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ABSTRACT

Machine learning sequence-function models for proteins could enable signifi-
cant advances in protein engineering, especially when paired with state-of-the-
art methods to select new sequences for property optimization and/or model im-
provement. Such methods (Bayesian optimization and active learning) require
calibrated estimations of model uncertainty. While studies have benchmarked a
variety of deep learning uncertainty quantification (UQ) methods on standard and
molecular machine-learning datasets, it is not clear how well these results extend
to protein datasets. In this work, we implement a panel of deep learning UQ meth-
ods on the Fitness Landscape Inference for Proteins (FLIP) benchmark regression
tasks. We compare results across different degrees of distributional shift using
metrics that assess each UQ method’s accuracy, calibration, coverage, width, and
rank correlation to provide recommendations for the effective design of biological
sequences.

1 INTRODUCTION

Machine learning (ML) has already begun to accelerate the field of protein engineering by providing
low-cost predictions of phenomena that require time- and resource-intensive labeling by experiments
or physics-based simulations (Yang et al., 2019). It is often necessary to have an estimate of model
uncertainty in addition to the property prediction, as the performance of an ML model can be highly
dependent on the domain shift between its training and testing data (Kendall & Gal, 2017). Because
protein engineering data is often collected in a biased manner (Dallago et al., 2021), tailored ML
methods are required to guide the selection of new experiments from a protein landscape. Uncer-
tainty quantification (UQ) can inform the selection of experiments in order to improve a ML model
or optimize protein function through active learning or Bayesian optimization.

In chemistry and materials science, several studies have benchmarked common UQ methods against
one another on standard datasets and have used or developed appropriate metrics to quantify the
quality of these uncertainty estimates (Scalia et al., 2020; Tran et al., 2020; Hirschfeld et al., 2020;
Nigam et al., 2021; Soleimany et al., 2021). This work has illustrated that the best choice of UQ
method can be dependent on the dataset and other considerations such as scaling.

While some protein engineering work has leveraged uncertainty estimates, these studies have been
limited to single UQ methods such as ensembles (Mariet et al., 2020) or Gaussian processes (GPs)
(Hie et al., 2020). In this work, we use a group of standardized, public protein datasets to benchmark
a panel of UQ methods. Our chosen datasets include splits with varied degrees of domain extrapo-
lation, enabling us to evaluate the methods in a setting similar to what might be experienced while
collecting new experimental data. We assess each model using a variety of metrics that capture
different aspects of desired performance, including accuracy, calibration, coverage, width, and rank
correlation.
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2 METHODS

This work uses several dataset splits to evaluate the performance of a panel of uncertainty methods
across various evaluation metrics (Figure 1).
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Figure 1: Overall schematic.

2.1 DATASETS AND TASKS

The landscapes used in this work were taken from the Fitness Landscape Inference for Proteins
(FLIP) benchmark (Dallago et al., 2021). These included the binding domain of an immunoglobu-
lin binding protein (GB1), adeno-associated virus stability (AAV), and thermostability (Meltome),
which cover a large sequence space and a broad range of protein families. The FLIP benchmark
includes several train-test splits, or tasks, for each landscape; most of these tasks are designed to
mimic common, real-world data collection scenarios and are thus a more realistic assessment of
generalizability than random train-test splits. However, random splits are also included as a point
of reference. We chose 8 of the 15 FLIP tasks to benchmark the panel of uncertainty methods.
We selected these tasks to be representative of several regimes of domain shift; they include random
sampling with no domain shift (AAV/sampled, Meltome/mixed, and GB1/sampled); the highest (and
most relevant) domain-shift regimes (AAV/Mut-Des, AAV/7 vs. Many, and GB1/1 vs. Rest); and
less aggressive domain shifts (GB1/2 vs. Rest and GB1/3 vs. Rest).

2.2 EVALUATION METRICS

To give a comprehensive report of model accuracy, we compute the following metrics on the test
sets: root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2),
and Spearman rank correlation (ρ). RMSE is more sensitive to outliers than MAE, so while both
are informative independently, the combination of the two gives additional information about the
distribution of errors. R2 and ρ are both unitless and are thus more easily interpreted and compared
across datasets.

