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ABSTRACT

Safety is a key challenge in reinforcement learning (RL), especially in real-world
applications like autonomous driving and healthcare. To address this, Constrained
Markov Decision Processes (CMDPs) are commonly used to incorporate safety
constraints while optimizing performance. However, current methods often face
significant safety violations during exploration or suffer from high regret, which
represents the performance loss compared to an optimal policy. We propose a low-
switching primal-dual algorithm that balances regret with bounded constraint vi-
olations, drawing on techniques from online learning and CMDPs. Our approach
minimizes policy changes through low-switching updates and enhances sample
efficiency using Bernstein-based bonuses. This leads to tighter theoretical bounds
on regret and safety, achieving a state-of-the-art regret of Õ(

√
SAH5K/(τ−c0)),

where S and A is the number of states and actions, H is the horizon, K is the num-
ber of episodes, and (τ − c0) reflects the safety margin of a known existing safe
policy. Our method also ensures a Õ(1) constraint violation and removes unnec-
essary dependencies on state space S and planning horizon H in the reward regret,
offering a scalable solution for constrained RL in complex environments.

1 INTRODUCTION

Safety is a critical concern in reinforcement learning (RL), especially in real-world applications such
as autonomous driving (Wang et al., 2020), healthcare (Vincent et al., 2014), and industrial automa-
tion (Machado et al., 2011). Constrained Markov Decision Processes (CMDPs) (Altman, 1999) are
widely used to ensure safety by incorporating safe constraints and safe policies into the decision-
making process. These frameworks allow for optimizing performance while limiting risky actions
in safety-critical environments, such as preventing collisions in autonomous vehicles or ensuring
correct treatment in healthcare. However, during the course of training, many RL methods can
experience significant safety violations (Ding et al., 2021; Efroni et al., 2020), particularly when ex-
ploring new states or actions. This is highly problematic in real-world systems where even temporary
unsafe actions can result in accidents, equipment damage, or hazardous conditions. For instance, in
autonomous driving (Calò et al., 2020), safety violations during training might lead to collisions or
dangerous maneuvers, while in robotics (Müller et al., 2021), such violations could cause physical
harm to equipment or workers. As a result, it is crucial to design methods that guarantee bounded
safety constraint violations, ensuring that any violations during training remain within acceptable
limits, thereby preventing catastrophic outcomes while maintaining safety throughout the learning
process.

Given the need to handle bounded safety constraint violations, several methods, such as those de-
veloped by Liu et al. (2021); Bura et al. (2022), achieve Õ(

√
K) regret, where K represents the

number of learning episodes. Regret measures the difference between the cumulative reward of the
optimal policy and the learned policy. However, this regret bound relies heavily on the size of the
state space S and the planning horizon H . The state space S refers to the set of all possible config-
urations or conditions the system may encounter. A larger S, as seen in complex environments like
robotic manipulation or self-driving systems, increases the difficulty of learning due to the need for
more data to explore the space. The planning horizon H represents the number of time steps over
which decisions are evaluated, with longer horizons making policy learning more challenging due
to the need to consider long-term effects. Applications with large state spaces and long horizons,
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such as financial planning or autonomous vehicles, often suffer from sample inefficiency in existing
methods.

This raises a critical question: Can we design safe reinforcement learning (RL) algorithms that
achieve sample efficiency in large-scale state spaces and long horizons while guaranteeing bounded
safety constraint violation with arbitrarily high probability?

In this paper, we affirmatively address the posed question by proposing a low-switching model-based
algorithm, SLIM (Safe Low-Switching Primal-Dual Model-Based Algorithm), designed for the tab-
ular episodic constrained reinforcement learning (RL) problem. Our algorithm operates within a
primal-dual, model-based online framework. In each episode, a safe and effective policy is ob-
tained through multiple iterations of primal-dual updates in a constrained model represented in its
Lagrangian form. This policy is then used to gather data for updating the estimated transition model.
The low-switching technique, central to our approach, ensures a lazy update of the empirical transi-
tion model, reducing both computational cost and the need for frequent state-action pair visitations.
This efficiency allows us to leverage advanced techniques from Zhang et al. (2024), originally de-
veloped for simple MDP settings, to derive a tighter theoretical bound on regret.

Our contributions are summarized as follows:

• Algorithmically, we introduce the low-switching technique to CMDP algorithms for model
updates. Through this, we reduce the computational complexity and enable a tighter anal-
ysis on both regret and constraint violation.

• Analytically, we prove that our algorithm SLIM is the first one in CMDP that have the
regret bound Õ(

√
SAH5K/(τ − c0)), where S and A is the number of states and actions,

H is the horizon, K is the number of episodes, and (τ − c0) reflects the safety margin of
a known existing safe policy, which greatly reduces the regret bound by a factor of

√
SH

compared to the previously known best results (Liu et al., 2021), while at the same time
keeping a bounded constraint violation of Õ(1) in terms of the length of learning process
K.

Related Work

Constrained Markov Decision Process (CMDP) The Constrained Markov Decision Process
(CMDP) (Altman, 1999) is a key model for addressing safety concerns in reinforcement learning
(RL). Many existing works on CMDPs employ a primal-dual approach to achieve sublinear regret
while maintaining bounded constraint violations (Vaswani et al., 2022; Jain et al., 2022; Paternain
et al., 2019; Ding et al., 2020a; Wei et al., 2020; Ding et al., 2020b). Another widely-used method
is adapting policy gradient algorithms (Achiam et al., 2017; Tessler et al., 2019; Stooke et al., 2020;
Tian et al., 2024). Furthermore, Efroni et al. (2020) introduces a more stringent metric for hard con-
straint violation, where only positive constraint violations are accumulated. Their approach achieves
sublinear regret, constraint violations and hard constraint violation. Recently, Ghosh et al. (2024)
extended this idea to a linear setting, obtaining similar results. In practical applications, ensuring
strict adherence to safety constraints without violations often requires system-specific assumptions.
For instance, Wachi & Sui (2020) assumes regularity in the safety functions, while Amani et al.
(2021) presumes knowledge of a safe action for each state. Additionally, Liu et al. (2021); Bura
et al. (2022) assume the existence of a known safe policy and its true constraint value, achieving
improved regret bounds and constraint violations compared to Efroni et al. (2020). Building on the
assumption of a known safe policy and its true constraint value, our work proposes a primal-dual
low-switching algorithm, leveraging advanced techniques from standard MDPs. This approach not
only improves the regret bound but also maintains a constant constraint violation. A comprehensive
comparison with other methods is provided in table 1, where the definitions of regret, constraint
violation (CV) and hard constraint violation (hard CV) are given in eqs. (2) and (3).

Regret bound of episodic tabular MDP In the standard episodic tabular MDP setting, Auer et al.
(2008) provided an upper bound of O(

√
S2AKHD2), while Dann & Brunskill (2015) established

a lower bound of O(
√
SAH3K). Later, Osband & Van Roy (2017) introduced a posterior sampling

approach for RL, achieving minimax-optimal regret bounds of O(
√
SAHK) under certain condi-

tions. Azar et al. (2017) further achieved a minimax optimal regret, and Jin et al. (2018) developed a
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UCB-type Q-learning method, improving the regret to O(
√
SAH2K) with variance-aware bounds.

Recently, Zhang et al. (2024) reduced the burn-in cost using advanced techniques, yet such meth-
ods are rarely explored in CMDPs. To our knowledge, this work is the first to incorporate these
techniques into CMDPs, aiming to improve performance in constrained settings.

Table 1: Regret and constraint violation comparisons for algorithms on episodic CMDPs
Setting Regret CV

Efroni et al. (2020) Tabular CMDP Õ(
√
S2AH4K) Õ(

√
S2AH4K)

Liu et al. (2021) Tabular CMDP (π0, c0 known) Õ(
√
S3AH6K
τ−c0

) 0

Liu et al. (2021) Tabular CMDP (c0 known) Õ(
√
S3AH6K
τ−c0 ) O(1)

Bura et al. (2022) Tabular CMDP (π0, c0 known) Õ(
√
S2AH6K
τ−c0 ) 0

Ghosh et al. (2024) Linear CMDP Õ(
√
d3H4K) Õ(

√
d3H4K)

Ghosh et al. (2024) Tabular CMDP Õ(
√
S2AH4K) Õ(

√
S2AH4K)

SLIM (Ours) Tabular CMDP (π0, c0 known) Õ(
√
SAH5K
τ−c0

) O(1)

1.1 NOTATION

We introduce a set of notation to be used throughout. Let es denote the s-th standard basis vector
(which has 1 at the s-th coordinate and 0 otherwise). For any set X ,∆X represents the set of
probability distributions over the set X . For any positive integer N , we denote [N ] = {1, . . . , N}.
For any two vectors x, y ∈ Rd with the same dimension d, we use xy to abbreviate inner product
x⊤y, e.g. Ps,a,hV

∗
h+1,r is abbr. of

∑
s′ Ps,a,h(s

′)V ∗
h+1,r(s

′). For any integer S > 0, any probability
vector p ∈ ∆[S] and another vector v = [vi]1≤i≤S , we denote by

V(p, v) :=
〈
p, v2

〉
− (⟨p, v⟩)2 =

〈
p, (v − ⟨p, v⟩1)2

〉
the associated variance, where v2 =

[
v2i
]
1≤i≤S

represents element-wise square of v. For any two
vectors a = [ai]1≤i≤n and b = [bi]1≤i≤n, the notation a ≥ b (resp. a ≤ b ) means ai ≥ bi (resp.
ai ≤ bi ) holds simultaneously for all i.

