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Abstract

Various robust estimation methods or algorithms
have been proposed to hedge against Byzantine
failures in distributed learning. However, there is
a lack of systematic approaches to provide theoret-
ical guarantees of significance in detecting those
Byzantine machines. In this paper, we develop a
general detection procedure, ByMI, via error rate
control to address this issue, which is applicable
to many robust learning problems. The key idea
is to apply the sample-splitting strategy on each
worker machine to construct a score statistic inte-
grated with a general robust estimation and then
to utilize the symmetry property of those scores
to derive a data-driven threshold. The proposed
method is dimension insensitive and p-value free
with the help of the symmetry property and can
achieve false discovery rate control under mild
conditions. Numerical experiments on both syn-
thetic and real data validate the theoretical results
and demonstrate the effectiveness of our proposed
method on Byzantine machine identification.

1. Introduction

With the rapid growth of the dataset size and the decentral-
ization of data sources, distributed and federated learning,
where the worker machines locally preserve the data and
only communicate summarized information with the mas-
ter machine, have received substantial attention (Kairouz
et al., 2021). In such a distributed learning system, there is
usually a small fraction of worker machines that send any
arbitrary information due to malicious attacks on worker
machines and communication channels, or the variation and
contamination in the data sources (Blanchard et al., 2017).
Those abnormal machines are called Byzantine machines.
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Such breaks in the distributed system are modeled as the
Byzantine failures (Lamport et al., 1982) and have serious
adverse effects on learning performance.

1.1. Motivation & Related Works

Byzantine robust learning. Recently, there is a great deal
of effort to develop distributed-learning algorithms with the
properties of Byzantine resilience and Byzantine robustness,
that are provably robust against Byzantine failures. Typi-
cally, the studies of Byzantine-robust distributed learning
focus on aggregating those workers’ messages, e.g. the av-
erages of gradients, via some robust estimation algorithms
in the master machine. This has an intimate connection with
robust estimation in statistics literature (Shi et al., 2022).
A family of aggregation methods is replacing the simple
sample mean with robust location estimations. One pop-
ular choice is to take the median instead of the sample
mean, such as the coordinate-wise median and trimmed
mean (Yin et al., 2019; 2018), the geometric median (Chen
etal., 2017), and the coordinate-wise composite quantile (Tu
et al., 2021). However, those median-type algorithms suffer
a bias dependent on the dimension due to Byzantine fail-
ures. Some recent works adopt the computational-efficient
high-dimensional mean estimations to correct the bias term
to a dimension-agnostic one. For instance, Yin et al. (2019)
applies the filtering algorithm (Lai et al., 2016; Diakoniko-
las et al., 2017) as the aggregation rule and Zhu et al. (2023)
considers both the filtering algorithm and the first-order
approach (Cheng et al., 2020; Zhu et al., 2022).

Another direction is to detect and delete Byzantine machines
and further make estimations based on some reputation
scores which measure the trustworthiness of worker ma-
chines, such as Krum (Blanchard et al., 2017), FABA (Xia
et al., 2019) and Zeno (Xie et al., 2019). As commented
by Cheng et al. (2019), all of these methods suffer similar
dimension-dependent bias as the median-type algorithms.
That’s partly because those methods take the number of
Byzantine machines as predetermined and are unable to
give a significant guarantee against underestimation or over-
estimation, which may hamper their applicability.

Outlier detection methods. As discussed above, the identi-
fication of Byzantine machines plays an important role in
the resilience task but has received less attention. This is rel-
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evant to outlier detection in the statistics regime since each
Byzantine machine performs like one outlier. Traditionally,
one outlier detection procedure is generally to obtain some
robust center estimates and then to compute p-values based
on some efficient tests to evaluate whether it is one outlier
(Filzmoser et al., 2008; Ro et al., 2015; Zimek et al., 2012).
It has been revealed that the performance of this kind of
methods heavily depends on the approximation accuracy
of p-values (Efron, 2004; Liu & Shao, 2014), which are
obtained from the asymptotic distribution when the sample
size or dimension goes to infinity with some specific rate.
However, it is often unrealistic, especially for one complex
distributed learning system where the approximation distri-
bution is hard to estimate. In addition, as many machine
learning algorithms have to face the situation that the pa-
rameter dimension is much larger than the sample size in
each machine, it makes the traditional p-value dependent
methods largely ineffective (Bottou et al., 2018). Hence, it is
important to design a detection procedure that is insensitive
or free of dimensions.

1.2. Our Contributions

In this paper, we suggest a p-value free and dimension insen-
sitive detection procedure, named as Byzantine Machines
Identification (ByMI). To avoid falsely identifying too many
normal machines, we consider controlling the false discov-
ery rate (FDR), the expectation of the proportion of the false
discoveries among all the discoveries. The FDR control has
been fully explored in the literature of multiple testing and is
a particularly useful tool to maintain the ability to detect true
alternatives without excessive false positive ones (Benjamini
& Hochberg, 1995; Benjamini & Yekutieli, 2001; Du et al.,
2021; Zou et al., 2020). The proposed method integrates
the classical Byzantine robust estimation with the generic
idea of the sample-splitting strategy to construct a series
of score statistics with the symmetry property, which plays
an important role in distinguishing Byzantine and normal
machines. Then the ByMI entails choosing a data-driven
threshold by exploiting the empirical distributions between
the negative and positive statistics.

To our best knowledge, this is the first effort to systemat-
ically identify those Byzantine machines with error rate
control. ByMI’s main contributions/advantages include:

e Under a unified framework, ByMI addresses how to
detect Byzantine machines in the regime of gradient
functions. It is dimension insensitive since the rank-
ing scores are some univariate projection of gradients
and applicable to many Byzantine problems, such as
the mean estimation and the communication-efficient
distributed learning procedure.

e ByMI is p-value free and can achieve the generic

finite-sample upper bound of FDR without strong
model/distribution assumptions. Under mild condi-
tions, we show that the proposed ByMI method yields
valid FDR control and sure-detection property.

* ByMI can be easily coupled with robust estimations.
Extensive numerical experiments indicate that ByMI
is able to yield accurate FDR control, while signifi-
cantly detecting most Byzantine machines compared
to existing outlier detection algorithms.

2. Byzantine Machines Identification
Procedure

2.1. Problem Formulation

In the distributed system, assume N independent sam-
ples {s;}~, are evenly stored in m + 1 machines
Mo, My ... M,,, each of which contains n observations
and N = (m + 1)n. Here, s could either be a p-variate
random vector x € R? or (y,x) with y and x being respec-
tively the response variable and p-variate covariates. Note
that M is the master machine that is in charge of inte-
grating information from worker machines My, ..., M,,
and cannot be corrupted. Considering Byzantine failures in
the system, there exist | om | Byzantine machines on which
samples are poisoned, where ¢ € [0, 1] is the proportion
of Byzantine machines. Denote the Byzantine machines
set and the good/normal machines set as B and G, respec-
tively, with BUG = {M;, ..., M,,}. Assume the normal
data are i.i.d drawn from FP,. We consider the behavior of
the Byzantine machines by the Huber contamination model
(Huber, 1964),

si ~ By

{ S; PO

Our goal is to propose a procedure to identify the Byzantine
machines set 5. From the perspective of multiple testing, the
null hypothesis of the j-th machine is that it is normal, and
the alternative asserts it is a Byzantine machine. Namely,

the Byzantine machines detection problem is translated to
the multiple testing problem:

ifs; € Mj eg
ifs; € Mj € B.

HQjIMng V.S. Hlj:MjEB jE[m] (1)
If one detection procedure yields the Byzantine machines
set estimation B, the false discovery proportion (FDP) and
true positive proportion (TPP) with B are

5 _ 1Bng|

FDP(B) Bvi 5 — 1805

The false discovery rate (FDR) and true positive rate (TPR)

~ ~

are defined as the expectation of the FDP(B3) and TPP()
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respectively. One reliable detection procedure is to con-
trol FDR at a target level and identify as many Byzantine
machines as well.

2.2. Byzantine Machines Identification Procedure

We consider a generic distributed risk minimization frame-
work. Let £(s,0) be the loss function with parameter
0 € © C R%. Denote its gradient function as g(s,0) =
Vel(s,0) € R% In a distributed learning problem, each
worker machine M ; computes an empirical gradient based
on its local samples by g;(6) %Zie/\/lj g(si, o)
with some given parameter 6y. Then these gradients are
transmitted to the master machine M, for further updat-
ing or estimating parameters. Note that g;(6) reflects
the state of the worker machine, since we usually have
E[g;(60)] # E[gk(09)] where M; € B is a Byzantine ma-
chine but M}, € G is a normal one. With this regime, the
original problem (1) is reframed into a multiple testing prob-
lem on detecting the difference in mean of these gradients
{g;}7.,. Denote p* as the mean of g;(6y) when M; € G
is one normal machine. Then the alternative hypotheses can
be written as H, : E[g;(6o)] # p* for j € [m)].

The standard procedure for multiple testing is to build
some mean test statistics for each worker machine and
their asymptotic distribution under null, such as Hotelling’s
T? for fixed d or other modified tests in high-dimension
regime (Bai & Saranadasa, 1996; Chen & Qin, 2010), and
then apply the Benjamini-Hochberg (BH) method to the
approximated p-values of those test statistics (Benjamini
& Hochberg, 1995). However, the performance of the BH
method heavily depends on the accuracy of p-values from
the asymptotic distribution, which usually involves some
unknown quantity related to the gradient populations and
may be different based on the diverging rate of d relative
to n. It implies that traditional mean tests become ineffec-
tive or practically infeasible in modern machine learning
models, as it’s challenging to estimate these quantities for
complex gradients, and it’s hard to determine the asymptotic
distribution to approximate p-values.

