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Abstract
Deep denoisers have shown excellent perfor-
mance in solving inverse problems in signal and
image processing. In order to guarantee the con-
vergence, the denoiser needs to satisfy some Lip-
schitz conditions like non-expansiveness. How-
ever, enforcing such constraints inevitably com-
promises recovery performance. This paper in-
troduces a novel training strategy that enforces
a weaker constraint on the deep denoiser called
pseudo-contractiveness. By studying the spec-
trum of the Jacobian matrix, relationships be-
tween different denoiser assumptions are revealed.
Effective algorithms based on gradient descent
and Ishikawa process are derived, and further as-
sumptions of strict pseudo-contractiveness yield
efficient algorithms using half-quadratic splitting
and forward-backward splitting. The proposed
algorithms theoretically converge strongly to a
fixed point. A training strategy based on holomor-
phic transformation and functional calculi is pro-
posed to enforce the pseudo-contractive denoiser
assumption. Extensive experiments demonstrate
superior performance of the pseudo-contractive
denoiser compared to related denoisers. The pro-
posed methods are competitive in terms of visual
effects and quantitative values.

1. Introduction
Inverse problems aim to recover the potential signal from
down sampled or corrupted obsevations. A typical inverse
problem takes form of:

f = Ku+ n, (1)
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where f is the observed signal, u is the potential signal, K
is the degradation operator, and n is the noise following
certain distributions. Different values of K and n corre-
spond to different missions including denoising, deblurring,
inpainting, super-resolution, and medical imaging. In order
to recover u from f , a variational approach is considered:

û = arg min
u∈V

F (u) +G(u; f), (2)

where V is the Hilbert space, F denotes the prior regulariza-
tion term, and G is the data fidelity term. Typical choices
for F include total variation (Rudin et al., 1992) and its ex-
tensions (Bredies et al., 2010), weighted nuclear norm (Gu
et al., 2014), group-based low rank prior (Mairal J, 2009) et
al.. First order methods are employed to solve (2), such as
the alternating direction method with multipliers (ADMM)
(Boyd et al., 2011):

uk+1 = ProxF
β

(vk − bk),

vk+1 = ProxG
β

(uk+1 + bk),

bk+1 = bk + uk+1 − vk+1,

(3)

where β > 0. For a given proper, closed, and convex
function F : V → (−∞,∞], the proximal operator
ProxF : V → V is defined as:

ProxF (y) = arg min
x∈V

F (x) +
1

2
‖x− y‖2. (4)

Noticing that ProxF
β

(·) is a Gaussian denoiser, Venkatakr-
ishnan et al. proposed to replace the u-subproblem in (3)
with arbitrary Gaussian denoiser Dσ in a plug-and-play
(PnP) fashion, that is uk+1 = Dσ(vk − bk), and arrived
at PnP-ADMM algorithm (Venkatakrishnan et al., 2013).
Here, Dσ is a Gaussian denoiser with denoising strength σ.
Throughout the paper, we let β = 1

σ2 as suggested in (Chan
et al., 2016; Zhang et al., 2017b; 2021).

Interestingly, PnP-ADMM, along with other PnP methods,
has demonstrated remarkable recovery effects in a diverse
range of areas, such as bright field electron tomography
(Sreehari et al., 2016), camera image processing (Heide
et al., 2014), low-dose CT imaging (Venkatakrishnan et al.,
2013; Peng et al., 2023), image denoising (Le Pendu &
Guillemot, 2023; Wei et al., 2023a;b), deblurring (Zhang
et al., 2017b; Laroche et al., 2023a), inpainting (Zhu et al.,
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2023), and super-resolution (Laroche et al., 2023b). How-
ever, the analysis of convergence is challenging due to the
inherent black box nature of Dσ . Ensuring the convergence
of PnP algorithms with weaker assumptions and more pow-
erful denoisers has emerged as a demanding research topic,
requiring further investigation and exploration.

The existing approaches to guarantee the convergence of
PnP methods can be classified into two categories.

The first class aims to find a potential function F : V →
(−∞,∞], such that Dσ = ∇F or Dσ = ProxF . By study-
ing the Jacobian matrix J(x) = ∇Dσ(x), Sreehari et al.
first proved that when J is symmetric with eigenvalues in
[0, 1] for any x ∈ V , there exists some proper, closed, and
convex F , such that Dσ(·) = ProxF

β
(·) is indeed a proxi-

mal operator (Sreehari et al., 2016). This assumption may
be too strong, that most denoisers like non-local means
(NLM) (Buades et al., 2005), BM3D (Dabov et al., 2006),
DnCNN (Zhang et al., 2017a), and UNet (Ronneberger
et al., 2015) violate it. Romano et al. proposed the reg-
ularization by denoising (RED) method, which is more
flexible than PnP-ADMM (Romano et al., 2017). The RED
prior term takes the form of F (x) = 1

2 〈x, x − Dσ(x)〉.
Romano et al. proved that when Dσ is locally homoge-
neous, ∇Dσ is symmetric with spectral radius less than
one, one has ∇F (x) = x − Dσ(x), and that PnP-GD and
PnP-ADMM with RED prior converge. Yet the assumptions
are impractical. As reported by Reehorst and Schniter, deep
denoisers may not satisfy these assumptions (Reehorst &
Schniter, 2018). In (Cohen et al., 2021), instead of train-
ing a Gaussian denoiser Dσ, Cohen et al. parameterized
an implicit convex function F : V → (−∞,∞) with a
neural network by enforcing non-negative weights and con-
vex, non-decreasing activations, such that F is convex, and
Dσ(·) = ∇F (·) : V → V outputs clean images. By doing
so, an implicit convex prior F is obtained, and a conver-
gent algorithm based on gradient decent (GD) is derived.
Unfortunately, experimental results have demonstrated that
employing a convex regularization term compromises the ef-
fectiveness of recovery. In (Hurault et al., 2022a), Hurault et
al. proposed the gradient step (GS) denoiser Dσ = I−∇F ,
where F is parameterized by DRUNet (Zhang et al., 2021).
In (Hurault et al., 2022b), Hurault et al. proposed the prox-
imal DRUNet (Prox-DRUNet), which requires that ∇F is
L-Lipschitz with L ≤ 0.5. Under these assumptions, they
proved the convergence of PnP with half-quadratic splitting
(PnP-HQS) and PnP-ADMM. Nonetheless, the assumptions
may still be too strong: the constraint on L ≤ 0.5 has
been proved to be too restrictive and hindered the denoising
performance, see (Hurault et al., 2022b).

The second class of research investigates the assumptions of
Dσ under which PnP has a fixed-point convergence. In the
work of Sreehari et al. (Sreehari et al., 2016), the Jacobian

matrix J of the denoiser Dσ is assumed to be symmetric,
with eigenvalues lying inside [0, 1]. Then Dσ is firmly non-
expansive. As a result, PnP-ADMM converges to a fixed
point. Inspired by this pioneer work, Chan et al. analyzed
convergence with a bounded denoiser assumption (Chan
et al., 2016). The denoising strength decreases to ensure
the convergence. In (Buzzard et al., 2018), Buzzard et al.
explained PnP via the framework of consensus equilibrium.
The convergence is proved for non-expansive denoisers.
However, as reported in (Chan et al., 2016), deep denois-
ers are in general expansive. In (Sun et al., 2019), Sun et
al. analyzed the convergence of PnP with proximal gradi-
ent descent (PnP-PGM) under the assumption that Dσ is
θ-averaged (θ ∈ (0, 1)). The averagedness assumption is
too restricted, since many denoisers cannot be considered
as averaged denoiser (Laumont et al., 2023). In (Tirer &
Giryes, 2018), Tirer and Giryes assumed a bounded Dσ

with contractive projections on a subspace, and provided
an upper bound on the error of the recovered signal and
the true signal. Nevertheless, the assumptions are difficult
to validate. In (Ryu et al., 2019), Ryu et al. enforced the
contractiveness of I−Dσ by real spectral normalization
(RealSN), which normalized the spectral norm of each layer.
However, RealSN is time consuming, and is designed specif-
ically for denoisers with cascade residual learning structures
like DnCNN, and thus is not suitable for other networks
like UNet. In (Pesquet et al., 2021), Pesquet proved the
convergence of PnP-FBS when 2 Dσ − I is non-expansive.
Since that the non-expansiveness of Dσ can be drawn from
the non-expansiveness of 2 Dσ − I, the constraint is more
restrictive, and the performance of the denoiser is not satis-
fying.

Contributions. As discussed above, in order to guarantee
the convergence of PnP and RED algorithms, the previ-
ous works assume the Lipschitz properties of the denoisers.
However, enforcing such assumptions inevitably comprises
the denoising performance. To address these issues, in this
paper, we propose convergent plug-and-play methods with
pseudo-contractive denoisers. Overall, our main contribu-
tions are threefold:

• The assumption regarding the denoiser is pseudo-
contractiveness, which is weaker than that of existing meth-
ods. To ensure this assumption, an effective training strategy
has been proposed based on holomorphic transformation
and functional calculi.
• Convergent plug-and-play Ishikawa methods based on
GD, HQS, and FBS are proposed. The global convergence
results are established.
• Numerical experiments show that the proposed methods
are competitive compared with other closely related meth-
ods in terms of visual effects, and quantitive values.
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2. Pseudo-contractive Denoisers
Let V be the real Hilbert space with the inner product 〈·, ·〉.
A mapping D : V → V is θ-averaged, θ ∈ (0, 1], if

D = θN +(1− θ) I, (5)

where N is a non-expansive mapping, that is ∀x, y ∈ V ,
‖N(x)−N(y)‖ ≤ ‖x− y‖, I is the identity mapping, ‖ · ‖
is the induced norm from 〈·, ·〉. Some other closely-related
Lipschitz assumptions are reviewed in Appendix A.

D is pseudo-contractive (Rafiq, 2007; Weng, 1991; Hicks &
Kubicek, 1977), if there exists 0 ≤ k ≤ 1, such that,

‖D(x)−D(y)‖2 ≤ ‖x− y‖2
+k‖(I−D)(x)− (I−D)(y)‖2, ∀x, y ∈ V. (6)

When 0 ≤ k < 1, D is strictly pseudo-contractive
(Chidume, 1987; Weng, 1991). Non-expansiveness is a
special case of pseudo-contractive with k = 0.