2 PROBLEM SETUP

We consider a finite-horizon non-stationary constrained Markov Decision Process (MDP) defined
by the tuple M = (S,A, H, P, r, c, τ), where S is the state space, A is the action space, and H is
the horizon length. The unknown transition probability at each time step is denoted by Ps,a,h, where
Ps,a,h(s

′) represents the probability of transitioning to state s′ from state s after taking action a at
time step h. The reward function rh : S × A → [0, 1] quantifies the immediate reward the agent
receives for taking action a in state s at time step h. Similarly, the cost function ch : S ×A → [0, 1]
represents safety violations incurred for the same action. We assume that both the reward and cost
functions are known to the agent, though the results can be easily extended to the case where neither
function is known. Finally, τ ∈ (0, H] is a predefined safety constraint that limits the cumulative
cost over the episode.

The agent interacts with the environment over K episodes, each consisting of H steps. At the start of
each episode k, the agent selects a randomized policy πk = {πk

h}h, where at time step h the policy
πk
h : S → ∆A prescribes a distribution over actions conditioned on the current state. The policy is

executed with the goal of maximizing the cumulative reward while ensuring that the cumulative cost
remains within the safety limit.

The cumulative value at state s and time step h, with respect to any function g : S ×A → R, under
policy π, is defined as:

V π
h,g(s) = EP,π

[
H∑
t=h

g(St, At)

∣∣∣∣∣Sh = s

]
,
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representing the expected cumulative sum of g(St, At) from time step h to the end of the episode,
given that the process starts in state s at time h.

The objective of CMDP is to solve the following constrained optimization problem:
max
π

V π
1,r(s1) s.t. V π

1,c(s1) ≤ τ, (1)

where V π
1,r(s1) is the expected cumulative reward value, and V π

1,c(s1) is the expected cumulative
cost value, constrained by the safety threshold τ . The optimal policy that solves eq. (1) is denoted
by π∗ and its corresponding expected reward and cost value are denoted by V π∗

1,r (s1) and V π∗

1,c (s1).

Assumption 2.1 (Strictly Safe Policy). There exists a policy π0 such that V π0

1,c (s1) = c0 < τ ,
ensuring the policy satisfies strict safety constraints.

The agent has prior knowledge of a strictly safe policy π0 as well as its safety cost value c0 =

V π0

1,c (s1). To understand the agent’s objectives, we need to define the regret and constraint violation
over K episodes:

Regret(K) :=

K∑
k=1

(
V π∗

1,r (s
k
1)− V πk

1,r (s
k
1)
)
, (2)

CV(K) :=

(
K∑

k=1

(
V πk

1,c (s
k
1)− τ

))
+

. (3)

The agent’s objective is to minimize regret over K episodes while maintain a low constraint viola-
tion.

3 METHODOLOGY

We use a model-based approach to address the CMDP problem defined in eq. (1). In contrast to Liu
et al. (2021); Bura et al. (2022) where the agent updates an empirical transition model at the end of
each episode, we adopt the low-switching technique proposed in Zhang et al. (2024). By using the
low-switching technique, we update our empirical transition matrix only when the visitation count
of any state-action pair doubles. To be specific, we denote N̄h(s, a) as the total visitation count
of state-action pair (s, a) in time step h, Nh(s, a, s

′) as the count of transitions from (s, a) to s′

since the last update, and Nh(s, a) =
∑

s′ Nh(s, a, s
′) as the visitation count of (s, a) since the

last update. We update an empirical transition matrix P̂ whenever N̄h(s, a) for any (s, a) doubles,
such that P̂s,a,h(s

′) = Nh(s,a,s
′)

Nh(s,a)
. Note that we will only use data collected after the last update

to calculate P̂ . With the empirical transition probability matrix P̂ , we are able to formulate an
empirical CMDP.

We will adopt the principle of optimism in the face of uncertainty (OFU) and use a UCB-style
bonus for both reward and cost. For any reward function g and policy π, we define the bonus for a
(s, a, h, k) tuple as

bk,πh,g (s, a) = c1

√
V(P̂s,a,h, V̂ π

h+1,g) log(1/δ
′)

Nh(s, a)
+ c2

H log(1/δ′)

Nh(s, a)
, (4)

where c1 and c2 are constant to be specified later and δ′ = δ/(200SAH2K2) is related to the
confidence level δ. For reward, we add this Bernstein-style bonus bh,r(s, a) to rh(s, a) for each
(s, a) to encourage exploration. We denote the optimistically biased reward estimate as r̃, i.e.,
r̃h(s, a) = rh(s, a)+ bh,r(s, a). For safety cost, we subtract a Bernstein-style bonus bh,c(s, a) from
ch(s, a). We denote the optimistically biased cost estimate by c, i.e., ch(s, a) = ch(s, a)−bh,c(s, a).
By using the optimistically biased cost estimate we will underestimate the cumulative cost. To
compensate this and strive to satisfy the safety constraint, we define a pessimistic constraint constant
τ ′k for each episode by subtracting a episode-dependent gap ∆k from τ , i.e., τ ′k = τ −∆k. We will
specify the value of ∆k later.

We now introduce an empirical CMDP for each episode K, defined by M̂k = (S,A, H, P̂ , r̃, c, τ ′k),
and the corresponding optimization problem:

max
π

V̂ π
1,r̃(s1) s.t. V̂ π

1,c(s1) ≤ τ ′k := τ −∆k. (5)
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Algorithm 1: SLIM
Input : S,A, H,K, r, c, π0, c0, c1 = 460/9, c2 = 544/9, η =

√
1/SAH , T = SAH ,

ε = SAH/K, U = H , α =
√
K.

Initialization: θ ← (τ − c0)/2, ∆k ← 2
√

SAH3/k, for all (s, a, s′, h) ∈ S ×A× S × [H],
set Nh(s, a, s

′)← 0, N̄h(s, a, s
′)← 0, Nh(s, a)← 0; for all π, set

Q̂π
h,c(s, a)← 0, V̂ π

h,c(s)← 0, Q̂π
h,r̃(s, a)← H, V̂ π

h,r̃(s)← H .
1 for k = 1, · · · ,K do
2 τ ′k = τ −∆k

3 for t = 1, · · · , T do
4 π̂k

t = argmaxπ V̂
π
1,r̃(s

k
1)−

λ̂k
t

α V̂ π
1,c(s

k
1)

5 λ̂k
t+1 = RΛ[λ̂

k
t − η(τ ′k − V̂

π̂k
t

1,c (s
k
1))]

6 π̄k = 1
T

∑T
t=1 π̂

k
t

7 if
∣∣∣V̂ π0

1,c (s
k
1)− c0

∣∣∣ > θ then
8 πk = π0

9 else
10 πk = π̄k

11 for h = 1, · · · , H do
12 Observe skh, take action akh ∼ πk

h(·|skh), receive rkh, ckh, observe skh+1

13 (s, a, s′)← skh, a
k
h, s

k
h+1

14 N̄h(s, a)← N̄h(s, a) + 1, Nh(s, a, s
′)← Nh(s, a, s

′) + 1

15 if N̄h(s, a) ∈ {1, 2, 4, · · · , 2log2 K} then
16 Nh(s, a)←

∑
s̃ Nh(s, a, s̃)

17 P̂s,a,h(s̃)← Nh(s, a, s̃)/Nh(s, a)
18 TRIGGERED← TRUE
19 Nh(s, a, ·)← 0
20 if TRIGGERED then
21 TRIGGERED← FALSE
22 V̂ π

H+1,g(s)← 0,∀x ∈ S
23 for h = H,H − 1, · · · , 1 do
24 for (s, a) ∈ S ×A and any π do
25 Q̂π

h,r̃(s, a) = min{rh(s, a) + bk,t,πh,r (s, a) + P̂s,a,hV̂
π
h+1,r̃, H}

26 V̂ π
h,r̃(s) =

∑
a∈A π(a|s)Q̂π

h,r̃(s, a)

27 Q̂π
h,c(s, a) = max{ch(s, a)− bk,t,πh,c (s, a) + P̂s,a,hV̂

π
h+1,c, 0}

28 V̂ π
h,c(s) =

∑
a∈A π(a|s)Q̂π

h,c(s, a)

To solve the empirical CMDP problem defined in eq. (5), we employ a primal-dual approach. This
method transforms the constrained optimization problem into a saddle-point problem, where we
aim to maximize the reward while minimizing constraint violations. Let λ ≥ 0 be the dual variable
associated with the cost constraint. The Lagrangian for the empirical CMDP is defined as:

