural reuse across related 255

tasks. It follows a bi-level learning scheme: the 256

inner loop performs exploration, adapting work- 257

flows using LLM-generated feedback within each 258

subtask, while the outer loop performs exploita- 259

tion by consolidating improvements into a shared 260

initialization. This setup supports learning in non- 261

differentiable code spaces without ground-truth su- 262

pervision, directly addressing (C2), and leads to 263

stable convergence and broad generalization. The 264

complete AdaptFlow algorithm is formalized in 265

3

Figure 1: An analogy between Neural Network Optimization and Workflow Optimization, as well as between
MAML and AdaptFlow.

Algorithm 1, and its procedural overview is visu-266

ally depicted in Figure 2 to complement the formal267

description.268

4.2 Task Clustering269

Many tasks exhibit high internal diversity, mak-270

ing it difficult to optimize a single workflow271

across all instances. To address this, we first272

partition the training set Ttrain into m seman-273

tically coherent subtasks T1, . . . , Tm using K-274

Means (MacQueen, 1967) clustering over instruc-275

tion embeddings. The embeddings are obtained276

from the all-MiniLM-L6-v2 model (Reimers and277

Gurevych, 2019). This decomposition enables278

subtask-specific workflow optimization and pro-279

motes more stable and effective learning.280

4.3 Bi-Level Workflow Optimization281

Inner Loop (Exploration) For each subtask Tt,282

the workflowW ′
t is iteratively refined using LLM-283

generated textual feedback. At each step, we eval-284

uate the current utility J (W ′
t, Tt) and apply the285

symbolic update:286

W ′
t ← U1

(
W ′

t, ∇̃J (W ′
t, Tt)

)
. (9)287

To ensure stable and meaningful exploration, we288

define a binary continuation signal δt ∈ 0, 1 as:289

δt = I
[
J (Wt, Tt)− J (W ′

t, Tt) > ϵ
]
, (10)290

whereWt denotes the best workflow found so far.291

Here, J evaluates a workflow’s performance on292

task Tt via textual assessment, serving as a form293

of task-level textual loss. Based on this evaluation, 294

the LLM generates a textual gradient ∇̃J that re- 295

flects potential improvements or corrections. The 296

update operator U1 applies this feedback to revise 297

the workflowW ′
t in the code space. The inner loop 298

continues only if δt = 1, indicating that the update 299

yields a non-trivial gain. This continuation signal 300

acts as a local convergence criterion, mitigating 301

instability from long-context accumulation and en- 302

suring effective symbolic refinement. The prompt 303

design for U1 is detailed in Section A.3.1. 304

Outer Loop (Exploitation) After inner-loop op- 305

timization across all subtasks, we aggregate the 306

resulting feedback to update the global work- 307

flow. Each ∇̃J (Wt, Tt) denotes a textual gradi- 308

ent—natural language feedback from the LLM that 309

suggests workflow improvements based on subtask 310

performance. The aggregation function G merges 311

these gradients into a unified signal, which is then 312

applied via the update operator U2: 313

W ← U2
(
W, G

({
∇̃J (Wt, Tt)

}m

t=1

))
. (11) 314

This meta-level update integrates subtask-specific 315

insights into a generalizable workflow. The prompt 316

design for U2 is provided in Section A.3.2. 317

To further improve robustness, we apply a reflec- 318

tion step after the update. The updated workflow is 319

re-executed on each subtask to identify remaining 320

failure cases. The agent then generates refinement 321

suggestions, which are used to perform a secondary 322

symbolic update. This reflection-enhanced outer 323

4

Step Task Clustering

Task

SubTask 1

SubTask 2

SubTask m

.

.

.

Consensus Verifier ...

Step Test-Time Adaptation

Workflow

SubTask Feature

Adapted Workflow
Fast Adapt

Node Desc.

Step Bi-Level Workflow Optimization 2

Workflow

SubTask 1

SubTask m

...

...

Workflow

Outer Loop

Inner Loop
Excute
on Task

Failure CaseReflection

1

3

...

Figure 2: Illustration of the AdaptFlow framework, consisting of three stages. (1) Task Clustering: training tasks
are grouped into semantically coherent subtasks. (2) Bi-Level Workflow Optimization: a bi-level optimization
process is applied—inner loop explores workflow variants using LLM-generated feedback; outer loop aggregates
updates into a generalizable initialization. (3) Test-Time Adaptation: the learned workflow is adapted to unseen
tasks based on subtask-level descriptions generated from input questions. The detailed mechanism of inner and
outer updates is shown in Figure 1.

loop helps address blind spots and improve gener-324

alization.325

4.4 Test-Time Adaptation326

To evaluate generalization, we apply the learned327

initializationW to a set of unseen test tasks T test.328

Following the same procedure as in training, we329

partition T test into n subtasks T ′
1 , . . . , T ′

n using330

instruction-level clustering.331

For each subtask T ′
t , we randomly sample a332

subset T̃ ′
t ⊂ T ′

t and prompt a language model333

to generate a high-level description F(T̃ ′
t) based334

solely on the input questions from the sampled335

tasks—without access to answers or solutions. This336

representation captures the subtask’s semantic in-337

tent and guides adaptation.338

We then apply a symbolic update operator U3339

to specialize the global workflow based on this340

subtask description:341

W ← U3
(
W,F(T̃ ′

t)
)
. (12)342

Here, U3 modifies the workflow to better suit the343

characteristics of the new subtask using natural lan-344

guage cues. The prompt design for U3 is detailed345

in Section A.3.4. The resulting specialized work-346

flow W is then evaluated on the full subtask T ′
t ,347

enabling effective adaptation to previously unseen 348

task distributions. 349

5 Experiment Setup 350

Datasets We evaluate our method on eight pub- 351

lic datasets across three domains: question an- 352

swering, code generation, and mathematical rea- 353

soning. For HUMANEVAL (Chen et al., 2021) 354

and MBPP (Austin et al., 2021), we use the full 355

datasets. Following AFLOW (Zhang et al., 2024b), 356

we sample 1,319 examples from the GSM8K test 357

split (Cobbe et al., 2021). For MATH (Hendrycks 358

et al., 2021), we follow (Hong et al., 2024a) and 359

select level-5 problems from four categories: Com- 360

binatorics and Probability, Number Theory, Pre- 361

algebra, and Pre-calculus. We also include two ad- 362

vanced math benchmarks: AIME (OpenAI, 2023) 363

and OLYMPIADBENCH (Zhu et al., 2024). For 364

DROP (Dua et al., 2019) and HOTPOTQA (Yang 365

et al., 2018), we follow prior work (Shinn et al., 366

2023; Zhang et al., 2024b; Wang et al., 2025) and 367

randomly sample 1,000 instances each. All datasets 368

are split into validation and test sets with a 1:4 ratio. 369

See Table 6 for full statistics. 370

5

Algorithm 1: AdaptFlow Algorithm
Input: train tasks Ttrain, test tasks Ttest,

inner iterations ninner, outer
iterations nouter

1 Cluster Ttrain into m subtasks
{T1, . . . , Tm};

2 Initialize global workflowW =W1 = ... =
Wm;

// Outer loop
3 for i← 1 to nouter do
4 foreach Tt ∈ {T1, . . . , Tm} do
5 InitializeW ′

t ←W; j ← 0;
// Inner loop

6 while J (W ′
t, Tt) < J (Wt, Tt)− ϵ

and j < ninner do
7 ExecuteW ′

t on Tt, obtain ∇̃J ;

