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Abstract

Motivated by the transformative capabilities of large language models (LLMs)
across various natural language tasks, there has been a growing demand to de-
ploy these models effectively across diverse real-world applications and platforms.
However, the challenge of efficiently deploying LLMs has become increasingly
pronounced due to the varying application-specific performance requirements
and the rapid evolution of computational platforms, which feature diverse re-
source constraints and deployment flows. These varying requirements necessitate
LLMs that can adapt their structures (depth and width) for optimal efficiency
across different platforms and application specifications. To address this criti-
cal gap, we propose AmoebaLLM, a novel framework designed to enable the
instant derivation of LLM subnets of arbitrary shapes, which achieve the accuracy-
efficiency frontier and can be extracted immediately after a one-time fine-tuning.
In this way, AmoebaLLM significantly facilitates rapid deployment tailored to
various platforms and applications. Specifically, AmoebaLLM integrates three
innovative components: (1) a knowledge-preserving subnet selection strategy that
features a dynamic-programming approach for depth shrinking and an importance-
driven method for width shrinking; (2) a shape-aware mixture of LoRAs to mit-
igate gradient conflicts among subnets during fine-tuning; and (3) an in-place
distillation scheme with loss-magnitude balancing as the fine-tuning objective.
Extensive experiments validate that AmoebaLLM not only sets new standards
in LLM adaptability but also successfully delivers subnets that achieve state-
of-the-art trade-offs between accuracy and efficiency. Our code is available at
https://github.com/GATECH-EIC/AmoebaLLM.

1 Introduction

The remarkable abilities and transformative impacts of large language models (LLMs) [1, 2, 3, 4]
have been paralleled by a growing interest in deploying them across a wide range of real-world
applications and diverse platforms. However, given the rapid evolution of computational platforms
and varying application-specific requirements, the challenge of deploying LLMs efficiently on
various platforms with differing specifications has become more pronounced. This is because
diverse platforms often feature different resource constraints and deployment flows, necessitating
LLMs with varying structures and shapes (i.e., depth and width) to achieve maximized execution
efficiency, as affirmed by our profiling in Sec. 2. Moreover, even the same platform may have varying
requirements for LLMs’ execution efficiency depending on factors such as on-device battery status.
These varying requirements demand a flexible framework capable of adapting to both the intrinsic
hardware constraints and the extrinsic demands of diverse application scenarios.
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Existing efficient LLM solutions [5, 6, 7, 8, 9, 10], which primarily use model compression to
bridge the gap between the resource constraints of the target device and the prohibitive complexity
of LLMs, fail to fully address the above needs. This is because these solutions either focus on a
single dimension of compression, resulting in limited efficiency improvements, or require a costly
fine-tuning process for each target platform with its unique specifications. This strategy is particularly
unscalable and inefficient for deploying widely used public LLMs like LLaMA [1, 2], where each
user must compress and fine-tune the LLMs for their specific platform and application needs.

In light of this, it is highly desirable to develop a suite of LLMs designed such that compressed
subnets of arbitrary shapes, which can achieve the accuracy-efficiency frontier without the necessity
of individual fine-tuning, can be instantly extracted, thus allowing for immediate adaptation to the
diverse needs of various platforms and applications. To achieve this, previous one-for-all training
techniques [11, 12, 13, 14, 15], which strategically sample subnets for joint training to deliver models
with switchable complexity, are promising candidates. However, directly applying them to pre-trained
LLMs would lead to failure due to the following challenges: (1) their adopted subnet sampling
strategies, which are dedicated to models trained from scratch, are not applicable to extensively
pre-trained LLMs as informative and critical components that store useful knowledge are highly
likely to be skipped; (2) jointly fine-tuning different subnets on commonly adopted small-scale tuning
datasets can easily cause severe gradient conflict [16, 17] for LLM weights pre-trained on a large
corpus, thus leading to poor performance of all subnets.

To address these challenges, we propose a framework called AmoebaLLM, which endows a given
LLM with the ability to instantly derive compressed subnets of arbitrary shapes that can achieve the
accuracy-efficiency frontier. We achieve this through the development of three key components of
AmoebaLLM’s one-for-all fine-tuning scheme: a subnet selection strategy, a trainable adapter design,
and a fine-tuning objective. Specifically, we summarize our contributions as follows:

• We develop a framework called AmoebaLLM, which grants a given LLM the capability to
deliver subnets of arbitrary shapes that achieve state-of-the-art (SOTA) accuracy-efficiency
trade-offs after a one-time fine-tuning. In this way, AmoebaLLM can greatly facilitate rapid
deployment across varying platforms and applications. This is achieved by integrating the
following three key components to enable one-for-all fine-tuning.

• For extracting high-quality subnets with diverse shapes, we propose a knowledge-preserving
subnet selection strategy that features dynamic programming (DP)-based depth shrinking
and importance-driven width shrinking. This addresses the aforementioned challenge (1) by
preserving the encoded factual knowledge and reasoning capabilities of pre-trained LLMs.

• For the trainable adapter during one-for-all fine-tuning, we propose a shape-aware mixture
of LoRAs (SMoL), which selects and combines a sparse set of LoRAs [18] using a gating
function that takes the subnet shape as input. This technique addresses the aforementioned
challenge (2) by mitigating gradient conflicts among subnets. More importantly, once the
target subnet shape is determined based on the target platform/application at deployment
time, all the selected LoRAs can be merged into the LLM weights, thus eliminating overhead.

