
ByMI: Byzantine Machine Identification with False Discovery Rate Control

Chengde Qian * 1 Mengyuan Wang * 1 Haojie Ren 2 Changliang Zou 1

Abstract
Various robust estimation methods or algorithms
have been proposed to hedge against Byzantine
failures in distributed learning. However, there is
a lack of systematic approaches to provide theoret-
ical guarantees of significance in detecting those
Byzantine machines. In this paper, we develop a
general detection procedure, ByMI, via error rate
control to address this issue, which is applicable
to many robust learning problems. The key idea
is to apply the sample-splitting strategy on each
worker machine to construct a score statistic inte-
grated with a general robust estimation and then
to utilize the symmetry property of those scores
to derive a data-driven threshold. The proposed
method is dimension insensitive and p-value free
with the help of the symmetry property and can
achieve false discovery rate control under mild
conditions. Numerical experiments on both syn-
thetic and real data validate the theoretical results
and demonstrate the effectiveness of our proposed
method on Byzantine machine identification.

1. Introduction
With the rapid growth of the dataset size and the decentral-
ization of data sources, distributed and federated learning,
where the worker machines locally preserve the data and
only communicate summarized information with the mas-
ter machine, have received substantial attention (Kairouz
et al., 2021). In such a distributed learning system, there is
usually a small fraction of worker machines that send any
arbitrary information due to malicious attacks on worker
machines and communication channels, or the variation and
contamination in the data sources (Blanchard et al., 2017).
Those abnormal machines are called Byzantine machines.
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Such breaks in the distributed system are modeled as the
Byzantine failures (Lamport et al., 1982) and have serious
adverse effects on learning performance.

1.1. Motivation & Related Works

Byzantine robust learning. Recently, there is a great deal
of effort to develop distributed-learning algorithms with the
properties of Byzantine resilience and Byzantine robustness,
that are provably robust against Byzantine failures. Typi-
cally, the studies of Byzantine-robust distributed learning
focus on aggregating those workers’ messages, e.g. the av-
erages of gradients, via some robust estimation algorithms
in the master machine. This has an intimate connection with
robust estimation in statistics literature (Shi et al., 2022).
A family of aggregation methods is replacing the simple
sample mean with robust location estimations. One pop-
ular choice is to take the median instead of the sample
mean, such as the coordinate-wise median and trimmed
mean (Yin et al., 2019; 2018), the geometric median (Chen
et al., 2017), and the coordinate-wise composite quantile (Tu
et al., 2021). However, those median-type algorithms suffer
a bias dependent on the dimension due to Byzantine fail-
ures. Some recent works adopt the computational-efficient
high-dimensional mean estimations to correct the bias term
to a dimension-agnostic one. For instance, Yin et al. (2019)
applies the filtering algorithm (Lai et al., 2016; Diakoniko-
las et al., 2017) as the aggregation rule and Zhu et al. (2023)
considers both the filtering algorithm and the first-order
approach (Cheng et al., 2020; Zhu et al., 2022).

Another direction is to detect and delete Byzantine machines
and further make estimations based on some reputation
scores which measure the trustworthiness of worker ma-
chines, such as Krum (Blanchard et al., 2017), FABA (Xia
et al., 2019) and Zeno (Xie et al., 2019). As commented
by Cheng et al. (2019), all of these methods suffer similar
dimension-dependent bias as the median-type algorithms.
That’s partly because those methods take the number of
Byzantine machines as predetermined and are unable to
give a significant guarantee against underestimation or over-
estimation, which may hamper their applicability.

Outlier detection methods. As discussed above, the identi-
fication of Byzantine machines plays an important role in
the resilience task but has received less attention. This is rel-
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evant to outlier detection in the statistics regime since each
Byzantine machine performs like one outlier. Traditionally,
one outlier detection procedure is generally to obtain some
robust center estimates and then to compute p-values based
on some efficient tests to evaluate whether it is one outlier
(Filzmoser et al., 2008; Ro et al., 2015; Zimek et al., 2012).
It has been revealed that the performance of this kind of
methods heavily depends on the approximation accuracy
of p-values (Efron, 2004; Liu & Shao, 2014), which are
obtained from the asymptotic distribution when the sample
size or dimension goes to infinity with some specific rate.
However, it is often unrealistic, especially for one complex
distributed learning system where the approximation distri-
bution is hard to estimate. In addition, as many machine
learning algorithms have to face the situation that the pa-
rameter dimension is much larger than the sample size in
each machine, it makes the traditional p-value dependent
methods largely ineffective (Bottou et al., 2018). Hence, it is
important to design a detection procedure that is insensitive
or free of dimensions.

1.2. Our Contributions

In this paper, we suggest a p-value free and dimension insen-
sitive detection procedure, named as Byzantine Machines
Identification (ByMI). To avoid falsely identifying too many
normal machines, we consider controlling the false discov-
ery rate (FDR), the expectation of the proportion of the false
discoveries among all the discoveries. The FDR control has
been fully explored in the literature of multiple testing and is
a particularly useful tool to maintain the ability to detect true
alternatives without excessive false positive ones (Benjamini
& Hochberg, 1995; Benjamini & Yekutieli, 2001; Du et al.,
2021; Zou et al., 2020). The proposed method integrates
the classical Byzantine robust estimation with the generic
idea of the sample-splitting strategy to construct a series
of score statistics with the symmetry property, which plays
an important role in distinguishing Byzantine and normal
machines. Then the ByMI entails choosing a data-driven
threshold by exploiting the empirical distributions between
the negative and positive statistics.

To our best knowledge, this is the first effort to systemat-
ically identify those Byzantine machines with error rate
control. ByMI’s main contributions/advantages include:

• Under a unified framework, ByMI addresses how to
detect Byzantine machines in the regime of gradient
functions. It is dimension insensitive since the rank-
ing scores are some univariate projection of gradients
and applicable to many Byzantine problems, such as
the mean estimation and the communication-efficient
distributed learning procedure.

• ByMI is p-value free and can achieve the generic

finite-sample upper bound of FDR without strong
model/distribution assumptions. Under mild condi-
tions, we show that the proposed ByMI method yields
valid FDR control and sure-detection property.

• ByMI can be easily coupled with robust estimations.
Extensive numerical experiments indicate that ByMI
is able to yield accurate FDR control, while signifi-
cantly detecting most Byzantine machines compared
to existing outlier detection algorithms.

