
Published as a conference paper at ICLR 2024

CRAFT: CUSTOMIZING LLMS BY CREATING
AND RETRIEVING FROM SPECIALIZED TOOLSETS

Lifan Yuan∗, Yangyi Chen∗, Xingyao Wang, Yi R. Fung, Hao Peng, Heng Ji
University of Illinois Urbana-Champaign
{lievanyuan173}@gmail.com
{yangyic3,xingyao6,yifung2,haopeng,hengji}@illinois.edu

ABSTRACT

Large language models (LLMs) are often augmented with tools to solve complex
tasks. By generating code snippets and executing them through task-specific Ap-
plication Programming Interfaces (APIs), they can offload certain functions to
dedicated external modules, such as image encoding and performing calculations.
However, most existing approaches to augment LLMs with tools are constrained
by general-purpose APIs and lack the flexibility for tailoring them to specific tasks.
In this work, we present CRAFT, a general tool creation and retrieval framework
for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs
with a component that retrieves tools from these sets to enhance their capability to
solve complex tasks. For each task, we collect specific code solutions by prompting
GPT-4 to solve the training examples. Following a validation step ensuring the
correctness, these solutions are abstracted into code snippets to enhance reusabil-
ity, and deduplicated for higher quality. At inference time, the language model
retrieves snippets from the toolsets and then executes them or generates the output
conditioning on the retrieved snippets. Our method is designed to be flexible and
offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains
and modalities, without any finetuning. Experiments on vision-language, tabular
processing, and mathematical reasoning tasks show that our approach achieves
substantial improvements compared to strong baselines. In addition, our in-depth
analysis reveals that: (1) consistent performance improvement can be achieved by
scaling up the number of tools and the capability of the backbone models; (2) each
component of our approach contributes to the performance gains; (3) the created
tools are well-structured and reliable with low complexity and atomicity. 1

1 INTRODUCTION

Large language models (LLMs) have emerged as transformative tools in AI, exhibiting capabilities
in complex problem-solving, including reasoning, planning, and producing creative outputs (Brown
et al., 2020; Touvron et al., 2023b;a; Yuan et al., 2023). Recent evidence has shown that LLMs
can dynamically interact with the environment through external tools, which grants them access
to information beyond their pretrained parameters (Qin et al., 2023a; Mialon et al., 2023; Schick
et al., 2023). For example, these models can generate code snippets and call APIs provided by visual
tools like image encoding models, to solve problems that involve images or videos (Wu et al., 2023;
Shen et al., 2023; Yang et al., 2024).

Success has been achieved by integrating LLMs with large-scale, general-purpose tool collec-
tions (Qin et al., 2023b; Tang et al., 2023; Surı́s et al., 2023; Gao et al., 2023a; Chen et al., 2022a;
Gao et al., 2023b; Patil et al., 2023). However, adapting LLMs to many domains and evolving
applications involves working with more specialized APIs tailored to address specific challenges,
which are often inadequately represented in general-purpose toolsets. In response, this work proposes
to integrate LLMs with highly customizable toolsets that are curated for specific problems of interest.

∗Equal contribution. The first author conducts this research during an internship at UIUC.
1The code is available at https://github.com/lifan-yuan/CRAFT.

1

https://github.com/lifan-yuan/CRAFT

Published as a conference paper at ICLR 2024

Question: The movie critic
liked to count the number
of actors in each movie he
saw. What is the smallest
number of actors?

CRAFT (Ours)

LLM: To solve the query, the helpful tools
might be [api_name ...], and the
corresponding docstring can be [...]

def find_smallest_number_of_actors(df):
"""..."""
return find_lowest_value_in_stem_leaf(df, "Stem", "Leaf")

df = pd.DataFrame({'Stem': [2, 3, 4, 5, 6, 7],
'Leaf': [[2, 3, 4, 6, 7, 9], [0, 2, 4, 4, 6, 6, 6, 7],

 [2, 3, 5], [], [5, 6, 6], [0, 4, 4, 9]]})
find_smallest_number_of_actors(df) # Output: 22

LLM: [Use retrieved tool from created tool base for problem-solving]

def calculate_total_items_for_groups(...)
def calculate_items_from_ratio(...)
def calculate_difference_between_rows(...)
def calculate_expenses_on_date(...)
def count_items_below_threshold(...):

"""
 Takes in a frequency table and a
 threshold value, and returns the
 number of items with a frequency
 less than the threshold.
 """

Created Toolset

Retrieved Tools
[1] def find_lowest_number_in_stem_leaf(...)
[2] def count_groups_within_thresholds(...)
...

Directly reuse correct tools
to avoid unexpected errors.

CREATOR (Qian et al., 2023)

def find_smallest_number_of_actors(df):
"""..."""

 actors = []
for i in range(len(df)):

 stem, leaf = df['Stem'][i], df['Leaf'][i]
 actors.append(stem * 10 + min(leaf))

return min(actors)
df = pd.DataFrame({'Stem': ..., 'Leaf': ...})
find_smallest_number_of_actors(df)
Output: ValueError: min() arg is an empty sequence

LLM: [Direct problem-solving]

ValueError: min() arg is
an empty sequence

question

api_name

docstring

Retrieve

Based On

Name: Actors per movie

Unit: actors

Stem Leaf

2 2, 3, 4, 6, 7, 9

3 0, 2, 4, 4, 6, 6, 6, 7

4 2, 3, 5

5

6 5, 6, 6

7 0, 4, 4, 9

Question: In what
room of a house
would you most likely
find these types of
chairs?

CRAFT (Ours)

LLM: To solve the query, the helpful tools
might be [api_name ...], and the
corresponding docstring can be [...]

def execute_command(image) -> str:
 image_patch = ImagePatch(image)
 chair_types = identify_objects_in_location(image_patch, 'chair')
 possible_rooms = [

'living room', 'dining room', 'kitchen',
'bedroom', 'office'

]
 room = determine_object_location(image_patch, chair_types, possible_rooms)

return room # Output: "dining room"

LLM: [Use retrieved tool from created tool base for problem-solving]

def identify_object_attribute(...)
def identify_action_around_object(...)
def check_multiple_properties(...)
def describe_object_posture_and_action(...)
def determine_atmosphere(...):

"""
 Determine the overall atmosphere of
 a given location.
 """

Created Toolset

Retrieved Tools
[1] def identify_objects_in_location(...)
[2] def determine_object_location(...)
...

Automatically determine the
correct location given a list:
more flexible.

ViperGPT (Surís et al., 2023)

def execute_command(image) -> str:
 image_patch = ImagePatch(image)
 chair_patches = image_patch.find('chair')

for chair_patch in chair_patches:
 query = 'What type of chair is this?'
 chair_type = chair_patch.simple_query(query)

'chair_type' := 'dining room'
if (chair_type in \

 ['dining', 'kitchen', 'living room']):
return chair_type

return 'It is difficult to determine.'
Output: 'It is difficult to determine.'

LLM: [Direct problem-solving]

Exact match between
variable “chair_type”
and the option list: little
fault-tolerant space.

question

api_name

docstring

Retrieve

Based On

Figure 1: Previous approaches directly solve the given problem by generating code solutions, which
may contain errors. CRAFT first creates a toolset that contains diverse, reusable, and correct tools that
are executable code snippets. During inference, CRAFT employs a multi-view matching approach,
incorporating information about the target problem, API names, and docstrings, to identify and utilize
relevant tools, enhancing its problem-solving capabilities.

Our approach, dubbed CRAFT, constructs a toolset customized for a given task (see Figure 1). In
contrast to previous approaches that only incorporate one single type of tool (Cai et al., 2023) or
create unverified and non-reusable tools (Qian et al., 2023), our toolset contains diverse, reusable,
and correct APIs that can tackle various problems. This is achieved through an automated process, by
instructing LLMs to generate specific code solutions to solve training problems of the task or related
ones. The specific solutions are then abstracted into code snippets, which can later be instantiated
to solve similar problems. Dedicated validation and deduplication steps ensure the correctness of
the tools and reduce redundancy, thereby enhancing the quality of the toolset.

At inference time, precisely identifying and retrieving relevant tools for the given problems is
challenging, especially given the constructed large toolset. Existing solutions typically rely on
pre-selected tools (Parisi et al., 2022), heuristic-based tool selection strategy (Shen et al., 2023),
and simple similarity measure (Qin et al., 2023b), which may be unsuitable or insufficient to pinpoint
the related tools from a large toolset given the problems. CRAFT implements a retrieval component
that takes into account the target problem, the names of the tools (a.k.a, APIs), and their docstrings
through a multi-view matching function. The retrieved snippets are then added to the prompt of
LLMs so that the retrieved tools can be invoked in the generated code solutions.

The empirical effectiveness of CRAFT is validated through experiments on visual question answering,
tabular processing, and mathematical reasoning tasks. Compared to strong baselines, CRAFT
achieves an average of 43.16% relative improvement in F1 score compared to the best baselines in
vision-language tasks, where the LLMs are required to interact with various visual tools to encode the
images. Through our carefully designed analysis, we find (1) the performance continually increases
as the number of tools and the capability of the backbone models increase; (2) Each component

2

Published as a conference paper at ICLR 2024

Toolset For
VQA

(4) Tool Deduplication

...
def find_closest_object(...)

def find_closest_object(...)

...
def find_closest_object(...)

def find_closest_object(...)

def check_object_position_on_reference(...)