This promotes the development of our p-value free and
dimension-insensitive detection procedure, named as Byzan-
tine Machines Identification (ByMI). We construct one new
test statistic with the sample-splitting strategy and employ
the empirical distribution in place of the asymptotic distri-
bution to achieve FDR control.

Step 1. The first step of our procedure is to randomly split
the samples on each worker machine M ; into two sets 'DO)
and D(z) of equal size %, j € [m]. Write g1;(6) and g2;(0)
as the empirical gradient functions based on D( ) and D(Q)
with some given 6, respectively.

Step 2. Based on {g1;(0)}]_,, we employ a particular
algorithm A to obtain the robust mean estimator of p*, de-
noted as g(0). Many methods can be chosen as A, such
as those median-type algorithms (Su & Xu, 2019; Tu et al.,
2021; Yin et al., 2018) and the dimension-agnostic algo-
rithms (Cheng et al., 2020; Diakonikolas et al., 2017; Lai
etal., 2016; Zhu et al., 2022). In general, one more robust
and precise estimator leads to more reliable detection results
(Ro et al., 2015).

Step 3. Then, we construct the ranking score which provides
evidence that M; may be one Byzantine machine. For
j € [m], let

W, = {g1;(0) —8(0)} ' 2 {g2;(6)

Here €2 can serve as a rough scale estimator for standard-
ization or can play as a projection matrix for the projection-
based detection methods (Ren et al., 2017), which will be
further discussed in Section 2.4. Notice that W;’s play an
important role in distinguishing Byzantine and normal ma-
chines. Intuitively, a large positive W; indicates that M
is likely to be the Byzantine machine. For M; € G, W is
(asymptotic) symmetric with mean zero due to the central

-g0)}. @

limit theorem and independence between D§-1) and DJ(-Q).

Step 4. That further inspires us to choose the threshold

L >0as
04}7 3)

for the target FDR level > 0. Finally, the identified
Byzantine machine set is B = {M; : W; > L}. If the set
is empty, we simply set L = +o0. Intumvely, #{j:W; <
—(} is an overestimation of #{j : W; < —{, M; € g},
which further is a good approximation to #{j : W, >
¢, M; € G}, the number of false discoveries, due to W;’s
symmetry property for those normal machines. Thus, it
implies that the fraction in (3) is an overestimation of FDP.

1+#{j:Wj§—€}<
#{jW] Zﬂ}\/l -

L:inf{€>0:

The test statistic W; in (2) indeed has a similar form
to the traditional mean test, i.e., WJ’ = {g;(0) —
g(0)} " Q{g;(0) —g(0)} or its variants when 2 estimates
the precision matrix of g; (Chen & Qin, 2010), but they are
distinguished in that our ByMI procedure does not rely on
the p-values from the asymptotic distribution. This is espe-
cially important since the asymptotic distribution heavily
depends on the dimension d relative to n. The asymptotic
distribution of WJ’ can be a chi-square for one fixed or small
d and a normal distribution for a large d, making practical
determination of which asymptotic behavior challenging. In
contrast, conditional on D§1), the proposed W; in (2) can
be regarded as a univariate projection of go;(60) — g(@) and
enjoys the symmetric property regardless of the gradient
dimension d. Benefiting from the joint use of the proposed
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Figure 1. Scatter plot of W;. The W;’s of normal machines are
symmetric with 0.

W; and the threshold L, the empirical distribution of the
negative statistics can be used to approximate that of the pos-
itive ones in place of asymptotic distribution for calibration,
giving the proposed ByMI method an edge over existing
methods in terms of the accuracy of FDR control. A similar
idea has been discussed in (Chen et al., 2023) where similar
symmetric statistics based on the sample-splitting strategy
were proposed for change point detection.

The idea of ByMlI is illustrated in Figure 1, where we display
the scatter plot of score statistics W; when there are m+1 =
150 machines containing one master and 14 Byzantines.
The detailed settings are shown in Section 4.2. We can
see that I¥;’s of normal machines are symmetric with 0,
but Byzantine machines own large W;’s. Only a few false
discoveries are beyond the threshold L in (3).

Benefiting from only passing two gradient vectors g1,;(0)
and go,;(0) from each single worker machine to the master
one in Step 1, it is worth emphasizing that the ByMI method
is communication-efficient (Jordan et al., 2019) and can
freely conjugate with the learning procedure. The proposed
procedure is also computationally efficient. The running
time of Step 2 is similar to the commonly used robust learn-
ing algorithms. Meanwhile, the computation of W; and
the implementation of the detection process in Steps 3-4
incur a small run-time overhead due to only computing a
d-dimension vector and searching a m size set, respectively.
The process of the ByMI method is displayed in Figure 2.

2.3. Some Examples

ByMI detects the Byzantine machines in a general gradient
form. It covers a wide range of applications. We list several
introductory examples.

Mean estimation. Let {s;})¥ ; be i.i.d. observations from
the distribution of s € R? with E[s] = 6. Consider the loss
function £(s, 0) = ||s — 6||3/2 and its gradient g(s, ) =
s—0. Here, there is no need to give 8 for Byzantine machine
identification. On each machine M ;, the empirical gradient
function g, (@) can be replaced by 5, = Zz‘eMj s;. In our
detection procedure, {S1; }}":0 is aggregated to be a robust

mean estimation 8 and then we construct ranking scores
with 6 in (2) to detect Byzantine machines.

Linear regression model. Lets = (y,x)andy = x ' 0 +¢,
where x € RP is the covariates and ¢ is the noise. We
choose the square loss function £(s,0) = ||y — x'8]|2/2.
And the gradient becomes g(s,0) = x(y — x'0) € RP.
When set 8 = 0, it reduces to a more concise expression
g(x,0) = xy which measures the covariance of x and y.

Multicategory classification with cross-entropy loss.
We consider a K-category classification task here. The
sample s contains a pair of covariates x € RP and
a response variable y € [K]| and it can be trans-
formed to the one-hot representation y = (y1,...,Yx)
where the y-th entry is one and other entries are
zero. We can employ the cross-entropy loss £(s,0) =
— 371 vk log{exp(6] xi)/ i, exp(6] x;)} and con-
sider the corresponding gradient function g(s,8) =

Vol(s,0) with 6 = (6 ,...,6]) " € R?and d = pK.

2.4. Choice of 2

There are different choices of £2 when we construct the
ranking scores W.

Scale Matrix. The performance of our procedure is not
sensitive to its choice when 2 only serves to standard-
ize the components of g;(@) so that they are aggregated
fairly. We suggest adopting a diagonal estimator 2 =
diag{672,...,6, 2}, where 67 is variance estimator of the

k-th component of g; (@) and can be obtained on U;n:l D;l)
by some robust estimation. More details are discussed in

Supplementary Material.

Projection Matrix. Instead of taking all d dimensions for
W;, we can also adopt the projection matrix 2 = vivy)
where v; is the first eigenvector of the covariance matrix
of {g1;(0)}. Such a choice is inspired by the dimension-
agnostic robust mean estimation approach (Diakonikolas
et al., 2017) which proved that the outliers that significantly
affect the mean estimation should lie in the direction v;.

3. Statistical Performance Guarantees

This section provides statistical guarantees of the ByMI
procedure. We begin with a general finite sample result
about the FDR control, in the sense that it requires no model
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Figure 2. The implementation of ByMI procedure.

or distribution assumptions. Denote Dy, = U;"Zl D§k). For
simplicity of notations, let’s set z;; := g(s;, #) fort € M,
and Zy; := g;(0) for k = 1,2 and j € [m].

Lemma 3.1. For j € [m|, denote A; = |[P(W; > 0 |
D1, |Wj|) — 1/2|. For any o € (0, 1), the ByMI procedure
satisfies

FDR(B) £ E[FDP(B)

< Iglzig{a(l + 5¢) + E[P(I}leangj >e| D) }

Here A; measures the asymmetricity of ranking scores W;
for those normal machines G, which implies that a tight con-
trol of A;’s leads to effective FDR control of the proposed
ByMI procedure. Consider the ideal case where W;’s in
G are all symmetrically distributed around zero. Then, we
have A; = 0 forall j € G, and therefore the FDR is exactly
controlled by setting € = 0, i.e, FDR(B) < a.

Next, we turn to a stringent finite-sample result of FDR
control under some mild conditions on the samples.

Assumption 3.2 (Moments). Samples {2;; }ic[n],je[m] are
with bounded g-th centered moments (¢ > 2) and satisfies
L4-Lo norm equivalence condition with parameter v, i.e.

(Elv " (zi; — p*)|)
] u*: =

vesi=t (ElvT(zi; — p*)?)
Assumption 3.3 (Robust estimation). Assume the robust

estimation satisfies that ||t — p*|| = O(6,,), where ¢, is
some positive sequence that converges to zero.

(I =Y

The moment condition in Assumption 3.2 is commonly
used in the literature (Mendelson & Zhivotovskiy, 2020).
Assumption 3.3 sets theoretical minimal requirements for
the accuracy of the robust estimator fi obtained by D;.
As discussed in Lemma 3.1, we cannot expect that the
(asymptotic) symmetric property of W} can be achieved
for one arbitrary robust estimation. This can be satisfied

by a large category of robust estimations. For example,
for the median-type methods (Chen et al., 2017; Yin et al.,

2018), 5, = O(\/ 324 + /55 + 0y/2) with probability
at least 1 — e~ ", while for those algorithms whose bias is
free of the dimension (Cheng et al., 2020; Zhu et al., 2022),

Op = O/ 5w + Vam +V3)-
Theorem 3.4. (FDR control) Suppose Assumptions 3.2- 3.3

: a-21?)r
hold. Denote k = min(1l,q — 2) and w, = n~" 2

with some n € (0, %) With probability at least 1 —
2}\",
O(mn_"T),

FDR(B) < a + O(\/wn + n%+”2"5u). “

With the assumption of signals, we further obtain a finite-
sample result of FDP control.