We evaluated the quality of the uncertainty estimates using four metrics. First, ρunc is the the
Spearman rank correlation between uncertainty and absolute prediction error. Following Kompa
et al. (2021), we measure the coverage as the percentage of true values that fall within the 95%
confidence interval (±2σ) of each prediction. Kompa et al. (2021) define the width as the size of
the 95% confidence region (4σ), but we calculate the width relative to the range of the training set
as 4σ/R to make these values more interpretable across datasets. Finally, the miscalibration area
(also called the area under the calibration error curve or AUCE) quantifies the absolute difference
between the calibration plot and perfect calibration in a single number (Gustafsson et al., 2020).

2.3 UNCERTAINTY METHODS

We implemented eight uncertainty methods for this benchmark: linear Bayesian ridge regression
(BRR), Gaussian processes (GPs), and six methods using variations on a convolutional neural net-
work (CNN) architecture. We used a scikit-learn implementation of BRR (Pedregosa et al.,
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2011) and a GPyTorch implementation of continuous-kernel GPs (Gardner et al., 2018). The CNN
implementation from FLIP provided the core architecture used by our dropout (Gal & Ghahramani,
2016), ensemble (Lakshminarayanan et al., 2017), evidential (Amini et al., 2020), mean-variance
estimation (MVE) (Nix & Weigend, 1994), and last-layer stochastic variational inference (SVI)
(Hoffman et al., 2013) models. For each dropout model, we tested dropout fractions of 0.1, 0.2, 0.3,
0.4, and 0.5 and reported the model with the lowest miscalibration area. The output of the eviden-
tial uncertainty can be divided into an epistemic and aleatoric component following the analysis of
Amini et al. (2020), so we report these uncertainties separately in Tables 1-4 along with their sum
as the total uncertainty in Figures 2-4. For all models and landscapes, the sequences were featurized
as one-hot encodings.

3 RESULTS AND DISCUSSION

We trained each of the seven models described in Section 2.3 on each of the eight tasks described
in Section 2.1 and evaluated their performance on the test set using the metrics described in Section
2.2. We compare model calibration and accuracy in Figure 2 and the percent coverage vs. average
width relative to range in Figure 3.

As expected, the splits with the least required domain extrapolation tend to have more accurate mod-
els (lower RMSE). However, the relationship between miscalibration area and extrapolation is less
clear; some models were highly calibrated on the most rigorous (highest domain shift) splits, while
others were poorly calibrated even on random splits. There is no single method that performs con-
sistently well across splits and landscapes, but some trends can be observed. For example, the CNN
ensemble is often one of the highest accuracy models, but also one of the most poorly calibrated.

Figure 3 illustrates that many methods perform relatively well in either coverage or width (corre-
sponding to the the top and left limits of the plot, respectively), but few methods perform well in
both. Among those that do, the GP model is the only method that is among the best across all land-
scapes and most splits. Similarly to Figure 2, there is some observable trend that more challenging
splits are further from the optimal part (upper left) of the plot; this trend is more clear for the GB1
splits than for the AAV splits.

Figure 4 compares the ranking performance of each method in terms of predictions relative to true
values and uncertainty estimates relative to true errors. The splits are ordered according to domain
shift within their respective landscapes, and the rank correlation of the predictions to the true labels
generally decreases moving from left to right within a landscape. Ensembling was often among the
best performance in ρ, and the GP and BRR models performed better on ρ on the splits with the
highest domain shift. Performance on ρunc is generally much worse than that on ρ, with a large
number of results showing negative correlation. Dropout has one of the highest and most consistent
ρunc across splits. All methods have ρunc near zero for the most challenging splits. MVE performs
particularly poorly in regimes of high domain shift, which is consistent with its intended use as an
estimator of aleatoric (data-dependent) uncertainty.