• For the fine-tuning objective, we enhance the in-place distillation strategy [11, 13, 14] by
integrating a loss-magnitude balancing scheme. This scheme is based on the observation that
the loss magnitudes of subnets with different shapes in pre-trained LLMs are unbalanced,
leading to a bias toward specific subnets and thus poor overall performance. Our proposed
technique effectively addresses this issue and improves the performance of all subnets.

• Extensive experiments validate that our AmoebaLLM can deliver LLMs with instantly
serviceable subnets of any shape, each performing better or on par with SOTA efficient
LLM solutions. Additionally, when leveraging AmoebaLLM as a pure LLM compression
framework to compress a given LLM to the target parameter, it can achieve new SOTA
compression effectiveness, thanks to its subnet selection strategy.

2 Motivation and Profiling
Before introducing our framework, we first conduct a profiling of generation latency across different
devices, deployment flows, and use cases to examine the demand for LLMs with adaptable structures
that meet the diverse needs of various platforms and applications.
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Figure 1: The latency of LLaMA2 7B with scaled depth/width on various devices/deployment flows.

Profiling setup. We study the efficiency of different LLM shapes on different devices by uniformly
scaling either the depth or width of LLaMA2 7B [1] to the same model size. Here, depth is defined
as the number of self-attention blocks, each including both a multi-head attention module and a
feed-forward network, while width is defined as the hidden dimensions. We profile these workloads
using (1) two devices, including an NVIDIA A5000 consumer-level GPU and an NVIDIA Jetson
Orin NX edge GPU; and (2) three deployment flows, including TensorRT-LLM [19], MLC-LLM [20],
and vanilla PyTorch [21].

Observation and analysis. As shown in Fig. 1, we can observe that (1) first of all, the same workload
on two GPUs with different resources exhibits large latency gaps, indicating the need for LLMs
with adaptable structures to adapt to different devices when aiming to ensure a comparable latency
to satisfy user needs; (2) the preference regarding LLM shapes differs across deployment flows.
Specifically, under the same model size, reducing model depth and width have a comparable impact
on the measured latency using TensorRT-LLM on A5000 and MLC-LLM on Orin NX, while reducing
depth using PyTorch or MLC-LLM on A5000 can achieve a notably lower latency than reducing
width. This implies that for emerging platforms with limited compatible deployment flows, proper
customization of LLM shapes for maximized efficiency is needed.

3 The Proposed AmoebaLLM Framework

3.1 AmoebaLLM: Methodology Overview

To address the challenges associated with traditional one-for-all network training, as mentioned in
Sec. 1, our AmoebaLLM is equipped with three components: a knowledge-preserving subnet selection
strategy, an SMoL adapter, and an in-place distillation fine-tuning objective with loss-magnitude
balancing. We illustrate our overall framework in Fig. 2: given a target LLM, our AmoebaLLM
endows it with the capability of instantly deriving capable subnets via a two-stage process.

In the first stage, AmoebaLLM generates the subnet selection strategy. Specifically, given the
target depth/width remaining ratios, this step decides which layers/neurons to maintain, respectively.
To maximally preserve the knowledge and language modeling capabilities of pre-trained LLMs,
we propose employing dynamic programming [22] to determine the retained layers under different
remaining ratios and leverage neuron importance metrics [8] to retain important neurons in a structured
manner, as detailed in Sec. 3.2. After this stage, the subnet selection strategy is determined and fixed.

In the second stage, we insert our proposed SMoL adapter into the target LLM for a one-time,
one-for-all fine-tuning. Specifically, SMoL is composed of a set of LoRAs [18] and employs a gating
function to sparsely activate different subsets of LoRAs for different subnets, thus mitigating their
gradient conflicts. This process is elaborated upon in Sec. 3.3. In addition, our fine-tuning objective
enhances the sandwich sampling and in-place distillation methods described in [11, 13, 14] by adding
a loss-magnitude balancing scheme. This prevents bias towards specific subnets in pre-trained LLMs,
as detailed in Sec. 3.4. At deployment time, the selected LoRAs, which are determined by the
extracted subnet shape favorable to the target platform, can be merged into the LLM weights.

3.2 AmoebaLLM: The Proposed Knowledge-Preserving Subnet Selection Strategy

Motivation. As detailed in Sec. 5, previous one-for-all training techniques [11, 12, 13, 14, 15] often
select the first layers of a model or the first channels of a layer. These techniques, intended for
models trained from scratch, are unsuitable for pre-trained LLMs with rich knowledge encoded in
their weights. Considering the difficulty of recovering lost knowledge through fine-tuning or our
one-for-all fine-tuning on a relatively small corpus [23], it is crucial to identify informative and critical
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Figure 2: An overview of our AmoebaLLM framework: (a) Stage 1: Generate the subnet selection
strategy; (b) Stage 2: One-for-all fine-tuning. Zoom in for a better view.

layers/neurons that store useful knowledge during the subnet selection process instead of relying
solely on fine-tuning. To this end, we propose our knowledge-preserving subnet selection strategy to
select the most informative layers/neurons under a given remaining ratio, as detailed below.