2. Byzantine Machines Identification
Procedure

2.1. Problem Formulation

In the distributed system, assume N independent sam-
ples {si}Ni=1 are evenly stored in m + 1 machines
M0,M1 . . .Mm, each of which contains n observations
and N = (m + 1)n. Here, s could either be a p-variate
random vector x ∈ Rp or (y,x) with y and x being respec-
tively the response variable and p-variate covariates. Note
that M0 is the master machine that is in charge of inte-
grating information from worker machines M1, . . . ,Mm

and cannot be corrupted. Considering Byzantine failures in
the system, there exist ⌊ϱm⌋ Byzantine machines on which
samples are poisoned, where ϱ ∈ [0, 1] is the proportion
of Byzantine machines. Denote the Byzantine machines
set and the good/normal machines set as B and G, respec-
tively, with B ∪ G = {M1, . . . ,Mm}. Assume the normal
data are i.i.d drawn from P0. We consider the behavior of
the Byzantine machines by the Huber contamination model
(Huber, 1964),

{
si ∼ P0 if si ∈ Mj ∈ G
si ≁ P0 if si ∈ Mj ∈ B.

Our goal is to propose a procedure to identify the Byzantine
machines set B. From the perspective of multiple testing, the
null hypothesis of the j-th machine is that it is normal, and
the alternative asserts it is a Byzantine machine. Namely,
the Byzantine machines detection problem is translated to
the multiple testing problem:

H0j : Mj ∈ G v.s. H1j : Mj ∈ B j ∈ [m]. (1)

If one detection procedure yields the Byzantine machines
set estimation B̂, the false discovery proportion (FDP) and
true positive proportion (TPP) with B̂ are

FDP(B̂) = |B̂ ∩ G|
|B̂| ∨ 1

, TPP(B̂) = |B̂ ∩ B|
|B|

.

The false discovery rate (FDR) and true positive rate (TPR)
are defined as the expectation of the FDP(B̂) and TPP(B̂)
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respectively. One reliable detection procedure is to con-
trol FDR at a target level and identify as many Byzantine
machines as well.

2.2. Byzantine Machines Identification Procedure

We consider a generic distributed risk minimization frame-
work. Let ℓ(s,θ) be the loss function with parameter
θ ∈ Θ ⊆ Rd. Denote its gradient function as g(s,θ) =
∇θℓ(s,θ) ∈ Rd. In a distributed learning problem, each
worker machine Mj computes an empirical gradient based
on its local samples by gj(θ0) = 1

n

∑
i∈Mj

g(si,θ0)
with some given parameter θ0. Then these gradients are
transmitted to the master machine M0 for further updat-
ing or estimating parameters. Note that gj(θ0) reflects
the state of the worker machine, since we usually have
E[gj(θ0)] ̸= E[gk(θ0)] where Mj ∈ B is a Byzantine ma-
chine but Mk ∈ G is a normal one. With this regime, the
original problem (1) is reframed into a multiple testing prob-
lem on detecting the difference in mean of these gradients
{gj}mj=1. Denote µ∗ as the mean of gj(θ0) when Mj ∈ G
is one normal machine. Then the alternative hypotheses can
be written as H1j : E[gj(θ0)] ̸= µ∗ for j ∈ [m].

The standard procedure for multiple testing is to build
some mean test statistics for each worker machine and
their asymptotic distribution under null, such as Hotelling’s
T2 for fixed d or other modified tests in high-dimension
regime (Bai & Saranadasa, 1996; Chen & Qin, 2010), and
then apply the Benjamini-Hochberg (BH) method to the
approximated p-values of those test statistics (Benjamini
& Hochberg, 1995). However, the performance of the BH
method heavily depends on the accuracy of p-values from
the asymptotic distribution, which usually involves some
unknown quantity related to the gradient populations and
may be different based on the diverging rate of d relative
to n. It implies that traditional mean tests become ineffec-
tive or practically infeasible in modern machine learning
models, as it’s challenging to estimate these quantities for
complex gradients, and it’s hard to determine the asymptotic
distribution to approximate p-values.

This promotes the development of our p-value free and
dimension-insensitive detection procedure, named as Byzan-
tine Machines Identification (ByMI). We construct one new
test statistic with the sample-splitting strategy and employ
the empirical distribution in place of the asymptotic distri-
bution to achieve FDR control.

Step 1. The first step of our procedure is to randomly split
the samples on each worker machine Mj into two sets D(1)

j

and D(2)
j of equal size n

2 , j ∈ [m]. Write g1j(θ) and g2j(θ)

as the empirical gradient functions based on D(1)
j and D(2)

j

with some given θ, respectively.

Step 2. Based on {g1j(θ)}mj=0, we employ a particular
algorithm A to obtain the robust mean estimator of µ∗, de-
noted as ĝ(θ). Many methods can be chosen as A, such
as those median-type algorithms (Su & Xu, 2019; Tu et al.,
2021; Yin et al., 2018) and the dimension-agnostic algo-
rithms (Cheng et al., 2020; Diakonikolas et al., 2017; Lai
et al., 2016; Zhu et al., 2022). In general, one more robust
and precise estimator leads to more reliable detection results
(Ro et al., 2015).

Step 3. Then, we construct the ranking score which provides
evidence that Mj may be one Byzantine machine. For
j ∈ [m], let

Wj = {g1j(θ)− ĝ(θ)}⊤ Ω {g2j(θ)− ĝ(θ)} . (2)

Here Ω can serve as a rough scale estimator for standard-
ization or can play as a projection matrix for the projection-
based detection methods (Ren et al., 2017), which will be
further discussed in Section 2.4. Notice that Wj’s play an
important role in distinguishing Byzantine and normal ma-
chines. Intuitively, a large positive Wj indicates that Mj

is likely to be the Byzantine machine. For Mj ∈ G, Wj is
(asymptotic) symmetric with mean zero due to the central
limit theorem and independence between D(1)

j and D(2)
j .

Step 4. That further inspires us to choose the threshold
L > 0 as

L = inf

{
ℓ > 0 :

1 + #{j :Wj ≤ −ℓ}
#{j :Wj ≥ ℓ} ∨ 1

≤ α

}
, (3)

for the target FDR level α > 0. Finally, the identified
Byzantine machine set is B̂ = {Mj : Wj ≥ L}. If the set
is empty, we simply set L = +∞. Intuitively, #{j :Wj ≤
−ℓ} is an overestimation of #{j : Wj ≤ −ℓ, Mj ∈ G},
which further is a good approximation to #{j : Wj ≥
ℓ, Mj ∈ G}, the number of false discoveries, due to Wj’s
symmetry property for those normal machines. Thus, it
implies that the fraction in (3) is an overestimation of FDP.

The test statistic Wj in (2) indeed has a similar form
to the traditional mean test, i.e., W ′

j = {gj(θ) −
ĝ(θ)}⊤Ω{gj(θ)− ĝ(θ)} or its variants when Ω estimates
the precision matrix of gj (Chen & Qin, 2010), but they are
distinguished in that our ByMI procedure does not rely on
the p-values from the asymptotic distribution. This is espe-
cially important since the asymptotic distribution heavily
depends on the dimension d relative to n. The asymptotic
distribution of W ′

j can be a chi-square for one fixed or small
d and a normal distribution for a large d, making practical
determination of which asymptotic behavior challenging. In
contrast, conditional on D(1)

j , the proposed Wj in (2) can
be regarded as a univariate projection of g2j(θ)− ĝ(θ) and
enjoys the symmetric property regardless of the gradient
dimension d. Benefiting from the joint use of the proposed
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Figure 1. Scatter plot of Wj . The Wj’s of normal machines are
symmetric with 0.