8 W ′
t ← U1

(
W ′

t, ∇̃J
)

;

9 j ← j + 1;
10 end
11 Wt ←W ′

t;
12 end
13 W ←

U2
(
W, G

({
∇̃J (Wt, Tt)

}m

t=1

))
14 end
15 Cluster Ttest into n subtasks {T ′

1 , . . . , T ′
n};

16 foreach T ′
t do

17 W ′ ← U3 (W, T ′
t);

18 EvaluateW∗ on T ′
t ;

19 end

Baselines We compare our method against two371

categories of baselines: manually designed work-372

flows and automatically optimized workflows for373

large language models (LLMs). Manual Work-374

flows include widely used prompting strategies and375

agent-based methods: Vanilla prompting, Chain-of-376

Thought (CoT) (Wei et al., 2022), Reflexion (Shinn377

et al., 2023), LLM Debate (Du et al., 2023), Step-378

back Abstraction (Zhou et al., 2022), Quality-379

Diversity (QD) (Wang et al., 2023), and Dynamic380

Role Assignment (Qian et al., 2023). These ap-381

proaches are constructed using fixed templates or382

heuristics without task-specific adaptation. Au-383

tomatically Optimized Workflows are derived384

through workflow optimization or search. We in-385

clude ADAS (Hu et al., 2024) and AFLOW (Zhang386

et al., 2024b), which learn or search for agentic387

workflow structures in a data-driven manner to im-388

prove LLM performance across tasks.389

Implementation Details We use a decoupled ar- 390

chitecture separating optimization and execution. 391

GPT-4.1 (OpenAI, 2024a) serves as the optimizer, 392

while executors include DeepSeekV2.5 (DeepSeek, 393

2024), GPT-4o-mini (OpenAI, 2024b), Claude-3.5- 394

Sonnet (Anthropic, 2024), and GPT-4o (OpenAI, 395

2024c). All models are accessed via public APIs 396

with a fixed temperature of 0.5. The outer loop 397

runs for 3 iterations, and the inner loop allows up 398

to 6 updates per subtask. 399

Metrics We adopt task-specific evaluation met- 400

rics tailored to each dataset category. For mathe- 401

matics benchmarks, including GSM8K, MATH, 402

AIME, and OLYMPIADBENCH, we use the Solve 403

Rate—the proportion of correctly solved prob- 404

lems—as the primary metric. For code genera- 405

tion tasks (HUMANEVAL and MBPP), we report 406

pass@1, following the evaluation protocol of Chen 407

et al. (Chen et al., 2021), which measures the 408

correctness of the top-1 generated solution. For 409

question-answering datasets such as HOTPOTQA 410

and DROP, we adopt the F1 Score to evaluate 411

the overlap between predicted and ground-truth 412

answers. 413

6 Results and Analysis 414

6.1 Main Results 415

As shown in Table 1, our method delivers consis- 416

tently strong performance across three distinct do- 417

mains—question answering, code generation, and 418

mathematics—achieving the highest overall aver- 419

age score of 68.5. This suggests that our unified 420

framework generalizes well to tasks with varying 421

structures and reasoning demands. In particular, 422

the substantial gains on mathematics benchmarks 423

demonstrate the framework’s strength in handling 424

complex symbolic and multi-step reasoning. 425

These results highlight the advantage of learn- 426

ing workflows in a task-adaptive and optimization- 427

aware manner. Compared to existing baselines, 428

including both manually designed strategies and 429

automatically optimized methods, our approach 430

achieves more balanced improvements across do- 431

mains, underscoring its robustness and scalability. 432

The consistent lead over ADAS (Hu et al., 2024) 433

and AFLOW (Li et al., 2024b), which operate in a 434

similar code-based search space, further supports 435

the effectiveness of meta-level adaptation in build- 436

ing generalizable agentic workflows. 437

6

Method QA Coding MATH AverageHOTPOTQA DROP HUMANEVAL MBPP GSM8K MATH AIME OLYMPIAD
Vanilla 70.7 79.6 87.0 71.8 92.7 48.2 12.4 25.0 60.9
COT 69.0 78.8 90.8 72.5 91.3 49.9 10.1 26.4 61.1

Reflexion 68.3 79.5 86.3 72.4 92.4 49.3 10.5 25.9 60.6
LLM Debate 68.5 79.3 90.8 73.3 93.8 52.7 13.7 29.8 62.7

Step-back Abstraction 67.9 79.4 87.8 71.9 90.0 47.9 4.8 19.3 58.6
Quality Diversity 69.3 79.7 88.5 72.5 92.3 50.5 9.4 28.8 61.4

Dynamic Assignment 67.9 76.8 89.3 71.5 89.2 50.7 12.7 27.6 60.7
ADAS 64.5 76.6 82.4 53.4 90.8 35.4 10.4 21.2 54.3
AFlow 73.5 80.6 94.7 83.4 93.5 56.2 17.4 28.5 65.6
Ours 73.8 82.4 94.7 84.0 94.6 61.5 22.6 34.4 68.5

Table 1: Performance comparison across three domains: question answering, code generation, and mathematics.
Best results are shown in bold, and second-best results are underlined. In our method, GPT-4.1 is used for workflow
refinement, while GPT-4o-mini-0718 is responsible for workflow execution.