DP-based depth shrinking. Previous works have made diverse observations regarding the layer
locations that store knowledge in different series of language models [24, 25, 26, 27, 28, 29]. As
such, it is highly desirable to have a principled strategy to evaluate the joint contributions of different
layer combinations in a target LLM to derive the optimal layer selection strategy for each remaining
ratio. To achieve this goal, we propose a DP-based depth shrinking strategy.

Problem formulation. Given a target LLM with N decoder layers, we define the layer selection
strategy by a vector s ∈ {0, 1}N . Here, s[n] = 1 indicates that the n-th layer is retained; otherwise,
the layer is removed. The objective is to determine the selection strategy s that achieves the optimal
target metric, such as maximal accuracy or minimal perplexity (PPL), on a calibration dataset C,
subject to the constraint that M layers are removed.

Key hypothesis. Thanks to the residual structure [30] of common LLMs [1, 2, 3] and the observations
that LLMs’ knowledge is compositional across layers [24, 31, 32], we hypothesize that the layer
selection problem described above can be divided into smaller and approximately independent sub-
problems. Consequently, we can employ dynamic programming [22] to effectively and efficiently
solve the layer selection problem.

Our DP-based methodology. We define a DP table D[n][m] (where n ∈ [1, N ] and m ∈ [1,M ]),
which stores the best target metric on the calibration dataset when exactly m layers are removed
from the first n layers of the target LLM. The corresponding layer selection strategy is denoted as
S[n][m] ∈ {0, 1}N . Consequently, S[N ][M ] represents the final strategy derived for removing M
layers out of all N layers. Next, we elaborate on how to obtain D[n][m] and S[n][m], where we
assume the target metric is such that larger values are better, without losing generality.

As illustrated in Fig. 2 (a), similar to general DP problems [22], D[n][m] can be derived by a
recurrence relationship. Specifically, to derive each D[n][m], we compare the metrics achieved by
the following two cases: (1) removing m layers from the first n− 1 layers, and (2) removing m− 1
layers from the first n− 1 layers and removing the n-th layer. The strategy yielding better metrics is
adopted. More formally, this process can be formulated as follows:

D[n][m] = max (D[n− 1][m],P(n,m)) (1)

where P(n,m) is the metric obtained by removing the n-th layer on top of the best-known strategy
S[n− 1][m− 1] for removing m− 1 layers from the first n− 1 layers. This is computed as follows:

P(n,m) = evaluate(remove(S[n− 1][m− 1], n), C) (2)

where remove(s, n) is a function that sets the n-th layer to 0 in a strategy s. Leveraging this recurrence
relationship, after initializing the DP table with the base cases, i.e., D[i][0] = ∞ and S[i][0] = {1}N
(∀i ∈ [1, N ]), since no layer is removed, the full DP table can be established with a complexity of
O(MN). In practice, we set M as the maximum number of layers allowed to be removed in our
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design space. Therefore, after obtaining the corresponding DP table D, the layer configuration of
any subnet with m layers removed (∀m ∈ [1,M ]) can be directly obtained from D[N ][m]. Note that
constructing the DP table is a one-time effort for a given LLM.

Differences from and connections with previous methods. The most relevant direction is layer pruning
for LLMs. Pioneering works along this direction either utilize single-layer importance to determine
which layers to prune [9], failing to measure the layers’ joint contribution and thus aggressively losing
factual knowledge as shown in Sec. 4, or rely on pre-defined rules [33], i.e., removing consecutive
layers among the last ones, which is suboptimal and may not be generalizable to future LLMs. In
contrast, our DP-based strategy can measure the joint impact of different layer combinations and is
principled and fully automated without relying on human priors for specific LLMs. More importantly,
the two aforementioned works [9, 33] are subsets of our DP-based strategy’s solution space. Thus, it
can serve as a new SOTA layer pruning method, as demonstrated in Sec. 4.3, in addition to serving as a
component (i.e., the subnet selection strategy) in one-for-all fine-tuning. Previous works [34, 35] have
also applied dynamic programming for pruning at different granularities with varied formulations,
and our work is the first to introduce this classical approach to LLMs.

Importance-driven width shrinking. Compared to layer selection, removing neurons (and all
corresponding weight connections) for width shrinking is more fine-grained and involves a much
larger design space. Therefore, instead of using dynamic programming, we directly employ existing
structured pruning metrics for LLMs to obtain importance scores for each neuron and select the most
important ones during one-for-all training, given a width remaining ratio.

To achieve this, we employ the metric in [8] due to its outstanding performance compared to other
alternatives. Specifically, we adopt the same width remaining ratio for linear layers within the same
block (either the self-attention block or the feed-forward network), where the importance scores of
input neurons of the last linear layer in each block are used to determine the width configuration of
this block. In other words, when a subset of input neurons to the last linear layer is removed, all
associated neurons and weights [7] within this block will be removed in a structured manner.