Wj and the threshold L, the empirical distribution of the
negative statistics can be used to approximate that of the pos-
itive ones in place of asymptotic distribution for calibration,
giving the proposed ByMI method an edge over existing
methods in terms of the accuracy of FDR control. A similar
idea has been discussed in (Chen et al., 2023) where similar
symmetric statistics based on the sample-splitting strategy
were proposed for change point detection.

The idea of ByMI is illustrated in Figure 1, where we display
the scatter plot of score statisticsWj when there arem+1 =
150 machines containing one master and 14 Byzantines.
The detailed settings are shown in Section 4.2. We can
see that Wj’s of normal machines are symmetric with 0,
but Byzantine machines own large Wj’s. Only a few false
discoveries are beyond the threshold L in (3).

Benefiting from only passing two gradient vectors g1j(θ)
and g2j(θ) from each single worker machine to the master
one in Step 1, it is worth emphasizing that the ByMI method
is communication-efficient (Jordan et al., 2019) and can
freely conjugate with the learning procedure. The proposed
procedure is also computationally efficient. The running
time of Step 2 is similar to the commonly used robust learn-
ing algorithms. Meanwhile, the computation of Wj and
the implementation of the detection process in Steps 3-4
incur a small run-time overhead due to only computing a
d-dimension vector and searching a m size set, respectively.
The process of the ByMI method is displayed in Figure 2.

2.3. Some Examples

ByMI detects the Byzantine machines in a general gradient
form. It covers a wide range of applications. We list several
introductory examples.

Mean estimation. Let {si}Ni=1 be i.i.d. observations from
the distribution of s ∈ Rp with E[s] = θ. Consider the loss
function ℓ(s,θ) = ∥s − θ∥22/2 and its gradient g(s,θ) =
s−θ. Here, there is no need to give θ for Byzantine machine
identification. On each machine Mj , the empirical gradient
function gj(θ) can be replaced by sj =

∑
i∈Mj

si. In our
detection procedure, {s1j}mj=0 is aggregated to be a robust
mean estimation θ̂ and then we construct ranking scores
with θ̂ in (2) to detect Byzantine machines.

Linear regression model. Let s = (y,x) and y = x⊤θ+ε,
where x ∈ Rp is the covariates and ε is the noise. We
choose the square loss function ℓ(s,θ) = ∥y − x⊤θ∥22/2.
And the gradient becomes g(s,θ) = x(y − x⊤θ) ∈ Rp.
When set θ = 0, it reduces to a more concise expression
g(x,0) = xy which measures the covariance of x and y.

Multicategory classification with cross-entropy loss.
We consider a K-category classification task here. The
sample s contains a pair of covariates x ∈ Rp and
a response variable y ∈ [K] and it can be trans-
formed to the one-hot representation y = (y1, . . . , yK)
where the y-th entry is one and other entries are
zero. We can employ the cross-entropy loss ℓ(s,θ) =

−
∑K
k=1 yk log{exp(θ⊤

k xk)/
∑K
j=1 exp(θ

⊤
j xj)} and con-

sider the corresponding gradient function g(s,θ) =

∇θℓ(s,θ) with θ =
(
θ⊤
1 , . . . ,θ

⊤
K

)⊤ ∈ Rd and d = pK.

2.4. Choice of Ω

There are different choices of Ω when we construct the
ranking scores Wj .

Scale Matrix. The performance of our procedure is not
sensitive to its choice when Ω only serves to standard-
ize the components of gj(θ) so that they are aggregated
fairly. We suggest adopting a diagonal estimator Ω =
diag{σ̂−2

1 , . . . , σ̂−2
d }, where σ̂2

k is variance estimator of the
k-th component of gj(θ) and can be obtained on

⋃m
j=1 D

(1)
j

by some robust estimation. More details are discussed in
Supplementary Material.

Projection Matrix. Instead of taking all d dimensions for
Wj , we can also adopt the projection matrix Ω = v1v

⊤
1

where v1 is the first eigenvector of the covariance matrix
of {g1j(θ)}. Such a choice is inspired by the dimension-
agnostic robust mean estimation approach (Diakonikolas
et al., 2017) which proved that the outliers that significantly
affect the mean estimation should lie in the direction v1.

3. Statistical Performance Guarantees
This section provides statistical guarantees of the ByMI
procedure. We begin with a general finite sample result
about the FDR control, in the sense that it requires no model
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Figure 2. The implementation of ByMI procedure.

or distribution assumptions. Denote Dk =
⋃m
j=1 D

(k)
j . For

simplicity of notations, let’s set zij := g(si, θ) for i ∈ Mj

and zkj := gkj(θ) for k = 1, 2 and j ∈ [m].

Lemma 3.1. For j ∈ [m], denote ∆j = |P(Wj > 0 |
D1, |Wj |)− 1/2|. For any α ∈ (0, 1), the ByMI procedure
satisfies

FDR(B̂) ≜ E[FDP(B̂)]

≤min
ϵ≥0

{
α(1 + 5ϵ) + E

[
P(max

j∈G
∆j > ϵ | D1)

]}
.

Here ∆j measures the asymmetricity of ranking scores Wj

for those normal machines G, which implies that a tight con-
trol of ∆j’s leads to effective FDR control of the proposed
ByMI procedure. Consider the ideal case where Wj’s in
G are all symmetrically distributed around zero. Then, we
have ∆j = 0 for all j ∈ G, and therefore the FDR is exactly
controlled by setting ϵ = 0, i.e, FDR(B̂) ≤ α.

Next, we turn to a stringent finite-sample result of FDR
control under some mild conditions on the samples.

Assumption 3.2 (Moments). Samples {zij}i∈[n],j∈[m] are
with bounded q-th centered moments (q > 2) and satisfies
Lq-L2 norm equivalence condition with parameter γq , i.e.

max
v∈Sd−1

(E|v⊤(zij − µ∗)|q)
1
q

(E|v⊤(zij − µ∗)|2) 1
2

≤ γq.

Assumption 3.3 (Robust estimation). Assume the robust
estimation satisfies that ∥µ̂ − µ∗∥ = O(δµ), where δµ is
some positive sequence that converges to zero.