(3) Tool Validation

Use the Same Set of Examples for Validation

def check_object_position_on_reference(image_patch: ImagePatch,
 object_name: str, reference_object_name: str, query: str,
 reference_attribute: str,) -> str:

'''
 Identify the object located closest to a specific object.
 Args:
 image_patch (ImagePatch): The image patch to check.
 reference_object_name (str): The name of
 the reference object.
 query (str): The original query to answer.
 Returns:
 str: The name of the object located closest
 to the reference object.
 '''
 reference_patch = image_patch.find(reference_object_name)[0]
 objects_patches = image_patch.find("object")
 closest_obj = min(objects_patches,
 key=lambda obj: distance(obj, reference_patch))
 object_name = closest_obj.simple_query("What is this object?")

return object_name

LLM: Abstract Tool

def find_closest_object(image_patch: ImagePatch,
 reference_object_name: str,
 query: str) -> str:

'''
 Identify the object located closest to a specific object.
 Args:
 image_patch (ImagePatch): The image patch to check.
 reference_object_name (str): The name of
 the reference object.
 query (str): The original query to answer.
 Returns:
 str: The name of the object located closest
 to the reference object.
 '''
 reference_patch = image_patch.find(reference_object_name)[0]
 objects_patches = image_patch.find("object")
 closest_obj = min(objects_patches,
 key=lambda obj: distance(obj, reference_patch))
 object_name = closest_obj.simple_query("What is this object?")

return object_name

LLM: Abstract Tool

def find_closest_object(image_patch: ImagePatch,
 reference_object_name: str,
 query: str) -> str:

'''
 Identify the object located closest to a specific object.
 Args:
 image_patch (ImagePatch): The image patch to check.
 reference_object_name (str): The name of
 the reference object.
 query (str): The original query to answer.
 Returns:
 str: The name of the object located closest
 to the reference object.
 '''
 reference_patch = image_patch.find(reference_object_name)[0]
 objects_patches = image_patch.find("object")
 closest_obj = min(objects_patches,
 key=lambda obj: distance(obj, reference_patch))
 object_name = closest_obj.simple_query("What is this object?")

return object_name

LLM: Abstract Tool

(2) Tool Abstraction

def execute_command(image)->str:
 image_patch = ImagePatch(image)
 dog_patch = image_patch.find("dog")[0]
 animal_patches = image_patch.find("animal")
 closest_animal = min(animal_patches,
 key=lambda animal:
 distance(animal, dog_patch))
 animal_name = closest_animal.
 simple_query("What is this animal?")

return animal_name

LLM: Specific Solution

def execute_command(image)->str:
 image_patch = ImagePatch(image)
 dog_patch = image_patch.find("dog")[0]
 animal_patches = image_patch.find("animal")
 closest_animal = min(animal_patches,
 key=lambda animal:
 distance(animal, dog_patch))
 animal_name = closest_animal.
 simple_query("What is this animal?")

return animal_name

LLM: Specific Solution

def execute_command(image)->str:
 image_patch = ImagePatch(image)
 dog_patch = image_patch.find("dog")[0]
 animal_patches = image_patch.find("animal")
 closest_animal = min(animal_patches,
 key=lambda animal:
 distance(animal, dog_patch))
 animal_name = closest_animal.
 simple_query("What is this animal?")

return animal_name

LLM: Specific Solution

(1) Tool Generation

Convert specified
variable name to
generic one

Rename function and
add docstring

Wrap textual inputs as
input arguments

Question: Which eye is
the woman holding the
doughnut up to?

Answer: rightQuestion: What is the

closest thing to the
teddy bear?

Answer: trunkQuestion: What animal

is located next to the
dog?

Aswer: sheep

Sampled (Problem, Answer) Pairs

Figure 2: The toolset construction pipeline creates diverse, reusable, and correct tools that are
executable code snippets, which can generalize LLMs to specialized domains and tasks.

design incorporated in CRAFT contributes to the performance gains; (3) the created tools exhibit
atomicity and possess low complexity, underscoring their robust structures and reliability.

The contribution of this work is two-fold. First, we introduce CRAFT, a broadly applicable framework
to customize LLMs to various tasks and domains via tool creation and retrieval. Second, we release
the created toolsets that include diverse, reusable, and correct tools, which are useful for various
downstream tasks. Estimatedly, it costs around 2,500$ in total for the toolsets construction.

2 CRAFT

We introduce CRAFT to address the challenges faced by prior research in the following two aspects:
(1) Tool Creation: The establishment of an extensive toolset of diverse, reusable, and correct tools,
in contrast to the reliance on limited examples (Cai et al., 2023; Qian et al., 2023); (2) Tool Retrieval:
The effective retrieval of relevant tools from a large toolset, tailored to the specific question, thereby de-
parting from the conventional approach of simplistic similarity matching (Qin et al., 2023b; Patil et al.,
2023). By instantiating the retrieved code and adding it to the prompt, LLMs can then use the tools by
calling the function to perform complex operations rather than implement every detail from scratch.

2.1 TOOL CREATION

Based on a source dataset, namely a general instruction dataset or a training dataset that contains
problem-answer pairs, CRAFT constructs the toolset through four steps: Generation, Abstraction,
Verification, and Deduplication, which are illustratied in Figure 2 and will be described as follows.

Generation. To create a toolset containing diverse tools that can be adopted to address various
problems, we apply an iterative approach to sample problem-answer pairs from the source dataset.
At a high level, the generation step involves iteratively sampling problems from the source dataset,
generating code solutions, and filtering out incorrect ones. We use Q to denote the set of sampled
problems and Ri to denote the set of remaining problems after the i-th iteration. Q is initialized with
n random samples from the entire source dataset and Ri is initialized as the rest. At each iteration,
we use the highest similarity between each qr ∈ Ri and any qs ∈ Q as the similarity between
each qr and set Q. To enhance the diversity of the toolset, Q is updated by adding k problems that
are least similar to Q, where k represents the desired number of samples for each iteration. This
min-max sampling strategy is: Q← Q ∪ argTopKmin (maxqs∈Q sim(qr, qs) | qr ∈ Ri). Function
argTopKmin returns the indices of the top k elements with the smallest values from a set, which
is set to 100 in our implementation, and sim (·) denotes the cosine similarity of the representation
vectors computed by SimCSE, a state-of-the-art sentence representation learning method based on
contrastive learning (Gao et al., 2021).

3

Published as a conference paper at ICLR 2024

For each problem qr ∈ Q, we instruct GPT-4 (OpenAI, 2023) to generate a specific solution
in Python that can be executed by an interpreter to get the answer. The prompts are shown in
Appendix C. We keep those code solutions that are bug-free and can produce correct outputs, and
discard everything else to ensure the correctness of the created tools.

Abstraction. The generated code solutions are tailored for the given problems, keeping them from
being useful for others. The abstraction step aims to promote the reusability of the toolset, ensuring
that each tool can be adopted to tackle a broader range of similar problems. This abstraction step
is achieved by instructing GPT-4 to replace all specific variable names with general ones (e.g.,
cat→animal, desk→object) and wrap textual inputs of internal function calls as arguments
of the tool (e.g., date = df["date"]→date = df[column name], where the value of
column name is passed in by tool users) within the code piece, substituting them with more
generic counterparts to adapt to similar problems (see Figure 2). In addition, we instruct GPT-4 to
assign a suitable and general function name and compose a corresponding docstring to elucidate the
functionality of created tools. The prompt is described in Appendix C.

Validation. The validation step ensures the correctness of the created tools. This is achieved by
examining whether the abstract tool functions can solve the original problems. Specifically, we
offer GPT-4 access to the abstract tool function, with the expectation that it will address the original
problems by supplying appropriate arguments to the tool function. The tools that fail to derive the
correct answers given the original problems are discarded.

Deduplication. To reduce the redundancy in the toolset and improve its diversity, we perform a
deduplication step to streamline the toolset and mitigate potential confusion stemming from redundant
tools (e.g., same function names). We organize created tools into groups based on function names and
the corresponding number of input arguments. Each group contains tools that have the same function
names and the number of input arguments. For groups that contain more than one tool, we prompt
GPT-4 to decide on the most comprehensive tool with extensive applications within the groups, using
the prompt shown in Appendix C.

2.2 TOOL RETRIEVAL

Retrieving relevant tools from the large constructed toolset is challenging. For better retrieval
outcomes, we prompt the LLM to “describe what it needs”. During inference, the evaluated LLM
is asked to generate the function names ft and the docstrings dt based on the target problem qt. Then
CRAFT adopts a similarity measuring strategy that takes into account three key aspects of the created
tool ti: (1) The original problem used for creating the tool qi; (2) The tool’s function name fi; (3) The
docstring of the function di. For each tool ti, this results in a tuple (qi, fi, di). We conduct multi-view
matching, searching tools via qt, ft, and dt respectively in the toolset T . Specifically, we have:

Tqt = argTopKmax (sim(qi, qt) | ti ∈ T) (1)

where argTopKmax is a function that returns the indices of the top k elements with the maximum
values from a set, sim (·) measures the similarity between two sentences using SimCSE embeddings,
and Tqt is a list of k tools retrieved by matching problems. We then perform the similar retrieval
by matching function names and docstring, obtaining Tft and Tdt respectively. Next, the three lists
of tools are aggregated and ranked by their frequency of occurrences. We then retrieve the three most
frequent tools by majority vote. Finally, we filter out those that occur only once, if any. In extreme
cases, it is also possible that all tools appear only once, i.e. the retrieved tool set is empty, then LLMs
would directly perform code generation to solve question without invoking task-specific tools.

After retrieval, the code snippets of tools are added to the prompt of LLMs for code generation to
solve a given question. LLMs can invoke the tools (a.k.a, APIs) embedded in the code. Subsequently,
the retrieved tool functions and LLM-generated code solutions are instantiated into executable code,
and then they are executed to obtain the final predictions.

Summary and Discussion. CRAFT creates a specialized toolset offline, and retrieves useful tools
from the toolset in inference time. In toolset creation, we apply an iterative problem-sampling strategy
based on similarity for diversity, followed by generating code solutions using GPT-4. To ensure the
reusability of the created tools, we abstract the specific solutions into high-level tools that can tackle
various kinds of problems by instructing GPT-4. To ensure the tools’ correctness, we evaluate the
tools on the original problems and discard those outputting incorrect answers. Finally, we deduplicate

4

Published as a conference paper at ICLR 2024

the tools to reduce redundancy, and finally obtain a toolset. In inference, we apply a multi-view
matching algorithm regarding the target problem, function name, and docstring between those in the
toolset to retrieve related tools.

We highlight several advantages of CRAFT. At a high level, by leveraging the tool creation paradigm,
we can effectively utilize the domain-specific data to customize the LLMs without extensive fine-
tuning, rendering CRAFT a training-free and plug-and-play approach. Due to CRAFT’s flexibility
in accommodating various domains and tasks, it is broadly applicable across a spectrum of problem
categories. In the concrete implementation, each tool is instantiated as an executable code snippet
and is targeted at small atomic problems, such as identifying the color of an object. This ensures the
explainability of the created tools. We can easily incorporate human efforts to examine the problem-
atic tools and fix the errors. In addition, this allows for the decomposition of complex problems into
multiple manageable steps, facilitating the compositionality of these created tools during inference.

3 EXPERIMENT

3.1 EXPERIMENTAL SETTING

Evaluation Tasks, Datasets, and Metrics. To demonstrate the versatility of CRAFT, we select
three distinct tasks for evaluation, spanning visual question answering (VQA), tabular processing,
and mathematical reasoning:

• VQA: The goal is to answer questions based on the information available in an associated image.
We use three complex visual reasoning datasets, including GQA (Hudson & Manning, 2019),
OK-VQA (Marino et al., 2019), and A-OKVQA (Schwenk et al., 2022). The GQA problems are
more complex and require compositional reasoning to answer, while OK-VQA and A-OKVQA
mainly use external real-world knowledge of objects or actions in the image. For evaluation, we
formalize the VQA task as an open-ended generation problem and use the soft accuracy (SAcc)
metric (Antol et al., 2015). In addition, we observe that LM-generated functions often produce
descriptive responses instead of concise phrases, which hurts the exact match between predictions
and ground-truth answers. This can potentially cause an underestimation of the performance, so we
also use the F1 score for evaluation, which is frequently employed in extractive question-answering
tasks (Rajpurkar et al., 2016).