Importance metric. The importance score Fℓ
i of the i-th input neuron in the last linear layer Wℓ of

the ℓ-th block is computed as Fℓ
i = E

k,t,j
(Xℓ

k,t,i −X
ℓ

i)
2 · ∥Wℓ

j,i∥22, where j is the index of the output

neurons, Xℓ
k,t,i is the input features of the t-th token in the k-th batch, and X

ℓ

i is the averaged input
features across these two dimensions, both received by the i-th input neuron. To better maintain
the LLMs’ capability under a given remaining ratio: (1) the importance score is further normalized
over all input neurons in each layer and globally sorted for non-uniform width shrinking; (2) a
pre-computed bias term Bℓ is added to the output neurons to compensate for the removed input
neurons, i.e., Bℓ = Wℓ((1−Mℓ)⊙X

ℓ
), where Mℓ is the binary mask indicating whether the input

neurons are retained. We refer the readers to [8] for more details.

3.3 AmoebaLLM: The Proposed Shape-aware Mixture of LoRAs

Motivation. As demonstrated in Sec. 4.3, joint weight fine-tuning of different subnets on small-
scale datasets can lead to severe gradient conflicts [16, 17], resulting in poor performance across all
subnets. One potential solution is to adopt parameter-efficient adapters like LoRA [18]. However,
accumulating gradients from all subnets onto the same LoRA still suffers from gradient conflicts,
making fine-tuning unstable and causing some subnets to underperform. On the other hand, tuning a
separate LoRA for each subnet configuration is infeasible due to the large design space. To address
this, we propose an intermediate solution to balance performance and efficiency: the SMoL adapter
that features a set of LoRAs, which are sparsely activated based on the subnet shape.

SMoL adapter design. Our SMoL adapter consists of a set of T LoRAs {∆Wi = BiAi}Ti=1,
which are sparsely activated for each subnet shape using a gating function G. Specifically, we employ
a one-hot mask M to indicate the shape, i.e., the layer/width configuration, of the subnet. This
mask is fed into the gating function G to calculate a score for each LoRA. Only the top k LoRAs
are activated and weightedly averaged for each subnet shape during fine-tuning, thus mitigating the
gradient conflicts among different subnets.

Implementation. We extend the noisy top-K gating mechanism from [36] to implement our SMoL.
Specifically, G(M) = Softmax(KeepTopK(H(M), k)), where KeepTopK(v, k)i is vi if vi is in the
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top k of v and −∞ otherwise, and H(x)i = (x ·Wg)i+ std ·Softplus((x ·Wnoise)i). Here, Wg and
Wnoise are learnable, with the latter used to control the noise std for load balancing [36]. The final
composited weight W = Wbase +

∑T
i=1 G(M)i∆Wi, where Wbase is the pre-trained weight.

Key difference from previous works. Previous mixture-of-LoRA designs [37, 38, 39] are input-
adaptive at inference time, and thus the weights of different LoRAs cannot be merged into the original
model. In contrast, our SMoL depends only on the subnet shape and is independent of model inputs.
This implies that once the target subnet is extracted based on the target platform, all activated LoRAs
can be merged into the model weights, thus enhancing parameter efficiency at deployment time.

3.4 AmoebaLLM: The Fine-tuning Objective

Motivation. Strategically sampling and jointly fine-tuning different subnets is necessary to ensure
high-performance subnets within the same LLM, where the sandwich sampling and in-place distilla-
tion mechanisms [11, 13, 14] can serve as promising sampling and fine-tuning schemes, respectively.
However, naively doing so can cause the larger subnets to gradually underperform during fine-tuning.
We identify that this is due to notable differences in the loss magnitudes of different subnets, with
smaller subnets, which diverge more from the well pre-trained full model, exhibiting much higher
losses than larger subnets. To address this, we propose a simple but effective solution: equipping the
in-place distillation with a loss-magnitude balancing mechanism, which we elaborate on as follows.

In-place distillation with loss-magnitude balancing. During each fine-tuning iteration, we employ
the sandwich sampling [11, 13, 14] to sample K subnets {Ti}Ki=1 with different layer/width remaining
ratios, including the largest/smallest ones and K − 2 random ones from our design space. Detailed
layer/width configurations of sampled subsets can be obtained from the strategies derived in Sec. 3.2.
We fine-tune our SMoL adapter as detailed in Sec. 3.3 by accumulating the gradients from all sampled
subnets using in-place distillation, where only the loss of the largest subnet T1 is calculated using
ground truth, while those of other subnets {Ti}Ki=2 use distillation from the largest one [11]. To
balance the loss magnitude from different subnets, we normalize all subnets’ loss magnitudes to that
of the largest subnet, as visualized on the rightmost side of Fig. 2 (b). In this way, the final loss
direction is jointly determined by all subnets’ loss directions, falling on a unisphere without being
severely impacted by their unbalanced magnitudes. We formulate the fine-tuning objective as follows:

Ltotal = LCE(T1(x), y) +
K∑
i=2

∥LCE(T1(x), y)∥
∥LCE(Ti(x), T1(x))∥

LCE(Ti(x), T1(x)) (3)

where x and y are the input and ground truth, respectively, and LCE is a cross-entropy loss function.

Final subnet search after fine-tuning. We adopt a simple hierarchical search strategy to select sub-
nets from the fine-tuned LLM to satisfy the target efficiency constraint while maximizing achievable
accuracy. Specifically, we first perform a coarse grid search across uniformly spaced depth and width
settings based on a small calibration set (e.g., 40 samples from the MMLU dataset) to identify subnets
that meet the efficiency constraint with maximized accuracy. Next, we conduct a more fine-grained
grid search within depth and width ranges surrounding the optimal subnet identified in the coarse
grid search stage. More advanced search strategies, such as evolutionary search [11, 12, 13, 14], are
left for future work.