The moment condition in Assumption 3.2 is commonly
used in the literature (Mendelson & Zhivotovskiy, 2020).
Assumption 3.3 sets theoretical minimal requirements for
the accuracy of the robust estimator µ̂ obtained by D1.
As discussed in Lemma 3.1, we cannot expect that the
(asymptotic) symmetric property of Wj can be achieved
for one arbitrary robust estimation. This can be satisfied

by a large category of robust estimations. For example,
for the median-type methods (Chen et al., 2017; Yin et al.,

2018), δµ = O(
√

d
nm +

√
r
nm + ϱ

√
d
n ) with probability

at least 1 − e−r, while for those algorithms whose bias is
free of the dimension (Cheng et al., 2020; Zhu et al., 2022),

δµ = O(
√

d
nm +

√
r
nm +

√
ϱ
n ).

Theorem 3.4. (FDR control) Suppose Assumptions 3.2- 3.3

hold. Denote κ = min(1, q − 2) and ωn = n−
(1−2η2)κ

2

with some η ∈ (0, 1√
2
). With probability at least 1 −

O(mn−
η2κ
2 ),

FDR(B̂) ≤ α+O
(√

ωn + n
1
2+η

2κδµ

)
. (4)

With the assumption of signals, we further obtain a finite-
sample result of FDP control.

Assumption 3.5 (Signals). Denote Bµ the set of identifiable
Byzantine machines and µ∗

j the mean of the j-th machine.
There is a constant C > 0 such that, for j ∈ Bµ, ∥µ∗

j −

µ∗∥ ≥ C(
√

logn
n + δµ + d

1
2n−

1
2+

κ2
q ) where 0 < κ2 <

q
2 .

Assume that ψm = |Bµ| is sufficiently large.

Assumption 3.5 refers to the minimum signal magnitudes to
distinguish a Byzantine machine from the well-behaved one.
Note that the last term is essentially from the upper bound,
supj∈[m]∥z1j − µ∗

j∥ = O(d
1
2n−

1
2+

κ2
q ) with probability at

least 1−mn−κ2 for any 0 < κ2 <
q
2 owing to Assumption

3.2. It can be further improved by assuming more light tails
like the sub-Gaussian condition.

Theorem 3.6. (FDP control) Suppose Assumptions 3.2,
3.3 and 3.5 hold. Denote κ = min(1, q − 2) and snm =

n−
(1−η2)κ

2 (log n)
1
2 +mn−

η2κ
2 +(αψm)−δ/3 with some η ∈

(0, 1). With probability at least 1−O(mn−
η2κ
2 +ψ

−(1−δ)
m ),

FDP(B̂) ≤ α

[
1 +O

(
snm + n

1
2 δµ

)]
. (5)
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Theorem 3.4 and Theorem 3.6 imply that the effect of di-
mension d in FDR or FDP control is due to the accuracy
of robust mean estimation in Assumption 3.3. Indeed, the
ByMI is dimension-agnostic if building Wj with µ∗ instead
of its robust estimation µ̂. Besides FDR control, the next
result shows that the ByMI method is also capable of main-
taining the “sure-detection property”. This property ensures
that all identifiable Byzantine machines Bµ can be detected.

Corollary 3.7. Under the conditions in Theorem 3.6, with

probability at least 1 − O(mn− η2κ
2 + ψ

−(1−δ)
m ), we have

Bµ ⊆ B̂.

As a byproduct, in Corollary 3.7, we have the sure-detection
property of the ByMI procedure, which says that all the iden-
tifiable Byzantine machines Bµ can be detected by the ByMI
procedure with probability tending to one. As a byproduct,
Corollary 3.7 establishes the sure-detection property of the
ByMI procedure. It states that all identifiable Byzantine
machines in Bµ can be detected by the ByMI procedure
with high probability.

4. Experiments and Evaluation
We illustrate the breadth of applicability of the ByMI pro-
cedure through experiments on synthetic data and real-data
applications. We implement the proposed ByMI method
in conjunction with two algorithms A for robust mean es-
timators. One is the geometric median (Minsker, 2015) of
all empirical gradients, and the other one is the filtering
estimator proposed in (Diakonikolas et al., 2017; Lai et al.,
2016; Zhu et al., 2022). These two adopt the scale estimator
for Ω and are denoted as ByMI-GEOM and ByMI-Filter,
respectively. Also, we choose Ω as the projection matrix
described in 2.4 in conjunction with the filtering mean es-
timator, named as ByMI-Filter+. Other algorithms A are
studied in the Supplementary. The target FDR level is fixed
as α = 0.1.

Benchmarks. We compare the ByMI procedure with three
benchmarks. The first one is to implement the well-known
outlier detection algorithms in high-dimension, RMDP (Ro
et al., 2015) with the empirical gradients gj(θ) of each ma-
chine. This method builds a minimum diagonal product
estimator based on modified Mahalanobis distance and iden-
tifies outliers with its asymptotic distribution. To make a
fair comparison, we embed the RMDP with the classical
BH procedure (Benjamini & Hochberg, 1995) to achieve
the FDR control, referred to as RMDP-BH. The other three
competitors are Krum (Blanchard et al., 2017), FABA (Xia
et al., 2019), and Zeno (Xie et al., 2019) from machine
learning literature. Those methods employ some distance-
based scores and roughly detect a given number ϱm of those
machines with large scores as Byzantine. Specifically, the
Krum and FABA adopt some Euclidean distances and Zeno

proposes stochastic descendant scores. More details of the
benchmarks can be found in Supplementary Material.

Performance Measures. The empirical FDR and TPR
are evaluated using the average of FDP and TPP from 500
replications, respectively. The proportion that all identifiable
Byzantine machines are detected, that is, Pa = Pr(B ⊆
B̂(L)) is computed to evaluate the sure-detection property.

4.1. Results on Synthetic Data

• Scenario A (Mean Estimation): The data on nor-
mal machines are i.i.d from Np (0,Σ) with Σ =
(0.2|i−j|)p×p; meanwhile the data on Byzantine ma-
chines are i.i.d from Np(b log(p) · vp, 0.5Ip), where b
is the shift size and vp ∈ Rp is a normalized vector
with p independent random variables from U(0, 1).

• Scenario B (Regression Model): We consider the lin-
ear model y = x⊤θ + ε where x ∼ Np (0, Ip),
ε ∼ N (0, 1) and θ = (1s, 0, · · · , 0)⊤ with s =
⌊0.1p⌋. Two kinds of Byzantine machines are inves-
tigated: (a) the model is corrupted where the param-
eter on Byzantine machines is θc = (1sc , 0, · · · , 0)⊤
with sc = ⌊0.07p⌋; (b) the data is contaminated
where xi’s on Byzantine machines are replaced by
x̃i = 0.8xi + 3vp where vp ∈ Rp is same as Scenario
A, and Yi’s are added with a constant bias c = 1. For
simplicity, we compute the gradients at θ = 0.