Lemma 2.1 gives an equivalent definition of k-strictly
pseudo-contractive mappings, and therefore gives the re-
lationship between strictly pseudo-contractive mappings
and the averaged mappings in the form of (5).

Lemma 2.1. (proof in Appendix C) The following two state-
ments are equivalent:
• D : V → V is k-strictly pseudo-contractive with k < 1;
• D : V → V can be written as D = 1

1−k N− k
1−k I, where

N is non-expansive.

It is worth noting that D is pseudo-contractive, if and only
if I−D is monotone.

Lemma 2.2. (proof in Appendix D) Let D : V → V be a
mapping in the real Hibert space V . Then, D is pseudo-
contractive, if and only if I−D is monotone, that is

〈(I−D)(x)− (I−D)(y), x− y〉 ≥ 0. (7)

The relationships between these properties are:
Firmly Non-expansive⇒ Averaged⇒ Non-expansive⇒
Pseudo-contractive.

It has been reported in (Hurault et al., 2022b) that, imposing
non-expansive denoiser alters its denoising performance.
Pseudo-contractiveness enlarges the range of the denoisers
in the following sense. Let D be a deep Gaussian denoiser,
which inputs a noisy image and outputs a clean image. In
this setting, I−D outputs the predicted noise. Pseudo-
contractive D means that the difference between two output
clean images is smaller than the sum of the difference be-
tween the input noisy images and the difference between
the predicted noises. As a result, Pseudo-contractiveness
is a weaker assumption on the deep denoisers than non-
expansiveness, averagedness, and firmly non-expansiveness.

We further explore the potential relationships between differ-
ent assumptions on the denoisers by studying the spectrum
distribution. Let D ∈ C1[V ], and J(x) = ∇x D be the
Jacobian matrix at point x ∈ V of D. By the mean value
theorem, (7) can be rewritten as

〈(I− JT(ξ))(x− y), x− y〉 ≥ 0, ξ = ξ(x, y) ∈ V. (8)

Thus D is pseudo-contractive, if there holds

〈(I− JT)(x− y), x− y〉 ≥ 0, (9)

for any x, y, ξ ∈ V , J = J(ξ). We refer (9) to the regularity
condition of pseudo-contractiveness. J can be decomposed
into a symmetric part S = 1

2 (J + JT) and an anti-symmetric
part A = 1

2 (J− JT). For any x, y ∈ V , we have

〈(I− JT)(x− y), x− y〉 = 〈(I−S)(x− y), x− y〉. (10)

As a result, condition (9) is equivalent to that any eigenvalue
of S is not larger than 1. Thus, the real part of any eigenvalue
of J is smaller than 1. That is, the eigenvalue of J for pseudo-
contractive D lies inside the half plane, Sp(J) ⊂ {z ∈ C :
real(z) ≤ 1}, where Sp(J) denotes the spectrum set of J:

Sp(J) :=
⋃
x∈V

Sp(J(x)). (11)

Figure 1. Spectrum distributions on the complex plane for the Ja-
cobian under different assumptions. (a) Firmly non-expansiveness,
specifically 1

2
-averagedness, Sp(J) ⊂ {z ∈ C : |2z − 1| ≤ 1};

(b) Non-expansiveness, Sp(J) ⊂ {z ∈ C : |z| ≤ 1}; (c)
Contractiveness of I− J with r = 1

2
, Sp(J) ⊂ {z ∈ C :

|z − 1| ≤ 1
2
}; (d) k-strictly pseudo-contractiveness with k = 1

2
,

Sp(J) ⊂ {z ∈ C : |z + 1| ≤ 2}; (e) Pseudo-contractiveness,
Sp(J) ⊂ {z ∈ C : real(z) ≤ 1}.

Similarly, we give the regularity conditions for the Jacobian
J under θ-averaged, and pseudo-contractive assumptions on
the denoiser D, as well as the distribution regions Sp(J) in
(12)-(14). ‖ · ‖∗ denotes the spectral norm. Conditions for
non-expansive, firmly non-expansive, and contractive D is
given in Appendix A. Note that these regularity conditions
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are sufficient conditions for a denoiser to satisfy the corre-
sponding assumptions.
• θ-averaged D (θ ∈ (0, 1]):∥∥[(1− 1

θ

)
I + 1

θ J
]∥∥
∗ ≤ 1,

Sp(J) ⊂
{
z ∈ C :

∣∣1− 1
θ + 1

θ z
∣∣ ≤ 1

}
.

(12)

• k-strictly pseudo-contractive D (k < 1):

‖k I +(1− k) J ‖∗ ≤ 1,
Sp(J) ⊂ {z ∈ C : |(1− k)z + k| ≤ 1}. (13)

• Pseudo-contractive D:

〈(I− JT)(x− y), x− y〉 ≥ 0,
Sp(J) ⊂ {z ∈ C : real(z) ≤ 1}. (14)

3. The proposed algorithm
In this section, we propose PnP-based algorithms to solve
(2) using (strictly) pseudo-contractive denoisers. Before
that, we briefly review three existing PnP methods.

Gradient descent (GD) method solves (2) by

un+1 = un − α(∇F +∇G)un, (15)

where α > 0 is the step size. When F is parameterized
by a neural network Dσ, ∇F is often replaced by I−Dσ

(Romano et al., 2017). Then, PnP-GD takes the form of

un+1 = [(1− α) I +αT]un,T = Dσ −∇G. (16)

Unlike PnP-GD, many PnP methods can be written as the
composition of two mappings. For example, the iterations
of PnP-HQS and PnP-FBS to solve (2) takes the form of

PnP-HQS: un+1 = T(un), T = Dσ ◦ProxG
β
,

PnP-FBS: un+1 = T(un), T = Dσ ◦(I−λ∇G).
(17)

T in PnP-GD is the sum of Dσ and −∇G, while T in PnP-
HQS and PnP-FBS is composed of two mappings. When Dσ

is assumed to be pseudo-contractive, it is necessary to study
the property of T in these cases. Lemma 3.1 gives the con-
dition that the sum of Dσ and −∇G is pseudo-contractive.

Lemma 3.1. (proof in Appendix E) Let D be pseudo-
contractive, and G be proper, closed, and convex. Then
T = D−∇G is also pseudo-contractive.

Lemma 3.2 gives the condition that a strictly pseudo-
contractive mapping composed with an averaged mapping
is still pseudo-contractive.

Lemma 3.2. (proof in Appendix F) Let D be k-strictly
pseudo-contractive, and P be θ-averaged, k, θ ∈ (0, 1].

If k < 1 − θ, the composite operator D ◦P is l-strictly
pseudo-contractive, where

0 ≤ l =
k(1− θ)

(1− θ)− kθ
< 1. (18)

If k = 1 − θ, D ◦P is pseudo-contractive. Besides, when
k < 1, D ◦P is 1+k

1−k -Lipschitz.

By Lemmas 3.1-3.2, when Dσ is (strictly) pseudo-
contractive, T is pseudo-contractive. We need a special iter-
ation schemes to find the fixed point of a pseudo-contractive
mapping T.

Ishikawa proposed the following process to find the fixed
point of a Lipschitz pseudo-contractive mapping T over a
compact convex set K (Ishikawa, 1974). He proved the
following theorem.

Theorem 3.3. Let K be a compact convex subset of a
Hilbert space V , T : K → K is a Lipschitz and pseudo-
contractive mapping, and x0 ∈ K, then the sequence {xn}
converges strongly to a fixed point of T, where xn is defined
iteratively for n ≥ 0 by:

yn = (1− βn)xn + βn Txn,
xn+1 = (1− αn)xn + αn T yn,

(19)

where αn, βn satisfy

0 ≤ αn ≤ βn < 1, lim
n→∞

βn = 0,
∑
n

αnβn =∞. (20)

Now we extend the existing PnP-GD, PnP-HQS, and PnP-
FBS to the Ishikawa process. According to PnP-GD in
(16), by letting T = Dσ −∇G, we propose PnPI-GD, an
abbreviation for PnP Ishikawa gradient descent in Algorithm
1. Theorem 3.4 gives the global convergence of PnPI-GD.

Theorem 3.4. (proof in Appendix G)K is a compact convex
set in V . Let Dσ : K → K be Lipschitz pseudo-contractive,
G : K → K be differentiable, proper, closed, and convex,
with Lipschitz gradient∇G. {αn}, {βn} be two sequences
satisfying (20). Assume that Fix(Dσ −∇G) 6= ∅. Then, un

generated by PnPI-GD in Algorithm 1 converges strongly
to a fixed point in Fix(Dσ −∇G).

Algorithm 1 PnPI-GD
Given Dσ, {αn}, {βn}, u0, N .
for n = 0 : N − 1 do
vn = (1− βn)un + βn(Dσ(un)−∇G(un))
un+1 = (1− αn)un + αn(Dσ(vn)−∇G(vn))

end for
Return uN

If T takes the form of PnP-HQS as in (17), T =
Dσ ◦ProxG

β
, we arrive at PnPI-HQS in Algorithm 2. When
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Algorithm 2 PnPI-HQS
Given Dσ, {αn}, {βn}, u0, N
for n = 0 : N − 1 do
xn = ProxG

β
(un)

vn = (1− βn)un + βn Dσ(xn)
yn = ProxG

β
(vn)

un+1 = (1− αn)un + αn Dσ(yn)
end for
Return uN

Algorithm 3 PnPI-FBS
Given Dσ, {αn}, {βn}, λ, u0, N
for n = 0 : N − 1 do
xn = un − λ∇G(un)
vn = (1− βn)un + βn Dσ(xn)
yn = vn − λ∇G(vn)
un+1 = (1− αn)un + αn Dσ(yn)

end for
Return uN

T is the Forward-Backward Splitting (FBS) operator, T =
Dσ ◦(I−λ∇G), we arrive at PnPI-FBS in Algorithm 3. The
corresponding convergence results are given in Theorem 3.5
and Theorem 3.6, respectively.