4 Experimental Results

4.1 Experiment Setup

Baselines. Our baselines include two SOTA structured width pruning methods: LLM-Pruner [7] and
FLAP [8], and one layer pruning method Shortened LLaMA [9]. All these baselines are open-sourced
and we apply their official code to different LLMs. All baselines, including FLAP which were not
fine-tuned in their original paper, are fine-tuned using the settings below for a fair comparison.

Fine-tuning setting. Following [7, 9], we adopt 50K samples from Alpaca [40] for our one-for-all
fine-tuning as well as for fine-tuning all baselines. For both our method and the baselines, we adopt a
constant learning rate of 2e-4 with an AdamW optimizer and a LoRA rank of 64, and fine-tune for
10K iterations. It takes 40 GPU hours on an NVIDIA A5000 GPU for our one-for-all fine-tuning.
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Table 1: Compare with baseline methods under varying remaining ratios on LLaMA2 7B.

Ratio Method ↓ MMLU ↑ Average ↑ BoolQ ↑ PIQA ↑ HellaSwag ↑ WinoGrande ↑ ARC-e ↑ ARC-c ↑ OBQA ↑

80%

LLM-Pruner [7] 29.63 56.95 58.53 76.39 65.80 60.38 64.60 34.56 38.40
FLAP [8] 40.21 60.98 73.64 74.81 68.27 65.43 66.20 37.88 40.60

Shortened LLaMA [9] 26.45 58.72 62.17 76.01 68.22 58.88 68.98 38.40 38.40

AmoebaLLM (Ours) 40.70 62.29 72.70 76.80 70.60 67.60 68.30 38.80 41.20
AmoebaLLM† (Ours) 42.40 62.37 72.50 76.30 70.80 66.90 70.30 40.20 39.60

65%

LLM-Pruner [7] 23.15 54.09 60.73 74.97 58.57 57.85 55.68 33.02 37.80
FLAP [8] 33.28 56.12 65.75 70.08 60.57 61.33 62.25 33.87 39.00

Shortened LLaMA [9] 24.89 52.57 62.32 72.03 55.10 52.41 59.47 30.63 36.00

AmoebaLLM (Ours) 36.00 56.96 72.10 70.70 59.70 63.20 62.20 34.00 36.80
AmoebaLLM† (Ours) 36.20 57.26 70.50 70.90 61.50 62.70 63.50 34.50 37.20

50%

LLM-Pruner [7] 22.90 47.52 61.83 67.79 43.31 51.22 46.13 28.16 34.20
FLAP [8] 27.67 51.12 59.45 67.30 51.33 56.75 55.43 31.57 36.00

Shortened LLaMA [9] 24.76 47.35 62.23 66.00 43.60 51.54 50.63 26.45 31.00

AmoebaLLM (Ours) 30.60 52.19 65.70 66.10 51.30 60.10 56.60 31.50 34.00
AmoebaLLM† (Ours) 32.20 52.63 64.70 66.70 53.00 60.30 58.00 30.10 35.60

Table 2: Compare with baseline methods under varying remaining ratios on Vicuna 7B v1.5.

Ratio Method ↓ MMLU ↑ Average ↑ BoolQ ↑ PIQA ↑ HellaSwag ↑ WinoGrande ↑ ARC-e ↑ ARC-c ↑ OBQA ↑

80%

LLM-Pruner 38.94 57.80 64.27 75.35 64.28 61.88 64.35 35.07 39.40
FLAP 43.50 60.54 72.45 73.67 66.59 65.98 68.14 37.54 39.40

Shortened LLaMA 35.27 60.93 67.58 75.68 68.12 64.48 70.20 40.44 40.00

AmoebaLLM (Ours) 47.40 60.77 71.30 72.70 68.80 66.10 66.50 38.60 41.40
AmoebaLLM† (Ours) 48.30 61.54 73.10 73.33 68.30 65.80 69.30 40.80 40.20

65%

LLM-Pruner 24.07 54.24 61.19 73.50 57.67 57.85 58.67 32.42 38.40
FLAP 38.08 56.47 68.96 70.78 58.97 61.33 63.43 34.21 37.60

Shortened LLaMA 25.59 52.50 64.28 70.62 56.78 57.46 52.74 31.40 34.20

AmoebaLLM (Ours) 40.30 55.93 68.20 69.80 58.60 62.40 62.20 34.10 36.20
AmoebaLLM† (Ours) 44.60 56.74 71.50 69.60 60.30 64.50 61.30 34.40 35.60

50%

LLM-Pruner 23.24 47.98 59.08 68.55 44.24 52.17 49.03 28.41 34.40
FLAP 29.92 50.74 56.15 67.52 51.81 57.69 56.57 31.06 34.40

Shortened LLaMA 25.03 45.56 51.71 65.67 43.28 51.38 49.96 26.54 30.40

AmoebaLLM (Ours) 34.00 51.41 64.20 65.00 50.90 59.10 56.20 30.90 33.60
AmoebaLLM† (Ours) 35.90 52.36 64.70 65.70 51.80 60.80 57.10 31.00 35.40

Models. We apply our method to LLaMA2 7B [1] and Vicuna 7B v1.5 [41].