We fix the number of worker machines as m = 1, 000 and
the local sample size as n = 200 so that the entire sample
size isN = 200×1001 including one master. We randomly
choose ⌊ϱm⌋ worker machines as Byzantine ones.

Results. Figure 3 reports the FDR, TPR and Pa curves
against the shift size bwith the contamination ratio ϱ = 0.05
under Scenario A. We see that the FDR levels of ByMI-
based (ByMI-Filter, ByMI-GEOM, ByMI-Filter+) are close
to the nominal level. All methods also achieve satisfactory
TPR and Pa under all the scenarios. In contrast, RMDP-
BH yields slightly inflated FDRs under p = 50 but a little
conservative one under p = 100. Also, RMDP-BH leads to
lower TPR and Pa compared to the proposed ByMI. This
can be understood that the p-values of RMDP-BH are from
one asymptotic distribution, which may be sensitive to the
dimension or other model settings in finite sample cases.
The Krum and FABA result in overly inflated FDR levels,
and accordingly, they do not perform well in terms of Pa.
It implies that both distance-based methods detect a fixed
number as Byzantine machines and some true Byzantines
would be missed.

Figure 4 presents the boxplots of empirical FDP and TPP
under Scenario B. The FDPs of ByMI-Filter and ByMI-
Filter+ vary in an acceptable range of the target level while
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Figure 3. FDR, TPR and Pa over shift size b when ϱ = 0.05 and
p = 50, 100 under Scenario A. The black dashed lines indicate
the FDR level α = 0.1.

the FDPs of ByMI-GEOM slightly exceed the nominal level
and the TPPs of ByMI-Filter and ByMI-Filter+ are higher
than ByMI-GEOM. This is from the fact that the robust esti-
mation based on filtering has dimension-agnostic superiority
against the bias made by the adversarial attacks compared
to the geometric median, which may be conducive to im-
proving the signal-to-noise. Meanwhile, other benchmarks
deliver overly inflated FDPs under all the settings. This fur-
ther demonstrates the effectiveness of the proposed ByMI
method: it is data-driven and p-value free which allows FDR
control and achieves reliable TPR.

4.2. Results on Real Data

Datasets. The MNIST (LeCun et al., 1998), Fashion
MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky, 2009)
datasets are used to verify the performance of our ByMI.

• MNIST includes 60, 000 training images and 10, 000
testing images with size 28× 28 pixels and their corre-
sponding labels from 0 to 9.

• Fashion MNIST (F-MNIST) contains 60, 000 training
images and 10,000 testing images with size 28 × 28
pixels, each belonging to 10 fashion items.

• CIFAR10 consists of 50, 000 training images and
10, 000 testing images, each of size 32 × 32 pixels,
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Figure 4. Boxplots of FDP and TPP when the dimension p = 100
and the contamination ratio ϱ = 0.1 under Scenario B. The black
dashed lines indicate the FDR level α = 0.1.

belonging to 10 different classes.

As the main focus is the detection task, we adopt the pre-
trained Resnet18 model in Pytorch and take the output of
the last layer with the dimension 512. We further use the
PCA on the features to get decorrelated covariates {xi} with
dimension p = 20. A multinomial logistic regression model
is adopted where the total parameter dimension is d = 200.
For MNIST and F-MNIST, all of the samples in the train-
ing set are randomly divided into m + 1 = 150 machines
(including one master machine) with an equal sample size
n = 400. For CIFAR10, we fix m+ 1 = 125 and n = 400.

Attacks. For Byzantine machines, we conduct both the out-
of-distribution (OOD) attack (Fort et al., 2021) and the IPM
attack (Xie et al., 2020). Specifically, for the OOD attack we
replace the covariates xi’s on Byzantine machines by x̃i =
0.7xi + εp where εp is from Np(νp, σ

2Ip) with νp ∈ Rp
randomly sampled from the standard multivariate normal
distribution and σ = 0.2. For the IPM attack, the Byzantine
gradients are assigned as −aḡ, where ḡ = 1

|G|
∑
j∈G gj(θ)
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Table 1. FDR(%), TPR(%) and Pa(%) of the OOD and IPM attacks when ϱ = 0.1. We set a = 0.2 in the IPM attack.

MNIST F-MNIST CIFAR10

Attack Method FDR TPR Pa FDR TPR Pa FDR TPR Pa

OOD Attack

ByMI-Filter 6.8 98.1 94.2 7.1 92.8 83.4 5.5 81.7 73.6
ByMI-Filter+ 6.6 97.2 95.8 6.5 85.0 79.0 5.7 77.1 73.8
ByMI-GEOM 10.2 97.4 93.4 9.1 92.1 80.8 7.4 76.4 67.2
RMDP-BH 88.3 99.9 99.8 68.9 98.6 96.8 54.1 84.6 75.0
Krum 27.1 93.8 81.6 36.4 81.7 55.4 52.5 59.4 34.8
FABA 25.2 96.2 89.6 32.2 87.1 69.8 50.6 61.8 45.4
Zeno 26.2 94.8 84.8 35.6 82.8 56.2 54.8 56.5 32.4

IPM Attack

ByMI-Filter 6.3 99.6 99.6 6.5 99.6 99.6 5.4 100.0 100.0
ByMI-Filter+ 6.8 99.2 99.2 6.0 97.0 97.0 7.7 100.0 100.0
ByMI-GEOM 10.2 96.2 96.2 10.4 97.0 97.0 10.0 99.6 99.6
RMDP-BH 89.2 96.2 96.2 75.3 78.6 78.6 79.6 7.6 7.6
Krum 75.2 31.9 22.6 59.1 52.6 42.2 78.9 26.4 17.2
FABA 88.5 14.8 8.2 72.7 35.1 26.8 96.1 4.9 2.6
Zeno 88.3 15.0 7.8 71.2 37.0 25.8 95.2 6.0 2.2

and a > 0.

We train the multinomial logistic regression model using
distributed gradient descent. At the beginning, we obtain an
initial parameter θ0 which is trained by the master machine
only, and then we deliver θ0 to each worker machine to
compute the local gradients. In each iteration, those local
gradients on worker machines are sent to the master for
parameter aggregation and updating. Our goal is to make
use of the local gradients to detect Byzantine machines.

Results of Byzantine machine detection. Table 1 reports
the experiment results of the OOD attack and the IPM attack.
For simplicity, we compare the performance of different de-
tected methods in the first iteration under the contamination
ratio ϱ = 0.1. Three ByMI-based methods perform reason-
ably well. The FDRs are controlled under or close to the
nominal level α = 0.1 across all the settings. Meanwhile,
the ByMI-based methods yield quite high TPRs and Pa,
which clearly demonstrates the efficiency of our proposed
method. In addition, RMDP-BH also has satisfactory TPRs,
but it yields an overly inflated FDR level since the p-values
for the BH procedure are approximated by an asymptotic dis-
tribution. In contrast, those distance-based methods (Krum,
FABA and Zeno) select a given number, i.e, ⌊1.2ϱm⌋ as
Byzantine machines, but fewer true Byzantine machines can
be correctly detected concerning the large FDR as well as
the small Pa. It implies that these three are hard to guarantee
the sure-detection property with simple distance ranking.