• Tabular Processing: It evaluates an LLM’s ability to process structured data in tables. We use
TabMWP (Lu et al., 2023), a dataset with each sample containing one table and one corresponding
problem in natural language. To handle the task, LLMs should understand the natural language
descriptions of the problems, extract relevant information from the accompanying tables, and
finally perform calculations based on the extracted information. We use the accuracy based on the
exact match to measure model performance.

• Mathematical Reasoning: LLMs are expected to solve mathematical problems written in
natural language, leveraging both their understanding of textual inputs and complex reasoning
capabilities. We use the algebra subset of MATH (Hendrycks et al., 2021), containing 881
challenging competition-level algebra problems. Evaluating CRAFT on all subsets goes beyond
our budget constraint but we believe CRAFT is equally applicable to other math problems. The
models’ performance is evaluated using accuracy.

Baselines. We compare CRAFT with baseline methods of four categories:

• Basic Reasoning without Tools: This line of methods solves downstream problems solely based
on the intrinsic reasoning ability of LLMs without access to any external tool. We use the chain-
of-thought prompting (CoT) (Wei et al., 2022), which prompts LLMs to generate the rationales
before answers without using tools. However, it does not apply to the VQA task since LLMs
cannot process visual information without external visual tools.

• Tool Learning: We compare with approaches that directly leverage existing tools to assist the
problem-solving process. In this case, LLMs only learn to use the human-provided tools without
creating and retrieving tools. We compare to two approaches: (1) Vanilla stands for utilizing
the most basic tools, such as Python Interpreter for all three tasks, and extra vision models to
solve VQA problems. Specifically, the vanilla tool-using method for VQA is ViperGPT (Sur’is
et al., 2023), and that for the other two tasks is Program-of-Thoughts reasoning (Chen et al.,

5

Published as a conference paper at ICLR 2024

Table 1: Distinctions between baseline methods and CRAFT in enhancing LLMs with created tools.
Tool-Creation Method Dataset for Create Tools Reuse Tools? Tool Base Size Retrieval-enhanced?
CREATOR Test Set No 0 No
LATM Train Set Yes 1 No
CRAFT Instruction Dataset or Train Set Yes >100; Theoretically Unlimited Yes

Table 2: The experimental results of CRAFT and four categories of baselines on three tasks. SAcc
denotes soft accuracy, which is widely used for VQA. F1 is supplemented to tackle the issue of
underestimated performance caused by the descriptive responses of LLMs. Acc denotes the accuracy.

GPT-3.5-Turbo GQA OK-VQA A-OKVQA TabMWP MATHalg

Method SAcc F1 SAcc F1 SAcc F1 Acc Acc

Basic Reasoning CoT - - - - - - 75.2 50.9

Tool Learning Vanilla 35.0 36.9 15.4 24.7 15.6 23.0 80.6 58.2
External 34.2 37.8 16.8 25.3 14.5 22.9 83.1 41.1

Different Tools LATM 29.4 30.3 7.8 11.8 6.5 11.4 9.3 30.3
CREATOR 34.3 38.4 16.7 27.3 17.3 25.8 81.0 65.0

Alternative Retrieval SimCSE 36.4 38.8 18.4 28.9 16.8 24.3 83.8 36.7
BM25 37.9 39.0 13.4 24.3 17.8 26.1 89.2 35.9

This Work CRAFT 45.4 48.8 33.4 43.0 30.8 40.6 88.4 68.1

2022b). (2) External library: Therefore, we also explore the possibility of exploiting external
tool functions in the Python libraries to enhance the vanilla methods. For VQA, we use Numpy
(Harris et al., 2020), SciPy (Virtanen et al., 2020), Scikit-Image (Van der Walt et al., 2014), and
Mahotas (Coelho, 2012). For the remaining two tasks, we substitute Scikit-Image and Mahotas
with Pandas (McKinney et al., 2011) and SymPy (Meurer et al., 2017).

• Different LLM-Created Tools: We compare with previous tool creation approaches, including
LATM (Cai et al., 2023) and CREATOR (Qian et al., 2023). Specifically, LATM samples 3 exam-
ples from the training set and applies GPT-4 to create a tool for the task, which is further verified
by 3 samples from the validation set. The created tool is then applied to all test cases. CREATOR
creates one specific tool for each test case in the inference time. For fair comparisons, we remove
the format checking and rectifying process used in the original work and only measure the one-pass
accuracy. The distinctions between these two methods and CRAFT are shown in Table 3.1.

• Alternative Retrieval Methods: We compare with previous tool retrieval approaches, which focus
on the similarity measure between the problem and the API names. We include two prevalent mea-
sures, namely SimCSE and BM25 similarity, following Qin et al. (2023b) and Patil et al. (2023) re-
spectively. The baseline retrieval methods are also based on our created toolset for fair comparison.

In this work, we implement CRAFT and all baselines based on the GPT-3.5-Turbo (ChatGPT)
backbone because: (1) It is more cost-effective compared to alternatives like GPT-4, with affordable
cost and strong performance; (2) The Turbo-0613 version is specially optimized for the tool-learning
purpose. Conversely, alternative backbone models (e.g., CodeLlama (Rozière et al., 2023))
demonstrate near-random performance in our setting, which can be attributed to their suboptimal
tool-using capabilities. The concrete implementation details are described in Appendix B.

3.2 EXPERIMENTAL RESULTS

We present the results in Table 2. Particularly, we find that directly leveraging tools from external
Python libraries fails to improve the performance, and in certain cases, may have a detrimental impact
(e.g., in mathematical reasoning). This suggests that the relevance of tools affects the performance
of augmented LLMs, motivating us to construct a high-quality tool base that customizes LLMs to
each task. We observe that LATM struggles with all datasets and brings negative effects; CREATOR
yields a notable enhancement in mathematical reasoning task performance, while its impact on other
datasets appears marginal. This result suggests the necessity of sufficient and diverse tools to tackle
problems of various categories in downstream datasets. For tool retrieval baselines, the performances
vary across datasets. But in general, LLMs do not get substantial enhancement except on TabMWP,
posing the need for better retrieval algorithms.

6

Published as a conference paper at ICLR 2024

Table 3: Results of further analysis, encompassing ablation study on abstraction and retrieval
components, as well as the comparison between ViperGPT and CRAFT with different backbones.

GPT-3.5-Turbo GQA OK-VQA A-OKVQA
SAcc F1 SAcc F1 SAcc F1

ViperGPT 35.0 36.9 15.4 24.7 15.6 23.0
CRAFT 45.4 48.8 33.4 43.0 30.8 40.6

w/o Abstraction 37.1 39.7 31.0 41.4 28.0 39.3
w/o Problem 42.4 45.8 32.7 42.3 29.8 38.7
w/o Name 36.4 38.3 26.8 35.7 21.7 30.6
w/o Docstring 37.3 39.1 29.8 38.8 25.0 34.0

GPT-4 GQA OK-VQA A-OKVQA
SAcc F1 SAcc F1 SAcc F1

ViperGPT 51.4 53.7 36.7 47.2 32.8 42.4
CRAFT 55.6 58.8 39.0 49.1 35.3 44.8

Overall, CRAFT demonstrates superior performance on all datasets, especially on the challenging
VQA tasks. Significantly, CRAFT demonstrates a notable enhancement over the vanilla baseline,
namely ViperGPT, with absolute SAcc improvements of 10.4, 18.0, and 15.2 observed on the GQA,
OK-VQA, and A-OKVQA datasets, respectively. In addition, based on the same created toolset,
the retrieval approach incorporated in CRAFT demonstrates overall better performance compared
to alternative ones, which exhibit a certain level of performance variance. One exception is the
comparison with BM25 on TabMWP. This discrepancy can be attributed to the presence of relatively
straightforward patterns within this dataset, which do not sufficiently showcase the advantages of
our approach in tool retrieval.

4 FURTHER ANALYSIS.

In this section, we conduct an in-depth analysis for CRAFT on VQA datasets. This task is particularly
pertinent for assessing the impact of external tool augmentation, given that LLMs lack the capability to
directly process images. Thus, it serves as a key testbed for measuring the influence of external tools.

4.1 DOES ABSTRACTION FACILITATE TOOL USE?

Setup. Abstraction is a crucial step in constructing the toolset, converting solutions for specific
problems into general-purpose tools that are applicable to diverse problems with a common pattern.
In this section, we explore its efficacy with an ablation study. To scrutinize this, we establish a control
group, where the toolset is created ablating the abstraction step. To ensure compatibility, we prompt
GPT-4 to assign a distinctive function name and docstring for each solution to facilitate the multi-view
retrieval approach for fair comparison.

Results. Table 3 shows a clear performance drop when the abstraction step is ablated, confirming
its importance. Moreover, comparing abstraction-ablated CRAFT with ViperGPT, improvements are
achieved across all three datasets, especially on OK-VQA and A-OKVQA. We identify two potential
reasons that can elucidate the improvement. First, the created toolset is large and diverse enough,
facilitating the adoption of specific tools without abstraction for addressing new problems. Second,
as retrieved tools offer a correct approach to problem-solving, LLMs can efficiently adapt these
strategies to address new problems.

4.2 IS EVERY MATCHING IN THE RETRIEVAL TRIPLET EQUALLY IMPORTANT?

Setup. CRAFT retrieves tools based on multi-view matching. We demonstrate its effectiveness in
Section 3.2. Next, we respectively ablate problems, function names, and docstring from the matching
process to investigate their influence on performance.

Results. As demonstrated in Table 3, it is clear that the removal of any of the three similarity
measures from our multi-view matching function adversely impacts performance, thereby validating

7

Published as a conference paper at ICLR 2024

the rationale behind our design strategy. Among them, the function names appear the most important
one, resulting in more than 6.6 absolute SAcc drop when ablated.

4.3 DOES CRAFT STILL WORK FOR MORE POWERFUL BACKBONE MODELS?

Setup. In previous experiments, CRAFT is implemented using GPT-3.5-Turbo as the backbone. In
this analysis, we evaluate CRAFT when using the more powerful GPT-4 as the backbone. Due to the
budget limits, we only compare CRAFT with the vanilla baseline ViperGPT without tool creation.