4 CONCLUSION

Calibrated uncertainty estimations are necessary for effective property optimization or model im-
provement using Bayesian optimization or active learning. In this work, we have benchmarked a
panel of uncertainty quantification (UQ) methods on protein datasets, including on train-test splits
that are representative of real-world data collection practices. After evaluating each method based
on accuracy, calibration, coverage, width, and rank correlation, there is no method that performs
consistently well across all metrics or all landscapes and splits. However, this study only examines
models using one-hot-encoding representations of sequences; further research is needed to under-
stand how more informative and generalizable representations such as the pretrained embeddings
from (Dallago et al., 2021) may impact performance, particularly on splits with higher domain
shifts. Additionally, while the evaluation metrics used herein provide valuable information, they
are ultimately only a proxy for expected performance in Bayesian optimization and active learning.
Retrospective studies using holdouts of the training sets would be useful for evaluating this perfor-
mance more directly. A more thorough understanding of how to best apply UQ to sequence-function
models will ultimately enable more effective protein engineering.
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Figure 2: Miscalibration area vs. root mean square error (RMSE) for the (a) AAV, (b) Meltome, and
(c) GB1 landscapes. Miscalibration area (also called the area under the calibration error curve or
AUCE) quantifies the absolute difference between the calibration plot and perfect calibration. It is
desirable to have a model that is both accurate and well-calibrated, so the best performing points are
those closest to the lower left corner of the plots.
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Figure 3: Coverage vs. average width / range for the (a) AAV, (b) Meltome, and (c) GB1 landscapes.
Coverage is the percentage of true values that fall within the 95% confidence interval (±2σ) of each
prediction, and the width is the size of the 95% confidence region relative to the range of the training
set (4σ/R). A good model exhibits high coverage and low width, which corresponds to the upper
left of each plot.

Performance Computing Center (MGHPCC) for providing high-performance computing resources
to train our machine learning models.
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Figure 4: Spearman rank correlations of (a) predictions (ρ) and (b) uncertainties (ρunc) vs. extrap-
olation. Within each landscape (AAV, Meltome, and GB1), splits are qualitatively ordered by the
amount of domain shift between train and test sets, with the lowest domain shift on the left and
highest shift on the right.
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A APPENDIX

Table 1: RMSE (↓) / MAE (↓) / R2 (↑)

Dataset (Split) BRR Ens. MVE Dropout GP Evi. (a) Evi. (e) SVI

AAV (sampled)
1.89 1.10 1.32 2.80 1.37 1.19 1.19 1.54
1.50 0.83 1.01 2.37 1.03 0.89 0.89 1.18
0.62 0.87 0.82 0.18 0.80 0.85 0.85 0.75

AAV (7-vs-many)
4.56 1.52 1.91 2.85 1.70 1.71 1.71 2.13
3.30 1.19 1.53 2.40 1.33 1.33 1.33 1.76

-4.02 0.44 0.12 0.17 0.30 0.29 0.29 -0.10

AAV (mut-des)
3.68 2.20 2.17 2.80 3.69 2.21 2.21 2.56
2.58 1.68 1.68 2.38 3.15 1.69 1.69 2.11

-0.12 0.60 0.61 0.17 -0.13 0.60 0.60 0.46

Meltome (mixed)
10.28 8.54 10.89 9.77 10.07 9.48 9.48 12.22

7.88 6.55 7.88 6.89 7.49 7.12 7.12 8.79
0.22 0.46 0.12 0.15 0.25 0.34 0.34 -0.11

GB1 (sampled)
0.86 0.50 1.21 1.13 0.41 0.71 0.71 1.62
0.65 0.34 0.92 0.84 0.27 0.43 0.43 1.15
0.50 0.83 0.00 0.15 0.88 0.65 0.65 -0.80

GB1 (3-vs-rest)
1.00 0.81 1.30 1.09 0.68 0.83 0.83 1.62
0.77 0.58 1.06 0.83 0.45 0.54 0.54 1.08
0.38 0.60 -0.03 0.00 0.71 0.57 0.57 -0.61

GB1 (2-vs-rest)
1.33 1.27 1.37 1.00 1.03 1.23 1.23 1.64
1.04 1.05 0.94 0.75 0.68 0.93 0.93 1.13

-0.17 -0.07 -0.24 0.00 0.30 0.01 0.01 -0.78

GB1 (1-vs-rest)
1.82 1.47 1.68 1.85 1.32 1.58 1.58 1.64
1.53 1.26 1.16 1.61 1.13 1.07 1.07 1.15

-1.23 -0.17 -0.90 -3.10 -0.17 -0.67 -0.67 -0.80

Table 2: ρ (↑) / ρunc (↑)

Dataset (Split) BRR Ens. MVE Dropout GP Evi. (a) Evi. (e) SVI

AAV (sampled) 0.83 0.93 0.91 0.41 0.89 0.92 0.92 0.88
-0.01 0.08 0.25 0.38 0.06 -0.01 -0.01 -0.09