Theorem 3.5. (proof in Appendix H)K is a compact convex
set in V . Let Dσ : K → K be Lipschitz k-strictly pseudo-
contractive, G : K → K be proper, closed, and convex,
∇G is γ-cocoercive. {αn}, {βn} be two sequences satis-
fying (20). Assume that Fix(Dσ ◦ProxG

β
) 6= ∅. Then, un

generated by PnPI-HQS in Algorithm 2 converges strongly
to a fixed point in Fix(Dσ ◦ProxG

β
), if k ≤ 2γ+1

2γ+2 .

Theorem 3.6. (proof in Appendix I) K is a compact convex
set in V . Let Dσ : K → K be Lipschitz k-strictly pseudo-
contractive,G : K → K be proper, closed, and convex,∇G
is γ-cocoercive. {αn}, {βn} be two sequences satisfying
(20). Assume that Fix(Dσ ◦(I−λ∇G)) 6= ∅. Then, un

generated by PnPI-FBS in Algorithm 3 converges strongly
to a fixed point in Fix(Dσ ◦(I−λ∇G)), if 0 ≤ λ ≤ 2γ,
and k ≤ 1− λ

2γ .

Remark 3.7. For a proper, closed, convex, and differentiable
G,∇G is 0-cocoercive. As a result, according to Theorem
3.5, PnPI-HQS converges, if k ≤ 1

2 . Similarly, when we
select λ ∈ [0, γ] in PnPI-FBS, we have k = 1

2 ≤ 1 − λ
2γ .

That is, a 1
2 -strictly pseudo-contractive denoiser Dσ satisfies

the conditions in Theorems 3.5-3.6.

4. Training strategy
In this section, we propose an effective training strategy
to ensure that the denoiser is pseudo-contractive. Let p
be the distribution of the training set of clean images, and

[σmin, σmax] be the interval of the noise level. Inspired by
(Pesquet et al., 2021), we utilize the spectral regularization
technique to ensure the pseudo-contractive assumption by
regularizing the Jacobian.
Strictly pseudo-contractiveness. In order to ensure the
denoisers to be k-strictly pseudo-contractive, we need
‖k I +(1 − k) J ‖∗ ≤ 1. Let θ be the parameters of the
denoiser Dσ. An optimal θ̂ is a solution to the following
problem:

E‖Dσ(x+ξσ; θ)−x‖1 +rmax{‖k I +(1−k) J ‖∗, 1−ε},
(21)

where x ∼ p, σ ∼ U [σmin, σmax], ξσ ∼ N (0, σ2). The
first term ensures that Dσ is a Gaussian denoiser, while the
second term is the spectral regularization term. r > 0 is
the balancing parameter, and ε ∈ (0, 1) is a parameter that
controls the constraint.

Algorithm 4 Power iterative method
Given q0 with ‖q0‖ = 1, J, N
for n = 1 : N do
zn = J qn−1

qn = zn

‖zn‖
end for
Return λN = (qN )T J qN

By the power iterative method (Golub & Van Loan, 2013),
we can compute the spectral norm of J by Algorithm 4. The
AutoGrad toolbox in Pytorch (Paszke et al., 2017) allows
the calculation for Jx and JT x with any vector x. Thus, zn

and λN can be obtained efficiently.
Pseudo-contractiveness. In order to train a pseudo-
contractive denoiser, we need to constrain

〈(I−S)(x− y), x− y〉 ≥ 0,∀x, y ∈ V. (22)

Since S is symmetric, we can do functional calculi on S. We
wish to find a holomorphic function f : C→ C defined on
the neighborhood of Sp(S), such that f(S) is defined, and

f({z ∈ C : real(z) ≤ 1}) = {z ∈ C : |z| ≤ 1}. (23)

Then, by the spectral mapping theorem (Harte, 1972; Haase,
2005), there holds Sp(f(S)) = f(Sp(S)). We choose
the following function f(z) = z

z−2 ,∀z 6= 2. Then f is
holomorphic on the neighborhood of the spectrum set of a
pseudo-contractive denoiser. Besides, f maps the half plane
{z ∈ C : real(z) ≤ 1} to the unit disk.

To ensure Sp(S) ⊂ {z ∈ C : real(z) ≤ 1}, we only need
to constrain Sp(f(S)) ⊂ {z ∈ C : |z| ≤ 1}. Note that S
is symmetric, ρ(S) = ‖S ‖∗. As a result, we only need to
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constrain ‖f(S)‖∗ ≤ 1, because

‖f(S)‖∗ ≤ 1⇔ ρ(f(S)) ≤ 1

⇔ f(Sp(S)) = Sp(f(S)) ⊂ {z ∈ C : |z| ≤ 1}
⇔ Sp(S) ⊂ f−1({z ∈ C : |z| ≤ 1})
= {z ∈ C : real(z) ≤ 1}
⇒ The regularity condition (9) holds.
⇒ Dσ is pseudo-contractive.

(24)

The above derivations can be summarized as the following
theorem.

Theorem 4.1. Let J = J(x) = ∇x Dσ be the differential
of Dσ : V → V at x ∈ V . Let S be the symmetric part of J.
f(z) = z

z−2 is a holomorphic function on the neighborhood
of {z ∈ C : real(z) ≤ 1}. Then Dσ is pseudo-contractive,
if for any x ∈ V,S = S(x), there holds ‖f(S)‖∗ ≤ 1, where
‖ · ‖∗ denotes the spectral norm.

The loss function for a pseudo-contractive denoiser is

E‖Dσ(x+ ξσ; θ)−x‖1 + rmax{‖(S−2 I)−1 S ‖∗, 1− ε}.
(25)

According to the power iterative method in Algorithm 4, in
order to evaluate ‖(S−2 I)−1 S ‖∗, given qn−1, we need to
calculate zn, such that

zn = (S−2 I)−1 S qn−1, (26)

which is the solution to the following least square problem:

zn = arg min
z

1

2
‖(S−2 I)z − S qn−1‖2. (27)

We apply gradient descent to solve (27):

znk+1 = znk − dt(S−2 I)[(ST−2 I)znk − ST qn−1],
k = 1, 2, 3, ...,K,

(28)
where zn1 = zn−1, zn = znK+1. Besides, by substituting
zN = (S−2 I)−1 S qN−1, we have

λN = (qN )T(S−2 I)−1 S qN = 〈qN , zN+1〉. (29)

We summarize this modified power iterative method in Al-
gorithm 5. Algorithm 5 extends the existing Algorithm 4 to
evaluate the spectral norm of the multiplication of an inverse
matrix (S−2 I)−1 and S. By Algorithm 4, we are able to
minimize the loss in (25).

For the parameters in Algorithms 4-5, we select N =
10,K = 10, dt = 0.1, ε = 0.1, and r = 10−3 to ensure the
regularity conditions in (13) and (14).

5. Experiments
In this section, we learn pseudo-contractive denoiser and
k-strictly according to (25) and (21) with k = 1

2 . We use

Algorithm 5 Modified power iterative method
Given q0 with ‖q0‖ = 1,S, N,K, dt, z0

for n = 1 : N do
zn1 = zn−1

for k = 1 : K do
znk+1 = znk − dt(S−2 I)[(ST−2 I)znk − ST qn−1]

end for
zn = znK+1

qn = zn

‖zn‖
end for
Return λN = 〈qN , zN+1〉

CBSD68 (Roth & Black, 2005) and Set12 (Zhang et al.,
2017a) as test sets to show the effectiveness of our method.
All the experiments are conducted under Linux system,
Python 3.8.12 and Pytorch 1.10.2.

Training details. For the pseudo-contractive Gaussian de-
noisers, we select DRUNet (Zhang et al., 2021), which
combines a residual learning (He et al., 2016) and UNet
architecture (Ronneberger et al., 2015). DRUNet takes the
noisy image, as well as the noise level σ as input, which is
convenient for PnP image restoration.

For training details, we collect 800 images from DIV2K
(Ignatov et al., 2019) as the training set and crop them into
small patches of size 64× 64. The batch size is 32. We add
the Gaussian noise with [σmin, σmax] = [0, 60] to the clean
image. Adam optimizer is applied to train the model with
learning rate lr = 10−4. We set r = 10−3 to ensure the
regularity conditions in (13) and (14).

Denoising performance. We evaluate the Gaussian de-
noising performances of the proposed pseudo-contractive
DRUNet (PC-DRUNet), 1

2 -strictly pseudo-contractive
DRUNet (SPC-DRUNet), the non-expansive DRUNet (NE-
DRUNet) trained with the loss (21) with k = 0, maximally
monotone operator (MMO) (Pesquet et al., 2021) which is
firmly non-expansive, Prox-DRUNet (Hurault et al., 2022b)
with a contractive residual, the standard DRUNet without
extra regularizations, the classical FFDNet (Zhang et al.,
2018) and DnCNN (Zhang et al., 2017a). For a fair compar-
ison, all denoisers are trained with DIV2K, and the patch
sizes are set to 64. The PSNR values are given in Table 1 on
CBSD68. The denoising performance on the gray images
(Set12) is provided in Table 5 in Appendix J.

As shown in Table 1, restrictive conditions on the denoisers
results in a compromised denoising performance. It can be
explained by the spectrum distributions shown in Fig. 1: (a)
for MMO; (b) for NE-DRUNet; (c) for Prox-DRUNet; (d)
for SPC-DRUNet; (e) for PC-DRUNet; the complex plane C
for DRUNet. A larger region means less restrictions on the
Jacobian, and therefore, the denoising performance becomes

6
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Table 1. Average denoising PSNR performance of different denois-
ers on CBSD68 dataset, for various noise levels σ.

σ 15 25 40

FFDNet 33.86 31.18 28.81
DnCNN 33.88 31.20 28.89
DRUNet 34.14 31.54 29.33

MMO 32.74 30.20 28.25
NE-DRUNet 32.97 30.54 28.50

Prox-DRUNet 33.18 30.60 28.38
SPC-DRUNet 34.12 31.51 29.32
PC-DRUNet 34.14 31.53 29.32

better. In Fig. 1, we have (a) ⊂ (b) ⊂ (d) ⊂ (e) ⊂ C,
and the PSNR values in Table 1 by MMO, NE-DRUNet,
SPC-DRUNet, PC-DRUNet, and DRUNet have the same
order. It indicates that pseudo-contractiveness is a weaker
and less harmful assumption on the deep denoisers.