Results. The results in Table 3 demonstrate that CRAFT achieves consistently better performance
with GPT-4, confirming that CRAFT is helpful even with more capable backbone models. However,
it’s noteworthy that while the improvement of CRAFT on GPT-4 is pronounced, it is less obvious
compared to the impact on GPT-3.5-Turbo. We hypothesize that this result is in line with the
conclusions of recent work, which finds that LLMs can benefit from the guidance of more capable
models while gaining no improvement from the guidance of itself (Fu et al., 2023; Wang et al., 2023).
The tools, created by GPT-4, may provide comparatively fewer insights for itself, thereby limiting the
potential benefits of external tool augmentation.

4.4 CAN CRAFT IMPROVE PERFORMANCE AS THE TOOLSET GETS LARGER?

0 261 337 525
Tools

15

20

25

30

35

40

45

So
ft

Ac
cu

ra
cy

SAcc with Increasing Toolset Size

GQA
OK-VQA
A-OKVQA

Figure 3: The performance of CRAFT improves
as the toolset scales up.

Setup. A feature of CRAFT distinctive from
prior approaches is the extensibility of the
toolsets. We examine the utility of extension by
manipulating the toolset’s size and tracking per-
formance trends. To elaborate, the iterative prob-
lem sampling strategy detailed in Section 2.1 is
initialized with a total of 11 epochs. In this anal-
ysis, the sizes of the toolset are modified through
the exclusive inclusion of tools created at dis-
tinct epochs. We choose tools from the initial
epoch, the final epoch, and the epoch in between,
resulting in toolset sizes of 0 (no created tool for
comparison), 261, 337, and 525, respectively.

Results. The results in Figure 3 show a con-
sistent increase in soft accuracy as the toolset
expands across 3 datasets, demonstrating the scalability and potential of CRAFT. The upward trend
of soft accuracy continues, suggesting the potential for further improvement of CRAFT as the toolset
keeps expanding. Significantly, the most substantial improvement is observed when transitioning
from the absence of any created tools to the utilization of 261 tools. This validates the effectiveness
of creating the specialized toolset to customize LLMs to various tasks and domains.

4.5 WHAT IS INSIDE THE TOOLSET?

Table 4: Analysis of cyclomatic complexity and
diversity of the toolsets.

Task VQA Tabular
Process

Mathematics
Reasoning

Avg. Cyclomatic Complexity 2.64 2.07 1.34
Tools 525 181 282
Classes of Tools 195 23 234

We analyze the complexity and diversity of
the code in toolsets. For complexity, we use
the widely adopted cyclomatic complexity (Mc-
Cabe, 1994) to measure the number of linearly
independent paths, with the higher value indicat-
ing the code is more complicated and requires
refactoring to make it more reliable. Good soft-
ware should have a complexity of no more than
10, and a less complex toolset is desirable since it is less prone to trigger bugs. For diversity, we
classify each tool into different groups. We use the number of distinct groups as the metric, with a
larger number of tool groups indicating a wider range of problems that our toolset can address.

8

Published as a conference paper at ICLR 2024

We calculate the complexity using Lizard Python library2, and present the average complexity of
tools for each task in Table 4. We observe that the created toolsets for 3 tasks exhibit relatively low
complexity, indicating that the tools are well-structured and reliable. We then adopt the Louvain
community detection method (Blondel et al., 2008), a graph-based community dividing algorithm, to
group different tools. As shown in Table 4, for VQA, tabular process, and mathematics reasoning,
there are 195, 23, and 234, distinct classes out of 525, 181, and 282 tools respectively. This suggests
that the MATH dataset has the most diverse patterns, followed by VQA, while problems in the
TabMWP dataset are more homogeneous and can be well-solved using fewer created tools.

5 RELATED WORK

5.1 TOOL LEARNING WITH LLMS

LLMs, when integrated with real-world Application Programming Interfaces (APIs), gain the
capability to actively interact with a range of external systems (a.k.a, tools) (Parisi et al., 2022; Schick
et al., 2023; Tang et al., 2023; Patil et al., 2023; Song et al., 2023; Hao et al., 2023; Wang et al., 2024).
The pioneering work connects GPT-3 (Brown et al., 2020) with the web browser to access latest
information, and hires human annotators to provide demonstrations of web searching (Nakano et al.,
2021). Further research expands upon this concept by encompassing a broader range of tools, such as
calculators, calendars, interpreter, physical simulator, and maps (Shuster et al., 2022; Paranjape et al.,
2023; Liu et al., 2023c; Chen et al., 2022a; Gao et al., 2023a; Drori et al., 2022; Pan et al., 2023;
Liu et al., 2023b), and explores the application of weakly-supervised methods, such as bootstrap-
ping (Parisi et al., 2022; Schick et al., 2023). More recently, progress has been achieved through the
process of distilling the tool using the ability of closed-source LLMs (ChatGPT (ChatGPT Plugins))
to the open-source LLMs. The key idea revolves around allowing ChatGPT to produce synthetic
data exemplifying the usage of specified APIs. Subsequently, this synthetic data is leveraged for
the refinement of open-sourced LLMs (Qin et al., 2023b; Tang et al., 2023). In this work, we extend
our approach beyond mere dependence on existing tools. We adapt LLMs to diverse downstream
tasks through the creation of customized tools and the retrieval of relevant tools during inference.

5.2 TOOL CREATION & RETRIEVAL

While the exploration on tool creation and retrieval is relatively limited compared to tool learning
with LLMs, we identify some preliminary efforts in this domain. For tool creation, Cai et al. (2023)
proposes an approach wherein tools are created through the utilization of three training samples, and
their efficacy is subsequently assessed using three validation samples. Consequently, the resulting
toolbase is constrained in quantity. This approach hinges on the assumption that there exists a notable
similarity between the distributions of the training and testing data. Consequently, the tools produced
can be readily incorporated. Similarly, Qian et al. (2023) adopts a strategy that involves generating
tools exclusively based on the provided query. As a result, the created tools lack reusability, thereby
undermining the fundamental purpose of tool creation. For tool retrieval, existing research primarily
includes pre-selection of human-curated tools tailored to specific problems (Parisi et al., 2022; Tang
et al., 2023; Schick et al., 2023; Zhuang et al., 2023), employing heuristic-based methods for tool
selection (Shen et al., 2023; Liang et al., 2023), and adopting a straightforward similarity metric
between user queries and API names (Qin et al., 2023b; Patil et al., 2023; Xu et al., 2023). In this
work, we motivate to create a large tool base that can be effectively utlized on related downstream
tasks and address the challenge of retrieving the relevant tools from the large tool base.

6 CONCLUSION

In conclusion, this paper presents CRAFT, a general framework for tool creation and retrieval to
generalize LLMs for diverse domains and tasks. The framework’s effectiveness is demonstrated
through improved performance in challenging tasks, alongside insights into component contributions,
constructed toolsets, and scalability.

2https://github.com/terryyin/lizard

9

https://github.com/terryyin/lizard

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their suggestions and comments. This research is based upon
work supported by U.S. DARPA ECOLE Program No. HR00112390060 and U.S. DARPA ITM
Program No. FA8650-23-C-7316. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed
or implied, of DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

REFERENCES

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. VQA: visual question answering. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 2425–2433. IEEE
Computer Society, 2015. doi: 10.1109/ICCV.2015.279. URL https://doi.org/10.1109/
ICCV.2015.279.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. ArXiv, 2023.

ChatGPT. URL https://chat.openai.com/.

ChatGPT Plugins. URL https://openai.com/blog/chatgpt-plugins.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. CoRR, abs/2211.12588,
2022a. doi: 10.48550/arXiv.2211.12588. URL https://doi.org/10.48550/arXiv.
2211.12588.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. CoRR, abs/2211.12588,
2022b.

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Measuring and im-
proving chain-of-thought reasoning in vision-language models. arXiv preprint arXiv:2309.04461,
2023.

Luis Pedro Coelho. Mahotas: Open source software for scriptable computer vision. arXiv preprint
arXiv:1211.4907, 2012.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu,
Linda Chen, Sunny Tran, Newman Cheng, et al. A neural network solves, explains, and generates
university math problems by program synthesis and few-shot learning at human level. Proceedings
of the National Academy of Sciences, 119(32):e2123433119, 2022.

10

https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1109/ICCV.2015.279
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://chat.openai.com/
https://openai.com/blog/chatgpt-plugins
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588

Published as a conference paper at ICLR 2024

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. Improving language model negotiation with
self-play and in-context learning from ai feedback, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 10764–10799. PMLR, 2023a. URL
https://proceedings.mlr.press/v202/gao23f.html.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, Xin Xin, Pengjie Ren, Zhumin Chen,
and Jun Ma. Confucius: Iterative tool learning from introspection feedback by easy-to-difficult
curriculum. CoRR, abs/2308.14034, 2023b. doi: 10.48550/arXiv.2308.14034. URL https:
//doi.org/10.48550/arXiv.2308.14034.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. 2021.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. CoRR, abs/2305.11554, 2023. doi: 10.48550/
arXiv.2305.11554. URL https://doi.org/10.48550/arXiv.2305.11554.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
reasoning and compositional question answering. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 6700–
6709. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00686. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_
A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_
CVPR_2019_paper.html.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, Yun Wang, Linjun Shou, Ming Gong, and Nan Duan. Taskmatrix.ai: Completing
tasks by connecting foundation models with millions of apis. CoRR, abs/2303.16434, 2023. doi:
10.48550/arXiv.2303.16434. URL https://doi.org/10.48550/arXiv.2303.16434.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Computer
Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V, 2014.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. ArXiv, 2023a.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny
Zhou, and Andrew M. Dai. Mind’s eye: Grounded language model reasoning through simula-
tion. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL https://openreview.net/pdf?
id=4rXMRuoJlai.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong,
and Jie Tang. Webglm: Towards an efficient web-enhanced question answering system with
human preferences. In Ambuj Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng
Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pp. 4549–4560. ACM, 2023c. doi: 10.1145/3580305.3599931. URL https:
//doi.org/10.1145/3580305.3599931.

11

https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/arXiv.2308.14034
https://doi.org/10.48550/arXiv.2308.14034
https://doi.org/10.48550/arXiv.2305.11554
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
https://doi.org/10.48550/arXiv.2303.16434
https://openreview.net/pdf?id=4rXMRuoJlai
https://openreview.net/pdf?id=4rXMRuoJlai
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931

Published as a conference paper at ICLR 2024

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR), 2023.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. OK-VQA: A visual
question answering benchmark requiring external knowledge. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp.
3195–3204. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00331.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_
OK-VQA_A_Visual_Question_Answering_Benchmark_Requiring_External_
Knowledge_CVPR_2019_paper.html.