Assumption 3.5 (Signals). Denote B,, the set of identifiable
Byzantine machines and p} the mean of the j-th machine.
There is a constant C' > 0 such that, for j € B, ||u;‘ —

pr| > O/ B2 46, + dén~ 2T ) where 0 < 5y < L.
Assume that ,,, = |B,,] is sufficiently large.

Assumption 3.5 refers to the minimum signal magnitudes to
distinguish a Byzantine machine from the well-behaved one.
Note that the last term is essentially from the upper bound,
Supeimllz1; — pjll = O(d%n_%+%) with probability at
least 1 —mn ™" forany 0 < ko < £ owing to Assumption
3.2. It can be further improved by assuming more light tails
like the sub-Gaussian condition.

Theorem 3.6. (FDP control) Suppose Assumptions 3.2,
3.3 and 3.5 hold. Denote . = min(1,q — 2) and s, =

_ (1—772)n
2

Nk

(logn)z +mn~ "z

+(ath )~/ with some ) €
7 QK, — —
(0,1). With probability at least 1 — O(mn="%" + =),

FDP(B) < o [1 + O(snm + niéﬂ)} . (5)
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Theorem 3.4 and Theorem 3.6 imply that the effect of di-
mension d in FDR or FDP control is due to the accuracy
of robust mean estimation in Assumption 3.3. Indeed, the
ByMlI is dimension-agnostic if building W; with p* instead
of its robust estimation fi. Besides FDR control, the next
result shows that the ByMI method is also capable of main-
taining the “sure-detection property”. This property ensures
that all identifiable Byzantine machines B,, can be detected.

Corollary 3.7. Under the conditions in Theorem 3.6, with

2F\Z — p—
probability at least 1 — O(mn~"7 + wm(l 5))
B, C B.

, we have

As a byproduct, in Corollary 3.7, we have the sure-detection
property of the ByMI procedure, which says that all the iden-
tifiable Byzantine machines 3, can be detected by the ByMI
procedure with probability tending to one. As a byproduct,
Corollary 3.7 establishes the sure-detection property of the
ByMI procedure. It states that all identifiable Byzantine
machines in B,, can be detected by the ByMI procedure
with high probability.

4. Experiments and Evaluation

We illustrate the breadth of applicability of the ByMI pro-
cedure through experiments on synthetic data and real-data
applications. We implement the proposed ByMI method
in conjunction with two algorithms .4 for robust mean es-
timators. One is the geometric median (Minsker, 2015) of
all empirical gradients, and the other one is the filtering
estimator proposed in (Diakonikolas et al., 2017; Lai et al.,
2016; Zhu et al., 2022). These two adopt the scale estimator
for 2 and are denoted as ByMI-GEOM and ByMI-Filter,
respectively. Also, we choose €2 as the projection matrix
described in 2.4 in conjunction with the filtering mean es-
timator, named as ByMI-Filter+. Other algorithms A4 are
studied in the Supplementary. The target FDR level is fixed
as a = 0.1

Benchmarks. We compare the ByMI procedure with three
benchmarks. The first one is to implement the well-known
outlier detection algorithms in high-dimension, RMDP (Ro
et al., 2015) with the empirical gradients g;(6) of each ma-
chine. This method builds a minimum diagonal product
estimator based on modified Mahalanobis distance and iden-
tifies outliers with its asymptotic distribution. To make a
fair comparison, we embed the RMDP with the classical
BH procedure (Benjamini & Hochberg, 1995) to achieve
the FDR control, referred to as RMDP-BH. The other three
competitors are Krum (Blanchard et al., 2017), FABA (Xia
et al., 2019), and Zeno (Xie et al., 2019) from machine
learning literature. Those methods employ some distance-
based scores and roughly detect a given number pm of those
machines with large scores as Byzantine. Specifically, the
Krum and FABA adopt some Euclidean distances and Zeno

proposes stochastic descendant scores. More details of the
benchmarks can be found in Supplementary Material.

Performance Measures. The empirical FDR and TPR
are evaluated using the average of FDP and TPP from 500
replications, respectively. The proportion that all identifiable
Byzantine machines are detected, that is, P, = Pr(B C
Bi (L)) is computed to evaluate the sure-detection property.

4.1. Results on Synthetic Data

e Scenario A (Mean Estimation): The data on nor-
mal machines are i.i.d from N, (0,X) with ¥ =
(0.217=31),,+ ,; meanwhile the data on Byzantine ma-
chines are i.i.d from N, (blog(p) - vp,0.51,), where b
is the shift size and v, € RP? is a normalized vector
with p independent random variables from 2/(0, 1).

* Scenario B (Regression Model): We consider the lin-
ear model y = x'6 + ¢ where x ~ N, (0,1,),
e ~ N(0,1) and 8 = (1,,0,---,0)T with s =
|0.1p|. Two kinds of Byzantine machines are inves-
tigated: (a) the model is corrupted where the param-
eter on Byzantine machines is 8, = (15,,0,--- ,0) "
with s, = [0.07p]; (b) the data is contaminated
where x;’s on Byzantine machines are replaced by
x; = 0.8x; + 3v, where v, € R? is same as Scenario
A, and Y;’s are added with a constant bias ¢ = 1. For
simplicity, we compute the gradients at 8 = 0.

We fix the number of worker machines as m = 1,000 and
the local sample size as n = 200 so that the entire sample
size is NV = 200 x 1001 including one master. We randomly
choose | gm | worker machines as Byzantine ones.

Results. Figure 3 reports the FDR, TPR and P, curves
against the shift size b with the contamination ratio ¢ = 0.05
under Scenario A. We see that the FDR levels of ByMI-
based (ByMI-Filter, ByMI-GEOM, ByMI-Filter+) are close
to the nominal level. All methods also achieve satisfactory
TPR and P, under all the scenarios. In contrast, RMDP-
BH yields slightly inflated FDRs under p = 50 but a little
conservative one under p = 100. Also, RMDP-BH leads to
lower TPR and P, compared to the proposed ByMI. This
can be understood that the p-values of RMDP-BH are from
one asymptotic distribution, which may be sensitive to the
dimension or other model settings in finite sample cases.
The Krum and FABA result in overly inflated FDR levels,
and accordingly, they do not perform well in terms of P, .
It implies that both distance-based methods detect a fixed
number as Byzantine machines and some true Byzantines
would be missed.

Figure 4 presents the boxplots of empirical FDP and TPP
under Scenario B. The FDPs of ByMI-Filter and ByMI-
Filter+ vary in an acceptable range of the target level while
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Figure 3. FDR, TPR and P, over shift size b when ¢ = 0.05 and
p = 50,100 under Scenario A. The black dashed lines indicate
the FDR level o = 0.1.

the FDPs of ByMI-GEOM slightly exceed the nominal level
and the TPPs of ByMI-Filter and ByMI-Filter+ are higher
than ByMI-GEOM. This is from the fact that the robust esti-
mation based on filtering has dimension-agnostic superiority
against the bias made by the adversarial attacks compared
to the geometric median, which may be conducive to im-
proving the signal-to-noise. Meanwhile, other benchmarks
deliver overly inflated FDPs under all the settings. This fur-
ther demonstrates the effectiveness of the proposed ByMI
method: it is data-driven and p-value free which allows FDR
control and achieves reliable TPR.

4.2. Results on Real Data

Datasets. The MNIST (LeCun et al., 1998), Fashion
MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky, 2009)
datasets are used to verify the performance of our ByMI.

e MNIST includes 60, 000 training images and 10, 000
testing images with size 28 x 28 pixels and their corre-
sponding labels from O to 9.

» Fashion MNIST (F-MNIST) contains 60, 000 training
images and 10,000 testing images with size 28 x 28
pixels, each belonging to 10 fashion items.

* CIFARI1O consists of 50,000 training images and
10,000 testing images, each of size 32 x 32 pixels,

Scenario B (a)
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Figure 4. Boxplots of FDP and TPP when the dimension p = 100
and the contamination ratio ¢ = 0.1 under Scenario B. The black
dashed lines indicate the FDR level o = 0.1.

belonging to 10 different classes.

As the main focus is the detection task, we adopt the pre-
trained Resnet18 model in Pytorch and take the output of
the last layer with the dimension 512. We further use the
PCA on the features to get decorrelated covariates {x; } with
dimension p = 20. A multinomial logistic regression model
is adopted where the total parameter dimension is d = 200.
For MNIST and F-MNIST, all of the samples in the train-
ing set are randomly divided into m + 1 = 150 machines
(including one master machine) with an equal sample size
n = 400. For CIFAR10, we fix m + 1 = 125 and n = 400.

Attacks. For Byzantine machines, we conduct both the out-
of-distribution (OOD) attack (Fort et al., 2021) and the IPM
attack (Xie et al., 2020). Specifically, for the OOD attack we
replace the covariates x;’s on Byzantine machines by X; =
0.7x; + €, where &, is from N, (v, 0?1,) with v, € R?
randomly sampled from the standard multivariate normal
distribution and o = 0.2. For the IPM attack, the Byzantine
gradients are assigned as —ag, where g = ﬁ > jec 8i(0)
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Table 1. FDR(%), TPR(%) and P,(%) of the OOD and IPM attacks when o = 0.1. We set a = 0.2 in the IPM attack.