Assumption validations. In the experiments, the strictly
pseudo-contractive and pseudo-contractive conditions are
softly constrained by the loss functions (21) and (25) with a
trade-off parameter r. We validate the conditions in Table 2.
As shown in Table 2, DRUNet without spectral regulariza-
tion term is neither non-expansive nor pseudo-contractive.
When PC-DRUNet and SPC-DRUNet are trained by the
loss functions (21) and (25) with r = 10−3, the norms∥∥∥∥1

2
I +

1

2
J

∥∥∥∥
∗

and ‖(S−2 I)−1 S ‖∗ are smaller than 1. It

validates the effectiveness of the proposed training strategy.

Table 2. Maximal values of different norms on CBSD68 dataset
for various noise levels σ.

σ 15 25 40 Max. Norm

DRUNet 9.544 10.81 13.16 ‖ J ‖∗
DRUNet 1.614 2.998 1.775 ‖ 1

2 I + 1
2 J ‖∗

DRUNet 4.364 4.429 4.346 ‖(S−2 I)−1 S ‖∗
SPC-DRUNet (r = 10−3) 0.995 0.991 0.999 ‖ 1

2 I + 1
2 J ‖∗

SPC-DRUNet (r = 10−4) 1.014 1.186 1.440 ‖ 1
2 I + 1

2 J ‖∗
PC-DRUNet (r = 10−3) 0.988 0.999 0.996 ‖(S−2 I)−1 S ‖∗
PC-DRUNet (r = 10−4) 1.020 1.001 1.246 ‖(S−2 I)−1 S ‖∗

PnP restoration. We apply the proposed PnPI-GD, PnPI-
HQS, and PnPI-FBS algorithms on deblurring and super-
resolution tasks. In Appendix O, we consider poisson de-
noising experiments. In Appendix P, we also apply PnPI-
HQS to traffic data completion task. For PnPI-GD, we
choose the pretrained PC-DRUNet as Dσ. For PnPI-HQS
and PnPI-FBS, we choose the pretrained SPC-DRUNet with
k = 1

2 according to remark 3.7. We apply a decreasing step
size strategy in PnPI-HQS, by multiplying β by a factor
ρ slightly bigger than 1, and multiplying σ by 1√

ρ in each

iteration as suggested in (Zhang et al., 2021).

For the step size sequences {αn}, {βn} in Algorithms 1-
3, we let αn = (n + 1)−a, βn = (n + 1)−b, with 0 <
b < a < 1, a + b < 1, to satisfy the condition (20) in
Theorem 3.3. Large a, b leads to small step size. Emprically,
we let a = 0.3, b = 0.15 in PnPI-GD and PnPI-FBS, and
a = 0.8, b = 0.15 in PnPI-HQS. In the deblurring task, the
proposed methods are initialized with the observed image,
that is u0 = f . In the single image super-resolution task,
we choose u0 as the bicubic interpolation of f as in (Zhang
et al., 2021).

We compare our methods with some state-of-the-art con-
vergent PnP methods including MMO-FBS (Pesquet et al.,
2021), which uses the FBS method with MMO denoiser;
NE-PGD (Reehorst & Schniter, 2018; Liu et al., 2021) us-
ing PGD framework with NE-DRUNet; Prox-DRS (Hurault
et al., 2022b), which uses the Douglas-Rachfold Spilitting
(DRS) method with Prox-DRUNet. We also indicate the re-
sults by DPIR (Zhang et al., 2021), which applies PnP-HQS
method with decreasing step size and DRUNet denoiser, but
without convergence guarantee.

Deblurring. In the deblurring task, we seek to solve the in-
verse problem (1) with a convolution operator K performed
with circular boundary conditions and Gaussian noise n
with zero mean value and standard derivation σ. The fidelity
term is G(u; f) = µ

2 ‖Ku − f‖
2, where µ > 0 is the bal-

ancing parameter. The proximal operator ProxG
β

can be
efficiently calculated as in (Pan et al., 2016). Note that in
this case, ∇G(u) = µKT(Ku − f), and ‖KTK‖∗ ≤ 1.
Therefore,∇G is µ-cocoercive. We set N = 100 for PnPI-
GD, N = 50 for PnPI-FBS, N = 25 for PnPI-HQS, and
fine tune µ, λ and β > 0 in the proposed methods to achieve
the best quantitive PSNR values.

We demonstrate the effectiveness of our methods on the 8
real-world camera shake kernels by Levin et al. (Levin et al.,
2009), with σ = 12.75, and 17.85 respectively. The kernels
are shown in Appendix K, and deblurring results on Set12
are provided in Appendix M.

We summarize the PSNR and SSIM values with σ = 12.75
and 17.85 in Table 3. The detailed PSNR and SSIM values
are listed in Appendix L. The highest value is marked in
boldface. It can be seen that on average, PnPI-HQS pro-
vides the best PSNR and SSIM values. Compared with
the convergent PnP methods MMO-FBS, NE-PGD, and
Prox-DRS, the proposed PnPI-GD and PnPI-FBS provide
competitive results. It validates the effectiveness of PnP
Ishikawa scheme and the pseudo-contractive denoisers.

In Fig. 2, we show deblurring results when recovering the
image ‘0037’ from CBSD68 with kernel 2 and Gaussian
noise σ = 12.75. It can be seen in Fig. 2 (a) that the
image is severely blurred and noisy. Compared with MMO-
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(a) Blurred (b) MMO-FBS (c) NE-PGD (d) Prox-DRS (e) DPIR

(f) PnPI-GD (g) PnPI-HQS (h) PnPI-FBS
(i) (j)

Figure 2. Results by different methods when recovering the image ‘0037’ from CBSD68 with kernel 2 and Gaussian noise with σ = 12.75.
(a) Blurred. (b) MMO-FBS, PSNR=23.45dB. (c) NE-PGD, PSNR=23.59dB. (d) Prox-DRS, PSNR=23.53dB. (e) DPIR, PSNR=24.85dB.
(f) PnPI-GD, PSNR=23.82dB. (g) PnPI-HQS, PSNR=25.16dB. (h) PnPI-FBS, PSNR=23.99dB. (i) PSNR curves, x-axis denotes iteration
number. (j) Relative error curves, x-axis denotes iteration number.

(a) LR (b) MMO-FBS (c) NE-PGD (d) Prox-DRS (e) DPIR

(f) PnPI-GD (g) PnPI-HQS (h) PnPI-FBS
(i) (j)

Figure 3. Super-resolution results by different methods on the image ‘0046’ from CBSD68 with s = 2, σ = 2.55. (a) Low-resolution
(LR). (b) MMO-FBS, PSNR=23.28dB. (c) NE-PGD, PSNR=23.30dB. (d) Prox-DRS, PSNR=23.62dB. (e) DPIR, PSNR=23.80dB. (f)
PnPI-GD, PSNR=23.50dB. (g) PnPI-HQS, PSNR=24.08dB. (h) PnPI-FBS, PSNR=23.38dB. (i) PSNR curves, x-axis denotes iteration
number. (j) Relative error curves, x-axis denotes iteration number.
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FBS and NE-PGD, PnPI-GD and PnPI-FBS provide results
with better structure recovery, see Figs. 2 (b) (c) (f) (h).
Compared with Prox-DRS and DPIR, the result by PnPI-
HQS has clearer details, see Figs. 2 (d) (e) (g). Note that
DPIR has no convergence guarantee, while PnPI-GD, PnPI-
HQS, and PnPI-FBS are shown convergent in Figs. 2 (i)
(j).

Table 3. Average deblurring PSNR and SSIM performance by dif-
ferent methods on CBSD68 dataset with Levin’s 8 kernels with
σ = 12.75 and 17.85.

σ = 12.75 σ = 12.75

PSNR SSIM PSNR SSIM

MMO-FBS 26.35 0.7100 25.72 0.7000
NE-PGD 26.58 0.7277 25.94 0.6983

Prox-DRS 26.64 0.7200 25.99 0.6900
DPIR 27.65 0.7738 26.75 0.7293

PnPI-GD 26.41 0.6962 25.61 0.6633
PnPI-HQS 27.75 0.7797 26.77 0.7386
PnPI-FBS 26.83 0.7451 25.97 0.7081

Single image super-resolution. In the super-resolution
task, we seek to solve the inverse problem (1) with a convo-
lution operator K performed with circular boundary condi-
tions, a standard s-fold downsampling operator S, as well as
Gaussian noise n with zero mean value and standard deriva-
tion σ. The fidelity term is G(u; f) = µ

2 ‖SKu − f‖2,
where µ > 0 is the balancing parameter. The proxi-
mal operator ProxG

β
can be efficiently calculated as in

(Zhang et al., 2021). Similarly to the deblurring task,
∇G(u) = µSTKT(Ku − f), and ‖STKTKS‖∗ ≤ 1.
Therefore,∇G is µ-cocoercive. We set N = 100 for PnPI-
GD and PnPI-FBS, N = 50 for PnPI-HQS, and fine tune µ,
λ and β > 0 to achieve the best quantitive PSNR values.

We let the kernel K be the isotropic Gaussian blur kernel
with standard deviation 2. The downsampling scale are set
as s = 2, 4. The noise levels are set as σ = 0, 2.55, 7.65.

We summarize the PSNR and SSIM values in Table 4. It
can be seen that in most cases, PnPI-HQS provides the best
PSNR and SSIM values. Compared with the convergent
PnP methods, PnPI-GD and PnPI-FBS provides competitive
results, especially when the degradation is severe. Results
on Set12 are provided in Appendix N.