Application to robust distributed learning. Besides the
measurements of FDR, TPR and Pa, we further study the
performance of the ByMI method in the distributed learn-
ing tasks. We apply ByMI to detect Byzantine machines

MNIST F−MNIST CIFAR10
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Figure 5. Test accuracy of different methods under the IPM attack
with the contamination level ϱ = 0.3 when a = 2.

and use the simple mean aggregation of the left local gra-
dients to train the model. Figure 5 shows the test accuracy
among the learning processes. Filtering refers to aggregat-
ing local gradients by the filtering algorithm in each round.
The ByMI-based methods deliver higher classification ac-
curacy compared to other benchmarks. In contrast, Krum,
FABA and Zeno perform not well and are susceptible to
Byzantine failures. It’s worth mentioning that ByMI-Filter
and ByMI-Filter+ attain higher accuracy and achieve the
FDR control in the identification task as well compared to
the original Filtering method. In summary, ByMI not only
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works well for identifying Byzantine machines with FDR
control but also improves the robustness and interpretability
in the distributed learning tasks with Byzantine corruptions.

5. Concluding Remarks
Identification of Byzantine machines is very important but
obtains less attention to conduct robust learning algorithms
in a distributed system. This paper proposes a data-driven
detection procedure, ByMI, to address this issue via FDR
control under a unified framework. The ByMI method is
easy to implement and communication-efficient because
only the local gradients are transmitted. It is shown that
the proposed method can control FDR with reliable robust
estimators while retaining all the identifiable Byzantine ma-
chines under mild conditions. Thus, it could serve as a
useful tool for further robust inference or system diagnos-
tics.

We conclude this paper with two remarks. First, we achieve
the FDR control by sample-splitting strategy. In practice,
one may prefer to use the whole data to find the Byzan-
tine machines without accuracy sacrifice. It is of interest
to further improve ByMI or investigate what ByMI could
contribute. Secondly, we mainly consider the behavior of
the Byzantine machines by the Huber contamination model.
How to adapt ByMI to other aggressive behaviors, such as
attacks on the transmission paths, deserves further study.

Acknowledgements
The authors would like to express their sincere appreciation
to the anonymous reviewers for their valuable comments
and constructive feedback. This research was supported
by the National Key R&D Program of China (Grant Nos.
2022YFA1003703, 2022YFA1003800), the National Nat-
ural Science Foundation of China (Grant Nos. 11925106,
12101398, 12231011, 11931001, 12226007, 12326325) and
Shanghai Sailing Program.

Impact Statement
This paper presents work whose goal is to improve the ro-
bustness and trustworthiness of distributed and federated
machine learning systems by introducing advanced statis-
tical testing tools. There are many potential societal con-
sequences of our work, none of which we feel must be
specifically highlighted here.

References
Bai, Z. and Saranadasa, H. Effect of high dimension: by an

example of a two sample problem. Statistica Sinica, pp.
311–329, 1996.

Barber, R. F., Candès, E. J., and Samworth, R. J. Robust
inference with knockoffs. The Annals of Statistics, 48
(3):1409 – 1431, 2020.

Benjamini, Y. and Hochberg, Y. Controlling the false dis-
covery rate: a practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society: Series
B (Methodological), 57(1):289–300, 1995.

Benjamini, Y. and Yekutieli, D. The control of the false
discovery rate in multiple testing under dependency. The
Annals of Statistics, 29(4):1165–1188, 2001.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer,
J. Machine learning with adversaries: Byzantine toler-
ant gradient descent. In Advances in Neural Information
Processing Systems, volume 30, pp. 1–11. Curran Asso-
ciates, Inc., 2017.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM review,
60(2):223–311, 2018.

Chen, H., Ren, H., Yao, F., and Zou, C. Data-driven se-
lection of the number of change-points via error rate
control. Journal of the American Statistical Association,
118(542):1415–1428, 2023.

Chen, S. X. and Qin, Y.-L. A two-sample test for high-
dimensional data with applications to gene-set testing.
The Annals of Statistics, 38(2):808–835, 2010.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):1–25, 2017.

Cheng, Y., Diakonikolas, I., and Ge, R. High-dimensional
robust mean estimation in nearly-linear time. In
Proceedings of the 30th annual ACM-SIAM symposium
on discrete algorithms, pp. 2755–2771. SIAM, 2019.

Cheng, Y., Diakonikolas, I., Ge, R., and Soltanolkotabi, M.
High-dimensional Robust Mean Estimation via Gradi-
ent Descent. In Proceedings of the 37th International
Conference on Machine Learning, pp. 1768–1778.
PMLR, 2020.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimen-
sions) can be practical. In Precup, D. and Teh, Y. W.
(eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 999–1008. PMLR,
2017.

Du, L., Guo, X., Sun, W., and Zou, C. False discovery
rate control under general dependence by symmetrized

9



ByMI: Byzantine Machine Identification with FDR Control

data aggregation. Journal of the American Statistical
Association, pp. 1–15, 2021.

Efron, B. Large-scale simultaneous hypothesis testing: the
choice of a null hypothesis. Journal of the American
Statistical Association, 99(465):96–104, 2004.

Filzmoser, P., Maronna, R., and Werner, M. Outlier identi-
fication in high dimensions. Computational Statistics &
Data Analysis, 52(3):1694–1711, 2008.

Fort, S., Ren, J., and Lakshminarayanan, B. Exploring
the limits of out-of-distribution detection. Advances in
Neural Information Processing Systems, 34:7068–7081,
2021.

Huber, P. J. Robust Estimation of a Location Parameter. The
Annals of Mathematical Statistics, 35(1):73–101, 1964.

Jordan, M. I., Lee, J. D., and Yang, Y. Communication-
Efficient Distributed Statistical Inference. Journal of
the American Statistical Association, 114(526):668–681,
2019.

Kairouz, P., McMahan, H. B., Avent, B., and Bellet. et. al,
A. Advances and Open Problems in Federated Learning.
Foundations and Trends® in Machine Learning, 14(1–2):
1–210, 2021.

Kamp, M., Boley, M., Missura, O., and Gärtner, T. Effective
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A. More Details on the Related Works
We offer an expanded introduction to the literature associated with Byzantine machine detection, serving as a complement
to Section 1.