L(π, λ) = V̂ π
1,r̃(s1)− λ

(
V̂ π
1,c(s1)− τ ′k

)
,

where π is the primal variable representing the policy, and λ is the dual variable penalizing the
constraint violation. The equivalent saddle-point problem to eq. (5) is:

min
λ≥0

max
π

V̂ π
1,r̃(s1)− λ

(
V̂ π
1,c(s1)− τ ′k

)
. (6)

In this formulation, the policy π seeks to maximize the cumulative reward V̂ π
1,r̃(s1), while the dual

variable λ penalizes any violation of the cost constraint. Denote (π̂k,∗, λ̂k,∗) as the optimal solutions
to the saddle point problem eq. (6).
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We solve the saddle-point problem eq. (6) iteratively, and for each iteration t ∈ [T ], we alternatively
update iterates of the primal variable π̂k

t and the dual variable λ̂k
t . The primal update involves solving

the maximization problem over π,

π̂k
t = argmax

π
V̂ π
1,r̃(s1)−

λ̂k
t

α

(
V̂ π
1,c(s1)− τ ′k

)
= argmax

π
V̂ π
1,r̃(s1)−

λ̂k
t

α
V̂ π
1,c(s1), (7)

where α is a constant used to control the cumulative error over T iterations in each episode. The
dual update is essentially a gradient descent step with a step size η. For some technical reasons to
be explained later in the proof of lemma A.6, we will round the gradient descent result to the nearest
element in an ε-net Λ = {0, ε, 2ε, . . . , U}. Putting everything together, we give the dual update as

λ̂k
t+1 = RΛ

[
λ̂k
t + η

(
V̂

π̂k
t

1,c (s1)− τ ′k

)]
, (8)

whereRΛ(λ) = argminp∈Λ|p− λ| is a rounding function.

Finally, We state our algorithm in alg. 1. We execute T iterations of primal and dual updates from
line 3 to 5. Since the bonus terms and gap between empirical model P̂ and true transition model
P will shrink as we collect more data through the learning process, the gap between the estimate
value and true value will shrink. If the gap is larger than certain threshold, i.e.,

∣∣∣V̂ π0

1,c (s
k
1)− c0

∣∣∣ > θ,

then we conclude that we do not have a sufficiently accurate empirical model and we execute π0 to
avoid large constraint violation. If instead we have a good estimate on the transition indicated by
the bounded gap, then we execute the mixture policy π̄k obtained from the primal-dual updates.

4 MAIN RESULTS AND ANALYSIS

We present the regret and constraint violation bounds of our algorithm and proofs in this section,
while we leave intermediate lemmas and proofs used to support the main results in the appendix.

4.1 REGRET AND CONSTRAINT VIOLATION RESULTS

Theorem 4.1. With probability at least 1− δ, the regret of alg. 1 is

Regret(K) = Õ(
√
SAH5K/(τ − c0)).

Proof. We decompose the regret as:

Regret(K) =

K∑
k=1

V ∗
1,r(s

k
1)− V πk

1.r (s
k
1)

=

K1∑
k=1

(
V ∗
1,r(s

k
1)− V π0

1,r (s
k
1)
)
+

K∑
k=K1

(
V ∗
1,r(s

k
1)− V π̄k

1,r (s
k
1)
)
,

where K1 is the number of episodes that the agent chooses π0. We note that π∗ is the optimal
solution to the original CMDP optimization problem eq. (1), while for each episode π̄k is an ap-
proximation solution to the empirical CMDP optimization problem eq. (5). To cope with the gap
between the two policies, we introduce a proxy policy π∆k,∗ that is the optimal solution to the
following optimization problem

π∆k,∗ ∈ argmax
π

V π
1,r(s

k
1), s.t. V π

1,c(s
k
1) ≤ τ ′k = τ −∆k. (9)

6
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We now further decompose the regret as

Regret(K) ≤
K1∑
k=1

(
V ∗
1,r(s

k
1)− V π0

1,r (s
k
1)
)
+

K∑
k=1

(
V ∗
1,r(s

k
1)− V π∆k,∗

1,r (sk1)
)

+

K∑
k=1

(
V π∆k,∗

1,r (sk1)− V̂ π∆k,∗

1,r̃ (sk1)
)
+

K∑
k=1

(
V̂ π∆k,∗

1,r̃ (sk1)− V̂ π̄k

1,r̃ (s
k
1)
)

+

K∑
k=1

(
V̂ π̄k

1,r̃ (s
k
1)− V πk

1,r (s
k
1)
)
.

We give the regret bound by bounding each term above. For the first term we have
∑K1

k=1(V
∗
1,r(s

k
1)−

V1,r(s
k
1)) ≤ HK1 = Õ(S2AH4/(τ − c0)2), which is a low-order term and only contributes to the

burn-in cost as K is large. The second term is the error incurred by replacing the original constraint
constant τ by a more restrictive empirical constraint constant τ ′k = τ −∆k for each episode k. We
bound the second term in lemma A.1 and with the choice of ∆k = Õ(

√
SAH3/k), we have

K∑
k=1

(
V ∗
1,r(s

k
1)− V π∆k,∗

1,r (sk1)
)
≤ Õ

(√
SAH5K

τ − c0

)
. (10)

By definition of the proxy policy π∆k,∗ in eq. (9), since ∆k is a predetermined constant for each
episode k, we can see that π∆k,∗ is a deterministic policy that is independent of the online learning
process. Thus we can apply lemma A.15 and bound

K∑
k=1

(
V π∆k,∗

1,r (sk1)− V̂ π∆k,∗

1,r̃ (sk1)
)
≤ 0. (11)

The fourth term is the optimization error, and it is incurred because π̄k is an approximation solution
generated by iterative primal-dual updates. We bound this term by using the primal update rules in
lemma A.2 and have

K∑
k=1

(
V̂ π∆k,∗

1,r̃ − V̂ π̄k

1,r̃

)
= Õ(

√
SAH3K).

Finally, the last term in the regret decomposition is the model prediction error, consisting of the
errors caused by inaccurate empirical models and additional bonus terms. Worth mentioning, this
term is essentially the same as the entire regret in Zhang et al. (2024) as the algorithms share the
similar exploration bonus and update rules for transition models. We state in lemma A.3 the bound

K∑
k=1

(
V̂ π̄k

1,r̃ (s
k
1)− V πk

1,r (s
k
1)
)
= Õ(

√
SAH3K). (12)

Finally, putting everything together, we conclude our final result: with probability at least 1− δ,

Regret(K) = O

√SAH5K log5(SAHK/δ)

τ − c0

 . (13)

Theorem 4.2. With probability at least 1− δ, the constraint violation of alg. 1 is

CV(K) = O(1).

7
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Proof. By definition of constraint violation,

CV(K) =

(
K∑

k=1

V πk

1,c (s
k
1)− τ

)
+

=

(
K1∑
k=1

(
V π0

1,c (s
k
1)− τ

)
+

K∑
k=K1

(
V π̄k

1,c (s
k
1)− τ

))
+

≤

(
K∑

k=K1

(
V π̄k

1,c (s
k
1)− τ

))
+

=

(
K∑

k=K1

(
V π̄k

1,c (s
k
1)− V̂ π̄k

1,c (s
k
1)
)
+

K∑
k=K1

(
V̂ π̄k

1,c (s
k
1)− τ ′k

)
+

K∑
k=1

(τ ′k − τ)

)
+

,

where the inequality is due to the fact that V π0

1,c (s
k
1) = c0 < τ . We upper bound each of the three

terms in the last line.

For the first term, by definition of optimistically biased estimates of rewards and cost, we note that
the analysis of bounding

∑
k V

π̄k

1,c (s
k
1)− V̂ π̄k

1,c (s
k
1) and

∑
k V̂

π̄k

1,r̃ (s
k
1)− V π̄k

1,r (s
k
1) are analogous, and

mostly identical. Hence, by lemma A.3, we have
K∑

k=K1

(
V π̄k

1,c (s
k
1)− V̂ π̄k

1,c (s
k
1)
)
≤ Õ(

√
SAH3K), (14)

with probability at least 1− SAHKδ′.

The second term is the optimization error in the primal-dual process. We calculate π̄k as an approx-
imate solution to the empirical optimization problem defined in eq. (5). Thus, it is not necessarily
satisfied that V̂ π̄k

1,c (s
k
1) ≤ τ ′k. We hence return to the analysis of the primal-dual framework, and

adapt techniques used in Jain et al. (2022); Vaswani et al. (2022). By lemmas A.11 to A.14, we have(
V̂ π̄k

1,c (s
k
1)− τ ′k

)
≤
(
V̂ π̄k

1,c (s
k
1)− τ ′k

)
+
≤ B[(τ − c0)− (∆k + θ)]

[(τ − c0)− (∆k + θ)]C −H
,

where B = ε2+2εU+η2H2

2η + U2

2ηT . By choosing θ = (τ − c0)/2, ∆k = 2
√
SAH3/k, ε = SAH/K,

η =
√
SA/HK, U = H , and T = HK/SA, we have(

V̂ π̄k

1,c (s
k
1)− τ ′k

)
≤ Õ(

√
SAHK). (15)

For the third term, we recall the definition of τ ′k, and we have
K∑

k=1

(τ ′k − τ) = −
K∑

k=1

∆k.