In Fig. 3, we provide visual results on the image ‘0046’
when s = 2 and σ = 2.55. In Figs. 3 (b) (c) (f) (h), com-
pared with MMO-FBS and NE-PGD, the proposed PnPI-GD
and PnPI-FBS provide sharper edges. PnPI-HQS has clearer
structures than Prox-DRS, see Figs. 3 (d) and (g). Note
that the result by DPIR seems have some ringing artifacts.
We account this for the non-convergent behavior of DPIR
shown in Figs. 3 (i) (j), while the proposed methods have
stable and convergent PSNR and relative error curves.

Table 4. Average super-resolution PSNR and SSIM performance
by different methods on CBSD68 dataset with different scales and
noise levels.

scale s=2 s=4

σ 0 2.55 7.65 0 2.55 7.65

MMO-FBS 27.02 26.16 25.28 25.30 25.17 24.51
0.7719 0.7142 0.6604 0.6692 0.6602 0.6285

NE-PGD 27.02 26.23 25.27 25.34 25.21 24.54
0.7822 0.7197 0.6622 0.6719 0.6632 0.6311

Prox-DRS 30.26 26.63 25.57 25.49 25.23 24.48
0.8874 0.7364 0.6805 0.7007 0.6716 0.6280

DPIR 29.95 27.06 25.77 25.82 25.42 24.68
0.8677 0.7615 0.6993 0.7099 0.6808 0.6398

PnPI-GD 25.54 25.36 25.12 25.06 25.01 24.30
0.7201 0.7028 0.6766 0.6838 0.6728 0.6280

PnPI-HQS 30.38 27.09 25.93 25.83 25.47 24.76
0.8822 0.7602 0.7012 0.7108 0.6878 0.6480

PnPI-FBS 28.12 26.29 25.44 25.43 25.29 24.53
0.8306 0.7357 0.6846 0.6877 0.6795 0.6380

6. Conclusion
This paper introduces a novel training strategy that enforces
a weaker constraint on the deep denoiser called pseudo-
contractiveness. By studying the spectrum of the Jaco-
bian matrix, we uncover relationships between different
denoiser assumptions. Utilizing the Ishikawa process, effi-
cient fixed-point algorithms are derived. The proposed algo-
rithms demonstrate strong theoretical convergence towards
a fixed point. To enforce the pseudo-contractive denoiser
assumption, a training strategy based on holomorphic trans-
formation and functional calculi is proposed. Extensive ex-
periments showcase the superior performance of the pseudo-
contractive denoiser compared to other related denoisers,
both visually and quantitatively. Overall, the proposed meth-
ods offer competitive results for image restoration tasks.

Source code
The source code and pretrained models are avail-
able at https://github.com/FizzzFizzz/Learning-Pseudo-
Contractive-Denoisers-for-Inverse-Problems.
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A. Closely related assumptions
We briefly review some closely related assumptions. Let V be the real Hilbert space, 〈·, ·〉 be the inner product on V , and
‖ · ‖ be the induced norm.

• Non-expansive D:
‖D(x)−D(y)‖ ≤ ‖x− y‖,∀x, y ∈ V. (30)

• θ-averaged D (θ ∈ (0, 1]):∥∥∥∥[(1− 1

θ

)
I +

1

θ
D

]
(x)−

[(
1− 1

θ

)
I +

1

θ
D

]
(y)

∥∥∥∥ ≤ ‖x− y‖,∀x, y ∈ V. (31)

• Contractive I−D (r < 1):
‖(I−D)(x)− (I−D)(y)‖ ≤ r‖x− y‖,∀x, y ∈ V. (32)

θ-averaged D can be written as
D = θN +(1− θ) I, (33)

where N is a non-expansive mapping. Averaged mappings are non-expansive. Firmly non-expansiveness is a special case of
averagedness with θ = 1

2 .

We give the regularity conditions for the Jacobian J under different assumptions on the denoiser D, as well as the distribution
regions Sp(J) in (34)-(38). ‖ · ‖∗ denotes the spectral norm. Note that these regularity conditions are sufficient conditions
for a denoiser to satisfy the corresponding assumptions.
• Non-expansive D:

‖ J ‖∗ ≤ 1, Sp(J) ⊂ {z ∈ C : |z| ≤ 1}. (34)

• θ-averaged D (θ ∈ (0, 1]):∥∥∥∥[(1− 1

θ

)
I +

1

θ
J

]∥∥∥∥
∗
≤ 1, Sp(J) ⊂

{
z ∈ C :

∣∣∣∣1− 1

θ
+

1

θ
z

∣∣∣∣ ≤ 1

}
. (35)

• Contractive I−D (r < 1):
‖ I− J ‖∗ ≤ 1,Sp(J) ⊂ {z ∈ C : |z − 1| ≤ r}. (36)

• k-strictly pseudo-contractive D (k < 1):

‖k I +(1− k) J ‖∗ ≤ 1, Sp(J) ⊂ {z ∈ C : |(1− k)z + k| ≤ 1}. (37)

• Pseudo-contractive D:

〈(I− JT)(x− y), x− y〉 ≥ 0, Sp(J) ⊂ {z ∈ C : real(z) ≤ 1}. (38)

In Fig. 1, we present an intuitive illustration of the relationships between different assumptions on D. We display the regions
of spectrum distribution on the complex plane. In (a), we depict the region when D is 1

2 -averaged, which corresponds to
firm non-expansiveness. (a) is contained within panel (b), representing the unit disk when D is non-expansive. This reveals
that firm non-expansiveness is a specific instance of non-expansiveness. (c) showcases the region where I−D is contractive
with r = 1

2 . In Figs. 1 (d) and (e), we plot the distribution region for 1
2 -strictly pseudo-contractive and pseudo-contractive

D, respectively. The are in (d) encompasses non-expansiveness and is enclosed by the half-plane in (e). This suggests that
the (strictly) pseudo-contractive property constitutes a significantly weaker assumption for denoisers.

B. Proofs of Lemmas and Theorems
Before the proofs, we review Lemma B.1 from (Giselsson, 2017).

Lemma B.1. Let G be proper, closed, and convex,∇G is γ-cocoercive, that is for any x, y ∈ V , there holds

〈x− y,∇G(x)−∇(y)〉 ≥ γ‖∇G(x)−∇G(y)‖2. (39)

Then, the resolvent of ∇G, which is the proximal operator P = ProxG = (I +∇G)−1, is 1
2γ+2 -averaged. The reflective

resolvent of∇G, 2 P− I = 2(I +∇G)−1 − I is 1
1+γ -averaged.
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C. Proof of Lemma 2.1
Proof. By the definition, D is said to be k-strictly pseudo-contractive with k < 1, if ∀x, y ∈ V , we have

‖D(x)−D(y)‖2 ≤ ‖x− y‖2 + k‖(I−D)(x)− (I−D)(y)‖2. (40)

Denote a = D(x)−D(y), b = x− y. Then

‖a‖2 ≤ ‖b‖2 + k‖a− b‖2 = ‖b‖2 + k‖a‖2 + k‖b‖2 − 2k〈a, b〉,
(1− k)‖a‖2 + 2k〈a, b〉 ≤ (1 + k)‖b‖2,

‖a‖2 +
2k

1− k
〈a, b〉 ≤ 1 + k

1− k
‖b‖2,∥∥∥∥a+

k

1− k
b

∥∥∥∥2

≤
(

k2

(1− k)2
+

1 + k

1− k

)
‖b‖2 =

(
1

(1− k)2

)
‖b‖2,

‖(1− k)a+ kb‖2 ≤ ‖b‖,

(41)

which means that (1− k) D +k I is non-expansive. Let N = (1− k) D +k I, we have

D =
1

1− k
N− k

1− k
I . (42)

D. Proof of Lemma 2.2
Proof.

D is pseudo-contractive
⇐⇒ ∀x, y ∈ V, ‖D(x)−D(y)‖2 ≤ ‖x− y‖2 + ‖(I−D)(x)− (I−D)(y)‖2
⇐⇒ ∀x, y ∈ V, ‖(I−D− I)(x)− (I−D− I)(y)‖2 ≤ ‖x− y‖2 + ‖(I−D)(x)− (I−D)(y)‖2
⇐⇒ ∀x, y ∈ V, ‖(I−D)(x)− (I−D)(y)‖2 + ‖x− y‖2 − 2〈(I−D)(x)− (I−D)(y), x− y〉 ≤ ‖x− y‖2

+‖(I−D)(x)− (I−D)(y)‖2
⇐⇒ ∀x, y ∈ V, 〈(I−D)(x)− (I−D)(y), x− y〉 ≥ 0.

(43)

E. Proof of Lemma 3.1
Proof. According to Lemma 2.2, we only need to show that for any x, y ∈ V , there holds

〈(I−T)(x)− (I−T)(y), x− y〉 ≥ 0. (44)

Note that I−T = I−D +∇G. Thus we have

〈(I−T)(x)− (I−T)(y), x− y〉 = 〈(I−D)(x)− (I−D)(y), x− y〉+ 〈∇G(x)−∇G(y), x− y〉 ≥ 0 + 0 = 0. (45)

The last ≥ comes from the pseudo-contractive D and convex G.

F. Proof of Lemma 3.2
Before the proof of Lemma 3.2, we give the following Lemma F.1.

Lemma F.1. Let V be the real Hilbert space. For any x, y ∈ V and α, β ∈ R, there holds

‖αx+ βy‖2 = α(α+ β)‖x‖2 + β(α+ β)‖y‖2 − αβ‖x− y‖2, (46)

and
αβ‖x+ y‖2 = α(α+ β)‖x‖2 + β(α+ β)‖y‖2 − ‖αx− βy‖2. (47)
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Proof. Here we only prove the first equality. By letting x′ = x, y′ = −y, the second equality holds naturally. The left hand
side equals to

LHS = α2‖x‖2 + β2‖y‖2 + 2αβ〈x, y〉, (48)

while the right hand side equals to

RHS = α2‖x‖2 + β2‖y‖2 + αβ(‖x‖2 + ‖y‖2)− αβ(‖x‖2 + ‖y‖2 − 2〈x, y〉)
= α2‖x‖2 + β2‖y‖2 + 2αβ〈x, y〉 = LHS.

(49)

Now we can prove Lemma 3.2.