MNIST F-MNIST CIFAR10
Attack Method FDR TPR P, FDR TPR P, FDR  TPR P,
ByMI-Filter 6.8 98.1 942 7.1 928 834 55 817 736
ByMI-Filter+ 6.6 972 958 6.5 850 79.0 57 771 738
ByMI-GEOM 102 974 934 9.1 92.1 80.8 74 764 672
00D Attack RMDP-BH 88.3 99.9 99.8 68.9 98.6 96.8 541 846 750
Krum 27.1 938 81.6 364 81.7 554 525 594 348
FABA 252 96.2 89.6 322 87.1 69.8 50.6 61.8 454
Zeno 262 948 848 356 828 56.2 548 565 324
ByMI-Filter 6.3 99.6 99.6 6.5 99.6 99.6 54 100.0 100.0
ByMI-Filter+ 6.8 99.2 99.2 6.0 97.0 97.0 7.7 100.0 100.0
ByMI-GEOM 10.2 962 96.2 104 97.0 97.0 10.0 996 99.6
IPM Attack RMDP-BH 89.2 962 962 753 78.6 78.6 79.6 7.6 7.6
Krum 752 319 226 59.1 52,6 422 789 264 172
FABA 88.5 148 82 72.7 351 268 96.1 4.9 2.6
Zeno 883 150 7.8 712 37.0 258 95.2 6.0 2.2
and a > 0. — ByMI-Filter Filtering FABA
ByMI-Filter+ — Krum Zeno
We train the multinomial logistic regression model using
distributed gradient descent. At the beginning, we obtain an MNIST FRMNIST . CIFARIO
initial parameter 8 which is trained by the master machine _— —

only, and then we deliver 8y to each worker machine to
compute the local gradients. In each iteration, those local
gradients on worker machines are sent to the master for
parameter aggregation and updating. Our goal is to make
use of the local gradients to detect Byzantine machines.

Results of Byzantine machine detection. Table 1 reports
the experiment results of the OOD attack and the IPM attack.
For simplicity, we compare the performance of different de-
tected methods in the first iteration under the contamination
ratio o = 0.1. Three ByMI-based methods perform reason-
ably well. The FDRs are controlled under or close to the
nominal level o = 0.1 across all the settings. Meanwhile,
the ByMI-based methods yield quite high TPRs and FP,,
which clearly demonstrates the efficiency of our proposed
method. In addition, RMDP-BH also has satisfactory TPRs,
but it yields an overly inflated FDR level since the p-values
for the BH procedure are approximated by an asymptotic dis-
tribution. In contrast, those distance-based methods (Krum,
FABA and Zeno) select a given number, i.e, |1.20m| as
Byzantine machines, but fewer true Byzantine machines can
be correctly detected concerning the large FDR as well as
the small P,. It implies that these three are hard to guarantee
the sure-detection property with simple distance ranking.

Application to robust distributed learning. Besides the
measurements of FDR, TPR and P,, we further study the
performance of the ByMI method in the distributed learn-
ing tasks. We apply ByMI to detect Byzantine machines
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Figure 5. Test accuracy of different methods under the IPM attack
with the contamination level o = 0.3 when a = 2.

and use the simple mean aggregation of the left local gra-
dients to train the model. Figure 5 shows the test accuracy
among the learning processes. Filtering refers to aggregat-
ing local gradients by the filtering algorithm in each round.
The ByMI-based methods deliver higher classification ac-
curacy compared to other benchmarks. In contrast, Krum,
FABA and Zeno perform not well and are susceptible to
Byzantine failures. It’s worth mentioning that ByMI-Filter
and ByMI-Filter+ attain higher accuracy and achieve the
FDR control in the identification task as well compared to
the original Filtering method. In summary, ByMI not only
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works well for identifying Byzantine machines with FDR
control but also improves the robustness and interpretability
in the distributed learning tasks with Byzantine corruptions.

5. Concluding Remarks

Identification of Byzantine machines is very important but
obtains less attention to conduct robust learning algorithms
in a distributed system. This paper proposes a data-driven
detection procedure, ByMI, to address this issue via FDR
control under a unified framework. The ByMI method is
easy to implement and communication-efficient because
only the local gradients are transmitted. It is shown that
the proposed method can control FDR with reliable robust
estimators while retaining all the identifiable Byzantine ma-
chines under mild conditions. Thus, it could serve as a
useful tool for further robust inference or system diagnos-
tics.

We conclude this paper with two remarks. First, we achieve
the FDR control by sample-splitting strategy. In practice,
one may prefer to use the whole data to find the Byzan-
tine machines without accuracy sacrifice. It is of interest
to further improve ByMI or investigate what ByMI could
contribute. Secondly, we mainly consider the behavior of
the Byzantine machines by the Huber contamination model.
How to adapt ByMI to other aggressive behaviors, such as
attacks on the transmission paths, deserves further study.
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A. More Details on the Related Works

We offer an expanded introduction to the literature associated with Byzantine machine detection, serving as a complement
to Section 1.

Byzantine detection approach in machine learning literature. Given the number gm of Byzantine machines, for the
j-th machine, Krum (Blanchard et al., 2017) proposes using the average Euclidean distance of the (1 — g)m neighbors
of g; to detect the Byzantine machines. The larger the distance the higher the possibility that the j-th machine is a
Byzantine one. FABA (Xia et al., 2019) simply adopts the Euclidean distance of g; to the mean of {g;}, deletes the
g; with the largest distance, and then updates the mean vector. The above process will stop until gm gradient vectors
are deleted and the final mean vector will be returned. Zeno (Xie et al., 2019) suggests the stochastic descendant score
Sj = Yiem, L(si,0) — £(si,0 — vg;) — pllg;||*, the descendant value of the loss function with the data in the master
machine on the current parameter 6, learning rate y and a regularized parameter p. All these algorithms require a pre-specified
proportion of Byzantine machines, which is set to 1.2 times the true proportion o during experiments.

The RMDP-BH procedure. The RMDP approach (Ro et al., 2015) measures the departure of machine M ; from the center
by the modified Mahalanobis distance (g; — u*) " D~1(g; — p*) where D is a diagnoal matrix with the marginal variance
of g; in the normal machines on the diagnoal. As n — oo and d — oo, the modified Mahalanobis distance is asymptotical

normal in the normal machines, i.e. 8=~ *[)QT tﬂ;ﬁ-j;“ =d 4 ,r (0, 1). The RMDP-BH approach replaces the true center
p* by the minimum diagonal product estimator and the p-value p; of each machine M can be computed based on the
asymptotical normality. Finally provided the p-values set {p, }}":1, the BH procedure (Benjamini & Hochberg, 1995) is

adopted.

B. The Finite Sample Control of False Discovery Proportion

B.1. Notations and Prelimits

Let [m] = {1,2,...,m}, G = {j € [m] : the j-th machine is a normal one} and my = |G|. For a vector z, denote |z||,
the {,-norm and ||z|| = ||z||» the Euclidean norm.
Let X be the covariance of {z;;} on the clean machines. To ease the notation, we set ty; = /n(zy; — 1), ty; =

Vn(zg; — ;). Without loss of generality we choose the identity matrix as 2 and W; = %t]—jtzj in the theory. Otherwise
we can replace the samples z;; by 02, ; and the theory is still valid. Note that the ByMI procedure is scale-invariant, i.e.

the identification set 53 remains the same when {W;} are multiplied by a positive scalar, we cancel the factor L and set

n
W = t,ta; thereafter.

B.2. Useful lemmas

Lemma B.1 (Berry-Esseen Inequality (Petrov, 2002)). Suppose that X, ..., X, are independent random variables

with mean zero, satisfying E[|X;|**) < oo, for some ¢ > 0. Denote k = min(l,q). Let B, = > . EX? and
I . .
L, =By, 2> "  E|X;|*". There exists a universal constant A > 0, such that

max |F,(x) — ®(z)| < AL, (6)

—oo<r<oo

where ®(-) is the distribution function of the standard Gaussian distribution and F,,(x) is the distribution function of the
_1

normalized summation, i.e. F,,(z) = P[By > Y. | X; < z]. When X1, ..., X, are identically distributed with EX? = o

and B| X1 |**% = 42T%, we have L,, = o

Lemma B.2 (Moderate deviations for finite-moment random variables (Petrov, 2002)). Under the same conditions in
1
Lemma B.1, for any constant 0 < n < 1and 0 < x < n(2log LL)E

o2trpR/2"

1—F,(x) 1—n? 1.1
7—1‘< L7 (log — 7
‘1_(1)(93) < CL" (log 1), 0
and
1

)z, (8)

‘Fn(_x) _

1| <cLi-7"(1
() ‘—C" (log 7

n
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where C' = 4,/ A.

Lemma B.3. Assume that the random vector x € R? satisfies the Ly-Lo norm equivalence condition with mean p* and
covariance Y.. We have for any fixed vector p € R,

P(lx = pll > T+ [l — w*[)) < 415 2a2 T, ©
Proof. Since [|x — p*[|7 < d%~!{|x — p* |2, we have

P(lx —pll > T+ [l — p*[) < P(llx — p*[| > T)
<P(|x — p*[l2 > d~ 37179 < E[|x — p||¢Jdd T,
By the L,-Lo equivalence,
q
Elllx — plig] < dlI]z g

Hence we obtain
* 4 .49 —
P(l|x — pl| > T + || — p*[]) < al[El2d2T1,

B.3. Proof of Lemma 3.1
Denote A; = |P(W; > 0 | Dy, |W,|) — 3|. Fix € > 0 and for any threshold ¢ > 0, denote

Zjeg 1(Wj 2 t, Aj <e¢)

Re(t) = 1+ cg LWy < —t)

(10)

Assume that the event A = {A £ maxjeg A; < €} holds. Then by the definition of L,
LjeglWi2 LA <€) 142 emtWs <L) 3,eg1(W;2LA;<¢)
LV epm 1W; = L) LV e Wi = L) 143 1(W; < —1L)
<a x R.(L).

Denote L; the critical value like L while replacing W) by |W;|. Let W_; = {W},}1;. The following equations are all
conditional on D;.