We set ∆k = 2
√

SAH3

k so that the sum will cancel out the leading positive terms.

5 CONCLUSION

In this paper, we proposed SLIM, a low-switching primal-dual algorithm for constrained reinforce-
ment learning, designed to balance regret minimization with safety guarantees in large-scale, com-
plex environments. Our algorithm incorporates the low-switching technique and primal-dual ap-
proach to better account for safety constraints in order to achieve safe exploration in online learning.
By leveraging the low-switching technique, we can also reduce the frequency of policy updates,
thereby improving computational efficiency while maintaining bounded safety violations.

We analytically proved that SLIM achieves a regret bound of Õ
(√

SAH5K/(τ − c0)
)

, outper-
forming existing CMDP methods by reducing the dependency on the size of the state space and

8
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the planning horizon in terms of reward regret. Additionally, we demonstrated that SLIM ensures
a constant constraint violation of Õ(1) with high probability, providing robust safety guarantees
throughout the learning process.

Our contributions establish new state-of-the-art results for constrained reinforcement learning, par-
ticularly in environments with large state-action spaces and long planning horizons. Future work will
focus on extending SLIM to more general settings, such as model-free environments and continuous
state-action spaces, while exploring potential real-world applications in safety-critical domains like
autonomous driving and healthcare.
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A APPENDIX

A.1 REGRET ANALYSIS

Lemma A.1.
K∑

k=1

(
V ∗
1,r(s

k
1)− V π∆k,∗

1,r (sk1)
)
≤ H

τ − c0

K∑
k=1

∆k.
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Proof. For each episode k, we define a deterministic policy π̊k = (1− ∆k

τ−c0 )π
∗ + ∆k

τ−c0π
0, and its

value function satisfies

V π̊k

1,c (s
k
1) = (1− ∆k

τ − c0
)V π∗

1,c (s
k
1) +

∆k

τ − c0
V π0

1,c (s
k
1) ≤ (1− ∆k

τ − c0
)τ +

∆k

τ − c0
c0 = τ −∆k.

Then,

V ∗
1,r(s

k
1)− V π∆k,∗

1,r (sk1)

≤V ∗
1,r(s

k
1)− V π̊k

1,r (s
k
1)

=V ∗
1,r(s

k
1)− ((1− ∆k

τ − c0
)V ∗

1,r(s
k
1) +

∆k

τ − c0
V π0

1,r (s
k
1))

=
∆k

τ − c0
(V ∗

1,r(s
k
1)− V π0

1,r (s
k
1))

≤ H

τ − c0
∆k,

where the first inequality is due to the definition of π∆k,∗, i.e., for any policy π, s.t. V π
1,c(s

k
1) ≤ τ ′k =

τ −∆k, V π∆k,∗

1,r (sk1) ≥ V π
1,r(s

k
1). Adding over K episodes gives us the result

K∑
k=1

(
V ∗
1,r(s

k
1)− V π∆k,∗

1,r (sk1)
)
≤ H

τ − c0

K∑
k=1

∆k.

Lemma A.2.
K∑

k=1

(
V̂ π∆k,∗

1,r̃ (sk1)− V̂ π̄k

1,r̃ (s
k
1)
)
= Õ(

√
SAH3K).

Proof. For any primal-dual iteration t ∈ [T ],

V̂ π∆k,∗

1,r̃ (sk1)−
λ̂k
t

α
V̂ π∆k,∗

1,c (sk1) ≤ V̂
π̂k
t

1,r̃ (s
k
1)−

λ̂k
t

α
V̂

π̂k
t

1,c (s
k
1).

Taking average over T iterations,

1

T

T∑
t=1

(
V̂ π∆k,∗

1,r̃ (sk1)−
λ̂k
t

α
V̂ π∆k,∗

1,c (sk1)

)
≤ 1

T

T∑
t=1

(
V̂

π̂k
t

1,r̃ (s
k
1)−

λ̂k
t

α
V̂

π̂k
t

1,c (s
k
1)

)
.

Note that the mixture policy π̄k is the average policies of π̂k
t , we have

V̂ π∆k,∗

1,r̃ (sk1)−
1

T

T∑
t=1

λ̂k
t

α
V̂ π∆k,∗

1,c (sk1) ≤ V̂ π̄k

1,r̃ (s
k
1)−

1

T

T∑
t=1

λ̂k
t

α
V̂

π̂k
t

1,c (s
k
1).

Further, we notice that

V̂ π∆k,∗

1,c (sk1) ≤ V π∆k,∗

1,c (sk1) ≤ τ −∆k.
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Thus, for any episode k,

V̂ π∆k,∗

1,r̃ (sk1)− V̂ π̄k

1,r̃ (s
k
1)

=

(
V̂ π∆k,∗

1,r̃ (sk1)−
1

T

T∑
t=1

λ̂k
t

α
V̂ π∆k,∗

1,c (sk1)

)
−

(
V̂ π̄k

1,r̃ (s
k
1)−

1

T

T∑
t=1

λ̂k
t

α
V̂

π̂k
t

1,c (s
k
1)

)

+
1

T

T∑
t=1

λ̂k
t

α

(
V̂ π∆k,∗

1,c (sk1)− V̂
π̂k
t

1,c (s
k
1)
)

≤ 1

T

T∑
t=1

λ̂k
t

α
(V̂ π∆k,∗

1,c (sk1)− V̂
π̂k
t

1,c (s
k
1))

≤ 1

T

T∑
t=1

λ̂k
t

α
(τ −∆k − V̂

π̂k
t

1,c (s
k
1))

≤ε2 + 2εU + η2H2

2ηα
+

U2

2ηαT
,

where we apply lemma A.14 in the last inequality. By choosing α =
√
K, ε = SAH/K, U = H ,

T = SAH , and η =
√
1/SAH , we have

K∑
k=1

(
V̂ π∆k,∗

1,r̃ (sk1)− V̂ π̄k

1,r̃ (s
k
1)
)
= Õ(

√
SAH3K).

Lemma A.3.
K∑

k=1

(
V̂ π̄k

1,r̃ (s
k
1)− V πk

1,r (s
k
1)
)
= Õ(

√
SAH3K).

Proof. By definition, we write

V̂ π̄k

h,r̃ (s
k
h) =

∑
a∈A

π̄k(a|skh)Q̂π̄k

h,r̃(s
k
h, a)

= Q̂π̄k

h,r̃(s
k
h, a

k
h) +

(∑
a∈A

π̄k(a|skh)Q̂π̄k

h,r̃(s
k
h, a)− Q̂π̄k

h,r̃(s
k
h, a

k
h)

)
≤ rh(s

k
h, a

k
h) + bkh(s

k
h, a

k
h) + P̂ k

skh,a
k
h,h

V̂ π̄k

h+1,r̃ + ζkh

≤ rh(s
k
h, a

k
h) + bkh(s

k
h, a

k
h) + (P̂ k

skh,a
k
h,h
− Ps,a,h)V̂

π̄k

h+1,r̃ + (Pskh,a
k
h,h
− 1{skh+1}

)V̂ π̄k

h+1,r̃

+ V̂ π̄k

h+1,r̃(s
k
h+1) + ζkh ,

where

ζkh =

(∑
a∈A

π̄k(a|skh)Q̂π̄k

h,r̃(s
k
h, a)− Q̂π̄k

h,r̃(s
k
h, a

k
h)

)
is a zero-mean random variable conditional on π̄k. Then by summing over H time steps and tele-
scoping, we have

V̂ π̄k

1,r̃ (s
k
1) ≤

H∑
h=1

rh(s
k
h, a

k
h) + bkh(s

k
h, a

k
h) + (P̂ k

skh,a
k
h,h
− Ps,a,h)V̂

π̄k

h+1,r̃

+ (Pskh,a
k
h,h
− 1{skh+1}

)V̂ π̄k

h+1,r̃ +

H∑
h=1

ζkh .
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The term we want to bound is now decomposed as
K∑

k=1

(
V̂ π̄k

1,r̃ (s
k
1)− V πk

1,r (s
k
1)
)
≤

K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) +

K∑
k=1

H∑
h=1

(P̂ k
skh,a

k
h,h
− Ps,a,h)V̂

π̄k

h+1,r̃ +

K∑
k=1

H∑
h=1

ζkh

+

K∑
k=1

H∑
h=1

(Pskh,a
k
h,h
− 1{skh+1}

)V̂ π̄k

h+1,r̃ +

K∑
k=1

(
H∑

h=1

rh(s
k
h, a

k
h)− V π̄k

1,r (s
k
1)

)
.