Evaluation. Following our baselines [7, 9, 8, 6], we leverage lm-evaluation-harness [42] to measure
the zero-shot accuracy on 7 commonsense reasoning datasets, including BoolQ [43], PIQA [44],
HellaSwag [45], WinoGrande [46], ARC-easy [47], ARC-challenge [47], and OpenbookQA [48].
We also benchmark on the factual knowledge dataset MMLU [49].

AmoebaLLM’s setting. We set the depth choices to range from 20 to 32 and the width remaining
ratios as {1, 7/8, 3/4, 5/8, 1/2} by default unless specifically stated. In each iteration, we sample 4
subnets for joint training and select 2 LoRAs out of a total of 5 LoRAs in SMoL for each subnet.

4.2 Benchmark with SOTA LLM Compression Methods

We benchmark our AmoebaLLM against SOTA LLM width/layer pruning methods on LLaMA2
7B/Vicuna 7B v1.5 in Tab. 1/Tab. 2, respectively. Note that the subnets produced by AmoebaLLM
are instantly extracted from the same one-for-all fine-tuned LLM, where the (depth, width scale)
settings for 80%/65%/50% remaining ratios, determined by the final subnet search in Sec. 3.4, are (30,
0.875)/(28, 0.75)/(22, 0.75), respectively. We also provide the per-subnet fine-tuned counterparts of
our delivered subnets, denoted as AmoebaLLM†, to compare one-for-all and individual fine-tuning.

Benchmark under comparable model sizes. As shown in Tab. 1 and Tab. 2, we observe that (1) the
subnets instantly extracted by AmoebaLLM can achieve higher MMLU accuracy compared to all
baselines, suggesting that our method better preserves the factual knowledge acquired during pre-
training, as further analyzed in Sec. 4.3 and Sec. 4.4; (2) AmoebaLLM’s delivered subnets, extracted
from the same model, can also achieve better or comparable average commonsense reasoning accuracy
compared to the strongest baselines, each trained separately; (3) AmoebaLLM† achieves the best
performance across all metrics and tasks compared to the baselines, indicating that AmoebaLLM†

can serve as a new SOTA LLM compression framework in addition to its one-for-all functionality,
thus advancing the achievable accuracy-efficiency trade-off; (4) compared to our per-subnet fine-
tuned variant AmoebaLLM†, the instantly delivered subnets achieve comparable performance. This
demonstrates the effectiveness of our one-for-all fine-tuning scheme, as further ablated in Sec. 4.3.
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Table 3: Ablation Study on the effectiveness of the DP-based depth shrinking on LLaMA2 7B.
Calib. Data Method 24 23 22 21 20 19 18 17 16

Wikitext2 ↓
Unreasonable [33] 12.25 13.72 18.61 31.35 44.28 57.34 80.29 120.57 188.27

ShortenLLaMA [9] 11.75 13.18 17.83 29.61 39.42 53.27 71.80 106.63 154.69

Ours 11.65 12.77 17.59 20.06 23.77 28.83 38.70 70.87 95.16

MMLU (%) ↑
Unreasonable [33] 40.8 39.5 37.5 33.5 34.5 34.0 30.3 30.6 25.8

ShortenLLaMA [9] 42.0 34.7 35.1 32.1 32.0 33.5 33.7 29.3 26.6

Ours 46.2 44.8 44.6 44.1 41.2 41.3 43.1 34.7 28.9

Table 4: Ablation Study on different components in our AmoebaLLM on LLaMA2 7B.

Method 32 24 20
Wikitext2 ↓ MMLU (%) ↑ Wikitext2 ↓ MMLU (%) ↑ Wikitext2 ↓ MMLU (%) ↑

Per-subnet ft. 5.54 46.4 10.57 41.9 15.94 41.7
- SMoL (+full model) 5.82 46.6 38.48 32.6 167.74 36.4

- SMoL (+LoRA) 6.97 40.6 12.71 40.0 19.12 37.9
- Loss-mag. Balancing 6.77 42.0 12.63 40.1 18.19 39.3

Full (AmoebaLLM) 6.36 47.2 12.40 45.1 18.15 41.0

Latency (s)
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Figure 3: Benchmark AmoebaLLM’s achieved
accuracy-latency trade-offs with SOTA LLM com-
pression methods on an NVIDIA A5000 GPU.

Benchmark accuracy-latency trade-offs on
real devices. We further benchmark the
achieved trade-off between average common-
sense reasoning accuracy and measured latency
of LLaMA2 7B using MLC-LLM and PyTorch
as the deployment flows on an NVIDIA A5000
GPU, following the settings in Sec. 2. For our
method, we select the subnet shape that favors
the hardware characteristics based on the pro-
filing in Sec. 2 from the one-for-all fine-tuned
LLM. As shown in Fig. 3, we observe that (1)
our method consistently achieves the best trade-
off on both deployment scenarios; and (2) al-
though FLAP achieves higher accuracy than Shortened LLaMA under comparable model sizes, its
real-device speed is limited when using vanilla PyTorch, aligning with observations in [9]. In contrast,
our method can instantly deliver subnets that favor the hardware/deployment flow characteristics,
thus enjoying both high accuracy and real-device friendliness.