6.2 Ablation Study438

Ablation on Reflection To evaluate the impact439

of the reflection module in the outer loop, we con-440

duct an ablation study on the MATH dataset. We441

use GPT-4.1 for workflow updates and GPT-4o-442

mini-0718 for workflow execution. In the ablated443

setting, denoted as w/o reflection, we remove the444

reflection step where the model samples and revises445

failed cases after the initial outer-loop update. As446

shown in Table 2, incorporating reflection consis-447

tently leads to better performance across iterations,448

with a final accuracy of 61.5 compared to 60.2449

without reflection. This highlights the importance450

of targeted self-correction in enhancing workflow451

robustness and adaptability.452

Outer Loop Iteration 1 2 3

w/o reflection 56.7 58.2 60.2
ours 57.2 58.6 61.5

Table 2: Performance comparison across iterations on
the MATH dataset. w/o reflection denotes the setting
without the reflection component, while ours includes
it.

Subtask w/o adaptation ours

Prealgebra 73.1 76.4
Precalculus 20.8 21.4

Counting & Probability 61.9 63.1
Number Theory 68.3 73.9

Overall 58.0 61.5

Table 3: Ablation results on math subtasks with and
without test-time adaptation. w/o adaptation disables
test-time adaptation.

Ablation on Test-Time Adaptation To assess 453

the effectiveness of our test-time adaptation strat- 454

egy, we conduct an ablation study on four math- 455

ematical reasoning subtasks: Prealgebra, Precal- 456

culus, Counting & Probability, and Number The- 457

ory. As shown in Table 3, removing the adaptation 458

module results in a consistent drop in performance 459

across all subtasks. Notably, the largest improve- 460

ment is observed in Number Theory, where accu- 461

racy increases from 68.3 to 73.9, suggesting that 462

adaptation plays a crucial role in handling complex 463

symbolic reasoning. The overall average accuracy 464

improves by 3.5 points, confirming that test-time re- 465

finement enhances the generalization of the global 466

workflow to previously unseen problems. 467

6.3 Convergence Analysis 468

We analyze the convergence behavior of both inner 469

and outer loops on the MATH dataset, as shown in 470

Figure 3. The inner loop exhibits noticeable fluctu- 471

ations due to the accumulation of long-context de- 472

pendencies and the large workflow search space, a 473

challenge also observed in ADAS (Hu et al., 2024). 474

Despite this, our constrained update mechanism 475

helps maintain reasonable performance at each step. 476

In contrast, the outer loop shows steady improve- 477

ment, as it only aggregates the best-performing 478

workflows from each subtask, leading to more sta- 479

ble and reliable updates at the meta level. These 480

results demonstrate that our method effectively en- 481

sures convergence throughout the optimization pro- 482

cess, addressing the core challenge of C2. 483

6.4 Model Agnostic Analysis 484

To assess generality, we evaluate our method on 485

the MATH dataset using four LLMs: GPT-4o- 486

mini, GPT-4o, Claude-3.5-Sonnet, and DeepSeek- 487

V2.5. As shown in Table 4, our method consis- 488

tently achieves the best performance, demonstrat- 489

7

Model Method
Vanilla COT Reflexion LLM debate Step-back Abstraction Quality Diversity Role Assignment Ours

GPT-4o-mini 48.2 49.9 49.3 52.7 47.9 50.5 50.7 61.5
GPT-4o 53.8 53.7 54.2 55.1 53.3 56.6 53.3 63.6

claude-3-5-sonnet 20.4 22.6 22.6 23.8 20.7 21.4 20.1 27.8
DeepSeek-V2.5 52.6 52.0 53.3 54.1 52.8 55.1 53.5 61.1

Table 4: Model-agnostic performance comparison across various workflow optimization methods on the MATH
dataset. Ours consistently achieves the highest accuracy across all LLM backbones.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Inner Loop Iteration

20

40

60

So
lv

e
R

at
e

(%
)

Inner & Outer Loop Convergence Analysis

counting and probability(inner)
number theory(inner)
prealgebra(inner)
precalculus(inner)
overall(outer)

1 2 3
Outer Loop Iteration

Figure 3: Convergence behavior of the inner and outer
optimization loops on the MATH dataset. The inner
loop (solid lines) shows fluctuations in solve rate across
iterations for each subtask, with a maximum of 6 iter-
ations per subtask, while the outer loop (dashed line)
steadily improves overall performance by aggregating
the best workflows per subtask.

ing strong robustness and generalization.490

While absolute performance varies across LLMs,491

our method consistently outperforms all baselines.492

The lower accuracy of Claude-3.5-Sonnet may493

stem from its weaker handling of structured outputs494

like JSON, which are central to our answer extrac-495

tion pipeline. Nonetheless, our approach remains496

effective across model families without requiring497

model-specific customization.498

6.5 Case Study499

We present a case study to illustrate how the outer500

loop aggregates subtask-specific workflows into a501

unified workflow (Table 5). The All column repre-502

sents the workflow obtained after outer-loop aggre-503

gation, while other columns correspond to the best504

inner-loop workflows for each subtask.505

Shared Front-End. All workflows include three506

core modules: DA (Diverse Agents), AE (Answer507

Extraction), and CS (Consensus). These ensure508

solution diversity, consistent answer formats, and509

Module All PreC PreA NT C&P
DA ✓ ✓ ✓ ✓ ✓

AE ✓ ✓ ✓ ✓ ✓

CS ✓ ✓ ✓ ✓ ✓

VF ✓ ✓ ✗ ✗ ✗

CL ✓ ✗ ✗ ✗ ✗

SY ✓ ✓ ✓ ✓ ✓

VT ✗ ✗ ✗ ✓ ✗

AD ✗ ✗ ✓ ✗ ✗

Table 5: Module usage across subtasks on the MATH
dataset. Each column represents a workflow configura-
tion: All denotes the final workflow obtained after the
third round of outer-loop optimization, while the others
reflect the best inner-loop workflows before aggregation.
Subtask abbreviations: PreC = Precalculus, PreA =
Prealgebra, NT = Number Theory, C&P = Counting
& Probability. Module abbreviations: DA = Diverse
Agents, AE = Answer Extraction, CS = Consensus, VF
= Verifier, CL = Clarifier, SY = Synthesis, VT = Value
Tracker, AD = Approximation Detector. ✓ indicates
module is used; ✗ indicates not used.