Thomas J McCabe. Software complexity, crosstalk. Journal of Defense Software Engineering, 1994.

Wes McKinney et al. pandas: a foundational python library for data analysis and statistics. Python
for high performance and scientific computing, 14(9):1–9, 2011.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Grégoire Mialon, Roberto Dessı̀, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard
Grave, Yann LeCun, and Thomas Scialom. Augmented language models: a survey. CoRR,
abs/2302.07842, 2023. doi: 10.48550/arXiv.2302.07842. URL https://doi.org/10.
48550/arXiv.2302.07842.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. CoRR, abs/2112.09332, 2021. URL
https://arxiv.org/abs/2112.09332.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan Luu, William Yang Wang, Min-Yen Kan, and
Preslav Nakov. Fact-checking complex claims with program-guided reasoning. In Anna Rogers,
Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pp. 6981–7004. Association for Computational Linguistics, 2023. doi: 10.18653/
v1/2023.acl-long.386. URL https://doi.org/10.18653/v1/2023.acl-long.386.

Bhargavi Paranjape, Scott M. Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Túlio Ribeiro. ART: automatic multi-step reasoning and tool-use for large language models.
CoRR, abs/2303.09014, 2023. doi: 10.48550/arXiv.2303.09014. URL https://doi.org/10.
48550/arXiv.2303.09014.

Aaron Parisi, Yao Zhao, and Noah Fiedel. TALM: tool augmented language models. CoRR,
abs/2205.12255, 2022. doi: 10.48550/arXiv.2205.12255. URL https://doi.org/10.
48550/arXiv.2205.12255.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. CoRR, abs/2305.15334, 2023. doi: 10.48550/arXiv.2305.15334.
URL https://doi.org/10.48550/arXiv.2305.15334.

Cheng Qian, Chi Han, Yi Ren Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentangling
abstract and concrete reasonings of large language models through tool creation. ArXiv, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian,
Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang

12

http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_OK-VQA_A_Visual_Question_Answering_Benchmark_Requiring_External_Knowledge_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_OK-VQA_A_Visual_Question_Answering_Benchmark_Requiring_External_Knowledge_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_OK-VQA_A_Visual_Question_Answering_Benchmark_Requiring_External_Knowledge_CVPR_2019_paper.html
https://doi.org/10.48550/arXiv.2302.07842
https://doi.org/10.48550/arXiv.2302.07842
https://arxiv.org/abs/2112.09332
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2205.12255
https://doi.org/10.48550/arXiv.2205.12255
https://doi.org/10.48550/arXiv.2305.15334

Published as a conference paper at ICLR 2024

Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng
Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models. CoRR, abs/2304.08354,
2023a. doi: 10.48550/arXiv.2304.08354. URL https://doi.org/10.48550/arXiv.
2304.08354.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis. ArXiv, 2023b.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In Jian Su, Xavier Carreras, and Kevin Duh (eds.), Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pp. 2383–2392. The Association for Computational Linguistics,
2016. doi: 10.18653/v1/d16-1264. URL https://doi.org/10.18653/v1/d16-1264.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi:
10.48550/arXiv.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. CoRR, abs/2302.04761, 2023. doi: 10.48550/arXiv.2302.04761. URL https:
//doi.org/10.48550/arXiv.2302.04761.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mot-
taghi. A-OKVQA: A benchmark for visual question answering using world knowledge. In
Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hass-
ner (eds.), Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, Oc-
tober 23-27, 2022, Proceedings, Part VIII, volume 13668 of Lecture Notes in Computer Sci-
ence, pp. 146–162. Springer, 2022. doi: 10.1007/978-3-031-20074-8\ 9. URL https:
//doi.org/10.1007/978-3-031-20074-8_9.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving AI tasks with chatgpt and its friends in huggingface. CoRR, abs/2303.17580, 2023. doi:
10.48550/arXiv.2303.17580. URL https://doi.org/10.48550/arXiv.2303.17580.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz, William Ngan, Spencer Poff, Naman
Goyal, Arthur Szlam, Y-Lan Boureau, Melanie Kambadur, and Jason Weston. Blenderbot 3: a de-
ployed conversational agent that continually learns to responsibly engage. CoRR, abs/2208.03188,
2022. doi: 10.48550/arXiv.2208.03188. URL https://doi.org/10.48550/arXiv.
2208.03188.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt: Con-
necting large language models with real-world applications via restful apis. CoRR, abs/2306.06624,
2023. doi: 10.48550/arXiv.2306.06624. URL https://doi.org/10.48550/arXiv.
2306.06624.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. CoRR, abs/2303.08128, 2023. doi: 10.48550/arXiv.2303.08128. URL https:
//doi.org/10.48550/arXiv.2303.08128.

D’idac Sur’is, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. 2023.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca: Gener-
alized tool learning for language models with 3000 simulated cases. CoRR, abs/2306.05301,
2023. doi: 10.48550/arXiv.2306.05301. URL https://doi.org/10.48550/arXiv.
2306.05301.

13

https://doi.org/10.48550/arXiv.2304.08354
https://doi.org/10.48550/arXiv.2304.08354
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2208.03188
https://doi.org/10.48550/arXiv.2208.03188
https://doi.org/10.48550/arXiv.2306.06624
https://doi.org/10.48550/arXiv.2306.06624
https://doi.org/10.48550/arXiv.2303.08128
https://doi.org/10.48550/arXiv.2303.08128
https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2306.05301

Published as a conference paper at ICLR 2024

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/arXiv.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023b. doi: 10.48550/arXiv.2307.09288. URL https://doi.org/
10.48550/arXiv.2307.09288.

Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D
Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in python.
PeerJ, 2:e453, 2014.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. MINT:
evaluating llms in multi-turn interaction with tools and language feedback. CoRR, abs/2309.10691,
2023. URL https://doi.org/10.48550/arXiv.2309.10691.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. volume
abs/2201.11903, 2022.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Visual
chatgpt: Talking, drawing and editing with visual foundation models. CoRR, abs/2303.04671,
2023. doi: 10.48550/arXiv.2303.04671. URL https://doi.org/10.48550/arXiv.
2303.04671.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. CoRR, abs/2305.16504, 2023. doi:
10.48550/arXiv.2305.16504. URL https://doi.org/10.48550/arXiv.2305.16504.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. If llm is the wizard, then code is the wand: A
survey on how code empowers large language models to serve as intelligent agents, 2024.

Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao, Fangyuan Zou, Xingyi Cheng, Heng Ji,
Zhiyuan Liu, and Maosong Sun. Revisiting out-of-distribution robustness in NLP: benchmark,
analysis, and llms evaluations. CoRR, abs/2306.04618, 2023. doi: 10.48550/arXiv.2306.04618.
URL https://doi.org/10.48550/arXiv.2306.04618.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for LLM
question answering with external tools. CoRR, abs/2306.13304, 2023. doi: 10.48550/arXiv.2306.
13304. URL https://doi.org/10.48550/arXiv.2306.13304.

14

https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2309.10691
https://doi.org/10.48550/arXiv.2303.04671
https://doi.org/10.48550/arXiv.2303.04671
https://doi.org/10.48550/arXiv.2305.16504
https://doi.org/10.48550/arXiv.2306.04618
https://doi.org/10.48550/arXiv.2306.13304

Published as a conference paper at ICLR 2024

APPENDIX

A LIMITATIONS AND FUTURE WORK

We identify two limitations in this work that are worth future exploration. First, although the basic idea
in CRAFT is widely applicable in principle, it is currently based on code generation for tool creation.
This indicates that CRAFT is only suitable for tasks that can be solved via writing code solutions.
We plan to expand this scope by exploring the use of pseudocode to generalize CRAFT to more
tasks. Second, the effectiveness of CRAFT is greatly affected by the tool-using ability of backbone
models. In our pilot exploration, some open-source models achieve near-random performance in the
challenging tool-manipulation setting. Future work includes eliciting the tool manipulation ability in
open-source models, such as the pilot exploration in Qin et al. (2023b).

B CRAFT IMPLEMENTATION DETAILS

Tool Creation. For VQA, we sample problems from general instruction datasets, constructing a
comprehensive toolset without relying on strong supervised signals. We adopt LLaVA (Liu et al.,
2023a), a substantial and diverse collection of vision-related queries, to facilitate the creation of
a wide array of tools. Since LLaVA is designed in a conversational style, we construct another
instruction dataset based on COCO-2017 (Lin et al., 2014) to complement problem diversity. The
construction process follows the procedure in Chen et al. (2023), instantiating an interactive process
to ask GPT-3.5-Turbo to generate a question-answering pair based on a caption of an image, followed
by a filtering step. We prompt Turbo to make the answer concise instead of conversational. However,
some questions generated in this manner are image-independent and can be answered by language
models alone. Hence, we apply a filtering strategy by sending each question to Turbo and asking it
if the question can be directly answered without images. We only select those samples that require
visual data for answering. We sample 2,000 problems from the above instruction datasets, with
1,000 being from the primary random sampling epoch and another 1,000 from the subsequent 10
epochs, each contributing 100 problems per epoch. We employ ViperGPT (Sur’is et al., 2023) to
generate specific code solutions. For tabular processing and mathematics reasoning, since there are
no high-quality instruction datasets specified for these two tasks, we construct toolsets based on the
training split of downstream datasets, i.e. TabMWP and MATH (algebra). For these tasks, we sample
500 problems from the above instruction datasets, 200 from the first random sampling epoch, and
another 300 from the following 3 epochs, each yielding 100 problems per epoch.

Tool Retrieval. In this work, we empirically set the number of retrieved tools k to 10 for qt, 5 for
ft, and 10 for dt. Corresponding internal code implementations and docstrings will be incorporated
into the prompt of the backbone model for subsequent utilization.

C PROMPT

C.1 PROMPT TO FILTER IMAGE-DEPENDENT QUESTIONS IN VQA DATASET

You will be given a function named `llm_query`. The function Answers a
text question using GPT-3 for reasoning and inference. Since GPT-3
cannot process visual information, the question must be
image-independent.

↪→
↪→
↪→
Then, you will be given a query. You need to decide if this llm_query

function is able to **directly** solve this query. Directly answer
yes or no.

↪→
↪→
Tips: If the query requires visual information of an image to solve, you

should answer no. Otherwise, if the query is an image-independent
inference task that can be solved by LLM reasoning or a search engine,
you should answer yes.