We apply lemmas A.4, A.5 and A.7 to A.9, and conclude that with probability 1− δ,
K∑

k=1

(
V̂ π̄k

1,r̃ (s
k
1)− V πk

1,r (s
k
1)
)
= O

(√
SAH3K log5

SAHK

δ

)
.

Lemma A.4. With probability at least 1− 3SAHKδ′,
K∑

k=1

H∑
h=1

bk,π̄
k

h,r (skh, a
k
h) ≤ Õ(

√
SAH3K).

Proof. By definition of bonus bk,π̄
k

h,r (skh, a
k
h), we have

K∑
k=1

H∑
h=1

bk,π̄
k

h,r

(
skh, a

k
h

)
=

460

9

∑
k,h

√√√√V
(
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
log 1

δ′

Nk
h

(
skh, a

k
h

) +
544

9

∑
k,h

H log 1
δ′

Nk
h

(
skh, a

k
h

) .
Applying the Cauchy-Schwarz inequality and lemma A.16, we obtain

K∑
k=1

H∑
h=1

bk,π̄
k

h,r

(
skh, a

k
h

)
≤460

9

√√√√∑
k,h

log 1
δ′

Nk
h

(
skh, a

k
h

)√∑
k,h

V
(
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

)

+
544H log 1

δ′

9

∑
k,h

1

Nk
h

(
skh, a

k
h

)
≤460

9

√√√√2SAH (log2 K)

(
log

1

δ′

)∑
k,h

V
(
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
+

1088

9
SAH2 (log2 K) log

1

δ′
.

Then by lemma A.10, we have the desired result.

Lemma A.5.
K∑

k=1

H∑
h=1

(P̂ k
skh,a

k
h,h
− Ps,a,h)V̂

π̄k

h+1,r̃ ≤ Õ(
√
SAH3K).

Proof. Note that given a total profile I ∈ C and dual variable sequence (λ̂k
1 , . . . , λ̂

k
T ), V̂

π̄k

h+1,r̃ is
determined by{

P̂
(Ik

s,a,h′)
s,a,h′ , r

(Ik
s,a,h′)

h′ (s, a), c
(Ik

s,a,h′)
h′ (s, a)

}
h<h′≤H,(s,a,k)∈S×A×[K]

,

and ∥V̂ π̄k

h+1,r̃∥∞ ≤ H . Thus we can invoke lemma A.6 and also by lemma A.10, we have

K∑
k=1

H∑
h=1

(P̂ k
skh,a

k
h,h
− Ps,a,h)V̂

π̄k

h+1,r̃ ≤ Õ(
√
SAH3K).
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Lemma A.6. Let us first specify the types of vectors {Xh,s,a}. For each total profile I ∈ C and
each dual variable sequence (λ1, . . . , λT ) ∈ ΛT , consider any set {Xh,I}1≤h≤H obeying: for each
1 ≤ h ≤ H ,

• Xh+1,I is given by a deterministic function of I and{
P̂
(Ik

s,a,h′)
s,a,h′ , r

(Ik
s,a,h′)

h′ (s, a), c
(Ik

s,a,h′)
h′ (s, a)

}
h<h′≤H,(s,a,k)∈S×A×[K]

;

• ∥X∥∞ ≤ H for each vector X ∈ Xh,I;

• Xh,I is a set of no more than K + 1 non-negative vectors in RS , and contains the all-zero
vector 0.

Suppose that K ≥ SAH log2 K, and construct a set {Xh,I}1≤h≤H for each I ∈ C satisfying the
above properties. Then with probability at least 1− δ′,∑
s,a,h∈S×A×[H]

〈
P̂

(l)
s,a,h − Ps,a,h, Xh+1,s,a

〉
≤

∑
s,a,h∈S×A×[H]

max
{〈

P̂
(l)
s,a,h − Ps,a,h, Xh+1,s,a

〉
, 0
}

≤

√√√√ 8

2l−2

∑
s,a,h

V (Ps,a,h, Xh+1,s,a)

(
6SAH log22 K + T log

|Λ|
δ′

)

+
4H

2l−2

(
6SAH log22 K + T log

|Λ|
δ′

)
holds simultaneously for all I ∈ C, all dual variable sequences, all 2 ≤ l ≤ log2 K + 1, and all
sequences {Xh,s,a}(s,a,h)∈S×A×[H] obeying Xh,s,a ∈ Xh+1,I ,∀(s, a, h) ∈ S ×A× [H].

Proof. This proof is mostly adapted from the proof to lemma 6 in Zhang et al. (2024). Let us begin
by considering any fixed total profile I ∈ C, any fixed dual variable sequence (λ1, . . . , λT ), any fixed
integer l obeying 2 ≤ l ≤ log2 K + 1, and any given feasible sequence {Xh,s,a}(s,a,h)∈S×A×[H].

Recall that (i) P̂
(l)
s,a,h is computed based on the l-th batch of data comprising 2l−2 independent

samples; and (ii) each Xh+1,s,a is given by a deterministic function of I and the empirical models
for steps h′ ∈ [h + 1, H]. Consequently, lemma A.17 tells us that: with probability at least 1 − δ′,
one has∑

s,a,h

〈
P̂

(l)
s,a,h − Ps,a,h, Xh+1,s,a

〉

≤

√√√√ 8

2l−2

∑
s,a,h

V (Ps,a,h, Xh+1,s,a) log
3 log2(SAHK)

δ′
+

4H

2l−2
log

3 log2(SAHK)

δ′

where we view the left-hand side as a martingale sequence from h = H back to h = 1. Moreover,
given that each Xh,s,a has at most K + 1 different choices (since we assume |Xh,I | ≤ K + 1
), there are no more than (K + 1)SAH ≤ (2K)SAH possible choices of the feasible sequence
{Xh,s,a}(s,a,h)∈S×A×[H]. In addition, it has been shown in Lemma 5 of Zhang et al. (2024)
that there are no more than (4SAHK)2SAH log2 K possibilities of the total profile I. There
are in total |Λ|T different choices of dual variable sequences. Here we see that in order to in-
voke a union bound on a finite number of dual variable sequences, it is required that we intro-
duce an ε-net Λ for the dual variable λs. We note that by choosing U = H , and ε = SAH/K,
we have |Λ| = K/SA. Taking the union bound over all these choices and replacing δ′ with
δ′/
(
(4SAHK)2SAH log2 K(2K)SAH log2 K|Λ|T

)
, we can demonstrate that with probability at

least 1− δ′,∑
s,a,h

〈
P̂

(l)
s,a,h − Ps,a,h, Xh+1,s,a

〉

≤

√√√√ 8

2l−2

∑
s,a,h

V (Ps,a,h, Xh+1,s,a)

(
6SAH log22 K + T log

|Λ|
δ′

)
+

4H

2l−2

(
6SAH log22 K + T log

|Λ|
δ′

)
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holds simultaneously for all I ∈ C, all dual variable sequences, all 2 ≤ l ≤ log2 K + 1, and all
feasible sequences {Xh,s,a}(s,a,h)∈S×A×[H]. Finally, recalling our assumption 0 ∈ Xh+1,I , we see
that for every total profile I and its associated feasible sequence {Xh,s,a}∑
s,a,h

max
{〈

P̂
(l)
s,a,h − Ps,a,h, Xh+1,s,a

〉
, 0
}
∈

∑
s,a,h

〈
P̂

(l)
s,a,h − Ps,a,h, X̃h+1,s,a

〉
| X̃h+1,s,a ∈ Xh+1,I ,∀(s, a, h)


holds true. Consequently, the uniform upper bound on the right-hand side continues to be a valid
upper bound on

∑
s,a,h max

{〈
P̂

(l)
s,a,h − Ps,a,h, Xh+1,s,a

〉
, 0
}

. This concludes the proof.

Lemma A.7. With probability at least 1− 4δ′ log(KH),
K∑

k=1

H∑
h=1

ζkh ≤ Õ(
√
H3K).

Proof. Note that ζkh =
(∑

a∈A π̄k(a|skh)Q̂π̄k

h,r̃(s
k
h, a)− Q̂π̄k

h,r̃(s
k
h, a

k
h)
)

is a zero-mean random vari-

able conditional on π̄k and is upper bounded by constant H . By lemma A.17, we have

K∑
k=1

H∑
h=1

ζkh ≤ 2
√
2

√√√√ K∑
k=1

H∑
h=1

Var(ζkh) log
1

δ′
+ 3H log

1

δ′

≤ 2

√
2KH3 log

1

δ′
+ 3H log

1

δ′

with probability at least 1− 4δ′ log(KH).

Lemma A.8. With probability at least 1− SAH2K2δ′,
K∑

k=1

H∑
h=1

(Pskh,a
k
h,h
− 1skh+1

)V̂ π̄k

h+1,r̃ ≤ Õ(
√
H2K).