stable outputs, forming a robust foundation appli- 510

cable across domains. 511

Task-Specific Modules. Additional modules are 512

selectively introduced based on subtask character- 513

istics. For example, AD (Approximation Detector) 514

in Prealgebra handles rounding mismatches, while 515

VT (Value Tracker) in Number Theory tracks inter- 516

mediate values in multi-step reasoning. 517

This modular design supports both generaliza- 518

tion and specialization, enabling high performance 519

across diverse mathematical tasks. 520

7 Conclusion 521

We introduced AdaptFlow, a bi-level meta- 522

optimization framework that learns adaptable agen- 523

tic workflows via LLM-guided symbolic feedback. 524

Across eight benchmarks, AdaptFlow outperforms 525

both manual and automated baselines, with com- 526

ponents like reflection and test-time adaptation en- 527

hancing robustness. Overall, it offers a scalable, 528

model-agnostic solution for automating workflow 529

design. 530

8

Limitations531

While AdaptFlow achieves strong generalization,532

it has two primary limitations. First, the quality of533

symbolic updates depends on LLM-generated tex-534

tual feedback, which can be vague or insufficiently535

detailed for complex failure cases. More structured536

or fine-grained feedback could improve update pre-537

cision. Second, the optimization process requires538

repeated LLM queries, leading to non-trivial com-539

putational costs. Reducing query overhead through540

more efficient adaptation strategies is an important541

direction for future work.542

References543

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama544
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,545
Diogo Almeida, Janko Altenschmidt, Sam Altman,546
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-547
cal report. arXiv preprint arXiv:2303.08774.548

Anthropic. 2024. Claude 3.5 sonnet. Avail-549
able at https://www.anthropic.com/index/550
claude-3-5.551

Jacob Austin, Augustus Odena, Maxwell Nye, and 1552
others. 2021. Program synthesis with large language553
models. In NeurIPS.554

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, and555
et al. 2022. Training a helpful and harmless assistant556
with reinforcement learning from human feedback.557
arXiv preprint arXiv:2204.05862.558

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,559
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin560
Shi. 2023. Autoagents: A framework for automatic561
agent generation. arXiv preprint arXiv:2309.17288.562

Mark Chen, Jerry Tworek, Heewoo Jun, and 1 others.563
2021. Evaluating large language models trained on564
code. arXiv preprint arXiv:2107.03374.565

Karl Cobbe and 1 others. 2021. Training verifiers566
to solve math word problems. arXiv preprint567
arXiv:2104.03235.568

Antonia Creswell and Murray Shanahan. 2023.569
Selection-inference: Exploiting large language mod-570
els for interpretable logical reasoning. arXiv preprint571
arXiv:2305.05642.572

DeepSeek. 2024. Deepseek-v2.5. Available at https:573
//deepseek.com.574

Yixin Du and 1 others. 2023. The devil is in the debate:575
On the utility of argumentative dialogue agents for576
reasoning. arXiv preprint arXiv:2305.14325.577

Dheeru Dua and 1 others. 2019. Drop: A reading com-578
prehension benchmark requiring discrete reasoning579
over paragraphs. In NAACL.580

Bas Fernando, Azalia Mirhoseini, Andrew Dai, and 581
Quoc Le. 2023. Promptbreeder: Towards the 582
automatic evolution of prompts. arXiv preprint 583
arXiv:2309.00680. 584

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. 585
Model-agnostic meta-learning for fast adaptation of 586
deep networks. In International conference on ma- 587
chine learning, pages 1126–1135. PMLR. 588

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 589
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 590
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 591
Deepseek-r1: Incentivizing reasoning capability in 592
llms via reinforcement learning. arXiv preprint 593
arXiv:2501.12948. 594

Jiahao Guo, Zifan Wang, Sheng Zha, Xiaodong Wang, 595
Xin Jin, and Dacheng Tao. 2023. Evoprompt: Lan- 596
guage model guided genetic prompt optimization. 597
arXiv preprint arXiv:2309.07932. 598

Dan Hendrycks and 1 others. 2021. Measuring mathe- 599
matical problem solving with the math dataset. arXiv 600
preprint arXiv:2103.03874. 601

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, 602
Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang 603
Li, Jiaqi Chen, Jiayi Zhang, and 1 others. 2024a. 604
Data interpreter: An llm agent for data science. arXiv 605
preprint arXiv:2402.18679. 606

Yujia Hong, Junyang Wu, Fan Zhang, and Shuo Zhang. 607
2024b. Adaptive agents with code and memory 608
for solving math word problems. arXiv preprint 609
arXiv:2403.01290. 610

Yujia Hong, Junyang Wu, Fan Zhang, and Shuo Zhang. 611
2024c. Sweagent: Code generation via struc- 612
tured workflow execution with llms. arXiv preprint 613
arXiv:2403.01290. 614

Shengran Hu, Cong Lu, and Jeff Clune. 2024. Au- 615
tomated design of agentic systems. arXiv preprint 616
arXiv:2408.08435. 617

Omar Khattab, Bhanukiran Vinzamuri Akula, and 1 oth- 618
ers. 2023. Dspy: Expressive, modular prompting for 619
language models. arXiv preprint arXiv:2310.01348. 620

Tao Li, Jiacheng Liu, Yichi Zhang, and 1 others. 2024a. 621
Autoda: Towards data analysis automation with large 622
language models. arXiv preprint arXiv:2403.18270. 623

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Bal- 624
aji Rama, Om Raheja, Hao Wang, He Zhu, and 625
Yongfeng Zhang. 2024b. Autoflow: Automated 626
workflow generation for large language model agents. 627
arXiv preprint arXiv:2407.12821. 628

Zhen Liu, Wentao Wu, Yuke Zhu, and Zhiwei Steven 629
Ling. 2023. Llm-planner: Few-shot grounded plan- 630
ning for embodied agents with large language models. 631
arXiv preprint arXiv:2303.13455. 632

9

https://www.anthropic.com/index/claude-3-5
https://www.anthropic.com/index/claude-3-5
https://www.anthropic.com/index/claude-3-5
https://deepseek.com
https://deepseek.com
https://deepseek.com

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi633
Yang. 2024. A dynamic llm-powered agent network634
for task-oriented agent collaboration. In First Con-635
ference on Language Modeling.636

J. MacQueen. 1967. Some methods for classification637
and analysis of multivariate observations. In Proceed-638
ings of the Fifth Berkeley Symposium on Mathemat-639
ical Statistics and Probability, Volume 1: Statistics,640
pages 281–297. University of California Press.641

Erik Nijkamp, Ziyang Tu, Zexue Lin, and et al.642
2023. Codegen2: Lessons for training llms on pro-643
gramming and natural languages. arXiv preprint644
arXiv:2305.02309.645

Harsha Nori, Michael R. King, Scott M. McKinney, and646
1 others. 2023. Capabilities of gpt-4 on medical chal-647
lenge problems. arXiv preprint arXiv:2303.13375.648

OpenAI. 2023. Aime benchmark for mathematical649
reasoning. https://openai.com/research. Accessed650
2024.651