AAV (7-vs-many) 0.65 0.74 0.69 0.42 0.52 0.73 0.73 0.62
0.13 0.02 0.11 0.38 0.11 0.07 0.07 -0.04

AAV (mut-des) 0.68 0.76 0.77 0.42 0.71 0.76 0.76 0.70
0.46 0.14 - 0.36 -0.05 0.14 0.13 -0.04

Meltome (mixed) 0.31 0.39 0.18 0.34 0.28 0.32 0.32 0.00
-0.13 0.12 0.04 0.42 -0.27 -0.20 -0.20 0.03

GB1 (sampled) 0.79 0.91 0.62 0.39 0.93 0.88 0.88 -0.16
-0.26 0.15 0.07 0.38 -0.34 -0.06 -0.08 0.11

GB1 (3-vs-rest) 0.75 0.84 0.54 0.05 0.87 0.83 0.83 0.05
-0.25 -0.20 -0.02 0.02 -0.49 0.04 0.03 -0.06

GB1 (2-vs-rest) 0.60 0.39 -0.05 0.08 0.73 0.41 0.41 0.01
0.16 -0.05 0.01 0.03 -0.24 0.09 0.08 0.04

GB1 (1-vs-rest) 0.29 0.10 -0.12 0.00 0.27 -0.05 -0.05 -0.03
-0.03 0.18 0.06 0.20 -0.12 -0.13 -0.13 -0.07
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Table 3: Coverage (↑) / (4σ/R) (↓)

Dataset (Split) BRR Ens. MVE Dropout GP Evi. (a) Evi. (e) SVI

AAV (sampled) 0.98 0.40 0.94 0.95 0.98 0.88 0.88 0.74
0.02 0.00 0.01 0.03 0.02 0.18 0.18 0.01

AAV (7-vs-many) 0.83 0.35 0.83 0.95 0.99 0.83 0.83 0.56
0.03 0.00 0.01 0.02 0.02 0.14 0.14 0.01

AAV (mut-des) 0.85 0.30 0.69 0.94 0.59 0.79 0.79 0.46
0.02 0.00 0.01 0.02 0.02 0.15 0.15 0.01

Meltome (mixed) 0.92 0.61 0.84 0.86 0.94 0.74 0.73 0.91
0.01 0.00 0.01 0.01 0.01 0.89 0.89 0.01

GB1 (sampled) 1.00 0.49 0.94 0.89 0.98 0.93 0.93 0.71
0.30 0.01 0.06 0.04 0.04 0.27 0.27 0.04

GB1 (3-vs-rest) 1.00 0.64 0.93 0.11 0.96 0.87 0.87 0.74
0.53 0.04 0.11 0.01 0.09 0.30 0.32 0.08

GB1 (2-vs-rest) 1.00 0.13 0.88 0.11 0.89 0.93 0.93 0.71
0.39 0.02 0.15 0.01 0.12 0.19 0.19 0.10

GB1 (1-vs-rest) 0.05 0.49 0.58 0.00 0.86 0.85 0.85 0.71
0.03 0.09 0.19 0.02 0.32 0.41 0.41 0.28

Table 4: Miscalibration Area (↓)

Dataset (Split) BRR Ens. MVE Dropout GP Evi. (a) Evi. (e) SVI
AAV (sampled) 0.06 0.33 0.01 0.09 0.13 0.19 0.19 0.14
AAV (7-vs-many) 0.13 0.35 0.11 0.09 0.10 0.17 0.17 0.27
AAV (mut-des) 0.05 0.38 0.49 0.10 0.23 0.17 0.17 0.31
Meltome (mixed) 0.01 0.24 0.08 0.07 0.06 0.20 0.21 0.03
GB1 (sampled) 0.41 0.29 0.04 0.06 0.22 0.24 0.24 0.14
GB1 (3-vs-rest) 0.38 0.16 0.10 0.45 0.16 0.15 0.15 0.09
GB1 (2-vs-rest) 0.23 0.45 0.07 0.45 0.08 0.04 0.04 0.12
GB1 (1-vs-rest) 0.48 0.39 0.21 0.50 0.19 0.07 0.07 0.12
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