1(W; > L,A; <e)
E[R.(L)] = gﬁ[l +2eq 1W; < fL)}

[ 1(W; > Lj,Aj <¢)
“LF 1 1(W, < —L }
5 M Do TWe < —Lj)
[ 1W2L,A<e
_ZEE{1+Z( ; J(W< - "W‘ —JH
j€g keG k] k
:ZE*P[Wj > 0| [W], DuL(W;] > Ly, A < e)}
143 kg prs TWe < —Lj)
SZE‘(%JrAj)l(IWjIzL,Ajgg)]
L1+ keginn 1We < —Lj)

Jj€G

jeg
1(W; > L;,Aj <e¢) 1(W; < —-Lj)
+ ‘ [ZE{ 1+ Ekeg k#j (Wk < Lj) } " JEZQE{ I+ Zkeg,k;éj 1(W), < _Lj) }]
S(% +e) []E{R )} + ZE{ 1 Zkegml;éj< (I/I];k )g —L)) }} '
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Recall that the above result is conditional on A. The second term in the last equation is equal to 0 if for all j € G, W; > —L;

; 1(W;<—Lj;) — 1(W;<—Lj) —
and otherwise >, E{ (S S 1(Wk§_Lj)} =2 jec B{ (S S 1(WkS_Lk)} = 1, see Barber et al. (2020). In

summary we have that conditional on A, > j€g E{ 1+Zk61g(zi_j§1_(€l;:Sij)

} < 1. Finally, we obtain

FDR(B) _IE[ jEeG: W, = L] }

T =] < minlaBir (0] + B{Fnax &, > | Py}

>0

<min|a(1 IE{]P’ A D }
<mipla(1-+ 50 + E{Pluaxa, > ¢ D)}

where A; = [P(W; > 0| Dy, |Wj|) — 4.

B.4. Proof of Theorem 3.4

The above analysis provides a general finite-sample guarantee for FDR control, in the sense that it requires no model or
distribution assumptions. The quantity A; at the end measures the asymmetricity of ranking scores W; for those normal
machines G. The lemma implies that a tight control of A ;’s leads to effective FDR control of the proposed ByMI procedure.
To prove Theorem 3.4, it is sufficient to control the probability P(max,cg A; > € | Dy).

When conditioning on D1, we use the notation u; = t;; to emphasize that t,; is a fixed vector without randomness. In other
words, the randomness of t;; comes from Dy at all. Let s; = (u] Su;)% and ¢} = 7s;(2log ﬁ)% — [vnu/ (u* — @)
We choose the scale parameter s; because W, /s; is approximately standard Gaussian for j € G. Let F;;(-) and f;(-) be the
distribution function and density function of W /s ; conditional on Dy, respectively. Here by Lemma B.1, F (+) should be
closed to ®(-), the distribution function of standard Gaussian variable.

Define the event C = () {|W;| < t;}. Forany j € G, By Lemma B.1,
Jj€G

_ 1
B(IW;| > £ | 1) < 2P(u] By > s (2log

~ n
n

’72N
)3 ‘ pl) <L = O,
Thus, we obtain

P(maxA; > ¢ | D;) =P(max A; > € | C,Dy) + P(Ct | Dy)
JjE€G Jj€EG
=P(maxA; > e | C,Dy) —I—jezg]P’ﬂWj\ >t | Dy)

%k

<P(max A, > €| C,D1) + O(|d|n~ "5
J

712'€

g[P’(meaé)cAj >e|C,D1)+O0(mn™ 7))
j

Given C, we have

max A; < max [P(W; > 0| Dy, [Wy]) - 1/2]
J

JjEG
i)
£ (—t) 1"

<max sup
JEY o<t<tr/s,

By Lemma B.1, we have |F;(t) — ®(¢)| < AL, + v/nd,. Leta,, = AL, = O(n~%) as in Lemma B.1 and h =

14



ByMI: Byzantine Machine Identification with FDR Control

\/ @ +n28,,. By the Taylor’s expansion, Fj(t 4+ h) = F;(t) + hf;(t) + O(h?). Therefore for any 0 < t < 5 /55
Fy(t+h) - F()

fi(t) = b +&n
(Fj(t+h) —®(t+h)) — (Fj(t) — ©(t)) + ©(t + h) — ()

= h +&n

=0(22 0% 1 o) +

=¢(t) + &,

where &, = O(h). Similarly, we have f;(—t) = ¢(—t) + &, with §, = O(h). Therefore,

L ‘ B ‘ o)+ ‘ __om
fi(=t) P(=t) + &, ‘¢(—t) +§;‘

2K/
In fact, ¢(t) = gf)(—t) > ¢(t;/sj) > ¢(n(2log ﬁ)%) = Cn~"7" for some constant C' > 0. Hence we can choose a

constant 0 < n < f such that n~ T 2 h and it holds that

£ () — ’—O(h) =0 hnnzm =0 n_(l%nz)n nzteg
in B e o oy #ndg).

Therefore,

— 2 K 2 _72K
p(meagAj > 0(\/n*“ F ke, )Dl) < Omn™"=").
J

(1—2n2) 2,
277 = +

By applying Lemma 3.1 with € = \/n* n3t15§, we obtain that with probability at least 1 — O(mn~"7"),

(1—27n2)k
2

FDR(B) < a + O(\/n* + n%+"2"‘6u).

B.5. Proof of Theorem 3.6

By the definition of the threshold L, one obtains
Ejeg 1<Wj = L) _ Zje[m] l(Wj < _L) % Ejeg (
1\/Zje[m]1(Wj > L) leje[m]l(Wj > L) Z [m]l(

>jeg 1W;2L)
2jeg 1W;<-L)"
Denote G(t) = ﬁ Y icgP(W; >t | Dy)and G_(t) = ﬁ > jeg P(Wj < —t | D1). We will first provide two finite

sample results that uniformly control the ratio-type processes like G(EZ) .

L)

FDP =
L)

W, >
W<y < °R(D), (1)

where R(L) = The result follows if R(L) — 1 = o(1).

Lemma B4. Let r, = L1~ (log i)% = O(n~
Vnllp — p*|| = O(1). Uniformly for0 <t < GZ (1/m)

(log n)z) where 0 < n < 1. Assume that conditional on Dy,

2N
< O(ra+mn== +nd | — ).

G_(t)
Lemma B.5. Forany 1 < v < m be sufficiently large and 0 < § < 1, we have with probability 1 — O(v‘““”),
sup  [[moGO] Y1y = 6) — 1] S v (12)
0<t<G~1(v/m) jeg
sup ’[moG -1 Z 1(W; < —t) — 1’ < p70/3, (13)
0<t<GZ' (v/m) J€g
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By the definition of the threshold rule, we have

L= inf{t >0:14+ > 1(W, < —t) < amax(z 1(W; > t), 1)} (14)
J J

We will first derive an upper bound of L so that Lemma B.4 and Lemma B.5 can be applied.

For any j € G, fixed t1; = u;. For ¢, = sup,cg(2log L—lnujTEuj)% + Vnlu] (p* — )] = sup;cgllu; | x ©(v/nd, +
Vlogn), By Lemma B.1,

PO 1(W; >t.)>0]Dy) <Y P(W; >t | D1) Smon™ 2 <mn” 2,

jeg j€g
P(Zl(Wj < —t)>0[Dy) < ZP(Wj < —t. | D1) Smon~? <mn” 3.
g jeg
Therefore |
P() 1(W,; < —t.)=0|D1) =1 - O(mn™%), s
JjE€G

For the other side where j € B, denote v; = \/n(X1; — ft). Observe that for j € B,,

P(W; < t. | Dy) =P(n(Ry; — 1) " (Xo; — 1) < t. | D1)
=P(v, [Vn(Xa; — p})] < t. —n(Xy; — ) (uf — @) | D1)
:P<VI(\/7L(X2J' —1j)) _ te — (X — )" (uf — ) ‘ D1>

\/VjEjVj w/VjEjVj

By the condition on signals and the choice of t,, the Berry-Esseen bound Lemma B.1 ensures that

P(W; < t.|D;) Sn™ 2.
By taking the union bound, we obtain

PO AW > 1) > | D) 2 P( D LW, > 1) >ty | D1) =1 = O(thpn ™ 2). (16)

J€[m] JEB,

Let f = G-'(2%2). By Lemma B.S, with probability at least 1 — O(¢m" %), “n = G_(f) = L Yieg 1W; <

m mo

—H)[1+ O(w;fs/ %)]. Hence combining with Equation 15, one obtains < ¢*. It also implies that

P> AW, > 8) > thy | D1) 2 P(Y . 1(W; 2 1) > ¥ | D1) =1 = O(¥hmn ). (17)

J€[m] JEBL

Th . - _n’s —(1-6) _Ey _n’s —(1-9)
erefore with probability at least 1 — O(mn~ "2 + ¢, F+Yun~2)=1-0(mn" "z + ¢ ),

O‘wmmO
m[l + O’

L+ > AW <5 =14 1(W; < 1) = )]gaZuwjzf).
jE[m] Jjeg J

Thus L <t = GZ* (‘WT’") Under the above event, one can apply Lemma B.4 and Lemma B.5 so that

2jeg 1 (W5 > L)
Zjeg I(Wj < _L)

_ -k 1 _n2s Lo s o —6/3
=14 0(n™ " logm) +mn =" nd |t~ + (o) ).

Accordingly,

2

FDP < « [1 + O(nfi“’Z * (log n)

|-

2N 1
+mn~"% +n3|pt - ol + (awm)5/3)} (18)
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B.6. Proof of Corollary 3.7

Corollary 3.7 follows from Equation (17).

B.7. Proof of Lemma B.4 & Lemma B.5

Proof of Lemma B.4. Forany j € G, fixed t1; = u;. By Lemma B.2, for 0 < ¢t < n(2log L—lnujTEuj)% + \/ﬁujT(u* — @),
- — t—/nu, (u*—f =

P(W; > t| D) = P(u] &, > t — au] (' — ) | D1) = B( 2 E B4 4 0(r, )] = B(—L1)[L+ Oy +

T T
(u;Zuj)i (u]TZu])i

nz || — w*||)]. Similarly, for 0 < ¢ < n(2log Linu;rEuj)% - \/ﬁu;r(u* — ),

)1+ 00 b ).