OpenAI. 2024a. Gpt-4.1 overview. Available at https:652
//openai.com/index/gpt-4-1/.653

OpenAI. 2024b. Gpt-4o-mini-0718. Available via Ope-654
nAI API.655

OpenAI. 2024c. Introducing gpt-4o. Available at656
https://openai.com/index/hello-gpt-4o/.657

Yujia Qian and 1 others. 2023. Role-play prompting for658
multi-agent collaboration with llms. arXiv preprint659
arXiv:2305.14325.660

Chenyan Qin, Kang Liu, Yaqing Zhang, and 1 others.661
2023. Toolllm: Facilitating large language models to662
master 160+ tools. arXiv preprint arXiv:2307.16789.663

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and664
Percy Liang. 2016. Squad: 100,000+ questions for665
machine comprehension of text. EMNLP.666

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:667
Sentence embeddings using siamese bert-networks.668
In Proceedings of the 2019 Conference on Empiri-669
cal Methods in Natural Language Processing, pages670
3982–3992. Association for Computational Linguis-671
tics.672

Tomer Ridnik, Yuval Shalev, Achiya Noy, and 1 oth-673
ers. 2024. Coding agents: Interactive code genera-674
tion via llm planning and execution. arXiv preprint675
arXiv:2402.03345.676

Javier Saad-Falcon, Ren Liu, Anthony Chan, and Allen677
Lin. 2024. Hyperparameter optimization in agentic678
llm pipelines. arXiv preprint arXiv:2401.04903.679

Timo Schick, Ananya Dwivedi-Yu, Hinrich Schütze,680
and Peter Prettenhofer. 2023. Toolformer: Language681
models can teach themselves to use tools. arXiv682
preprint arXiv:2302.04761.683

Noah Shinn, Federico Cassano, Ashwin Gopinath, 684
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 685
flexion: Language agents with verbal reinforcement 686
learning. Advances in Neural Information Process- 687
ing Systems, 36:8634–8652. 688

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, 689
Ao Luo, Shijian Wang, Qingyun Wu, and Chi 690
Wang. 2024. Adaptive in-conversation team build- 691
ing for language model agents. arXiv preprint 692
arXiv:2405.19425. 693

Yichi Wang and 1 others. 2023. Large language mod- 694
els as optimizers for quality-diversity search. arXiv 695
preprint arXiv:2303.05832. 696

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, 697
and Bryon Aragam. 2025. Scoreflow: Mastering llm 698
agent workflows via score-based preference optimiza- 699
tion. arXiv preprint arXiv:2502.04306. 700

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 701
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 702
and 1 others. 2022. Chain-of-thought prompting elic- 703
its reasoning in large language models. Advances 704
in neural information processing systems, 35:24824– 705
24837. 706

Jinyuan Xie, Yang Yang, Ziyang Zhang, and 1 oth- 707
ers. 2024. Autonova: Generating llm pipelines for 708
data science via prompt evolution. arXiv preprint 709
arXiv:2402.04002. 710

Yicheng Xu, Wei Zhang, Tao Li, and Shuo Zhang. 2024. 711
Towards generalizable agents for mathematical rea- 712
soning. arXiv preprint arXiv:2402.09399. 713

Zhilin Yang and 1 others. 2018. Hotpotqa: A dataset for 714
diverse, explainable multi-hop question answering. 715
arXiv preprint arXiv:1809.09600. 716

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 717
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 718
2023. Tree of thoughts: Deliberate problem solving 719
with large language models. Advances in neural 720
information processing systems, 36:11809–11822. 721

Qinyuan Ye, Xiao Liu, Yichong Zhou, and Shuo Zhang. 722
2024. Llm-dp: Towards autonomous data processing 723
agents. arXiv preprint arXiv:2403.05923. 724

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng 725
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tian- 726
long Chen, and Dawei Cheng. 2024a. G-designer: 727
Architecting multi-agent communication topolo- 728
gies via graph neural networks. arXiv preprint 729
arXiv:2410.11782. 730

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, 731
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin 732
Cheng, Sirui Hong, Jinlin Wang, and 1 others. 2024b. 733
Aflow: Automating agentic workflow generation. 734
arXiv preprint arXiv:2410.10762. 735

10

https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/hello-gpt-4o/

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,736
Chris Brockett, Xiang Gao, Jianfeng Gao, and Bill737
Dolan. 2020. Dialogpt: Large-scale generative pre-738
training for conversational response generation. ACL.739

Yilun Zhao, Yuan Yang, Zecheng Hu, and 1 others.740
2024. Agentcoder: Integrating planning and exe-741
cution for code generation agents. arXiv preprint742
arXiv:2403.14260.743

Licheng Zhong, Yiding Li, Yichong Zhou, and Shuo744
Zhang. 2024. Mathagent: Math reasoning with745
retrieval-augmented code agents. arXiv preprint746
arXiv:2402.03620.747

Xuezhi Zhou and 1 others. 2022. Least-to-most prompt-748
ing enables complex reasoning in large language749
models. arXiv preprint arXiv:2205.10625.750

Yichong Zhou, Bowen Zhang, Yujia Hong, and Shuo751
Zhang. 2024a. Reasoning agents: Llm-as-policy752
for compositional task solving. arXiv preprint753
arXiv:2404.01865.754

Yifan Zhou, Yecheng Li, Runzhe Xu, and 1 others.755
2024b. Llm+p: Empowering large language mod-756
els with planning for complex tasks. arXiv preprint757
arXiv:2403.03031.758

Zeyu Zhu and 1 others. 2024. Olympiadbench: A bench-759
mark for mathematical reasoning at the olympiad760
level. arXiv preprint arXiv:2402.00000.761

Yujia Zhuge, Qinyuan Ye, Xiao Liu, Shujie Wang, and762
Furu Wei. 2023. Gptswarm: Multi-agent collabora-763
tion via llm-based swarm intelligence. arXiv preprint764
arXiv:2311.16688.765