Byzantine detection approach in machine learning literature. Given the number ϱm of Byzantine machines, for the
j-th machine, Krum (Blanchard et al., 2017) proposes using the average Euclidean distance of the (1 − ϱ)m neighbors
of gj to detect the Byzantine machines. The larger the distance the higher the possibility that the j-th machine is a
Byzantine one. FABA (Xia et al., 2019) simply adopts the Euclidean distance of gj to the mean of {gj}, deletes the
gj with the largest distance, and then updates the mean vector. The above process will stop until ϱm gradient vectors
are deleted and the final mean vector will be returned. Zeno (Xie et al., 2019) suggests the stochastic descendant score
Sj =

∑
i∈M0

ℓ(si,θ) − ℓ(si,θ − γgj) − ρ∥gj∥2, the descendant value of the loss function with the data in the master
machine on the current parameter θ, learning rate γ and a regularized parameter ρ. All these algorithms require a pre-specified
proportion of Byzantine machines, which is set to 1.2 times the true proportion ϱ during experiments.

The RMDP-BH procedure. The RMDP approach (Ro et al., 2015) measures the departure of machine Mj from the center
by the modified Mahalanobis distance (gj − µ∗)⊤D−1(gj − µ∗) where D is a diagnoal matrix with the marginal variance
of gj in the normal machines on the diagnoal. As n→ ∞ and d→ ∞, the modified Mahalanobis distance is asymptotical

normal in the normal machines, i.e. (gj−µ∗)⊤D−1(gj−µ∗)−d
[2 tr(R)]1/2

d→ N (0, 1). The RMDP-BH approach replaces the true center
µ∗ by the minimum diagonal product estimator and the p-value pj of each machine Mj can be computed based on the
asymptotical normality. Finally provided the p-values set {pj}mj=1, the BH procedure (Benjamini & Hochberg, 1995) is
adopted.

B. The Finite Sample Control of False Discovery Proportion
B.1. Notations and Prelimits

Let [m] = {1, 2, . . . ,m}, G = {j ∈ [m] : the j-th machine is a normal one} and m0 = |G|. For a vector z, denote ∥z∥q
the ℓq-norm and ∥z∥ = ∥z∥2 the Euclidean norm.

Let Σ be the covariance of {zij} on the clean machines. To ease the notation, we set tkj =
√
n(zkj − µ̂), tkj =√

n(zkj − µ∗
j ). Without loss of generality we choose the identity matrix as Ω and Wj =

1
nt

⊤
1jt2j in the theory. Otherwise

we can replace the samples zij by Ω1/2zij and the theory is still valid. Note that the ByMI procedure is scale-invariant, i.e.
the identification set B̂ remains the same when {Wj} are multiplied by a positive scalar, we cancel the factor 1

n and set
Wj = t⊤1jt2j thereafter.

B.2. Useful lemmas

Lemma B.1 (Berry-Esseen Inequality (Petrov, 2002)). Suppose that X1, . . . , Xn are independent random variables
with mean zero, satisfying E[|Xj |2+q] < ∞, for some q > 0. Denote κ = min(1, q). Let Bn =

∑n
i=1 EX2

i and
Ln = B

−1−κ
2

n
∑n
i=1 E|Xi|2+κ. There exists a universal constant A > 0, such that

max
−∞<x<∞

|Fn(x)− Φ(x)| ≤ ALn, (6)

where Φ(·) is the distribution function of the standard Gaussian distribution and Fn(x) is the distribution function of the

normalized summation, i.e. Fn(x) ≜ P[B− 1
2

n
∑n
i=1Xi ≤ x]. When X1, . . . , Xn are identically distributed with EX2

1 = σ2

and E|X1|2+κ = γ2+κ, we have Ln = γ2+κ

σ2+κnκ/2 .

Lemma B.2 (Moderate deviations for finite-moment random variables (Petrov, 2002)). Under the same conditions in
Lemma B.1, for any constant 0 < η < 1 and 0 ≤ x ≤ η(2 log 1

Ln
)

1
2 ,∣∣∣1− Fn(x)

1− Φ(x)
− 1
∣∣∣ ≤ CL1−η2

n (log
1

Ln
)

1
2 , (7)

and ∣∣∣Fn(−x)
Φ(−x)

− 1
∣∣∣ ≤ CL1−η2

n (log
1

Ln
)

1
2 , (8)
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where C = 4
√
πηA.

Lemma B.3. Assume that the random vector x ∈ Rd satisfies the Lq-L2 norm equivalence condition with mean µ∗ and
covariance Σ. We have for any fixed vector µ ∈ Rd,

P(∥x− µ∥ > T + ∥µ− µ∗∥) ≤ γqq∥Σ∥
q
2 d

q
2T−q. (9)

Proof. Since ∥x− µ∗∥q ≤ d
q
2−1∥x− µ∗∥qq , we have

P(∥x− µ∥ > T + ∥µ− µ∗∥) ≤ P(∥x− µ∗∥ > T )

≤P(∥x− µ∗∥qq > d−
q
2+1T q) ≤ E[∥x− µ∥qq]d

q
2−1T−q.

By the Lq-L2 equivalence,
E[∥x− µ∥qq] ≤ d∥Σ∥

q
2 γqq .

Hence we obtain
P(∥x− µ∥ > T + ∥µ− µ∗∥) ≤ γqq∥Σ∥

q
2 d

q
2T−q.

B.3. Proof of Lemma 3.1

Denote ∆j = |P(Wj > 0 | D1, |Wj |)− 1
2 |. Fix ϵ > 0 and for any threshold t > 0, denote

Rϵ(t) =

∑
j∈G 1(Wj ≥ t,∆j ≤ ϵ)

1 +
∑
j∈G 1(Wj ≤ −t)

. (10)

Assume that the event A = {∆ ≜ maxj∈G ∆j ≤ ϵ} holds. Then by the definition of L,∑
j∈G 1(Wj ≥ L,∆j ≤ ϵ)

1 ∨
∑
j∈[m] 1(Wj ≥ L)

=
1 +

∑
j∈[m] 1(Wj ≤ −L)

1 ∨
∑
j∈[m] 1(Wj ≥ L)

×
∑
j∈G 1(Wj ≥ L,∆j ≤ ϵ)

1 +
∑
j∈[m] 1(Wj ≤ −L)

≤α×Rϵ(L).

Denote Lj the critical value like L while replacing Wj by |Wj |. Let W−j = {Wk}k ̸=j . The following equations are all
conditional on D1.