4.3 Ablation Study: Effectiveness of Each Component

We perform ablation studies to validate the effectiveness of each component of AmoebaLLM.

The DP-based depth shrinking strategy. We benchmark our DP-based strategy against two
existing LLM layer pruning methods, Shortened LLaMA [9] and Unreasonable [33], on LLaMA2
7B. Specifically, we employ the three methods to select important layers using Wikitext2/MMLU
with PPL/accuracy as calibration metrics, respectively. We directly report the achieved PPL/MMLU
accuracy after calibration under various layer remaining ratios without fine-tuning to indicate their
effectiveness in identifying important layers

Observations and analysis. As shown in Tab. 3, we observe that our DP-based strategy outperforms the
other two strategies on both calibration datasets and metrics, especially under small remaining ratios,
e.g., a +9.4% MMLU accuracy and a -33.1 PPL over the strongest baseline when remaining 18 layers.
This demonstrates the superiority of our method over the two baselines in selecting important layers
that optimize the target calibration metric, thus significantly contributing to knowledge preservation.

Remark. This set of experiments supports our analysis in Sec. 3.2 that the superiority of our method
arises from its consideration of different layers’ joint contributions, rather than focusing on single-
layer importance [9], and its avoidance of reliance on pre-defined rules [33], thus ensuring generality.

The SMoL adapter. To assess the efficacy of our SMoL adapter, we substitute it with full model
fine-tuning or the standard LoRA [18] and benchmark it against our AmoebaLLM with SMoL as
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Table 5: Ablation Study on the selection of calibration datasets on LLaMA2 7B.

Calib. Data 32 24 20
Wikitext2 ↓ MMLU (%) ↑ Wikitext2 ↓ MMLU (%) ↑ Wikitext2 ↓ MMLU (%) ↑

BookCorpus 5.64 46.4 16.52 26.8 31.70 27.0
Wikitext2 5.64 46.4 11.92 26.4 23.77 24.4
MMLU 5.64 46.4 293.01 45.8 1338.68 41.2

BookCorpus (ft) 6.55 45.4 10.55 29.7 14.36 25.7
Wikitext2 (ft) 6.41 43.4 9.58 32.6 13.26 23.6
MMLU (ft) 6.36 47.2 12.40 45.1 18.15 41.0

well as the per-subnet fine-tuning variant. To more clearly demonstrate its efficacy, this experiment is
conducted under a depth-shrinking-only setting, which only enables depth shrinking ranging from 20
to 32 layers during one-for-all fine-tuning. We select three layer configurations, covering both the
largest and smallest ones, to report the performance.

Observations and analysis. As illustrated in Tab. 4, we observe that (1) full model fine-tuning
on a relatively small corpus results in suboptimal performance with large PPL; (2) employing the
standard LoRA stabilizes the one-for-all fine-tuning compared to full model fine-tuning, albeit
with notable performance reductions in larger subnets, e.g., a 5.8% MMLU accuracy drop in the
largest subnet compared to per-subnet fine-tuning; (3) when equipped with our SMoL, the MMLU
accuracy of all subnets is substantially enhanced, e.g., a +6.6% improvement on the largest subnet
compared to the LoRA case, even exceeding that of the per-subnet counterparts. This demonstrates
the essential capability of our AmoebaLLM to deliver high-quality LLM subnets across a wide range
of accuracy-efficiency trade-offs.

The loss-magnitude balancing scheme. As shown in Tab. 4, we further disable the loss-magnitude
balancing scheme and observe a significant MMLU accuracy drop in larger subnets. This supports
our analysis in Sec. 3.4 that the larger losses from smaller subnets may dominate the overall objective,
thereby impairing the fine-tuning of larger subnets and underscoring the necessity of our method.

4.4 Ablation Study: The Selection of Calibration Datasets

We conduct an ablation study on the choice of calibration datasets for our DP-based depth shrinking
introduced in Sec. 3.2. Specifically, we use accuracy on the training set of MMLU [49] and PPL
on the training sets of Wikitext2 [50]/BookCorpus [51] as target metrics. We report the evaluation
metrics, including MMLU test accuracy and Wikitext2 test PPL, under different layer remaining
ratios both after calibration and after one-for-all fine-tuning under a depth-shrinking-only setting.

Observations. As shown in Tab. 5, we observe that (1) after calibration without fine-tuning, the
subnets perform well on the evaluation metric for which they were calibrated and underperform in
terms of the other metric; (2) after fine-tuning, the subnets calibrated using PPL continue to perform
poorly on MMLU accuracy, indicating a severe loss of factual knowledge. In contrast, the subnets
calibrated using MMLU accuracy achieve notably lower PPL compared to before fine-tuning, even
on par with the subnets calibrated using PPL, while still maintaining high MMLU accuracy.

The key insight. This set of experiments indicates that the loss of factual knowledge during com-
pression is hard to restore during fine-tuning, echoing the observations in [23], while the language
modeling capability is easier to recover through fine-tuning. As such, we adopted MMLU as the
calibration dataset throughout the previous experiments, and we believe this insight could inspire
future LLM compression frameworks and calibration metrics.