A Appendix766

A.1 Dataset Details767

Our experiments span eight public benchmarks768

across three major domains: question answering,769

code generation, and mathematical reasoning. Ta-770

ble 6 summarizes the dataset statistics, including771

the number of validation/test instances and the num-772

ber of subtasks for each dataset. Each subtask repre-773

sents a semantically or structurally coherent group774

of problems, enabling more focused workflow spe-775

cialization during meta-optimization.776

For question answering, we use subsets of HOT-777

POTQA and DROP, each containing 1,000 exam-778

ples in total, with a 1:4 split for validation and779

testing. The examples are clustered into six sub-780

tasks based on instruction similarity. Similarly, in781

the coding domain, HUMANEVAL and MBPP are782

divided into three and four subtasks, respectively,783

reflecting different code generation patterns.784

In the mathematics domain, the datasets exhibit785

more diverse task structures. For GSM8K and786

AIME, we apply instruction-level clustering to de- 787

rive six distinct subtasks per dataset, capturing vari- 788

ations in reasoning complexity and problem format. 789

Notably, two datasets—MATH and OLYMPIAD- 790

BENCH—come with predefined topic categories, 791

and thus do not undergo clustering. The MATH 792

dataset contains high school-level math problems 793

and is partitioned into four canonical categories: 794

Prealgebra, Precalculus, Number Theory, and 795

Counting & Probability, following the protocol 796

introduced by Hendrycks et al. (2021). These 797

categories capture distinct types of mathematical 798

reasoning, from basic arithmetic to combinatorial 799

logic. 800

Likewise, OLYMPIADBENCH is sourced from 801

competitive mathematics exams and is naturally 802

divided into four topics: Algebra, Combinatorics, 803

Geometry, and Number Theory, as defined in the 804

original benchmark by Zhu et al. (2024). These top- 805

ics correspond to challenging mathematical reason- 806

ing tasks requiring manipulation, multi-step deriva- 807

tion, and rigorous abstraction. 808

Overall, our dataset setup provides a rich and 809

heterogeneous landscape for evaluating workflow 810

generalization, supporting both cluster-derived and 811

taxonomy-preserving subtask definitions across do- 812

mains. 813

A.2 Analogy Explanation 814

Figure 2 visualizes the analogy between neural 815

network optimization and workflow optimization, 816

which forms the conceptual foundation for our 817

method. Here, we detail the core correspondences 818

both at the structure level (parameters, updates, gra- 819

dients) and at the algorithmic level (meta-learning 820

procedure). 821

Structure-Level Analogy. In traditional super- 822

vised learning, model training involves continuous 823

optimization of parameters θ using gradients ∇θL 824

derived from a differentiable loss. In contrast, our 825

workflow optimization operates in a discrete, space, 826

where the workflowW is updated through textual 827

feedback generated by LLMs. The following table 828

presents the one-to-one mapping: 829

Meta-Learning Analogy: MAML vs. Adapt- 830

Flow. At the algorithmic level, AdaptFlow 831

is inspired by Model-Agnostic Meta-Learning 832

(MAML), but adapted to the setting. While MAML 833

learns a parameter initialization θ that can rapidly 834

adapt via gradient updates, AdaptFlow learns a 835

11

QA Coding MATH
HOTPOTQA DROP HUMANEVAL MBPP GSM8K MATH AIME OLYMPIADBENCH

Validation Size 200 200 33 86 264 119 91 51
Val. Subtasks 6 6 3 4 6 4 6 4
Test Size 800 800 131 341 1055 486 373 212
Test Subtasks 6 6 3 4 6 4 6 4

Table 6: Dataset statistics for each domain and subtask. Validation/test sizes represent the number of instances used
for evaluation, and subtask numbers denote the total distinct subtasks grouped under each benchmark.

Neural Network Optimization Workflow Optimization (AdaptFlow)
Model parameters θ Workflow structureW
Loss function L(fθ(x), y) Utility function J(W, T)

Gradient∇θL Textual gradient ∇̃J (LLM feedback)
Gradient descent update θ ← θ − η∇θL Symbolic updateW ′ ← U1(W, ∇̃J)
Batch of examples {(xi, yi)} Batch of tasks or subtask data Tt

Table 7: Structure-level analogy between differentiable model optimization and discrete workflow optimization.

generalizable workflow W that adapts via LLM-836

generated updates. The table below compares the837

two approaches step-by-step:838

Together, these analogies highlight how Adapt-839

Flow generalizes the principles of meta-learning840

to the domain of agentic workflow optimization in841

spaces.842

A.3 Prompt Templates843

A.3.1 Inner Loop Workflow Optimization844

Prompt845

846
Overview847
You are an expert machine learning researcher848

testing various agentic systems. Your849
objective is to design building blocks such850
as prompts and control flows within these851
systems to solve complex tasks. Your aim is852
to design an optimal agent performing well853
on the MATH dataset, which evaluates854
mathematical problem-solving abilities855
across various mathematical domains856
including algebra, counting and probability,857
geometry, intermediate algebra, number858

theory, prealgebra and precalculus.859
860

An example question from MATH:861
862

instruction (Not Given): Solve the following863
problem and provide a detailed solution.864

Present the final answer using the \boxed{}865
format.866

867
question: question868

869
solution (Not Given): solution870

871
Discovered architecture archive872
Here is the archive of the discovered873

architectures:874
875

[ARCHIVE]876

877
The fitness value is defined as the accuracy on 878

a validation question set. Your goal is to 879
maximize this fitness. You should use your 880
own judgment to decide whether to optimize 881
on the latest architecture, as its 882
performance may not necessarily be better. 883

884
Output Instruction and Example: 885
The first key should be ("thought"), and it 886

should capture your thought process for 887
designing the next function. In the "thought 888
" section, first reason about what should be 889
the next interesting agent to try, then 890
describe your reasoning and the overall 891
concept behind the agent design, and finally 892
detail the implementation steps. 893

The second key ("name") corresponds to the name 894
of your next agent architecture. 895

Finally, the last key ("code") corresponds to 896
the exact âĂforward()âĂİ function in Python 897
code that you would like to try. You must 898
write a COMPLETE CODE in "code": Your code 899
will be part of the entire project, so 900
please implement complete, reliable, 901
reusable code snippets. 902

903
Here is an example of the output format for the 904

next agent architecture: 905
906

[EXAMPLE] 907
908

You must use the exact function interface used 909
above. You need to specify the instruction, 910
input information, and the required output 911
fields for various LLM agents to do their 912
specific part of the architecture. Also, it 913
could be helpful to set the LLMâĂŹs role and 914
temperature to further control the LLMâĂŹs 915
response. Note that the LLMAgentBase() will 916
automatically parse the output and return a 917
list of âĂInfosâĂİ. You can get the content 918
by Infos.content. DO NOT FORGET the taskInfo 919
input to LLM if you think it is needed, 920
otherwise LLM will not know about the task. 921

922

12

MAML (Finn et al., 2017) AdaptFlow (Ours)
Model initialization θ Workflow initializationW
Task-specific adaptation via θ′ ← θ − α∇θLT Subtask-specific refinement viaW ′ ← U1(W, ∇̃J)
Compute outer gradient from θ′ Aggregate textual feedback from refined workflows {∇̃Jt}
Outer update: θ ← θ − β∇θ

∑
LTi(θ

′
i) Meta update: W ← U2(W, G({∇̃Jt}))

Adaptation via differentiable gradient Adaptation via textual feedback
Few-shot generalization to new tasks Test-time adaptation viaW∗ ← U3(W,F(T ′

t))

Table 8: Algorithm-level comparison between MAML and AdaptFlow.