Proof. We note that conditional on state-action pair (skh, a
k
h), the vectors Pskh,a

k
h,h

and 1skh+1
are

both independent of the value function estimate V̂ π̄k

h+1,r̃. Also, the vector 1skh+1
has the mean of

Pskh,a
k
h,h

. Hence, (Pskh,a
k
h,h
− 1skh+1

)V̂ π̄k

h+1,r̃ is a zero-mean random variable bounded by H from
above, and we thus apply lemma A.17 and have

K∑
k=1

H∑
h=1

(Pskh,a
k
h,h
− 1skh+1

)V̂ π̄k

h+1,r̃ ≤ 2
√
2

√√√√ K∑
k=1

H∑
h=1

V
(
Pskh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
log

1

δ′
+ 3H log

1

δ′

with probability at least 1− SAH2K2δ′. By lemma A.10, we obtain our lemma.

Lemma A.9. With probability at least 1− 4δ′ log(KH),
K∑

k=1

(
H∑

h=1

rh(s
k
h, a

k
h)− V π̄k

1,r (s
k
1)

)
≤ Õ(

√
H2K).

Proof. Note that conditional on π̄k, Ek :=
∑H

h=1 rh(s
k
h, a

k
h) − V π̄k

1,r (s
k
1) is a zero-mean random

variable upper bounded by constant H . By lemma A.17, we have∣∣∣∣∣
K∑

k=1

Ek

∣∣∣∣∣ ≤ 2
√
2

√√√√ K∑
k=1

Var(Ek) log
1

δ′
+ 3H log

1

δ′

≤ 2

√
2KH2 log

1

δ′
+ 3H log

1

δ′
,

with probability at least 1− 4δ′ log(KH), where the last inequality holds because |Ek| ≤ H .
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Lemma A.10. With probability at least 1− 6SAHKδ′,

K∑
k=1

H∑
h=1

V
(
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
≤ Õ(H2K +

√
H5K + SAH3),

K∑
k=1

H∑
h=1

V
(
Pskh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
≤ Õ(H2K +

√
H5K + SAH3).

Proof. This proof is modified from the proof to lemma 11 in Zhang et al. (2024), and we show here
the parts where the proofs differ. First we write by direct calculation

K∑
k=1

H∑
h=1

V
(
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
=

K∑
k=1

H∑
h=1

(〈
P̂ k
skh,a

k
h,h

, (V̂ π̄k

h+1,r̃)
2
〉
−
〈
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

〉2)

=

K∑
k=1

H∑
h=1

〈
P̂ k
skh,a

k
h,h
− P k

skh,a
k
h,h

, (V̂ π̄k

h+1,r̃)
2
〉
+

K∑
k=1

H∑
h=1

〈
P k
skh,a

k
h,h
− 1skh+1

, (V̂ π̄k

h+1,r̃)
2
〉

+

K∑
k=1

H∑
h=2

(V̂ π̄k

h,r̃ (s
k
h))

2 −
K∑

k=1

H∑
h=1

〈
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

〉2
≤

K∑
k=1

H∑
h=1

〈
P̂ k
skh,a

k
h,h
− P k

skh,a
k
h,h

, (V̂ π̄k

h+1,r̃)
2
〉
+

K∑
k=1

H∑
h=1

〈
P k
skh,a

k
h,h
− 1skh+1

, (V̂ π̄k

h+1,r̃)
2
〉

+

K∑
k=1

H∑
h=1

(
V̂ π̄k

h,r̃ (s
k
h) +

〈
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

〉)(
V̂ π̄k

h,r̃ (s
k
h)−

〈
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

〉)
,

and since the value function estimates are bounded by H ,

≤
K∑

k=1

H∑
h=1

〈
P̂ k
skh,a

k
h,h
− P k

skh,a
k
h,h

, (V̂ π̄k

h+1,r̃)
2
〉
+

K∑
k=1

H∑
h=1

〈
P k
skh,a

k
h,h
− 1skh+1

, (V̂ π̄k

h+1,r̃)
2
〉

+ 2H

K∑
k=1

H∑
h=1

max
{
V̂ π̄k

h,r̃ (s
k
h)− ⟨P̂skh,a

k
h,h

, V̂ π̄k

h+1,r̃⟩, 0
}

≤
K∑

k=1

H∑
h=1

〈
P̂ k
skh,a

k
h,h
− P k

skh,a
k
h,h

, (V̂ π̄k

h+1,r̃)
2
〉
+

K∑
k=1

H∑
h=1

〈
P k
skh,a

k
h,h
− 1skh+1

, (V̂ π̄k

h+1,r̃)
2
〉

+ 2H

K∑
k=1

H∑
h=1

max
{
V̂ π̄k

h,r̃ (s
k
h)− Q̂π̄k

h,r̃(s
k
h, a

k
h) + Q̂π̄k

h,r̃(s
k
h, a

k
h)− ⟨P̂skh,a

k
h,h

, V̂ π̄k

h+1,r̃⟩, 0
}
.

By definition of update rule of Q̂ functions, we have

≤
K∑

k=1

H∑
h=1

〈
P̂ k
skh,a

k
h,h
− P k

skh,a
k
h,h

, (V̂ π̄k

h+1,r̃)
2
〉
+

K∑
k=1

H∑
h=1

〈
P k
skh,a

k
h,h
− 1skh+1

, (V̂ π̄k

h+1,r̃)
2
〉

+ 2H

K∑
k=1

H∑
h=1

rh(s
k
h, a

k
h) + 2H

K∑
k=1

H∑
h=1

bk,π̄
k

h,r (skh, a
k
h) + 2H

K∑
k=1

H∑
h=1

max{ξkh, 0},

where ξkh := V̂ π̄k

h,r̃ (s
k
h)− Q̂π̄k

h,r̃(s
k
h, a

k
h) =

∑
a∈A π̄k(a|skh)Q̂π̄k

h,r̃(s
k
h, a)− Q̂π̄k

h,r̃(s
k
h, a

k
h) is a zero-mean

random variable conditional on π̄k bounded by H . By the results of lemma 10 and 11 in Zhang et al.
(2024), we finally bound

K∑
k=1

H∑
h=1

V
(
P̂ k
skh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
≤ Õ(H2K +

√
H5K + SAH3).
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Similarly we can show that with probability at least 1− 3SAHKδ′,
K∑

k=1

H∑
h=1

V
(
Pskh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
=

K∑
k=1

H∑
h=1

〈
Pskh,a

k
h,h

,
(
V k
h+1

)2〉− K∑
k=1

H∑
h=1

(〈
Pskh,a

k
h,h

, V k
h+1

〉)2
=

K∑
k=1

H∑
h=1

〈
Pskh,a

k
h,h
− 1skh+1

,
(
V k
h+1

)2〉
+

K∑
k=1

H∑
h=2

(
V k
h

(
skh
))2 − K∑

k=1

H∑
h=1

(〈
Pskh,a

k
h,h

, V k
h+1

〉)2
,

and we invoke the similar argument as above,

≤
K∑

k=1

H∑
h=1

〈
Pskh,a

k
h,h
− 1skh+1

,
(
V k
h+1

)2〉
+ 2H

K∑
k=1

H∑
h=1

max
{
V k
h

(
skh
)
−
〈
Pskh,a

k
h,h

, V k
h+1

〉
, 0
}

≤
K∑

k=1

H∑
h=1

〈
Pskh,a

k
h,h
− 1skh+1

,
(
V k
h+1

)2〉
+ 2H

K∑
k=1

H∑
h=1

max
{
V k
h

(
skh
)
−
〈
P̂skh,a

k
h,h

, V k
h+1

〉
, 0
}

+ 2H

K∑
k=1

H∑
h=1

max
{〈

P̂ k
skh,a

k
h,h
− Pskh,a

k
h,h

, V k
h+1

〉
, 0
}

≤
K∑

k=1

H∑
h=1

〈
Pskh,a

k
h,h
− 1skh+1

,
(
V k
h+1

)2〉
+ 2H

K∑
k=1

H∑
h=1

rh(s
k
h, a

k
h) + 2H

K∑
k=1

H∑
h=1

bk,π̄
k

h,r (skh, a
k
h)

+ 2H

K∑
k=1

H∑
h=1

max{ξkh, 0}+ 2H

K∑
k=1

H∑
h=1

max
{〈

P̂ k
skh,a

k
h,h
− Pskh,a

k
h,h

, V k
h+1

〉
, 0
}

By the results of lemma 10 and 11 in Zhang et al. (2024), we finally bound
K∑

k=1

H∑
h=1

V
(
Pskh,a

k
h,h

, V̂ π̄k

h+1,r̃

)
≤ Õ(H2K +

√
H5K + SAH3).

A.2 PRIMAL-DUAL OPTIMIZATION ANALYSIS

Lemma A.11. If
∣∣∣V̂ π0

1,c̃ (s
k
1)− V π0

1,c (s
k
1)
∣∣∣ ≤ θ holds, then

λ̂k,∗ ≤ αH

(τ − c0)− (∆k + θ)
.