Proof. Since D is k-strictly pseudo-contractive, and that P is θ-averaged, for any x, y ∈ V we have

‖D ◦P(x)−D ◦P(y)‖2 ≤ ‖P(x)− P(y)‖2 + k‖(I−D) ◦ P(x)− (I−D) ◦ P(y)‖2
≤ ‖x− y‖2 − 1−θ

θ ‖(I−P)(x)− (I−P)(y)‖2 + k‖(I−D) ◦ P(x)− (I−D) ◦ P(y)‖2, (50)

where the second inequality comes from Proposition 4.35 in (Bauschke et al., 2017). Set

α = −1− θ
θ

, β = k, l =
αβ

α+ β
=

k 1−θ
θ

1−θ
θ − k

=
k(1− θ)

(1− θ)− kθ
. (51)

By Lemma F.1, there holds

α‖(I−P)(x)− (I−P)(y)‖2 + β‖(I−D) ◦ P(x)− (I−D) ◦ P(y)‖2

=
αβ

α+ β
‖[(I−P) + (I−D) ◦ P](x)− [(I−P) + (I−D) ◦ P](y)‖2

+
1

α+ β
‖α(I−D) ◦ P(x)− α(I−D) ◦ P(y)− β(I−P)(x) + β(I−P)(y)‖2

=
αβ

α+ β
‖(I−D ◦P)(x)− (I−D ◦P)(y)‖2

+
1

α+ β
‖α(I−D) ◦ P(x)− α(I−D) ◦ P(y)− β(I−P)(x) + β(I−P)(y)‖2.

(52)

When k ≤ 1− θ, α+ β < 0, and thus

α‖(I−P)(x)− (I−P)(y)‖2 + β‖(I−D) ◦ P(x)− (I−D) ◦ P(y)‖2

≤ αβ

α+ β
‖(I−D ◦P)(x)− (I−D ◦P)(y)‖2

= l‖(I−D ◦P)(x)− (I−D ◦P)(y)‖2.

(53)

If k = 1− θ, l = 1. This completes the proof.

G. Proof of Theorem 3.4
Proof. By Lemma 3.1, T = Dσ −∇G is Lipschitz and pseudo-contractive. Therefore, according to Ishikawa’s Theorem
(Ishikawa, 1974), PnPI-GD converges strongly in Fix(Dσ −∇G).

H. Proof of Theorem 3.5
Proof. By Lemma B.1, since ∇G is γ-cocoercive, the proximal operator ProxG

β
is 1

2γ+2 -averaged. Since k < 2γ+1
2γ+2 =

1− 1
2γ+2 , by Lemma 3.2, T = Dσ ◦ProxG

β
is l-strictly pseudo-contractive, where

0 ≤ l =
k(1− 1

2γ+2 )

(1− 1
2γ+2 )− k 1

2γ+2

=
k(2γ + 1)

2γ + 1− k
< 1. (54)

Dσ is k-strictly pseudo-contractive, and thus, Dσ is 1+k
1−k -Lipschitz. Since ProxG

β
is 1-Lipschitz, T = Dσ ◦ProxG

β
is also

Lipschitz. Therefore, T is Lipschitz and pseudo-contractive. According to Ishikawa’s Theorem (Ishikawa, 1974), when
Fix(Dσ ◦ProxG

β
) 6= ∅, PnPI-HQS converges strongly in Fix(Dσ ◦ProxG

β
).
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I. Proof of Theorem 3.6
Proof. ∇G is γ-cocoercive. After some derivations, we have that for any x, y ∈ V ,

〈x− y,∇G(x)−∇G(y)〉 − γ‖∇G(x)−∇G(y)‖2 ⇐⇒ ‖(2γ∇G− I)(x)− (2γ∇G− I)(y)‖2 ≤ ‖x− y‖2. (55)

It means that 2γ∇G− I is non-expansive. For 0 ≤ λ ≤ 2γ,

I−λ∇G =

(
1− λ

2γ

)
I +

λ

2γ
(I−2γ∇G). (56)

Therefore, I−λ∇G is λ
2γ -averaged. By Lemma B.1, when Dσ is k-strictly pseudo-contractive, Dσ ◦(I−λ∇G) is l-strictly

pseudo-contractive, where

0 ≤ l =
k(1− λ

2γ )

(1− λ
2γ )− k λ

2γ

=
k(2γ − λ)

2γ − λ− kλ
< 1, (57)

if k ≤ 1− λ
2γ . Since Dσ is k-strictly pseudo-contractive, it is 1+k

1−k -Lipschitz. Then T = Dσ ◦(I−λ∇G) is Lipschitz. Under
the assumption that Fix(T) 6= ∅, Ishikawa’s Theorem (Ishikawa, 1974) guarantees the strong convergence of PnPI-FBS in
Fix(T).

J. Denoising results on Set12
In Table 5, we provide denoising performance on Set12. In Table 6, we validate the assumptions by calculating the maximum
spectral norms on Set12.

Table 5. Average denoising PSNR performance of different denoisers on Set12 dataset, for various noise levels σ.
σ 15 25 40

FFDNet 32.08 29.99 27.90
DnCNN 32.88 30.46 28.26
DRUNet 33.08 30.80 28.76

MMO 31.36 29.06 27.00
NE-DRUNet 31.68 29.57 27.18

Prox-DRUNet 31.71 29.04 26.45
SPC-DRUNet 32.90 30.59 28.44
PC-DRUNet 33.01 30.69 28.66

Table 6. Maximal values of different norms on Set12 dataset for various noise levels σ.
σ 15 25 40 Norm

DRUNet 2.134 3.936 6.070 ‖ J ‖∗
DRUNet 1.628 2.715 3.515 ‖ 1

2 I + 1
2 J ‖∗

DRUNet 5.436 2.143 2.219 ‖(S−2 I)−1 S ‖∗
PC-DRUNet (r = 10−3) 0.990 0.993 0.998 ‖ 1

2 I + 1
2 J ‖∗

PC-DRUNet (r = 10−4) 1.001 1.296 1.465 ‖ 1
2 I + 1

2 J ‖∗
SPC-DRUNet (r = 10−3) 0.994 0.999 0.998 ‖(S−2 I)−1 S ‖∗
SPC-DRUNet (r = 10−4) 0.999 1.150 1.083 ‖(S−2 I)−1 S ‖∗

K. Blur kernels
The blurring kernels used in the experiments are shown in Fig. 4.
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Figure 4. Eight kernels from (Levin et al., 2009).

Table 7. Average deblurring PSNR and SSIM performance by different methods on CBSD68 dataset with Levin’s 8 kernels with
σ = 12.75.

kernel1 kernel2 kernel3 kernel4 kernel5 kernel6 kernel7 kernel8 Average

MMO-FBS 25.97 25.73 26.41 25.52 27.50 27.04 26.59 26.07 26.35
0.6985 0.6871 0.7151 0.6723 0.7642 0.747 0.7282 0.7027 0.7100

NE-PGD 26.26 25.93 26.58 25.70 27.69 27.33 26.77 26.33 26.58
0.7147 0.699 0.7252 0.6845 0.7749 0.7628 0.7413 0.7192 0.7277

Prox-DRS 26.30 25.92 26.50 25.87 27.81 26.92 27.23 26.56 26.64
0.694 0.6829 0.7167 0.6807 0.7749 0.7451 0.7598 0.7215 0.7200

DPIR 27.43 27.21 27.61 26.98 28.57 28.34 27.75 27.29 27.65
0.7649 0.755 0.7696 0.7434 0.8092 0.8018 0.7814 0.7651 0.7738

PnPI-GD 26.14 25.95 26.37 25.65 27.36 27.22 26.50 26.10 26.41
0.6717 0.6729 0.7027 0.6581 0.7373 0.7240 0.7099 0.6932 0.6962

PnPI-HQS 27.55 27.33 27.69 27.10 28.68 28.50 27.77 27.35 27.75
0.7719 0.7641 0.7762 0.7531 0.8142 0.8091 0.7822 0.7668 0.7797

PnPI-FBS 26.78 26.23 26.57 26.01 27.87 27.76 26.90 26.54 26.83
0.7376 0.7170 0.7329 0.7042 0.7889 0.7836 0.7583 0.7381 0.7451

Table 8. Average deblurring PSNR and SSIM performance by different methods on CBSD68 dataset with Levin’s 8 kernels with
σ = 17.85.

kernel1 kernel2 kernel3 kernel4 kernel5 kernel6 kernel7 kernel8 Average

MMO-FBS 25.56 25.39 26.01 25.16 26.76 26.36 25.96 25.59 25.72
0.6856 0.6764 0.7007 0.6625 0.7351 0.7216 0.7041 0.6873 0.7000

NE-PGD 25.67 25.39 26.03 25.17 26.89 26.56 26.09 25.72 25.94
0.6859 0.6724 0.6994 0.6590 0.7400 0.7292 0.7099 0.6908 0.6983

Prox-DRS 25.85 25.62 26.31 25.34 27.13 25.90 25.61 26.14 25.99
0.6926 0.6704 0.7131 0.6646 0.7361 0.6875 0.6773 0.6922 0.6900

DPIR 26.41 26.26 26.78 26.04 27.60 27.28 26.85 26.42 26.75
0.7226 0.7122 0.7326 0.7000 0.7751 0.7631 0.7452 0.7452 0.7293

PnPI-GD 25.28 25.21 25.69 24.90 26.46 26.34 25.70 25.27 25.61
0.6329 0.6404 0.6760 0.6254 0.7036 0.6887 0.6782 0.6609 0.6633

PnPI-HQS 26.53 26.31 26.84 26.11 27.69 27.45 26.90 26.33 26.77
0.7302 0.7209 0.7450 0.7159 0.7796 0.7710 0.7536 0.7252 0.7386

PnPI-FBS 25.82 25.52 25.96 25.32 26.98 26.86 26.29 25.88 25.97
0.6838 0.6819 0.7047 0.6701 0.7517 0.7425 0.7256 0.7045 0.7081
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L. Deblurring results on CBSD68
For a detailed PSNR and SSIM values on each kernel, see Tables 7-8.