4.5 Limitations and Future Work

One limitation of our work is that due to the limited fine-tuning data and resources, our method-
ology is applied to parameter-efficient fine-tuning, which mitigates gradient conflicts under small
data conditions while limiting the achievable accuracy-efficiency trade-off. We anticipate that by
leveraging more extensive fine-tuning data beyond our current use of Alpaca [40] and extending
our design insights regarding subnet selection and gradient conflict mitigation, more aggressive
accuracy-efficiency trade-offs can be achieved, which will be the focus of our future work.
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5 Related Work

Large language models. Before the advent of LLMs, transformer-based language models [52, 53,
54, 55] demonstrated their ability to effectively analyze relationships among tokens in complex
input sequences, facilitated by the attention mechanism [52]. These models also exhibit notable
scalability [56, 57, 58] with respect to model size and the scale of pre-training datasets. This decent
scalability has led to the emergence of LLMs, such as GLM [59], OPT [60], BLOOM [61], the
Llama family [1, 1, 2], Gemma [3], and GPT-4 [4], which exhibit impressive zero-shot and few-shot
in-context learning capabilities. However, these LLMs often feature billions of parameters and
prohibitive computation complexity, which limits their widespread use across diverse platforms.

Large language model compression. To facilitate efficient deployment of LLMs in real-world
applications, existing works primarily focus on compressing LLMs by extending traditional compres-
sion techniques such as knowledge distillation [62, 63], quantization [64, 65, 66, 67, 68, 69], system
acceleration [70, 71], and pruning [6, 5, 72]. Our work is most closely related to LLM pruning.
Along this direction, early works [5, 6] employ unstructured and semi-structured pruning [73] by
zeroing out connections among neurons. Despite their plausible performance, these methods require
specialized support to achieve real-device speedup. To benefit commodity platforms, structured LLM
pruning methods remove more coarse-grained components, such as all connections related to a single
neuron [7, 8, 10] or even entire layers [9, 33]. For instance, LLM-Pruner [7] and FLAP [8] reduce
LLM width by eliminating identified redundant neurons, while Sheared-LLaMA [10] learns a set
of binary masks to reduce both the width and depth of LLMs. However, these methods either focus
on a single dimension of compression (i.e., depth or width) with limited efficiency improvements,
or they require a costly fine-tuning process for each target configuration and platform. In contrast,
our AmoebaLLM can instantly extract subnets of arbitrary shapes that reach the accuracy-efficiency
frontier, thus facilitating rapid deployment across devices.

One-for-all networks. Slimmable networks [74, 75] are pioneering works that enable a single model
to operate at varying widths. Follow-up works [11, 76, 12, 13, 14, 15] further extend this approach to
train more general one-for-all networks with switchable depth and width, thus enabling tasks like
neural architecture search. In particular, BigNAS [11] builds one-for-all networks using a sandwich
sampling strategy that samples a random set of subnets and jointly trains them in each iteration
through in-place distillation, where the largest model guides the learning of the smaller ones. This
approach has been inherited by subsequent works [12, 13, 14]. Additionally, this idea has been
extended to any-precision networks [77, 78, 79] that allow switchable precision at runtime. A very
recent work [80] has further extended this concept to any-precision LLMs.

Nevertheless, directly applying these methods to the depth and width of pre-trained LLMs would
likely fail because their subnet sampling strategies often select the first layers of a model or the
first channels of a layer, which are intended for models trained from scratch. This approach is
unsuitable for pre-trained LLMs, as it may omit layers or neurons containing crucial knowledge.
Our AmoebaLLM framework addresses these challenges by developing three key components: the
subnet selection strategy, the trainable adapter design, and the fine-tuning objective. One concurrent
work [81] also aims to train many-in-one LLMs that support instant subnet derivation, targeting
a full-model continual training setting on 90 billion tokens. In contrast, our method targets a
parameter-efficient tuning setting with only 8.5 million fine-tuning tokens.

6 Conclusion

In this work, we present a framework called AmoebaLLM that grants a given LLM the capability
to instantly deliver subnets of arbitrary shapes, which achieve the accuracy-efficiency frontier and
can be extracted immediately after a one-time fine-tuning. This is achieved by the development of
three dedicated components that enable AmoebaLLM’s one-for-all fine-tuning scheme: a knowledge-
preserving subnet selection strategy, an SMoL adapter, and an in-place distillation objective with
loss-magnitude balancing. Extensive experiments validate that our AmoebaLLM framework can
deliver efficient LLMs with instantly serviceable subnets of any shape, which outperform SOTA
LLM compression techniques in terms of the accuracy-efficiency trade-off. We believe this work is
promising to facilitate the wider use of existing and emerging public LLMs by making them instantly
deployable on varying platforms and applications, and by providing a new perspective on efficient
LLM deployment, thus inspiring future solutions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have accurately summarized our paper’s contributions and scope in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed this in Sec. 5.5 of our paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We didn’t provide theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we have elaborated on our settings and provided the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have open-sourced our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We offered this information in Sec. 5.1 of our paper and also provided sufficient
references.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow our baselines and do not report the error bars as the results are
relatively stable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18



• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided this information in Sec. 5.1 of our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, it conforms with NeurIPS Code of Ethnics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work targets the acceleration of large language models to facilitate its
widespread use and thus does not suffer from obvious negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We built on top of public models and datasets and do not suffer from high risks
of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we have added the reference for all used data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not perform crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work didn’t involve human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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