↪→
↪→
↪→

Query: Why isn't Song Hee taking customers?
Answer: yes

15

Published as a conference paper at ICLR 2024

Query: Why might one of the news anchors look angry, and the other look
concerned?↪→

Answer: no

Query: {query}
Answer:

C.2 EVALUATE THE SPECIFIC GENERATION FOR VQA

Given the question for the visual question answering task: {question}
Does the following predicted answer have the same meaning as the

reference answer in the context of the question?↪→
Predicted Answer: {prediction}
Reference Answer: {reference}
You should compare the answers based on your understanding of the task,

question, and answers, rather than relying on some superficial
patterns like word overlap.

↪→
↪→
Directly answer Yes or No.

C.3 TOOL CREATION

C.3.1 VQA

Rewriting Code to Create a Generic Tool Function

Purpose: Given a query and its corresponding code solution, your task
is to rewrite and abstract the code to create a general tool function
that can be applied to similar queries. The tool function should
solve a higher-level question that encompasses the original query and
extend the code's functionality to make it more versatile and widely
applicable.

↪→
↪→
↪→
↪→
↪→

Consider the following principles:

1. Understand the purpose of the query and infer a higher-level question
that can be addressed by the tool function.↪→

2. The generic tool function should solve queries of the same type, based
on common reasoning steps rather than specific object types.↪→

3. When enhancing the tool function's versatility according to the
higher-level question, avoid assuming new attributes or methods of
the `ImagePatch` classes.

↪→
↪→
4. Name the function honestly to ensure its functionality is not

overclaimed.↪→
5. Avoid using redundant and unused variables or intermediate steps in

the tool function. Ensure that every step in the code has a purpose
and directly contributes to the desired outcome.

↪→
↪→
6. Replace specific strings or variable names with general variables to

enhance the tool's applicability to various queries.↪→
7. Provide a docstring and an example of how to call the tool function to

solve a specific query.↪→
8. End your answer with the format 'The final generic tool with docstring

is: ...' and 'The example to call the tool is: ...'.↪→

Example
Query: Is there a backpack to the right of the man?
Specific code solution:
def execute_command(image)->str:

image_patch = ImagePatch(image)
man_patches = image_patch.find("man")
if len(man_patches) == 0:

If no man is found, query the image directly with simple_query
instead of returning a long string like "There is no man."↪→

16

Published as a conference paper at ICLR 2024

return image_patch.simple_query("Is there a backpack to the right
of the man?")↪→

man_patch = man_patches[0]
backpack_patches = image_patch.find("backpack")
if len(backpack_patches) == 0:

return "no"
for backpack_patch in backpack_patches:

if backpack_patch.horizontal_center >
man_patch.horizontal_center:↪→
return "yes"

return "no"

Abstract tool:
The final generic tool with docstring is:
def check_existence_around_object_horizontally(image_patch: ImagePatch,

object_name: str, reference_object_name: str,
relative_horizontal_position: str, query: str) -> str:

↪→
↪→

'''Check the existence of an object on either the left or right side
of another object.↪→

Args:
image_patch (ImagePatch): The image patch to check.
object_name (str): The name of the object to check for existence.
reference_object_name (str): The name of the reference object.
relative_horizontal_position (str): The relative

relative_horizontal_position position of the checked object
to the reference object. Options: ["left", "right"].

↪→
↪→
query (str): The original query to answer.

Returns:
str: "yes" if the object exists, "no" otherwise.

'''

assert relative_horizontal_position in ["left", "right"]
reference_patches = image_patch.find(reference_object_name)
if len(reference_patches) == 0:

If no reference object is found, query the image directly with
simple_query instead of returning a long string like "There
is no {reference_object_name}."

↪→
↪→
return image_patch.simple_query(query)

reference_patch = reference_patches[0]
object_patches = image_patch.find(object_name)
if len(object_patches) == 0:

return "no"
for object_patch in object_patches:

if relative_horizontal_position == "left":
flag = object_patch.horizontal_center <

reference_patch.horizontal_center↪→
elif relative_horizontal_position == "right":

flag = object_patch.horizontal_center >
reference_patch.horizontal_center↪→

if flag:
return "yes"

return "no"

The example to call the tool is:
check_existence_around_object_horizontally(image_patch, "backpack",
"man", "right", "Is there a backpack to the right of the man?")

↪→
↪→

Begin!
Query: {query}
Specific code solution:
{solution}

17

Published as a conference paper at ICLR 2024

Abstract tool:

C.3.2 TABULAR PROCESSING

Rewriting Code to Create a Generic Tool Function

Purpose: Given a query and its corresponding code solution, your task
is to rewrite and abstract the code to create a general tool function
that can be applied to similar queries. The tool function should
solve a higher-level question that encompasses the original query and
extend the code's functionality to make it more versatile and widely
applicable.

↪→
↪→
↪→
↪→
↪→

Consider the following principles:

1. The generic tool function should solve queries of the same type, based
on common reasoning steps without mentioning specific object names or
entity terms.

↪→
↪→
2. Name the function and write the docstring concerning both the core

reasoning pattern and data organization format, without referencing
specific objects.

↪→
↪→
3. Replace specific strings or variable names with general variables to

enhance the tool's applicability to various queries. All columns
names used inside the tool should be passed in as arguments.

↪→
↪→
4. Call the tool function to solve the original query. End your answer

with the format '# The final generic tool with docstring is: ...' and
'# The example to call the tool is: ...'.

↪→
↪→

Example
Table
Name: Orange candies per bag
Unit: bags
Content:
Stem | Leaf
2 | 2, 3, 9
3 |
4 |
5 | 0, 6, 7, 9
6 | 0
7 | 1, 3, 9
8 | 5
Query
A candy dispenser put various numbers of orange candies into bags. How

many bags had at least 32 orange candies?↪→

Specific code solution
```python
import pandas as pd
def count_bags_with_32_orange_candies(df):

"""
This function takes in a pandas dataframe of orange candies per bag,

and returns the number of bags that have at least 32 orange
candies.

↪→
↪→
Args:
df (pandas.DataFrame): A pandas DataFrame object containing the

number of orange candies per bag.↪→
The dataframe should contain "Stem" and "Leaf" columns.
Returns:
int: The number of bags that have at least 32 orange candies.
"""
# prepare a list to calculate candies in each bag
candies = []
# calculate the total number of orange candies in each bag

18



Published as a conference paper at ICLR 2024

for i in range(len(df)):
stem = df['Stem'][i]
leaf = df['Leaf'][i]
for j in range(len(leaf)):

candies.append(stem * 10 + leaf[j])
# filter the bags where the total number of orange candies is greater

than or equal to 32↪→
filtered = [candy for candy in candies if candy >= 32]
# count the number of items
num_bags = len(filtered)
return num_bags

data = {
"Stem": [2, 3, 4, 5, 6, 7, 8],
"Leaf": [[2, 3, 9], [], [], [0, 6, 7, 9], [0], [1, 3, 9], [5]]

}

df = pd.DataFrame(data)
count_bags_with_32_orange_candies(df=df)
```

Abstrcted tool function:
We're creating a generic tool function from specific code that counts the

number of bags with at least a certain threshold of candies based on
a stem-and-leaf plot. The original code combines the stem and leaf
values to calculate the total number of candies in each bag, filters
the bags with candies greater than or equal to the threshold value,
and counts the number of such bags. We generalize the problem to
create a flexible function for any stem-and-leaf plot of items and
various threshold values. We replace specific columns, item names,
and threshold values with generic variables like stem_col, leaf_col,
item_threshold, and data_frame.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
```python
# The final generic tool with docstring is:
def count_groups_above_threshold_in_stem_leaf(data_frame, stem_col,

leaf_col, item_threshold):↪→
"""
This function takes in a pandas DataFrame representing a

stem-and-leaf plot of groups and a threshold value, and returns
the number of groups that have values greater than or equal to
the threshold.

↪→
↪→
↪→

Args:
data_frame (pd.DataFrame): A pandas DataFrame containing the

stem-and-leaf plot of items with columns specified by stem_col
and leaf_col.

↪→
↪→
stem_col (str): The column name for the stem values.
leaf_col (str): The column name for the leaf values.
item_threshold (int): The threshold value for filtering items.

Returns:
int: The number of items with values greater than or equal to the

threshold.↪→
"""
# Initialize the list to calculate items in each group
items = []

# Calculate the total value of items in each group
for i in range(len(data_frame)):

stem = data_frame[stem_col][i]
leaf = data_frame[leaf_col][i]
for j in range(len(leaf)):

items.append(stem * 10 + leaf[j])

19



Published as a conference paper at ICLR 2024

# Filter the items where the total value is greater than or equal to
the threshold↪→

filtered = [item for item in items if item >= item_threshold]

# Count the number of items
num_items = len(filtered)

return num_items

# The example to call the tool is:
data = {

"Stem": [2, 3, 4, 5, 6, 7, 8],
"Leaf": [[2, 3, 9], [], [], [0, 6, 7, 9], [0], [1, 3, 9], [5]]

}

df = pd.DataFrame(data)
count_groups_above_threshold_in_stem_leaf(data_frame=df, stem_col="Stem",

leaf_col="Leaf", item_threshold=32)↪→
```

Table
pasta with meat sauce | $6.49
pasta with mushrooms | $9.05
spaghetti and meatballs | $7.43
mushroom pizza | $9.28
Query
How much money does Jayla need to buy 5 orders of pasta with meat sauce

and 3 orders of pasta with mushrooms?↪→

Specific code solution
```python
import pandas as pd

def calculate_total_cost(menu_df, orders):
"""
This function takes in a pandas DataFrame representing a menu table

and a dictionary of orders, and returns the total cost of the
orders using pandas.

↪→
↪→
Args:
menu_df (pd.DataFrame): A pandas DataFrame containing menu items and

their prices with columns 'Item' and 'Price'.↪→
orders (dict): A dictionary where the keys are menu item names and

the values are the number of orders for each item.↪→
Returns:
float: The total cost of the orders.
"""
# Initialize the total cost
total_cost = 0.0

# Iterate through the menu items and calculate the cost for each
ordered item↪→

for item, quantity in orders.items():
# Filter the DataFrame for the specific item
item_df = menu_df[menu_df['Item'] == item]
if not item_df.empty:

item_price = item_df['Price'].values[0]
total_cost += quantity * item_price

return total_cost

# Example usage:
menu_data = {

'Item': ["pasta with meat sauce", "pasta with mushrooms", "spaghetti
and meatballs", "mushroom pizza"],↪→

'Price': [6.49, 9.05, 7.43, 9.28]
}

20



Published as a conference paper at ICLR 2024

menu_df = pd.DataFrame(menu_data)

orders = {"pasta with meat sauce": 5, "pasta with mushrooms": 3}
calculate_total_cost(menu_df, orders)
```