) Tuy)

P(st—twl):@(—(

Else if n(2log -] uy)7 — [/nu] (u* — )| < t < GZ'(1/m), by the Berry-Esseen Inequality Lemma B.1,

72h‘,
D1> < LT =0(n~ =)

_ 1 1
P(W; >t|Dq) < P(u;—rtgj > n(2log L—nu;rZuj)2

The same result holds for P(W; < —t | D;). Now for a fixed ¢t > 0, we can divide j € [m] into two sets by the above
conditions on u;. Let Zo; = {j € G : t < n(2log -u] Su;)* — \/n|u]

u; (p* — )|} and Zy o = G \ Zp 1. One can obtain

‘ G@t) _ 1‘ _ 12 BW; 21| Dy) — P(W; < —t | Dyl
G- > jeq P(W; < —t| Dy)
< | ZjeIO,l P(W; >t | D) —P(W; < —t| D) N |Zjezo,2 P(W; >t | D) —P(W; < —t | Dy)|
- 2 jeg B(Wj < =t | Dy) > icg P(W; < —t | Dy)
ez, POW; 2t | D1) —B(W; < —t | D)
a > jezo, P(Wj < —t | Dy)
+max(2jgﬂ=2 P(W; 2t D1), 2 jez, , P(W; < —t | D1))
mo/m
St — = mEE = 0 (0" (logn)t 4 mn 5 nd |t - ). -

Proof of Lemma B.5. Let zg < 2z < --- < zg < landt; = G !(z) where zp = 2 and z; = 2(1 + )’ with

m

s = Lllzi({{{:g))j with some sufficiently small constant £ > 0. Note that G(¢;)/G (ti+1) = zi/zi+1 = 1/(1 + &) =1 - O(§)

uniformly in ¢. It is therefore enough to derive the convergence rate of the supremum,

> jeq{1(W; = 1) — P(W; = fi)}‘

D = sup

0<i<s

moG (t;)

Note that the process of variance satisfies,

D) =& {108 2 ) - P, 2 | D)} | 2]

j€g

:ZE[{l(Wj > 1)~ B(W; > 1Dy} | 731] < moG(1).
JjEG

‘We obtain
AW > ) —P(W, >t
T L (=R L
05z, moG(t;)
1 1 m 1
<— < .
~a? Z moG(t;) ~ a?mov€ ™ a8

0<i<s
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Hence with probability at least 1 — O( =),

aZév

sup
0<t<G~1(v/m)

moGOI ™ Y 1W; 2 8) —1| Sa+é,

Jj€G
Finally, we simplify the above result. Consider the case that ¢ = a = v/, we have with probability at least 1 — O(v~ (1- ‘5))

sup ‘[moG(t)]_1 Z 1(W; >t) — 1’ <793,
0<t<G~1(v/m) jeg

C. Pseudocode of ByMI

The following algorithm outlines the steps of the ByMI method.

Algorithm 1 The ByMI Procedure
Input: Machines { M}, 0

Randomly split the samples on M into two sets D( ) and D( ) of equal size Z, for j € [m)].
Compute the empirical gradients g1 ;(0) and go; (9) based on DJ(- ) and D;Q w1th 0, for j € [m].

Adopt the robust mean algorithm A to obtain the robust mean estimator g(6) based on {g1,(6)}7.
Calculate the ranking scores {W; }/2; according to (2).

Compute the threshold L in (3).
Output: B = {M; : W; > L}.

AR

D. Additional Numerical Results

D.1. Details of the Implementation

All the experiments are conducted on an Ubuntu 20.04 LTS server with 64 Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz,
128G RAM and the R platform with version 4.0.2. The code is available at https://github.com/mywang99/ByMI.
D.2. Choice of Scale Matrix

Here we compare three choices of the scale matrix Q = diag{é| 2. 7&;2}.

Choice 1. Take 6, = MAD ( (k)(G), ,gf,f)(B)), k=1,---,d, where g( )(0) is the k-th component of g;(6).

Choice 2. Adopt 27! = diag(io) where ¥y is the sample covariance of the samples on the master machine M.

Choice 3. Let (62,...,62)T =g2(0) — g(0), where g2(0) and g(0) are the robust mean estimators of E[g(8)?] and
E[g(0)] respectlvely

In the comparison, we choose the filtering estimator as the robust aggregator. Table 2 presents the results of ByMI-Filter
when p = 50 and 100 under Scenario A in Section 4.1. The result shows that all the choices can achieve FDR control and
there is little difference in TPRs and P,, which implies that ByMI is not sensitive to the scale estimator. Note that Choice 1
is adopted across all the experiments.

D.3. Results of Other Robust Estimators Combined with ByMI
In this section, we examine the performance of different ByMI-based methods and the scale matrix 2! = diag{6%,...,52}

is adopted here. In the simulation studies, we consider five robust mean estimators which are listed as follows.
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Table 2. FDR(%), TPR(%) and P, (%) adopting different scale estimator choices when b = 0.15 under Scenario A.

p=250 p =100
Method FDR TPR P, FDR TPR P,
Choice 1 92 975 386 8.9 98.7 570
Choice 2 94 978 406 9.1 988 604
Choice 3 94 98.1 472 9.1 99.0 64.0

¢ MOM, the median of means estimator (Yin et al., 2018),

VRMOM, the variance reduced median-of-means estimator (Tu et al., 2021),

GEOM, the geometric median (Minsker, 2015),
* GD, the first-order method (Cheng et al., 2020),

* Filtering, the filtering algorithm (Diakonikolas et al., 2017; Lai et al., 2016; Zhu et al., 2022).

Figure 6 reports the FDR and TPR curves over the shift size b with the contamination level ¢ = 0.05 under Scenario A in
Section 4.1. As can be seen, the FDR levels of almost all ByMI-based methods are close to the nominal level o = 0.1.
In the high-dimensional case, ByMI combined with dimension-dependent robust estimators, such as GEOM, MOM and
VRMOM, fail to achieve high TPRs and give larger FDRs. With the superiority of dimension-agnostic property, ByMI-GD
and ByMI-Filter control FDRs better and their TPRs are also higher.
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Figure 6. FDR, TPR and P, of ByMI-type methods over shift size b when ¢ = 0.05 and p = 50, 100 under Scenario A. The black dashed
lines indicate the FDR level o = 0.1.

We also consider the combination of ByMI and the Randon point method (Kamp et al., 2017). Table 3 reports the empirical
results of FDR, TPR and P, under Scenario A when b = 0.15 based on 500 replications, demonstrating that the Radon
point method shows comparable performance to the geometric median.

D.4. Results on Real Data

In this section, we conduct more experiments on the MNIST, F-MNIST and CIFAR10 datasets in various settings. The
results of other ByMI-based methods are also reported.
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Table 3. FDR(%), TPR(%) and P, (%) of ByMI-type methods when b = 0.15 under Scenario A.

p=250 p =100
Method FDR TPR P, FDR TPR P,
ByMI-Filter 9.5 97.7 39.4 9.6 98.7 57.0
ByMI-Filter+ 9.0 100.0 100.0 9.3 100.0 100.0
ByMI-GEOM  10.0 95.7 20.8 10.3 96.6 27.6
ByMI-Radon 10.3 95.6 18.8 10.6 96.8 28.6

D.4.1. RESULTS FOR THE DEEP LEARNING TASK

We try the convolution neural network used in Zhu et al. (2023) with the IPM attack and the MNIST dataset. The results of
FDR, TPR and P, in the first iteration are summarized in Table 4 based on 50 repeats. Both ByMI-Filter and ByMI-Filter+
can control the FDR error and achieve high TPRs.

In theory, the problem is that the dimension d of the gradients here will be enormous. In this case, the projection-based
alternatives like ByMI-Filter+ (in which we project the d-variate score to one dimension) can still be valid. For the ByMI
method where €2 is the identity matrix or with full-rank, the mean estimation error J,, can be large and it brings some
difficulties to obtain the FDR control theory. However, the results in Table 4 indicate that ByMI remains effective in
numerical experiments. This could be attributed to the fact that the matrix comprising all sample gradients (scores) of the
deep neural network has a low-rank structure, which implies a relatively small effective dimension.

Table 4. FDR(%), TPR(%) and P, (%) of the IPM attack for the MNIST dataset in the deep learning task.

0=0.1 0=0.2
Method FDR TPR P, FDR TPR P,
ByMI-Filter 0.7 70.0 70.0 5.0 80.0 80.0
ByMI-Filter+ 0.7 60.0 60.0 3.6 80.0 80.0
ByMI-GEOM 1.3 70.0 70.0 94 700 70.0
Krum 483 664 60.0 443 69.1 65.0
FABA 483 664 50.0 65.6 428 40.0
Zeno 456 70.0 50.0 4577 674 40.0

D.4.2. EXTRA RESULTS ON BYZANTINE MACHINE IDENTIFICATION

In the following experiments, we additionally compute the estimation error. To be specific, we use the average of the local
gradients on the normal machines as the oracle g* and measure the estimation error by the ¢5-norm loss ||g — g*|| of the
aggregated gradient estimators.

Table 5 shows the performance of the proposed ByMI method in conjunction with various robust estimators and other
detection methods under the OOD attack when the contamination level ¢ = 0.15 and 0.2. Similar to the experiments in
Section 4.2, we summarize the results in the first iteration. For the ByMI-based methods, ByMI combined with dimension-
agnostic robust estimators, ByMI-Filter, ByMI-Filter+ and ByMI-GD, perform well reasonably. Meanwhile, ByMI combined
with other less robust estimators, such as MOM, VRMOM and GEOM, are unable to control the FDR at the desired level.
Due to the failure of p-value in the non-asymptotic environment, RMDP-BH detects almost all the machines as Byzantine
machines. Compared to ByMI-based methods, distance-based methods (Krum, FABA and Zeno) give larger FDRs and
lower TPRs. A similar phenomenon can be observed in Table 6, which summarizes results against different contamination
ratios under the IPM attack based on 500 replications.