Proof. Writing the empirical CMDP in eq. (5) in its Lagrangian form,

V̂ π̂k,∗

1,r̃ (sk1) = max
π

min
λ≥0

V̂ π
1,r̃(s

k
1)−

λ

α

(
V̂ π
1,c(s

k
1)− τ ′k

)
Using the linear programming formulation of CMDPs in terms of the state-occupancy measures µ,
we know that both the objective and the constraint are linear functions of µ, and strong duality holds
w.r.t. µ. Since µ and π have a one-to-one mapping, we can switch the min and the max, implying,

V̂ π̂k,∗

1,r̃ (sk1) = min
λ≥0

max
π

V̂ π
1,r̃(s

k
1)−

λ

α

(
V̂ π
1,c(s

k
1)− τ ′k

)
Since λ̂k,∗ is the optimal dual variable for the empirical CMDP in eq. (5),

V̂ π̂k,∗

1,r̃ (sk1) = max
π

V̂ π
1,r̃(s

k
1) +

λ̂k,∗

α

(
V̂ π
1,c(s

k
1)− τ ′k

)
≥ V̂ π0

1,r̃ (s
k
1)−

λ̂k,∗

α

(
V̂ π0

1,c (s
k
1)− τ ′k

)
= V̂ π0

1,r̃ (s
k
1) +

λ̂k,∗

α

(
(τ ′k − τ) + (τ − V π0

1,c (s
k
1)) + (V π0

1,c (s
k
1)− V̂ π0

1,c (s
k
1))
)
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Under the event where
∣∣∣V̂ π0

1,c (s
k
1)− V π0

1,c (s
k
1)
∣∣∣ ≤ θ for θ < τ − c0 −∆k, then

≥ V̂ π0

1,r̃ (s
k
1) +

λ̂k,∗

α

(
−∆k + (τ − c0)− β

)
.

Hence, we have

λ̂k,∗ ≤
α(V̂ π̂k,∗

1,r̃ (sk1)− V̂ π0

1,r̃ (s
k
1))

(τ − c0)− (∆k + β)
≤ αH

(τ − c0)− (∆k + β)
.

Lemma A.12. (Lemma B.2 of Jain et al. (2022)). For any C > λ∗ and any π̃ s.t.

V̂ π̂k,∗

1,r̃ (sk1)− V̂ π̃
1,r̃ + C

(
V̂ π̃
1,c(s

k
1)− τ ′k

)
+
≤ B,

we have (
V̂ π̃
1,c(s

k
1)− τ ′k

)
+
≤ αB

C − λ̂k,∗
.

Proof. Define ν(γ) = maxπ{V̂ π
1,r̃(s

k
1) | V̂ π

1,c(s
k
1) ≤ τ ′k − γ} and note that by definition, ν(0) =

V̂ π̂k,∗

1,r̃ (sk1), and that ν is a decreasing function for its argument. Then, for any policy π s.t. V̂ π
1,c(s

k
1) ≤

τ ′k − γ, we have

V̂ π
1,r̃(s

k
1)−

λ̂k,∗

α
(V̂ π

1,c(s
k
1)− τ ′k) ≤ max

π
V̂ π
1,r̃(s

k
1)−

λ̂k,∗

α
(V̂ π

1,c(s
k
1)− τ ′k)

= V̂ π̂k,∗

1,r̃ (sk1)−
λ̂k,∗

α
(V̂ π̂k,∗

1,c (sk1)− τ ′k)

= V̂ π̂k,∗

1,r̃ (sk1) = ν(0) (by strong duality)

This further implies

ν(0)− λ̂k,∗

α
γ ≥ V̂ π

1,r̃(s
k
1)−

λ̂k,∗

α
(V̂ π

1,c(s
k
1)− τ ′k)−

λ̂k,∗

α
γ

= V̂ π
1,r̃(s

k
1)−

λ̂k,∗

α
(V̂ π

1,c(s
k
1)− (τ ′k − γ))

Since this holds for any policy π s.t. V̂ π
1,c(s

k
1) ≤ τ ′k − γ, we have

ν(0)− λ̂k,∗

α
γ ≥ max

π
{V̂ π

1,r̃(s
k
1) | V̂ π

1,c(s
k
1) ≤ τ ′k − γ} = ν(γ),

and thus
λ̂k,∗

α
γ ≤ ν(0)− ν(γ).

Now we choose γ̃ = −(V̂ π̃
1,c(s

k
1)− τ ′k)+,

C − λk,∗

α
|γ̃| = λk,∗

α
γ̃ +

C

α
|γ̃|

≤ ν(0)− ν(γ̃) +
C

α
|γ̃|

= V̂ π̂k,∗

1,r̃ (sk1)− V̂ π̃
1,r̃(s

k
1) +

C

α
|γ̃|+ V̂ π̃

1,r̃(s
k
1)− ν(γ̃)

= V̂ π̂k,∗

1,r̃ (sk1)− V̂ π̃
1,r̃(s

k
1) +

C

α
(V̂ π̃

1,c(s
k
1)− τ ′k)+ + V̂ π̃

1,r̃(s
k
1)− ν(γ̃)

≤ B + V̂ π̃
1,r̃(s

k
1)− ν(γ̃).
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Now let us bound ν(γ̃):

ν(γ̃) = max
π
{V̂ π

1,r̃(s
k
1) | V̂ π

1,c(s
k
1) ≤ τ ′k + (V̂ π̃

1,c(s
k
1)− τ ′k)+}

≥ max
π
{V̂ π

1,r̃(s
k
1) | V̂ π

1,c(s
k
1) ≤ V̂ π̃

1,c(s
k
1)} (tightening the constraint)

≥ V̂ π̃
1,r̃(s

k
1).

Finally,
C − λ̂k,∗

α
|γ̃| ≤ B =⇒ (V̂ π̃

1,c(s
k
1)− τ ′k)+ ≤

αB

C − λ̂k,∗
.

Lemma A.13.

V̂ π̂k,∗

1,r̃ (sk1)− V̂ π̄k

1,r̃ (s
k
1) +

λ

α

(
V̂ π̄k

1,c (s
k
1)− τ ′k

)
≤ 1

T

T∑
t=1

1

α
(λ̂k

t − λ)
(
τ ′k − V̂

π̂k
t

1,c (s
k
1)
)
.

Proof. For any episode k and any time step t in the primal-dual iterations, the primal update ensures
that for any policy π,

V̂
π̂k
t

1,r̃ (s
k
1)−

λ̂k
t

α
(V̂

π̂k
t

1,c (s
k
1)− τ ′k) ≥ V̂ π

1,r̃(s
k
1)−

λ̂k
t

α
(V̂ π

1,c(s
k
1)− τ ′k).

Let π be π̂k,∗, and rearrange:

V̂ π̂k,∗

1,r̃ (sk1)− V̂
π̂k
t

1,r̃ (s
k
1) ≤

λ̂k
t

α
(V̂ π̂k,∗

1,c (sk1)− V̂
π̂k
t

1,c (s
k
1)).

Note that π̂k,∗ is the solution to the empirical CMDP in eq. (5), thus V̂ π̂k,∗

1,c (sk1) ≤ τ ′k, and we have

V̂ π̂k,∗

1,r̃ (sk1)− V̂
π̂k
t

1,r̃ (s
k
1) ≤

λ̂k
t

α
(τ ′k − V̂

π̂k
t

1,c (s
k
1)).

Take average over T iterations,

1

T

T∑
t=1

(
V̂ π̂k,∗

1,r̃ (sk1)− V̂
π̂k
t

1,r̃ (s
k
1)
)
≤ 1

T

T∑
t=1

λ̂k
t

α

(
τ ′k − V̂

π̂k
t

1,c (s
k
1)
)
.

To use lemma A.14, we rewrite as

1

T

T∑
t=1

(
V̂ π̂k,∗

1,r̃ (sk1)− V̂
π̂k
t

1,r̃ (s
k
1)
)
+

1

T

T∑
t=1

λ

α

(
V̂

π̂k
t

1,c (s
k
1)− τ ′k

)
≤ 1

T

T∑
t=1

1

α
(λ̂k

t−λ)
(
τ ′k − V̂

π̂k
t

1,c (s
k
1)
)
.

Note that V̂ π̂k,∗

1,r̃ (sk1) is constant throughout T primal-dual iterations, and π̄k is a mixture policy, then

V̂ π̂k,∗

1,r̃ (sk1)− V̂ π̄k

1,r̃ (s
k
1) +

λ

α

(
V̂ π̄k

1,c (s
k
1)− τ ′k

)
≤ 1

T

T∑
t=1

1

α
(λ̂k

t − λ)
(
τ ′k − V̂

π̂k
t

1,c (s
k
1)
)
.

Lemma A.14. For any episode k, and primal and dual updates in eqs. (7) and (8),

1

T

T∑
t=1

(
λ̂k
t − λ

)(
τ ′k − V̂

π̂k
t

1,c (s
k
1)
)
≤ ε2 + 2εU + η2H2

2η
+

U2

2ηT
.