M. Deblurring results on Set12
An overall deblurring results on Set12 by different methods are summarized in Table 9.

Table 9. Average deblurring PSNR and SSIM performance by different methods on Set12 dataset with Levin’s 8 kernels with σ = 12.75
and 17.85.

σ = 12.75 σ = 17.85

PSNR SSIM PSNR SSIM

MMO-FBS 26.10 0.7542 25.33 0.7242
NE-PGD 26.37 0.7651 25.55 0.7363

Prox-DRS 26.55 0.7557 25.51 0.7179
DPIR 27.64 0.7987 26.48 0.7632

PnPI-GD 26.91 0.7409 25.92 0.7114
PnPI-HQS 27.69 0.8020 26.57 0.7719
PnPI-FBS 26.79 0.7790 26.01 0.7530

(a) Blurred (b) MMO-FBS (c) NE-PGD (d) Prox-DRS (e) DPIR

(f) PnPI-GD (g) PnPI-HQS (h) PnPI-FBS
(i)

Figure 5. Results by different methods when recovering the image ‘Starfish’ from kernel 8 and Gaussian noise with σ = 12.75. (a)
Blurred. (b) MMO-FBS, PSNR=24.64dB. (c) NE-PGD, PSNR=24.98dB. (d) Prox-DRS, PSNR=24.92dB. (e) DPIR, PSNR=25.92dB. (f)
PnPI-GD, PSNR=25.49dB. (g) PnPI-HQS, PSNR=26.03dB. (h) PnPI-FBS, PSNR=25.46dB. (i) PSNR curves by PnPI-GD, PnPI-HQS,
and PnPI-FBS.

In Fig. 5, it can be seen from the enlarged parts that, PnPI-HQS provides the best visual result with sharp edges. Compared
with MMO-FBS, and NE-PGD in Figs. 5 (b)-(d), results by Prox-DRS, PnPI-GD and PnPI-FBS have clearer structures.

Additional results are shown in Fig. 6 with kernel 4 and σ = 17.85. PnPI-GD and PnPI-FBS provide competitive results
compared with Figs. 6 (b)-(d). Result by DPIR has clear edges, but seems to have some fake structures. Among the methods,
PnPI-HQS provides best visual effects with sharp edges.

A detailed PSNR and SSIM values with each kernels are listed in Tables 10-11.
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(a) Blurred (b) MMO-FBS (c) NE-PGD (d) Prox-DRS (e) DPIR

(f) PnPI-GD (g) PnPI-HQS (h) PnPI-FBS
(i)

Figure 6. Results by different methods when recovering the image ‘Monarch’ from kernel 4 and Gaussian noise with σ = 17.85. (a)
Blurred. (b) MMO-FBS, PSNR=22.83dB. (c) NE-PGD, PSNR=23.28dB. (d) Prox-DRS, PSNR=23.54dB. (e) DPIR, PSNR=24.94dB. (f)
PnPI-GD, PSNR=24.58dB. (g) PnPI-HQS, PSNR=25.19dB. (h) PnPI-FBS, PSNR=25.01dB. (i) PSNR curves by PnPI-GD, PnPI-HQS,
and PnPI-FBS.

Table 10. Average deblurring PSNR and SSIM performance by different methods on Set12 dataset with Levin’s 8 kernels with σ = 12.75.

kernel1 kernel2 kernel3 kernel4 kernel5 kernel6 kernel7 kernel8 Average

MMO-FBS 25.61 25.44 26.39 25.22 27.24 26.72 26.45 25.69 26.10
0.7400 0.7363 0.7670 0.7251 0.7870 0.7706 0.7644 0.7430 0.7542

NE-PGD 25.92 25.74 26.57 25.49 27.45 27.11 26.68 26.04 26.37
0.7516 0.7467 0.7738 0.7354 0.7974 0.7843 0.7766 0.7550 0.7651

Prox-DRS 26.23 26.02 26.78 25.76 27.69 27.31 26.85 25.74 26.55
0.7468 0.7433 0.7682 0.7314 0.7875 0.7757 0.7649 0.7275 0.7557

DPIR 27.37 27.08 27.71 26.93 28.56 28.24 27.90 27.31 27.64
0.7895 0.7824 0.8010 0.7783 0.8231 0.8137 0.8084 0.7935 0.7987

PnPI-GD 26.58 26.36 26.96 26.10 27.85 27.54 27.31 26.58 26.91
0.7169 0.7249 0.7581 0.7143 0.7673 0.7526 0.7588 0.7342 0.7409

PnPI-HQS 27.43 27.14 27.75 26.95 28.65 28.33 27.94 27.29 27.69
0.7936 0.7858 0.8048 0.7789 0.8300 0.8188 0.8109 0.7930 0.8020

PnPI-FBS 26.63 25.99 26.70 25.81 27.89 27.84 27.19 26.27 26.79
0.7727 0.7552 0.7789 0.7484 0.8121 0.8049 0.7936 0.7663 0.7790
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Table 11. Average deblurring PSNR and SSIM performance by different methods on Set12 dataset with Levin’s 8 kernels with σ = 17.85.

kernel1 kernel2 kernel3 kernel4 kernel5 kernel6 kernel7 kernel8 Average

MMO-FBS 24.95 24.82 25.76 24.51 26.32 25.80 25.55 24.92 25.33
0.7137 0.7113 0.7433 0.6989 0.7514 0.7340 0.7281 0.7128 0.7242

NE-PGD 25.18 25.03 25.89 24.72 26.49 26.12 25.76 25.22 25.55
0.7259 0.7218 0.7502 0.7101 0.7619 0.7505 0.7435 0.7266 0.7363

Prox-DRS 25.25 25.04 25.88 24.56 26.68 26.19 25.66 24.81 25.51
0.7153 0.7101 0.7403 0.6904 0.7545 0.7413 0.7154 0.6760 0.7179

DPIR 26.17 25.97 26.66 25.73 27.33 27.03 26.74 26.15 26.48
0.7528 0.7483 0.7677 0.7412 0.7877 0.7776 0.7737 0.7566 0.7632

PnPI-GD 25.61 25.46 26.13 25.10 26.83 26.54 26.18 25.54 25.92
0.6827 0.6940 0.7338 0.6801 0.7399 0.7241 0.7270 0.7093 0.7114

PnPI-HQS 26.32 26.07 26.81 25.73 27.59 27.14 26.82 26.07 26.57
0.7629 0.7556 0.7796 0.7445 0.8037 0.7886 0.7819 0.7585 0.7719

PnPI-FBS 25.85 25.37 26.01 25.07 27.03 26.80 26.38 25.62 26.01
0.7451 0.7328 0.7554 0.7216 0.7842 0.7733 0.7678 0.7439 0.7530

N. Single image super-resolution results on Set12
An overall PSNR and SSIM values are summarized in Table 12. Compared with other convergent PnP methods, the proposed
methods are competitive, see Table 12.

Table 12. Average super-resolution PSNR and SSIM performance by different methods on Set12 dataset with different scales and noise
levels.

s=2 s=4

σ 0 2.55 7.65 0 2.55 7.65

MMO-FBS 27.18 26.32 25.18 25.42 25.18 24.23
0.8247 0.7776 0.7162 0.7453 0.7341 0.6915

NE-PGD 27.17 26.45 25.23 25.51 25.26 24.30
0.8242 0.7817 0.7315 0.7482 0.7370 0.6955

Prox-DRS 31.25 26.96 25.48 25.89 25.27 24.08
0.9108 0.7927 0.7366 0.7810 0.7425 0.6831

DPIR 30.99 27.49 25.79 26.56 25.94 24.42
0.8976 0.8082 0.7458 0.7945 0.7648 0.6984

PnPI-GD 27.13 26.59 25.54 25.95 25.57 24.42
0.8179 0.7919 0.7468 0.7735 0.7539 0.7021

PnPI-HQS 31.87 27.52 25.98 26.29 25.72 24.61
0.9128 0.8115 0.7584 0.7905 0.7573 0.7090

PnPI-FBS 28.96 26.50 25.59 25.99 25.66 24.49
0.8767 0.7891 0.7473 0.7678 0.7539 0.7048

In Fig. 7, we see that, the result by PnPI-GD is smooth with clear edges, while PnPI-FBS recovers some textures. Note that
in Figs. 7 (d) and (g), Prox-DRS can recover some parts of textures of the tie, but PnPI-HQS can also recover the textures on
the trousers.

O. Poisson denoising on Set12
In the Poisson noise removal task, we seek to solve the inverse problem (1) with K be the identity operator and Poisson
noise, that is

f ∼ Poisson(u× peak)

peak
, (58)

where peak > 0 determines the noise level. A large peak corresponds to a low noise level. Note that in this case, the gray
value interval of u is [0, 1]. The fidelity term is

G(u; f) = µ〈u− f log u, 1〉. (59)

The proximal operator ProxG
β

can be solved according to (Kumar & Ranjan Sahay, 2019). Since ∇G(u) = 1 − f
u is

not cocoercive, gradient-based methods are not guaranteed to converge, such as MMO-FBS, NE-PGD, PnPI-GD, and
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(a) LR (b) MMO-FBS (c) NE-PGD (d) Prox-DRS (e) DPIR

(f) PnPI-GD (g) PnPI-HQS (h) PnPI-FBS
(i)

Figure 7. Super-resolution results by different methods on the image ‘Barbara’ with s = 2, σ = 0. (a) Low-resolution (LR). (b)
MMO-FBS, PSNR=24.21dB. (c) NE-PGD, PSNR=24.24dB. (d) Prox-DRS, PSNR=24.81dB. (e) DPIR, PSNR=25.01dB. (f) PnPI-
GD, PSNR=24.23dB. (g) PnPI-HQS, PSNR=25.66dB. (h) PnPI-FBS, PSNR=24.83dB. (i) PSNR curves by PnPI-GD, PnPI-HQS, and
PnPI-FBS.

PnPI-FBS. However, we still compare these methods when removing Poisson noises. Although PnPI-GD and PnPI-FBS
are not guaranteed to converge, we observe in experiments that both algorithms converge efficiently, see Fig. 8. We set
N = 300, and fine tune µ, λ, β.