Abstrcted tool function:
We're creating a generic tool function from specific code that calculates

the total cost of items based on a table of item prices per unit and
a dictionary of item quantities. We identify the core reasoning of
the specific code is to calculate the total cost based on item prices
and quantities for each item, i.e. total_cost = unit_price *
item_quantity. The original code iterates through item names, filters
the table for each item, and calculates the cost based on quantities.
We generalize the problem to create a flexible function for any table
of item prices and a dictionary of quantities. We replace specific
columns and item names with generic variables like item_col,
price_col, and item_quantities. We refactor the code with these
variables, creating the new function
calculate_total_cost_from_unit_prices_and_quantities.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
```python
# The final generic tool with docstring is:
def calculate_total_cost_from_unit_prices_and_quantities(item_prices_df,

item_col, unit_price_col, item_quantities):↪→
"""
This function takes in a pandas DataFrame representing a table of

item prices and a dictionary of item quantities, and returns the
total cost of the items based on the prices and quantities.

↪→
↪→

Args:
item_prices_df (pd.DataFrame): A pandas DataFrame containing item

names and their prices.↪→
item_col (str): The column name for the item names.
unit_price_col (str): The column name for the item prices.
item_quantities (dict): A dictionary where the keys are item names

and the values are the quantities of each item.↪→

Returns:
float: The total cost of the items.
"""
# Initialize the total cost
total_cost = 0.0

# Iterate through the item names and calculate the quantity for each
item based on quantities↪→

for item_name, quantity in item_quantities.items():
# Filter the DataFrame for the specific item name
item_price_df = item_prices_df[item_prices_df[item_col] ==

item_name]↪→
if not item_price_df.empty:

item_price = item_price_df[unit_price_col].values[0]
total_cost += quantity * item_price

return total_cost

# The example to call the tool is:
item_prices_data = {

'Item': ["pasta with meat sauce", "pasta with mushrooms", "spaghetti
and meatballs", "mushroom pizza"],↪→

'Price': [6.49, 9.05, 7.43, 9.28]
}

item_prices_df = pd.DataFrame(item_prices_data)

21



Published as a conference paper at ICLR 2024

item_quantities = {"pasta with meat sauce": 5, "pasta with mushrooms": 3}
calculate_total_cost_from_unit_prices_and_quantities(item_prices_df,

"Item", "Price", item_quantities)↪→
```

Begin!
Table
===table===
Query
===qst===
Specific code solution
```python
===specific solution===
```

Abstracted tool function:

C.3.3 MATHEMATICS REASONING

Rewriting Code to Create a Generic Tool Function

Purpose: Given a table, query and its corresponding code solution,
your task is to rewrite and abstract the code to create a general
tool function that can be applied to similar queries. The tool
function should solve a higher-level question that encompasses the
original query and extend the code's functionality to make it more
versatile and widely applicable.

↪→
↪→
↪→
↪→
↪→

Consider the following principles:

1. The generic tool function should solve queries of the same type, based
on common reasoning steps without mentioning specific object names or
entity terms.

↪→
↪→
2. Name the function and write the docstring concerning both the core

reasoning pattern and data organization format, without referencing
specific objects.

↪→
↪→
3. Replace specific strings or variable names with general variables to

enhance the tool's applicability to various queries. All columns
names used inside the tool should be passed in as arguments.

↪→
↪→
4. Call the tool function to solve the original query. End your answer

with the format '# The final generic tool with docstring is: ...' and
'# The example to call the tool is: ...'.

↪→
↪→

Example
Let \\[f(x) =\n\\begin{cases}\n3xˆ2 + 2&\\text{if } x\\le 3, \\\\\nax - 1

&\\text{if } x>3.\n\\end{cases}\n\\]Find a if the graph of $y=f(x)$
is continuous (which means the graph can be drawn without lifting
your pencil from the paper).

↪→
↪→
↪→
Specific code solution:
```python
from sympy import symbols, Eq, solve

def find_a():
"""
Finds the value of 'a' that makes the graph of the given piecewise

function continuous.↪→

Returns:
float: The value of 'a' that makes the graph continuous.
"""
a, x = symbols('a x')

22



Published as a conference paper at ICLR 2024

# Define the piecewise function pieces
left_side = 3*x**2 + 2
right_side = a*x - 1

# Find the value at the point of continuity (x = 3)
left_value_at_3 = left_side.subs(x, 3)
right_value_at_3 = right_side.subs(x, 3)

# Create an equation to solve for 'a' based on the condition of
continuity↪→

equation = Eq(left_value_at_3, right_value_at_3)

# Solve the equation and return the value of 'a'
solution = solve(equation, a)

return solution[0]

find_a()
```
Abstrcted tool function:
assistant
We're creating a generic tool function from specific code that finds the

value of a variable in a piecewise function that ensures continuity.
The code calculates the appropriate value of a variable by ensuring
that the left and right sides of the piecewise function at the point
of continuity are equal. We generalize the problem to create a
flexible function for any piecewise function, ensuring continuity at
a specified point.

↪→
↪→
↪→
↪→
↪→
↪→
```python
from sympy import symbols, Eq, solve

# The final generic tool with docstring is:
def find_constant_for_continuity(x, constant, func1, func2,

continuity_point):↪→
"""
Find the constant that makes a piecewise function continuous at a

given point.↪→

Parameters:
x (symbol): The symbol for the independent variable.
constant (symbol): The symbol for the constant.
func1 (function): The first piece of the piecewise function.
func2 (function): The second piece of the piecewise function.
continuity_point (float): The x-value where the two functions should

be continuous.↪→

Returns:
float: The constant value that makes the function continuous.
"""

# Evaluate the functions at the point of continuity
func1_at_cont_point = func1.subs(x, continuity_point)
func2_at_cont_point = func2.subs(x, continuity_point)

# Create an equation to solve for the constant based on the condition
of continuity↪→

equation = Eq(func1_at_cont_point, func2_at_cont_point)

# Solve the equation and return the value of the constant
solution = solve(equation, constant)

return solution[0]

# The example to call the tool is:
x, constant = symbols('x constant')

23



Published as a conference paper at ICLR 2024

func1 = 3*x**2 + 2
func2 = constant*x - 1
continuity_point = 3
find_constant_for_continuity(x, constant, func1, func2, continuity_point)
```

Query: If $f(3)=1$ and $f(2x)=2f(x)$ for all x, find $fˆ{-1}(64)$.
Specific code solution:
```python
def find_inverse_value(base_value, base_result, target_result):

"""
Finds the value of the inverse function based on the given properties

of the original function.↪→

Args:
base_value (float): The input value for the original function, f(x).
base_result (float): The result of the original function,

f(base_value).↪→
target_result (float): The value for which the inverse result needs

to be found, fˆ{-1}(target_result).↪→

Returns:
float: The value of the inverse function, x, such that

fˆ{-1}(target_result) = x.↪→
"""
current_value = base_value
current_result = base_result

while current_result != target_result:
current_value *= 2
current_result *= 2

return current_value

# Set the initial values and find the value of the inverse function
fˆ(-1)(target_result)↪→

inverse_value = find_inverse_value(base_value=3, base_result=1,
target_result=64)↪→

```
Abstrcted tool function:
We're creating a generic tool function from specific code that finds the

value of an inverse function based on a set of rules for an original
function. The original code solves for the inverse function by
iterating over a multiplier rule and updating the corresponding
values of the original function. We generalize the problem to create
a flexible function for any linear combination rule with a common
multiplier, a base input-output pair, and a target output value for
the inverse function. We replace specific values and multipliers with
generic variables like base_input, base_output, target_inverse_output,
and common_multiplier.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
```python
# The final generic tool with docstring is:
def find_inverse_value_linear(base_input, base_output,

target_inverse_output, common_multiplier):↪→
"""
Find the value of the inverse function based on a linear combination

rule for the original function.↪→

Parameters:
base_input (float): The input value for the original function, f(x).
base_output (float): The result of the original function,

f(base_input).↪→

24



Published as a conference paper at ICLR 2024

target_inverse_output (float): The output value for which the inverse
result needs to be found, fˆ(-1)(target_inverse_output).↪→

common_multiplier (float): The common multiplier between the original
function's input and output values.↪→

Returns:
float: The value of the inverse function, x, such that

fˆ(-1)(target_inverse_output) = x.↪→
"""
current_input = base_input
current_output = base_output

while current_output != target_inverse_output:
current_input *= common_multiplier
current_output *= common_multiplier

return current_input

# The example to call the tool is:
find_inverse_value_linear(base_input=3, base_output=1,

target_inverse_output=64, common_multiplier=2)↪→
```

Begin!
Query: ===qst===
Specific code solution:
```python
===specific solution===
```

Abstrcted tool function:

C.4 TOOL DEDUPLICATION

Here are several tools with similar functionalities. Your task is to
select the most generic one, which can be widely applied and
frequently reused across various scenarios. Your decision should be
based on your understanding of typical use cases of VQA tasks and the
capabilities of the tools, rather than relying on superficial
patterns like the frequency of tool names.

↪→
↪→
↪→
↪→
↪→

Tips:
1. Consider the level of specificity of the strings in the code to assess

its generalizability.↪→
2. Evaluate the tool's functionalities and options to determine its

versatility.↪→

Format
Tools are listed below:

No. 0:
Tool 1

No. 1:
Tool 2

...

No. N:
Tool N

Please respond with the numeric number preceding the most general tool
using just one token, e.g.: N↪→

25

Published as a conference paper at ICLR 2024

Input
The tools are:

{}

Please provide your answer by entering the numeric number preceding the
most general tool using only one token:↪→

C.5 TOOL RETRIEVAL

C.5.1 VQA

Given a query, convert it into a declarative command and then a brief and
concise imperative instruction.↪→

Next, infer tool functions that can be used based on the instruction.
Finally, infer the docstring of the tool functions.

Consider the following principles:
1. The instruction should reflect the action to take, rather than

emphasizing specific noun phrases. So you should prioritize using
general terms like `object`, `people`, and `action`, and so on,
instead of directly saying specific names like `desk`, `american
president`, and `stuffed animal`.

↪→
↪→
↪→
↪→
2. Use tool function names following the format `verb_noun` with less

than five words. Consider utilizing the most frequently used words in
function names listed below.

↪→
↪→
3. The docstring of the tool function should be general and abstract, not

specific to the query. Consider utilizing the most frequently used
words in function docstrings listed below.

↪→
↪→
4. End your answer with the format 'The useful functions are: [...]' and

'The final answer is: ...', where '[...]' is a list of useful
functions and '...' is the returned answer.