D.4.3. RESULTS FOR THE RANDOM GRADIENT ATTACK

Besides the OOD attack and IPM attack, we conduct experiments on the random gradient attack. In detail, we replace the
gradient g; of the sample (y;,x;) on Byzantine machines by a Gaussian vector Ny(g + 0.8ug, 0.7 diag(s,)) where g is
the sample mean vector, s, corresponds to the sample variances of all the gradients {g;} and ug is uniformly sampled
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Table 5. FDR(%), TPR(%), P (%), |B| and Error (%o) of the OOD attack.

Dataset ~ Method FDR TPR P, \B|  Error FDR  TPR P, |B|  Error
ByMI-Filter 79 990 948 238 41 89 994 962 319 54
ByMI-Filter+ 75 998 998 239 33 89 1000 100.0 320 47
ByMI-GD 82 989 946 239 42 9.1 994 92 319 55

ByMI-GEOM 163 976 908 264 7.1 279 981 90.6 414 123
ByMI-VRMOM 16.6 98.0 922  26.6 7.0 245 986 932 393 11.0

MNIST  gym1-MOM 169 981 924 267 70 249 987 936 396 11
RMDP-BH 82.6 1000 1000 1329 1709 780 1000 1000 1357 184.5
Krum 216 962 814 270 94 221 967 848 360 119
FABA 205 976 906 270 86 210 980 922 360 106
Zeno 230 945 752 270 101 246 936 694 360 140
ByMI-Filter 83 941 840 229 73 10.1 971 834 316 85
ByMI-Filter+ 83 963 936 234 60 94 995 990 321 64
ByMI-GD 90 934 824 229 79 109 964 812 317 92

ByMI-GEOM 149 910 76.0 244 11.2 244 922 70.0 372 17.1
ByMI-VRMOM 148 925 79.6 247 10.4 22.1 949 750 365 14.4

EMNIST - piMI-MOM 151 926 812 248 105 223 951 760 367 144
RMDP-BH 622 986 960 747 477 552 987 966 716 420
Krum 302 856 572 270 180 285 887 602 360 214
FABA 278 886 710 270 154 286 886 720 360 210
Zeno 340 810 436 270 204 3701 781 346 360 308
ByMI-Filter 73 870 740 172 118 67 842 694 220 165
ByMI-Filter+ 87 919 882 184 94 84 951 928 252  10.I
ByMI-GD 72 872 750 172 116 67 857 700 224 155
ByMI-GEOM 136 79.1 644 175 193 217 744 572 258 320
ByMLVRMOM 130 827 670 180 170 176 776 616 245 275
CIFARIO  gymiMOM 144 836 680 186 171 195 786 624 255 277
RMDP-BH 498 842 768 353 327 491 760 69.6 37.8 423
Krum 517 617 366 230 392 534 582 376 300 561
FABA 518 61.6 446 230 383 548 566 450 300 568
Zeno 57.8 540 266 230 439  6L1 486 222 300 654

from the unit sphere. Table 7 reports the empirical results of FDR, TPR and P, under the random gradient attack with
different contamination levels based on 500 replications. Similar to the OOD attack and IPM attack, ByMI combined with
dimension-agnostic robust estimators, ByMI-Filter, ByMI-Fllter+ and ByMI-GD, perform well reasonably. In contrast,
RMDP-BH and distance-based methods (Krum, FABA and Zeno) do little to identify the Byzantine machines.

D.4.4. RESULTS FOR LARGER CONTAMINATION LEVELS

We conduct more experiments on the three real datasets under the three attacks with o = 0.3, 0.35, 0.4, 0.45. All experiments
are repeated 500 times. From Table 9, we can see that the ByMI-type methods obtain high TPRs. ByMI-Filter controls
the FDR well when g increases to 0.4. ByMI-Filter+ and ByMI-GD can control the FDR even when ¢ = 0.45. Similar
phenomenons can be observed in Table 8 and Table 10.
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Table 6. FDR(%), TPR(%), P,(%), |l§| and Error (%o) of the IPM attack when the attack parameter a = 0.2.

0=0.15 0=02

Dataset ~ Method FDR  TPR P, |B|  Error FDR TPR P, |B|  Error
ByMI-Filter 75 1000 1000 239 3.6 83 1000 100.0 318 49
ByMI-Filter+ 79 1000 100.0 241 3.4 87 1000 1000 320 46
ByMI-GD 80 1000 1000 24.1 37 87 998 998 319 52
ByMI-GEOM 216 962 962 282 95 373 934 934 466 189
ByMLVRMOM 312 974 974 331 115 487 974 974 592 216

MNIST  gymI-MOM 385 982 982 378 134 605 990 99.0 760 283
RMDP-BH 863 822 822 1304 2014 854 710 710 1302 252.0

Krum 68.1 39.1 272 270 474 716 352 256 360 722

FABA 965 43 28 270 742 989 14 1.0 360 1084

Zeno 954 57 26 210 722 97.9 26 12 360 1053
ByMI-Filter 77 1000 100.0 240 4.4 86 998 998 319 64
ByMI-Filter+ 8.1 1000 1000 241 42 9.7 1000 100.0 323 62
ByMIL-GD 85 100.0 1000 242 47 9.1 1000 100.0 321 64
ByMI.GEOM 207 958 958 278 113 360 928 928 454 227
eavnisy BYMI-VRMOM 262 980 980 307 118 416 958 958 514 232
ByMI-MOM 350 986 98.6 358 144 571 988 988 708 312
RMDP-BH 777 626 626 715  85.1 854 386 386 742 1413

Krum 517 593 478 270 413 535 577 486 360 610

FABA 817 224 156 270 748 945 69 54 360 1283

Zeno 765 289 162 270 6715 882 146 56 360 1144
ByMI-Filter 74 1000 1000 196 54 65 1000 100.0 259 63
ByMI-Filter+ 9.1 1000 100.0 200 6.0 81 1000 1000 263 7.1
ByMI-GD 75 1000 100.0 196 54 6.6 1000 1000 259 6.5
ByMLGEOM 224 968 968 236 152 404 964 964 423 306
ByMI.VRMOM 234 980 980 242 148 36.8 984 984 399 259

CIFARIO  gypmiMOM 413 994 994 334 228 641 998 998 702 533
RMDP-BH 860 20 20 188 1094 892 02 02 199 1469

Krum 745 325 228 230 792 884 145 116 300 1443

FABA 983 21 18 230 1120 1000 00 00 300 1620

Zeno 971 37 18 230 1087 999 0.1 00 300 1597
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Table 7. FDR(%), TPR(%) and P, (%) of the random gradient attack with different contamination levels.

MNIST F-MNIST CIFARI0
Method FDR TPR P, FDR TPR P, FDR TPR P,
ByMI-Filter 60 1000 100.0 69 994 992 56 1000 100.0
ByMI-Filter+ 66 980  98.0 64 826 824 7.1 1000  100.0
ByMI-GD 65 998  99.8 72990  99.0 6.0 1000 100.0
ByMI-GEOM 92 990 988 100 982 980 9.9 1000 100.0
ByMI-VRMOM 119  99.1  99.0 126 984 984 107 1000 100.0

e=0.1"gupMrmom 135 992 992 147 984 984 155 1000 100.0
RMDP-BH 903 946  94.6 902 454 448 8.5 105 98
Krum 87.8 157 58 80.7 133 42 825 219 86
FABA 1000 01 00 993 09 00 999 01 00
Zeno 998 03 00 989 14 00 996 05 00
ByMI-Filter 6.8 1000 100.0 7.1 1000 100.0 73 1000 100.0
ByMI-Filter+ 8.6 1000 100.0 89 996 996 103 100.0  100.0
ByMIL-GD 73 1000 100.0 79 1000 100.0 75 1000 100.0
ByMI-GEOM 186 984 984 178 950 948 205 994 992

,—015 BYMIVRMOM 247 998 998 217 980  98.0 212 994 994

2 ByMI-MOM 29.8 1000 100.0 294 982 982 365  99.8  99.8
RMDP-BH 872 832 828 915 212 206 8.7 08 06
Krum 81.0 234 40 843 193 3.0 732 343 190
FABA 1000 00 00 999 02 00 1000 00 00
Zeno 1000 00 00 996 05 00 998 02 00
ByMI-Filter 74 1000 100.0 78 998  99.8 6.7 1000 100.0
ByMI-Filter+ 9.7 1000 100.0 103 1000 100.0 87 100.0 100.0
ByMIL-GD 79 1000 100.0 85 99.6 99.6 7.0 1000  100.0
ByMI-GEOM 342 942 942 317 888 884 386 992 99.0
ByMI-VRMOM 423 985 982 350 961 958 341 998  99.8

=02 gyMrmMOM 523 992 992 503 986  98.6 595 100.0 100.0
RMDP-BH 860 682 674 952 58 56 892 00 00
Krum 884 144 76 875 155 58 949 64 40
FABA 1000 00 00 1000 00 00 1000 00 00
Zeno 1000 00 00 1000 00 00 1000 00 00
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Table 8. FDR(%), TPR(%) and P, (%) of the OOD attack with larger contamination levels.