The overall PSNR and SSIM values are listed in Table 13. The highest value is marked in boldface. It can be seen that
in most cases, PnPI-FBS provides the best PSNR values, while PnPI-HQS has the best SSIM values. Compared with the
state-of-the-art PnP methods, the proposed PnPI-GD, PnPI-HQS, and PnPI-FBS provides competitive results.

In Fig. 8, we show the Poisson noise removal results on the image ‘Lena’ with peak = 20. In Fig. 8 (a), the enlarged part
is severely degraded. The methods in Figs. 8 (b)-(e) can recover some textures. Note that in Figs. 8 (f)-(h), the proposed
methods restore finer textures, with less noise residuals.

Table 13. Average Poisson denoising PSNR and SSIM performance by different methods on Set12 dataset with different peaks.

peak=10 peak=15 peak=20

PSNR SSIM PSNR SSIM PSNR SSIM

MMO-FBS 24.75 0.7102 25.98 0.7486 26.67 0.7642
NE-PGD 25.57 0.7293 26.50 0.7634 27.20 0.7892

Prox-DRS 26.27 0.7468 26.71 0.7682 27.21 0.7834
DPIR 25.97 0.7316 27.09 0.7923 27.87 0.8180

PnPI-GD 25.90 0.7270 27.03 0.7567 27.53 0.7797
PnPI-HQS 25.82 0.7796 27.20 0.8043 28.11 0.8212
PnPI-FBS 26.80 0.7689 27.58 0.7827 28.16 0.8010
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(a) Noisy (b) MMO-FBS (c) NE-PGD (d) Prox-DRS (e) DPIR

(f) PnPI-GD (g) PnPI-HQS (h) PnPI-FBS
(i)

Figure 8. Results by different methods when recovering the image ‘Lena’ from Poisson noise (peak=20). (a) Noisy. (b) MMO-
FBS, PSNR=29.39dB. (c) NE-PGD, PSNR=29.84dB. (d) Prox-DRS, PSNR=30.24dB. (e) DPIR, PSNR=30.14dB. (f) PnPI-GD,
PSNR=29.73dB. (g) PnPI-HQS, PSNR=30.43dB. (h) PnPI-FBS, PSNR=30.82dB. (i) PSNR curves by PnPI-GD, PnPI-HQS, and
PnPI-FBS.

P. Traffic data completion
In the spatiotemporal traffic data imputation task, we seek to solve the following tensor completion problem (Chen et al.,
2024):

min
M

3∑
k=1

F
(
M(k)

)
, s.t. PΩ (M) = PΩ (Y) (60)

where Y ∈ Rn1×n2×n3 is the observed tensor with missing values,M ∈ Rn1×n2×n3 is the target spatiotemporal traffic
tensor, and Ω is the index set of the observed entries in Y , n1, n2, and n3 denote the sensors, days, and time-intervals of the
traffic data, respectively. M(k) = unfoldk (M) is the mode-k unfolding matrix ofM, F denotes the latent regularization
term related to our pseudo-contractive denoiser, and the operator PΩ : Rn1×n2×n3 → Rn1×n2×n3 is a mask operator
supported on Ω:

[PΩ (Y)]i1i2i3 =

{
Yi1i2i3 , if (i1, i2, i3) ∈ Ω,

0, otherwise.

By introducing a series of auxiliary matrix variables Zk, we transform the optimal problem Eq. (60) into the following form,
and utilize the HQS method to solve it:

min
M,

Zk,k=1,2,3

3∑
k=1

(
F (Zk) +

β

2

∥∥Zk −M(k)

∥∥2

F

)
+χ[vmin, vmax] (M) , s.t. PΩ (M) = PΩ (Y) .

(61)

where χ[vmin, vmax] is an indicator function on [vmin, vmax], and for any X ∈ Rn1×n2×n3 , we have

χ[vmin, vmax] (X ) =
∑
i1,i2,i3

χ[vmin, vmax] (Xi1i2i3) , (62)
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where

χ[vmin, vmax](a) =

{
0, if a ∈ [vmin, vmax] ,

+∞, otherwise.

According to Eq. (61), we have:

ProxG
β

(
{Znk}

3
k=1

)
= arg min

M
χ[vmin, vmax] (M) +

1

2
‖M−Wn‖2F

(63)

on the constrain of PΩ (M) = PΩ (Y), where

Wn =
1

3

3∑
k=1

foldk (Znk ) ,

foldk is the inverse operation of unfoldk, and n denotes the iteration step.

Based on the formulation of χ[vmin, vmax] in Eq. (62) and the conclusion from Lemma 6.26 in Section 6.4.2 of the book
(Beck, 2017), we can get [

ProxG
β

(
{Znk}

3
k=1

)]
i1i2i3

=

{
Yi1i2i3 , (i1, i2, i3) ∈ Ω,

min
(
vmax, max

(
Wn
i1i2i3 , vmin

))
, (i1, i2, i3) /∈ Ω.

(64)

Therefore we can get PnPI-HQS (Algorithm 6) to solve Eq. (60):

Algorithm 6 PnPI-HQS for solving Eq. (60)
Input: Observation spatiotemporal traffic data Y , masked index set Ω, {αn}, {βn}, vmin, vmax, N , ε, Dσ;
Initialize Z0

k as zeros, k = 1, 2, 3, setM0 such thatM0
Ω = YΩ,M0

Ω⊥ = mean (YΩ), n = 0;
for n = 0 to N − 1 do

for k = 1 to 3 do
Znk = (1− βn)Mn

(k) + βn Dσ

(
Mn

(k)

)
;

end for
Yn = ProxG

β

(
{Znk}

3
k=1

)
;

for k = 1 to 3 do
M̂n

k = (1− αn)Mn
(k) + αn Dσ

(
Yn

(k)

)
;

end for
Mn+1 = ProxG

β

({
M̂n

k

}3

k=1

)
;

Calculate e =
‖Mn+1−Mn‖

F

‖Mn‖F
;

if e < ε then
Stop iteration.

end if
end for
Output:Mn+1.

In Algorithm 6, the initializationM0
Ω = YΩ,M0

Ω⊥ = mean (YΩ) represents that:

M0
i1i2i3 =


Yi1i2i3 , (i1, i2, i3) ∈ Ω,

mean (YΩ) =
1

|Ω|
∑
ijk∈Ω

Yijk, (i1, i2, i3) /∈ Ω.
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We take PeMS freeway traffic volume dataset as a concrete example to assess the imputation performance of Algorithm 6.
The PeMS dataset (228× 44× 288) includes the traffic volume by 228 loop detectors in District 7 of California, with a
5-minute time resolution. Within this task, we consider two classical missing scenarios: random missing (RM) and blackout
missing (BM). The generation method of RM and BM can refer to (Chen et al., 2019b) and (Chen et al., 2021), respectively.

To measure the methods’ performance, we manually mask a few entries to substitute for the missing cases for the missing
scenarios and compare the imputed values with masked ones. The evaluation of completion performance metrics are mean
absolute percentage error (MAPE) and root mean square error (RMSE):

MAPE =
1

c

c∑
i=1

|yi − ŷi|
|yi|

× 100, RMSE =

√√√√1

c

c∑
i=1

(yi − ŷi)2,

where yi and ŷi are the actual value and the imputation value, respectively, and c is the total numbers of estimated values,
i.e., c = |Ωm|, where Ωm = {(i, j, k) | yijk is masked and not missing in original tensor}. The smaller value means better
completion performance.

For comparison, we choose three baseline methods for spatiotemporal traffic data imputaiton, BATF (Chen et al., 2019a),
LRTC-TNN (Chen et al., 2020), and LRTC-TSpN (Nie et al., 2022). Table 14 exhibits the imputation results on different
missing scenarios. It is clear that the proposed Algorithm 6 outperforms other baseline methods in simple missing conditions.

Table 14. Imputation Results (MAPE / RMSE).
Dataset Missing Pattern BATF LRTC-TNN LRTC-TSpN PnPI-HQS

PeMS

10 % RM 6.78 / 4.68 2.80 / 1.97 2.28 / 1.65 2.10 / 1.60
30 % RM 6.82 / 4.68 3.45 / 2.44 2.74 / 1.96 2.27 / 1.80
50 % RM 6.83 / 4.71 4.45 / 3.13 3.42 / 2.42 2.69 / 2.21
70 % RM 6.96 / 4.78 5.94 / 4.15 4.63 / 3.21 3.73 / 3.08

10 % BM-12 8.58 / 5.86 7.58 / 5.35 7.40 / 5.31 6.33 / 4.88
30 % BM-12 8.89 / 6.07 8.37 / 5.81 8.18 / 5.76 7.62 / 5.80

Average 7.48 / 5.13 5.43 / 3.81 4.77 / 3.38 4.12 / 3.23

To further demonstrate the imputation performance, we illustrate the enlarged completion results of different methods on the
box region in Fig. 9. Compared to the original data, it is difficult to achieve precise results due to the absence of values from
all sensors during this continuous period. However, our method produces the most accurate results, maintaining the original
data’s local consistency. BATF tends to over-smooth its results, only recovering the rough structure of the original data. As
for LRTC-TNN and LRTC-TSpN, the over-shrinkage issue of their proposed low-rank regularization causes their results to
generate biased turning values.

Additionally, we present the convergence curve of MAPE versus iterations in Fig. 9 (g), providing a clear reflection of
the convergence ability of each method. The figure shows that all methods effectively and stably decrease the objective
function. Among them, our proposed method achieves the smallest MAPE value. LRTC-TNN and LRTC-TSpN can attain
convergence through similar iteration steps, while LRTC-TSpN can achieve a smaller MAPE value. LRTC methods can
achieve more precise imputation results for challenging missing scenarios (Chen et al., 2024), and our proposed method has
the potential for future improvement.
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(a) Original data (b) Observed data (c) BATF (d) LRTC-TNN

(e) LRTC-TSpN (f) PnPI-HQS

(g) Curves

Figure 9. Enlarged visualization of the imputation results. (a) Original data; (b) Observed data; (c) BATF; (d) LRTC-TNN; (e) LRTC-
TSpN; (f) PnPI-HQS; (g) The MAPE variation curve of PeMS 30% BM-12.
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