Your task923
You are deeply familiar with LLM prompting924

techniques and LLM agent works from the925
literature. Your goal is to maximize "926
fitness" by proposing interestingly new927
agents.928

Observe the discovered architectures carefully929
and think about what insights, lessons, or930
stepping stones can be learned from them.931

Please focus on the architecture with the932
optimal fitness, and based on that, propose933
what you believe is the most likely next934
agent architecture. Note that each935
optimization step can involve adding one or936
two new modules to the current best solution937
, or proposing an entirely novel solution.938
However, it's important to ensure that each939
change remains relatively simple and not940
overly complex.941942

A.3.2 Outer Loop Workflow Optimization943

Prompt944

945
Overview946
You are an expert machine learning researcher947

testing various agentic systems. Your948
objective is to design building blocks such949
as prompts and control flows within these950
systems to solve complex tasks. Your aim is951
to design an optimal agent performing well952
on the MATH dataset, which evaluates953
mathematical problem-solving abilities954
across various mathematical domains955
including algebra, counting and probability,956
geometry, intermediate algebra, number957

theory, prealgebra and precalculus.958
959

An example question from MATH:960
961

instruction (Not Given): Solve the following962
problem and provide a detailed solution.963

Present the final answer using the \\boxed{}964
format.965

966
question: question967

968
solution (Not Given): solution969

970
Note: We divide the overall MATH task into seven971

distinct subtasks. Below is the performance972
of the Discovered Architecture Archive on973

each of these seven subtasks.974
Discovered Architecture Archive975

The following presents the archive of the 976
discovered architectures on seven subtasks 977
as well as the full MATH task: 978

979
[ARCHIVE_LIST] 980

981
The fitness value is defined as the accuracy on 982

a validation question set. Your goal is to 983
identify an architecture that either 984
maximizes fitness across the seven subtasks 985
or can quickly evolve toward that goal. Note 986
that you should not limit yourself to only 987
the most recently generated 988
architecturesâĂŤyour objective is to 989
maximize this fitness. 990

Output Instruction and Example: 991
The first key should be ("thought"), and it 992

should capture your thought process for 993
designing the next function. In the "thought 994
" section, first reason about what should be 995
the next interesting agent to try, then 996
describe your reasoning and the overall 997
concept behind the agent design, and finally 998
detail the implementation steps. 999

The second key ("name") corresponds to the name 1000
of your next agent architecture. 1001

Finally, the last key ("code") corresponds to 1002
the exact âĂforward()âĂİ function in Python 1003
code that you would like to try. You must 1004
write a COMPLETE CODE in "code": Your code 1005
will be part of the entire project, so 1006
please implement complete, reliable, 1007
reusable code snippets. 1008

1009
Here is an example of the output format for the 1010

next agent architecture: 1011
1012

[EXAMPLE] 1013
1014

You must use the exact function interface used 1015
above. You need to specify the instruction, 1016
input information, and the required output 1017
fields for various LLM agents to do their 1018
specific part of the architecture. 1019

Also, it could be helpful to set the LLMâĂŹs 1020
role and temperature to further control the 1021
LLMâĂŹs response. Note that the LLMAgentBase 1022
() will automatically parse the output and 1023
return a list of âĂInfosâĂİ. You can get the 1024
content by Infos.content. 1025

DO NOT FORGET the taskInfo input to LLM if you 1026
think it is needed, otherwise LLM will not 1027
know about the task. 1028

1029
WRONG Implementation examples: 1030
Here are some mistakes you may make: 1031

13

1032
1. This is WRONG: ```1033
feedback, correct = critic_agent([taskInfo,1034

thinking, answer], critic_instruction, i)1035
feedback_info = verifier_agent([taskInfo, Info('1036