MNIST F-MNIST CIFAR10
Method FDR TPR P, FDR TPR P, FDR TPR P,
ByMI-Filter 86 984 914 9.0 925 768 82 842 66.6
ByMI-Filter+ 89 100.0 100.0 97 99.6 99.2 99 988 97.4
ByMI-GD 9.0 985  92.0 94 928 756 83 849 67.0
ByMLGEOM 519 955 79.6 434 840 568 403 69.9 414
ByMLVRMOM 450 964 832 364 867 624 328 738 468

¢=03  gyMI-MOM 452 965 834 37.0 873 63.6 347 757 498
RMDP-BH 67.1 998  98.6 513 931 83.6 62.8 569 38.8
Krum 249 9.1 826 39.7 740 59.8 76.8 283 254
FABA 248 923 892 022 709 632 733 325 29.6
Zeno 314 842 408 477 642 120 748 306 5.0
ByMI-Filter 100 980  89.6 103 918 718 92 818 574
ByMI-Filter+ 9.5 1000 99.8 9.6 99.8 99.2 93 99.1 98.0
ByML-GD 94 983 914 10.1 928 722 87 845 63.0
ByML.GEOM 560 94.6 742 497 836 510 446 674 374

y— 035 BYMIVRMOM 512 956 776 440 857 544 389 703 416
ByMI-MOM 514 957 778 448 866 564 417 729 434
RMDP-BH 622 994 960 50.5 884 69.6 71.6 47.1 27.8
Krum 365 770 752 617 464 456 88.6 14.0 140
FABA 31.6 829 808 58.1 507 47.8 817 225 220
Zeno 382 749 150 55.9 534 44 80.6 239 22
ByMI-Filter 124 986 872 128 886 64.0 114 787 53.0
ByMI-Filter+ 93 1000 100.0 102 999 99.8 9.8 99.5 98.0
ByML-GD 94 993 922 104 912 720 9.1 835 626
ByMLGEOM 567 960 73.0 526 824 486 479 697 38.0

y_04 BYMLVRMOM 540 966 776 485 84.1 530 441 717 420

* ByMI-MOM 541 967 780 492 845 536 451 735 444
RMDP-BH 578 995 96.0 548 832 550 753 444 204
Krum 577 516 516 877 150 15.0 982 22 22
FABA 426 701 692 762 291 27.6 91.7 102 10.0
Zeno 445 617 56 644 434 04 858 174 00
ByMI-Filter 230 957 760 233 865 494 161 723 420
ByML-Filter+ 9.7 1000 100.0 102 99.6 99.4 122 975 960
ByML-GD 143 985 888 128 936 69.8 10.1 825 612
ByML.GEOM 537 937 514 517 830 264 495 684 254
ByMI.VRMOM 523 950  66.6 49.8 858 404 460 712 368

e=045 gyMIMOM 524 952 66.8 503 865 406 483 730 382
RMDP-BH 538 989 904 617 766 422 81.6 356 132
Krum 998 02 02 1000 00 00 1000 00 00
FABA 68.6 380 372 953 57 52 973 33 32
Zeno 505 489 00 737 317 00 89.0 136 0.0
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ByMI: Byzantine Machine Identification with FDR Control

Table 9. FDR(%), TPR(%) and P, (%) of the IPM attack with larger contamination levels.

MNIST F-MNIST CIFAR10
Method FDR TPR P, FDR TPR P, FDR TPR P,
ByMI-Filter 9.0 998  99.8 9.1 1000 100.0 8.1 1000 100.0
ByMI-Filter+ 89 1000 100.0 9.4 1000 100.0 9.4 1000 100.0
ByMI-GD 8.7 1000 100.0 9.0 1000 100.0 80 998  99.8
ByMI.GEOM  66.6 99.0  99.0 659 984 984 67.8  99.6  99.6
ByMLVRMOM 655 99.6  99.6 620 980 98.0 573 976 976

¢=03  gymMI.MOM 68.7 1000 100.0 683 1000 100.0 68.9 100.0 100.0
RMDP-BH 954 154 154 9.8 78 78 972 00 00
Krum 1000 00 00 943 70 70 1000 00 00
FABA 1000 00 00 995 06 06 1000 00 00
Zeno 1000 00 00 983 2.1 06 1000 00 00
ByMI-Filter 99 994 994 10.1 990  99.0 9.4 1000 100.0
ByMI-Filter+ 92 1000 100.0 9.9 1000 100.0 9.9 1000 100.0
ByMI-GD 8.7 1000 100.0 93 996  99.6 83 100.0 100.0
ByMLGEOM 642 1000 100.0 63.9 100.0 100.0 64.8 100.0 100.0

,_0g5 BYMIVRMOM 628 998 998 60.9 994 994 583 99.0  99.0

9 ByMI-MOM 643 1000 100.0 642 1000 100.0 64.8 1000 100.0
RMDP-BH 992 24 24 98.7 24 24 992 00 00
Krum 1000 00 00 99.7 04 04 1000 00 00
FABA 1000 00 00 1000 00 00 1000 00 00
Zeno 1000 00 00 996 04 00 1000 00 00
ByML-Filter 1.9 986 986 115 984 984 1.0 998  99.8
ByMI-Filter+ 9.7 1000 100.0 9.8 1000 100.0 9.6 1000 100.0
ByML-GD 9.7 1000 100.0 93  99.6  99.6 83 1000 100.0
ByMI.GEOM  60.3 100.0 100.0 602 1000 100.0 60.4 1000 100.0

,—04 BYMIVRMOM 587 1000 1000 574 996  99.6 558 996  99.6

“ ByMI-MOM 60.0 100.0 100.0 59.9  100.0 100.0 602 100.0 100.0
RMDP-BH 997 08 08 1000 00 00 1000 00 00
Krum 1000 00 00 1000 00 00 1000 00 00
FABA 1000 00 00 1000 00 00 1000 00 00
Zeno 1000 00 00 1000 00 00 1000 00 00
ByML-Filter 18.7 884 884 18.1  89.0 89.0 144 982 982
ByMI-Filter+ 100 1000  100.0 9.8 1000 100.0 10.1 1000 100.0
ByMI-GD 9.6 1000 100.0 99 998 99.8 88 998  99.8
ByML.GEOM 549 1000 100.0 548 100.0 100.0 555 1000 100.0
ByMI.VRMOM  53.6 100.0 100.0 526 996  99.6 515 994 994

e=045> " gyMEMOM 548 1000 100.0 547 1000 100.0 555 1000 100.0
RMDP-BH 996 08 08 1000 00 00 1000 00 00
Krum 1000 00 00 1000 00 00 1000 00 00
FABA 1000 00 00 1000 00 00 1000 00 00
Zeno 1000 00 00 1000 00 00 1000 00 00
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ByMI: Byzantine Machine Identification with FDR Control

Table 10. FDR(%), TPR(%) and P,(%) of the random gradient attack with larger contamination levels.

MNIST F-MNIST CIFAR10
Method FDR TPR P, FDR TPR P, FDR TPR P,
ByMI-Filter 80 100.0 100.0 8.1 1000 100.0 78 100.0 100.0
ByMI-Filter+ 9.9 100.0 100.0 9.8 100.0 100.0 101 100.0 100.0
ByMI-GD 85 100.0 100.0 86 998 998 80 100.0 100.0
ByMI-GEOM 663 988 98.8 670 936 93.6 674 1000 100.0
ByMI-VRMOM 642 988 9838 585 910 90.8 558 994  99.0

=03 ByMI-MOM 677 1000 100.0 673 996  99.6 68.6 1000 100.0
RMDP-BH 954 156  14.6 979 02 02 978 00 0.0
Krum 1000 00 00 1000 00 00 1000 00 00
FABA 1000 00 00 1000 00 00 1000 00 00
Zeno 1000 00 00 1000 00 00 1000 00 0.0
ByMI-Filter 88 100.0 100.0 89 996 99.6 74 1000 100.0
ByMI-Filter+ 100 100.0 100.0 100 100.0 100.0 99 100.0 100.0
ByMI-GD 85 100.0 100.0 87 998 998 721000 100.0
ByMI-GEOM 64.1 1000 100.0 639 100.0 100.0 647 100.0 100.0

,— 035 BYMLVRMOM 626 992 99 602 966  96.0 572 990  99.0

2% ByMI-MOM 639 100.0 100.0 637 100.0 100.0 64.6 1000 100.0
RMDP-BH 982 52 46 996 00 0.0 996 00 0.0
Krum 1000 00 00 1000 00 00 1000 00 00
FABA 1000 00 00 1000 00 00 1000 00 0.0
Zeno 1000 00 00 1000 00 00 1000 00 0.0
ByMI-Filter 99 992 99,0 104 968  96.6 94 998 998
ByMI-Filter+ 101 1000 100.0 100 100.0 100.0 101 1000 100.0
ByMI-GD 84 1000 100.0 9.0 100.0 100.0 79 1000 100.0
ByMI-GEOM 60.1 1000 100.0 60.0 100.0 100.0 603 1000 100.0

,—04 BYMIVRMOM 585 1000 1000 574 982 982 555 994 992

“ ByMI-MOM 597 100.0 100.0 59.6  100.0 100.0 60.1 1000 100.0
RMDP-BH 995 12 12 998 00 00 1000 00 00
Krum 1000 00 00 1000 00 00 1000 00 00
FABA 1000 00 00 1000 00 00 1000 00 0.0
Zeno 1000 00 00 1000 00 00 1000 00 00
ByMI-Filter 116 976 97.4 128 932 928 109 992 992
ByMI-Filter+ 10.1 1000 100.0 100 1000 100.0 100 1000 100.0
ByMI-GD 9.0 1000 100.0 94 998 99.8 83 1000 100.0
ByMI-GEOM 547 1000 100.0 546 1000 100.0 555 1000 100.0
ByMLLVRMOM  53.6 1000 100.0 526 994 994 523 991 988

¢=045 " goprmMoOM 546 1000 100.0 545 1000 100.0 554 100.0 100.0
RMDP-BH 998 04 04 1000 00 00 1000 00 00
Krum 1000 00 00 1000 00 00 1000 00 0.0
FABA 1000 00 00 1000 00 00 1000 00 0.0
Zeno 1000 00 00 1000 00 00 1000 00 00
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