↪→
↪→
5. The most frequently used words in function names: ['object',

'identify', 'check', 'objects', 'find', 'attribute', 'action',
'location', 'determine', 'existence', 'infer', 'type', 'describe',
'property', 'image', 'purpose', 'activity', 'count', 'interaction',
'state']

↪→
↪→
↪→
↪→
6. The most frequently used words in function docstrings: ['specific',

'object', 'identify', 'check', 'image', 'certain', 'given', 'another',
'objects', 'find', 'type', 'existence', 'attribute', 'determine',
'action', 'possible', 'list', 'two', 'infer', 'number']

↪→
↪→
↪→

Query: What is visible on the desk?
Let's think step by step:
First, the corresponding declarative command of the query is 'Identify

the visible objects on the desk'. After abstracting, the general
instruction should be 'Identify the objects on the specific
surface.'.

↪→
↪→
↪→
So considering the naming rules of tool functions, the relevant and

useful functions could be named as 'identify_objects' or
'identify_objects_on_surface'.

↪→
↪→
Finally, we can infer that the docstring of the tool function could be

'Identify the objects on the specified surface.'.↪→
The useful functions are: ['identify_objects',

'identify_objects_on_surface'].↪→
The final answer is: Identify the objects on the specified surface.

Query: Which american president is most associated with the stuffed
animal seen here?↪→

Let's think step by step:

26

Published as a conference paper at ICLR 2024

First, the corresponding declaritive command of the query is 'Search the
american president most associated with the stuffed animal seen
here'.\n\n"\

↪→
↪→
After abstracting, the general instruction should be 'Search people most

associated with the specific object.'.\n\n"\↪→
So considering the naming rules of tool functions, the relevant and

useful functions could be named as
'search_people_associated_with_object'.\n\n"\

↪→
↪→
Finally, we can infer that the docstring of the tool function could be

'Search for people most associated with the specific object.'.\n\n"\↪→
The useful functions are: ['search_people_associated_with_object'].\n\n"\
The final answer is: Search for people most associated with a specific

object.↪→

Query: {query}
Let's think step by step:

C.5.2 TABULAR PROCESSING

Given a table and a corresponding query, please summary the task goal and
briefly describe the row and column of the table.↪→

Next, infer generic table processing tool functions that can achieve the
task goal.↪→

Finally, infer the docstring of the tool functions.

Consider following principles:
1. Generic tool function names should be less than eight words in length.

Consider utilizing the most frequently used words in function names
listed below.

↪→
↪→
2. The docstring should summaize the task goal and table format. Be

general and abstract, not specific to the query. Consider utilizing
the most frequently used words in function docstrings listed below.

↪→
↪→
3. End your answer with the format 'The useful functions are: [...]' and

'The final answer is: ...', where '[...]' is a list of useful
functions and '...' is the returned answer.

↪→
↪→
4. The most frequently used words in function names: ['count',

'difference', 'items', 'total', 'value', 'calculate', 'frequency',
'stem', 'leaf', 'groups', 'table', 'two', 'get', 'item', 'cost',
'specific', 'entities', 'column', 'threshold', 'find', 'group',
'unit', 'probability']

↪→
↪→
↪→
↪→
5. The most frequently used words in function docstrings: ['two',

'number', 'item', 'column', 'items', 'specific', 'frequency',
'values', 'name', 'total', 'difference', 'value', 'groups',
'specified', 'table', 'given', 'row', 'stemandleaf', 'based', 'plot',
'entities', 'target', 'names']

↪→
↪→
↪→
↪→

Table
Name: Orange candies per bag
Unit: bags
Content:
Stem | Leaf
2 | 2, 3, 9
3 |
4 |
5 | 0, 6, 7, 9
6 | 0
7 | 1, 3, 9
8 | 5
Query
A candy dispenser put various numbers of orange candies into bags. How

many bags had at least 32 orange candies?↪→
Let's think step by step:

27

Published as a conference paper at ICLR 2024

To solve the problem, we should count the number of bags with at least a
certain threshold of candies based on a stem-and-leaf plot. The code
should combine stem and leaf values to calculate the total number of
candies in each bag, filter the bags with candies greater than or
equal to the threshold value, and count the number of such bags.

↪→
↪→
↪→
↪→
Considering the naming rules of tool functions, the relevant and useful

functions could be named as
'count_groups_above_threshold_in_stem_leaf' or
'count_items_above_threshold_based_on_numeric_combination'.

↪→
↪→
↪→
Finally, we can infer that the docstring of the tool function could be

'Given a threshold value and a pandas DataFrame representing a
stem-and-leaf plot of groups, count the number of groups that have
values greater than or equal to the threshold.'

↪→
↪→
↪→
The useful functions are: ['count_groups_above_threshold_in_stem_leaf',

'count_items_above_threshold_based_on_numeric_combination'].↪→
The final answer is: Given a threshold value and a pandas DataFrame

representing a stem-and-leaf plot of groups, count the number of
groups that have values greater than or equal to the threshold.

↪→
↪→

Table
pasta with meat sauce | $6.49
pasta with mushrooms | $9.05
spaghetti and meatballs | $7.43
mushroom pizza | $9.28
Query
How much money does Jayla need to buy 5 orders of pasta with meat sauce

and 3 orders of pasta with mushrooms?↪→
Let's think step by step:
To solve the problem, we should calculate the total cost of items based

on a table of item prices per unit and a dictionary of item
quantities. The code should calculate the total cost by using the
formula total_cost = unit_price * item_quantity for each item,
iterating through item names, filtering the table for each item, and
calculating the cost based on quantities.

↪→
↪→
↪→
↪→
↪→
Considering the naming rules of tool functions, the relevant and useful

functions could be named as
'calculate_total_cost_from_unit_prices_and_quantities' or
'calculate_total_quantity_from_items_and_coefficients'.

↪→
↪→
↪→
Finally, we can infer that the docstring of the tool function could be

'Calculate the total cost of the items based on a pandas DataFrame
representing a table of item prices and a dictionary of item
quantities.'

↪→
↪→
↪→
The useful functions are:

['calculate_total_cost_from_unit_prices_and_quantities',
'calculate_total_quantity_from_items_and_coefficients'].

↪→
↪→
The final answer is: Calculate the total cost of the items based on a

pandas DataFrame representing a table of item prices and a dictionary
of item quantities.

↪→
↪→

Table
{}
Query
{}
Let's think step by step:

C.5.3 MATHEMATICS REASONING

Given a query, please infer the core mathematical skill for the solution.
Next, infer generic mathematical tool functions that can perform the core

skill.↪→

28

Published as a conference paper at ICLR 2024

Finally, infer the docstring of the tool functions.

Consider the following principles:
1. Generic tool function names should be less than eight mathematic terms

in length. Consider utilizing the most frequently used words in
function names listed below.

↪→
↪→
2. The docstring should summarize the task goal. Be general and abstract,

not specific to the query. Consider utilizing the most frequently
used words in function docstrings listed below.

↪→
↪→
3. End your answer with the format 'The useful functions are: [...]' and

'The final answer is: ...', where '[...]' is a list of useful
functions and '...' is the returned answer.

↪→
↪→
4. The most frequently used words in function names: ['find', 'calculate',

'sum', 'value', 'expression', 'difference', 'number', 'items',
'total', 'time', 'target', 'inverse', 'generic', 'constant', 'max',
'squares', 'proportional', 'product', 'consecutive', 'evaluate', 'x',
'term', 'factor', 'largest']

↪→
↪→
↪→
↪→
5. The most frequently used words in function docstrings: ['number',

'given', 'calculate', 'based', 'two', 'total', 'find', 'value', 'sum',
'time', 'target', 'items', 'certain', 'numbers', 'amount', 'cost',
'first', 'distance']

↪→
↪→
↪→

Query: Let \\[f(x) =\n\\begin{cases}\n3xˆ2 + 2&\\text{if } x\\le 3,
\\\\\nax - 1 &\\text{if } x>3.\n\\end{cases}\n\\]Find a if the
graph of $y=f(x)$ is continuous (which means the graph can be drawn
without lifting your pencil from the paper).

↪→
↪→
↪→
Let's think step by step:
To solve the problem, we should ensure the continuity of the function by

equating the two function expressions at the boundary (x=3). The code
should substitute x with 3 in both expressions, equate them, and
solve for the unknown variable 'a'.

↪→
↪→
↪→
Considering the naming rules of tool functions, the relevant and useful

functions could be named as 'solve_continuous_piecewise_function' or
'find_constant_for_continuity'.

↪→
↪→
Finally, we can infer that the docstring of the tool function could be

'Find the constant that makes a piecewise function continuous at a
given point.'

↪→
↪→
The useful functions are: ['solve_continuous_piecewise_function',

'find_constant_for_continuity'].↪→
The final answer is: 'Find the constant that makes a piecewise function

continuous at a given point.↪→

Query: If $f(3)=1$ and $f(2x)=2f(x)$ for all x, find $fˆ{-1}(64)$
Let's think step by step:
To solve the problem, we should first understand the relationship between

the given function and its inverse. Then, we need to use the provided
information about the function and its properties to deduce the value
of the inverse function at a given input. The code should analyze the
properties to establish a connection (which is a linear relationship
here) between the function and its inverse, and subsequently evaluate
the result for the specific input.

↪→
↪→
↪→
↪→
↪→
↪→
Considering the naming rules of tool functions, the relevant and useful

functions could be named as 'find_inverse_value_linear' or
'find_inverse_value_based_on_properties'.

↪→
↪→
Finally, we can infer that the docstring of the tool function could be

'Find the value of the inverse function based on a linear combination
rule for the original function.'

↪→
↪→
The useful functions are: ['find_inverse_value_linear',

'find_inverse_value_based_on_properties'].↪→
The final answer is: 'Find the value of the inverse function based on a

linear combination rule for the original function.↪→

Query: {query}
Let's think step by step:

29

	Introduction
	[width=0.04]figs/blacksmith-icon.png CRAFT
	Tool Creation
	Tool Retrieval

	Experiment
	Experimental Setting
	Experimental Results

	Further Analysis.
	Does Abstraction Facilitate Tool Use?
	Is Every Matching in the Retrieval Triplet Equally Important?
	Does CRAFT still Work for More Powerful Backbone Models?
	Can CRAFT Improve Performance as the Toolset Gets Larger?
	What is Inside the Toolset?

	Related Work
	Tool Learning with LLMs
	Tool Creation & Retrieval

	Conclusion
	Limitations and Future Work
	CRAFT Implementation Details
	Prompt
	Prompt to Filter Image-dependent Questions in VQA Dataset
	Evaluate the Specific Generation for VQA
	Tool Creation
	VQA
	Tabular Processing
	Mathematics Reasoning

	Tool Deduplication
	Tool Retrieval
	VQA
	Tabular Processing
	Mathematics Reasoning