feedback', 'Critic Agent', thinking, 0)],1037
verification_instruction)1038

```1039
It is wrong to use "Info('feedback', 'Critic1040

Agent', thinking, 0)". The returned "1041
feedback" from LLMAgentBase is already Info.1042

1043
# Your task1044
You are well-versed in LLM prompting techniques1045

and agent-based frameworks from the1046
literature. You are tasked with designing a1047
new agent architecture based on the best-1048
performing solutions from each subtask of1049
the MATH benchmark. The goal is for this new1050
architecture to satisfy at least one of the1051
following criteria:1052

1053
It effectively integrates key modules and1054

features from the optimal solutions of1055
individual subtasks, resulting in a1056
generalizable and adaptable architecture1057
that performs well across all subtasks;1058

1059
Alternatively, the architecture should exhibit1060

strong adaptability and rapid update1061
capabilities, allowing it to quickly evolve1062
and converge toward the optimal solution for1063
each specific subtask.1064

However, you should ensure that the newly1065
generated frameworks is not significantly1066
more complex than the original one, and you1067
may also remove some redundant LLM1068
invocation code.10691070

A.3.3 Reflection Prompt1071

1072
We noticed that the current agent is prone to1073

making mistakes when handling the following1074
cases:1075

[CASE_LIST]1076
1077

Please analyze the reasons for these mistakes1078
and propose improvements.1079

1080
Your response should be organized as follows:1081

1082
"reflection": Provide your thoughts on the1083

mistakes in the implementation, and suggest1084
improvements.1085

1086
"thought": Revise your previous proposal or1087

propose a new architecture if necessary,1088
using the same format as the example1089
response.1090

1091
"name": Provide a name for the revised or new1092

architecture. (Don't put words like "new" or1093
"improved" in the name.)1094

1095
"code": Provide the corrected code or an1096

improved implementation. Make sure you1097
actually implement your fix and improvement1098
in this code.10991100

A.3.4 Test-Time Adaptation Workflow 1101

Optimization Prompt 1102

1103
# Overview 1104
You are an expert machine learning researcher 1105

testing various agentic systems. Your 1106
objective is to design building blocks such 1107
as prompts and control flows within these 1108
systems to solve complex tasks. Your goal is 1109
to design an optimal agent that performs 1110
well on the MATH dataset. You may analyze 1111
the characteristics of these problems and 1112
then design an agent capable of effectively 1113
solving them. 1114

1115
[TASK_DSC] 1116

1117
Note: Your goal is to design an improved agent 1118

based on the previous agent, tailored to the 1119
characteristics of the current task. We aim 1120
to rapidly enhance the performance of the 1121
current agent. 1122

1123
# Output Instruction and Example: 1124
The first key should be ("thought"), and it 1125

should capture your thought process for 1126
designing the next function. In the "thought 1127
" section, first reason about what should be 1128
the next interesting agent to try, then 1129
describe your reasoning and the overall 1130
concept behind the agent design, and finally 1131
detail the implementation steps. 1132

The second key ("name") corresponds to the name 1133
of your next agent architecture. 1134

Finally, the last key ("code") corresponds to 1135
the exact âĂforward()âĂİ function in Python 1136
code that you would like to try. You must 1137
write a COMPLETE CODE in "code": Your code 1138
will be part of the entire project, so 1139
please implement complete, reliable, 1140
reusable code snippets. 1141

1142
Here is an example of the output format for the 1143

next agent architecture: 1144
1145

[EXAMPLE] 1146
1147

You must use the exact function interface used 1148
above. You need to specify the instruction, 1149
input information, and the required output 1150
fields for various LLM agents to do their 1151
specific part of the architecture. 1152

Also, it could be helpful to set the LLMâĂŹs 1153
role and temperature to further control the 1154
LLMâĂŹs response. Note that the LLMAgentBase 1155
() will automatically parse the output and 1156
return a list of âĂInfosâĂİ. You can get the 1157
content by Infos.content. 1158

DO NOT FORGET the taskInfo input to LLM if you 1159
think it is needed, otherwise LLM will not 1160
know about the task. 1161

1162
# Your task 1163
You are well-versed in LLM prompting techniques 1164

and agent-based frameworks from the 1165
literature. You are tasked with designing a 1166
new agent architecture based on the previous 1167
agent to solve the current task. 11681169

14



A.4 Workflow Case1170

To provide a concrete illustration of our system’s1171

output, we present the workflow code generated in1172

the final outer-loop iteration on the MATH dataset.1173

This example reflects the culmination of iterative1174

refinement across subtasks and highlights the inte-1175

gration of shared and task-specific modules.1176

1177
def forward(self, taskInfo):1178

import re1179
from collections import Counter1180

1181
def extract(text):1182

for p in [r'\\boxed{([^}]*)}', r'\(([^)1183
]+)\)', r'\\frac{[^}]*}{[^}]*}', r'(\1184
d+)\s*$']:1185
m = re.search(p, text)1186
if m: return m.group(0).strip()1187

1188
roles = ['Math Professor', 'Grade School1189

Teacher', 'Math Enthusiast', 'Math1190
Olympiad Student', 'Helpful Assistant']1191

agents = [LLMAgentBase(['thinking', 'solution1192
'], f'A{i}', role=r, temperature=0.7 +1193
0.1*i) for i, r in enumerate(roles)]1194

sols = [a([taskInfo], "Please think step by1195
step and solve.", i) for i, a in1196
enumerate(agents)]1197

1198
ext_agent = LLMAgentBase(['extracted_answer1199

'], 'Extractor', role='Answer Extractor',1200
temperature=0.1)1201

answers, amap = [], {}1202
for i, (t, s) in enumerate(sols):1203

ans = ext_agent([taskInfo, s], "Extract1204
ONLY final boxed answer.", i)[0].1205
content.strip() or extract(s.content)1206

if ans: answers.append(ans); amap.1207
setdefault(ans, (t, s))1208

1209
top = Counter(answers).most_common()1210
if top:1211

top_answers = [a for a, c in top if c ==1212
top[0][1]]1213

if len(top_answers) == 1:1214
_, sol = amap[top_answers[0]]1215

else:1216
inputs = [taskInfo] + sum((list(amap[1217

a]) for a in top_answers), []) +1218
[Info('extracted_answer', '', a,1219
-1) for a in top_answers]1220

sol = LLMAgentBase(['thinking', '1221
solution'], 'Final Decider',1222
temperature=0.1)(inputs, "Choose1223
best answer.")[1]1224

else:1225
inputs = [taskInfo] + sum(([t, s] for t,1226

s in sols), [])1227
sol = LLMAgentBase(['thinking', 'solution1228

'], 'Fallback Decider', temperature1229
=0.1)(inputs, "Choose among all.")[1]1230

1231
verifier = LLMAgentBase(['feedback', 'correct1232

'], 'Verifier', role='Checker',1233
temperature=0.1)1234

clarifier = LLMAgentBase(['clarification'], '1235
Clarifier', role='Solver', temperature1236

=0.4) 1237
synthesizer = LLMAgentBase(['thinking', ' 1238

solution'], 'Synth', temperature=0.3) 1239
1240

for i in range(2): 1241
ext = ext_agent([taskInfo, sol], "Extract 1242

ONLY final boxed answer.", 100+i)[0] 1243
fb, ok = verifier([taskInfo, sol, ext], " 1244

Check correctness.", i) 1245
if ok.content == 'True': return sol 1246

1247
clar, = clarifier([taskInfo, sol, fb], " 1248

Respond to critique.", i) 1249
fb2, ok2 = verifier([taskInfo, sol, ext, 1250

clar], "Recheck solution.", 100+i) 1251
if ok2.content == 'True': return sol 1252

1253
syn_inputs = [taskInfo, sol, fb2, clar] + 1254

sum(sols, []) + [Info(' 1255
extracted_answer', '', a, -1) for a 1256
in answers if a] 1257

sol = synthesizer(syn_inputs, "Revise or 1258
synthesize.")[1] 1259

1260
return sol 12611262

15


	Introduction
	Related Work
	Agentic Workflow
	Agentic Workflow Optimization

	Preliminaries
	Problem Formulation
	Analogy: From Supervised Learning to Agentic Workflow Optimization
	Model-Agnostic Meta-Learning

	Methodology
	Overview
	Task Clustering
	Bi-Level Workflow Optimization
	Test-Time Adaptation

	Experiment Setup
	Results and Analysis
	Main Results
	Ablation Study
	Convergence Analysis
	Model Agnostic Analysis
	Case Study

	Conclusion
	Appendix
	Dataset Details
	Analogy Explanation
	Prompt Templates
	Inner Loop Workflow Optimization Prompt
	Outer Loop Workflow Optimization Prompt
	Reflection Prompt
	Test-Time Adaptation Workflow Optimization Prompt

	Workflow Case