Proof. In this proof, for the simplicity of notations, we will only focus on primal-dual iterations in
an arbitrary episode k ∈ [K], and thus we will drop all dependency on k when the context is clear.
The dual update is given by

λ̂t+1 = RΛ[λ̂t − η(τ ′ − V̂ π̂t
1,c(s

k
1))].
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Particularly, we denote
λ̂′
t+1 = P[0,U ][λ̂t − η(τ ′ − V̂ π̂t

1,c(s
k
1))].

First, we shall look at |λ̂t − λ|:

|λ̂t+1 − λ| = |RΛ[λ̂
′
t+1]− λ| = |RΛ[λ̂

′
t+1]− λ̂′

t+1 + λ̂′
t+1 − λ|

≤ |RΛ[λ̂
′
t+1]− λ̂′

t+1|+ |λ̂′
t+1 − λ|

≤ ε+ |λ̂′
t+1 − λ|.

Take square on both sides,

|λ̂t+1 − λ|2 ≤ ε2 + 2ε|λ̂′
t+1 − λ|+ |λ̂′

t+1 − λ|2

≤ ε2 + 2εU + |λ̂′
t+1 − λ|2

≤ ε2 + 2εU + |λ̂t − η(τ ′ − V̂ π̂t
1,c(s

k
1))− λ|2

= ε2 + 2εU + |λ̂t − λ|2 − 2η(τ ′ − V̂ π̂t
1,c(s

k
1))(λ̂t − λ) + η2(τ ′ − V̂ π̂t

1,c(s
k
1))

2

≤ ε2 + 2εU + |λ̂t − λ|2 − 2η(τ ′ − V̂ π̂t
1,c(s

k
1))(λ̂t − λ) + η2H2.

Now we have

(λ̂t − λ)(τ ′ − V̂ π̂t
1,c(s

k
1)) ≤

ε2 + 2εU + η2H2

2η
+
|λ̂t − λ|2 − |λ̂t+1 − λ|2

2η
.

By taking average over T iterations and telescoping, we have

1

T

T∑
t=1

(λ̂t − λ)(τ ′ − V̂ π̂t
1,c(s

k
1)) ≤

ε2 + 2εU + η2H2

2η
+
|λ1 − λ|2 − |λT+1 − λ|2

2ηT

≤ ε2 + 2εU + η2H2

2η
+
|λ1 − λ|2

2ηT

≤ ε2 + 2εU + η2H2

2η
+

U2

2ηT
.

A.3 USEFUL LEMMAS

Lemma A.15 (Optimism). With probability at least , for any deterministic policy π, reward function
g and s ∈ S, h ∈ [H], we have

V̂ π
h,g̃(s) ≥ V π

h,g(s) ≥ V̂ π
h,g(s).

Proof. First, we define the following function

f(p, v, n) := ⟨p, v⟩+max

20

3

√
V(p, v) log 1

δ′

n
,
400

9

H log 1
δ′

n


for any vector p ∈ ∆S , any non-negative vector v ∈ RS obeying ∥v∥∞ ≤ H , and any positive
integer n. We claim that

f(p, v, n) is non-decreasing in each entry of v. (16)

To justify this claim, consider any 1 ≤ s ≤ S, and let us freeze p, n and all but the s-th entries of v.
It then suffices to observe that (i) f is a continuous function, and (ii) except for at most two possible

choices of v(s) that obey 20
3

√
V (p,v) log 1

δ′
n = 400

9

H log 1
δ′

n , one can use the properties of p and v to

20
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calculate

∂f(p, v, n)

∂v(s)
= p(s) +

20

3
1

20

3

√
V(p, v) log 1

δ′

n
≥ 400

9

H log 1
δ′

n

 p(s)(v(s)− ⟨p, v⟩)
√
log 1

δ′√
nV(p, v)

= p(s) + 1

{√
nV(p, v) log

1

δ′
≥ 20

3
H log

1

δ′

}
20
3 H log 1

δ′√
nV(p, v) log 1

δ′

· p(s)(v(s)− ⟨p, v⟩)
H

≥ min

{
p(s) + p(s)

(v(s)− ⟨p, v⟩)
H

, p(s)

}
≥ p(s)min

{
H + v(s)− ⟨p, v⟩

H
, 1

}
≥ 0,

thus establishing the claim. We now proceed to the proof of lemma A.15. Consider any (h, k, s, a),
and we divide into two cases.

Case 1: Nk
h (s, a) ≤ 2. In this case, the following trivial bounds arise directly from the value function

initiation:
Q̂π

h,g̃(s, a) = H ≥ Qπ
h,g(s, a) ≥ 0 = Q̂π

h,g(s, a),

V̂ π
h,g̃(s) = H ≥ V π

h,g(s) ≥ 0 = V̂ π
h,g(s).

Case 2: Nk
h (s, a) > 2. Suppose now that Q̂π

h+1,g̃ ≥ Qπ
h+1,g ≥ Q̂π

h+1,g , which also implies that

V̂ π
h+1,g̃ ≥ V π

h+1,g ≥ V̂ π
h+1,g . If Q̂π

h,g̃(s, a) = H , then Q̂π
h,g̃(s, a) ≥ Qπ

h,g(s, a) holds trivially, and

hence it suffices to look at the case with Q̂π
h,g̃(s, a) < H . According to the update rule, it holds that

Q̂π
h,g̃(s, a)

= gh(s, a) +
〈
P̂s,a,h, V̂

π
h+1,g̃

〉
+ c1

√√√√V
(
P̂ k
s,a,h, V̂

π
h+1,g̃

)
log 1

δ′

Nk
h (s, a)

+ c2
H log 1

δ′

Nk
h (s, a)

≥ gh(s, a) +
48H log 1

δ′

3Nk
h (s, a)

+ f
(
P̂ k
s,a,h, V̂

π
h+1,g̃, N

k
h (s, a)

)
≥ gh(s, a) +

48H log 1
δ′

3Nk
h (s, a)

+ f
(
P̂ k
s,a,h, V

π
h+1,g, N

k
h (s, a)

)
(17)

for any (s, a), where the last inequality results from the claim (16) and the hypothesis V̂ π
h+1,g̃ ≥

V π
h+1,g . Moreover, applying Lemma 19, we have

P


∣∣∣〈P̂ k

s,a,h − Ps,a,h, V
π
h+1,g

〉∣∣∣ > 2

√√√√V
(
P̂ k
s,a,h, V

π
h+1,g

)
log 1

δ′

Nk
h (s, a)

+
14H log 1

δ′

3Nk
h (s, a)


≤ P


∣∣∣〈P̂ k

s,a,h − Ps,a,h, V
π
h+1,g

〉∣∣∣ >
√√√√2V

(
P̂ k
s,a,h, V

π
h+1,g

)
log 1

δ′

Nk
h (s, a)− 1

+
7H log 1

δ′

3Nk
h (s, a)− 1

 ≤ 2δ′.

This implies that with probability at least 1− 2δ′,

f
(
P̂ k
s,a,h, V

π
h+1,g, N

k
h (s, a)

)
=
〈
Ps,a,h, V

π
h+1,g

〉
+
〈
P̂ k
s,a,h − Ps,a,h, V

π
h+1,g

〉

+max

20

3

√√√√V
(
P̂ k
s,a,h, V

π
h+1,g

)
log 1

δ′

Nk
h (s, a)

,
400

9

H log 1
δ′

Nk
h (s, a)


≥
〈
Ps,a,h, V

π
h+1,g

〉
.
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Substitution into eq. (17) gives: with probability at least 1− 2δ′,

Q̂π
h,g̃(s, a) ≥ gh(s, a) +

〈
Ps,a,h, V

π
h+1,g

〉
= Qπ

h,g(s, a).

The proof for Qπ
h,g ≥ Q̂π

h,g is analogous and we leave out here.

Lemma A.16. Recall the definition of Nk
h (s

k
h, a

k
h) in alg. 1. It holds that:

K∑
k=1

H∑
h=1

1

max{Nk
h (s

k
h, a

k
h), 1}

≤ 2SAH log2 K.

Proof. In view of the doubling batch update rule, it is easily seen that: for any given (s, a, h),

K∑
k=1

1

max{Nk
h (s

k
h, a

k
h), 1}

1
{
(s, a) = (skh, a

k
h)
}
≤ 2 log2 K,

since each (s, a, h) is associated with at most log2 K epochs. Summing over (s, a, h) completes the
proof.

Lemma A.17 (Freedman’s inequality). Let (Mn)n≥0 be a martingale such that M0 = 0 and |Mn−
Mn−1| ≤ c (∀n ≥ 1) hold for some quantity c > 0. Define

Varn :=

n∑
k=1

E
[
(Mk −Mk−1)

2
∣∣Fk−1

]
for every n ≥ 0, where Fk is the σ-algebra generated by (M1, . . . ,Mk). Then for any integer n ≥ 1
and any ϵ, δ > 0, one has

P

[
|Mn| ≥ 2

√
2

√
Varn log

1

δ
+ 2

√
ϵ log

1

δ
+ 2c log

1

δ

]
≤ 2

(
log2

(
nc2

ϵ

)
+ 1

)
δ.
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