E[Rϵ(L)] =
∑
j∈G

E
[ 1(Wj ≥ L,∆j ≤ ϵ)

1 +
∑
j∈G 1(Wj ≤ −L)

]
=
∑
j∈G

E
[ 1(Wj ≥ Lj ,∆j ≤ ϵ)

1 +
∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

]
=
∑
j∈G

E
[
E
{ 1(Wj ≥ Lj ,∆j ≤ ϵ)

1 +
∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

∣∣∣ |Wj |,W−j

}]
=
∑
j∈G

E
[P[Wj > 0 | |Wj |,D1]1(|Wj | ≥ Lj ,∆j ≤ ϵ)

1 +
∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

]
≤
∑
j∈G

E
[ ( 12 +∆j)1(|Wj | ≥ L,∆j ≤ ϵ)

1 +
∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

]
≤(

1

2
+ ϵ)

[∑
j∈G

E
{ 1(Wj ≥ Lj ,∆j ≤ ϵ)

1 +
∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

}
+
∑
j∈G

E
{ 1(Wj ≤ −Lj)
1 +

∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

}]

≤(
1

2
+ ϵ)

[
E{Rϵ(L)}+

∑
j∈G

E
{ 1(Wj ≤ −Lj)
1 +

∑
k∈G,k ̸=j 1(Wk ≤ −Lj)

}]
.
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Recall that the above result is conditional on A. The second term in the last equation is equal to 0 if for all j ∈ G, Wj > −Lj
and otherwise

∑
j∈G E{ 1(Wj≤−Lj)

1+
∑

k∈G,k ̸=j 1(Wk≤−Lj)
} =

∑
j∈G E{ 1(Wj≤−Lj)

1+
∑

k∈G,k ̸=j 1(Wk≤−Lk)
} = 1, see Barber et al. (2020). In

summary we have that conditional on A,
∑
j∈G E{ 1(Wj≤−Lj)

1+
∑

k∈G,k ̸=j 1(Wk≤−Lj)
} ≤ 1. Finally, we obtain

FDR(B̂) =E
[

|j ∈ G :Wj ≥ L|
|j ∈ [m] :Wj ≥ L|

]
≤ min

ϵ≥0

[
αE[Rϵ(L)] + E

{
P(max

j∈G
∆j > ϵ | D1)

}]
≤min

ϵ≥0

[
α(1 + 5ϵ) + E

{
P(max

j∈G
∆j > ϵ | D1)

}]
,

where ∆j = |P(Wj > 0 | D1, |Wj |)− 1
2 |.

B.4. Proof of Theorem 3.4

The above analysis provides a general finite-sample guarantee for FDR control, in the sense that it requires no model or
distribution assumptions. The quantity ∆j at the end measures the asymmetricity of ranking scores Wj for those normal
machines G. The lemma implies that a tight control of ∆j’s leads to effective FDR control of the proposed ByMI procedure.
To prove Theorem 3.4, it is sufficient to control the probability P(maxj∈G ∆j > ϵ | D1).

When conditioning on D1, we use the notation uj = t1j to emphasize that t1j is a fixed vector without randomness. In other
words, the randomness of t1j comes from D1 at all. Let sj = (u⊤

j Σuj)
1
2 and t∗j = ηsj(2 log

1
Ln

)
1
2 − |

√
nu⊤

j (µ
∗ − µ̂)|.

We choose the scale parameter sj because Wj/sj is approximately standard Gaussian for j ∈ G. Let Fj(·) and fj(·) be the
distribution function and density function of Wj/sj conditional on D1, respectively. Here by Lemma B.1, Fj(·) should be
closed to Φ(·), the distribution function of standard Gaussian variable.

Define the event C =
⋂
j∈G

{|Wj | ≤ t∗j}. For any j ∈ G, By Lemma B.1,

P(|Wj | ≥ t∗j | D1) ≤ 2P
(
u⊤
j t2j ≥ ηsj(2 log

1

Ln
)

1
2

∣∣∣ D1

)
≲ Lη

2

n = O(n−
η2κ
2 ).

Thus, we obtain

P(max
j∈G

∆j > ϵ | D1) =P(max
j∈G

∆j > ϵ | C,D1) + P(C∁ | D1)

=P(max
j∈G

∆j > ϵ | C,D1) +
∑
j∈G

P(|Wj | ≥ t∗j | D1)

≤P(max
j∈G

∆j > ϵ | C,D1) +O(|G|n−
η2κ
2 )

≤P(max
j∈G

∆j > ϵ | C,D1) +O(mn− η2κ
2 )

Given C, we have

max
j∈G

∆j ≤max
j∈G

∣∣P(Wj > 0 | D1, |W j |)− 1/2
∣∣

≤max
j∈G

sup
0≤t≤t∗j /sj

∣∣∣∣ fj(t)fj(−t)
− 1

∣∣∣∣ .
By Lemma B.1, we have |Fj(t) − Φ(t)| ≤ ALn +

√
nδµ. Let αn = ALn = O(n−

κ
2 ) as in Lemma B.1 and h =
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αn + n

1
2 δµ. By the Taylor’s expansion, Fj(t+ h) = Fj(t) + hfj(t) +O(h2). Therefore for any 0 ≤ t ≤ t∗j/sj ,

fj(t) =
Fj(t+ h)− Fj(t)

h
+ ξh

=

(
Fj(t+ h)− Φ(t+ h)

)
−
(
Fj(t)− Φ(t)

)
+Φ(t+ h)− Φ(t)

h
+ ξh

=O
(αn + n

1
2 δµ

h

)
+ ϕ(t) + ξh

=ϕ(t) + ξh,

where ξh = O(h). Similarly, we have fj(−t) = ϕ(−t) + ξ−h with ξ−h = O(h). Therefore,∣∣∣∣ fj(t)fj(−t)
− 1

∣∣∣∣ = ∣∣∣∣ ϕ(t) + ξh

ϕ(−t) + ξ−h
− 1

∣∣∣∣ = O(h)∣∣∣ϕ(−t) + ξ−h

∣∣∣ .
In fact, ϕ(t) = ϕ(−t) ≥ ϕ(t∗j/sj) ≥ ϕ(η(2 log 1

Ln
)

1
2 ) = Cn−

η2κ
2 for some constant C > 0. Hence we can choose a

constant 0 < η < 1√
2

such that n−
η2κ
2 ≳ h and it holds that∣∣∣∣ fj(t)fj(−t)

− 1

∣∣∣∣ = O(h)

|ϕ(−t) + ξ−h |
= O

(
hn

η2κ
2

)
= O

(√
n−

(1−2η2)κ
2 + n

1
2+η

2κδµ

)
.

Therefore,

P
(
max
j∈G

∆j > O
(√

n−
(1−2η2)κ

2 + n
1
2+η

2κδµ

) ∣∣∣ D1

)
≤ O(mn− η2κ

2 ).

By applying Lemma 3.1 with ϵ =
√
n−

(1−2η2)κ
2 + n

1
2+η

2κδµ, we obtain that with probability at least 1−O(mn−
η2κ
2 ),

FDR(B̂) ≤ α+O
(√

n− (1−2η2 )κ
2 + n

1
2+η

2κδµ

)
.

B.5. Proof of Theorem 3.6

By the definition of the threshold L, one obtains

FDP =

∑
j∈G 1(Wj ≥ L)

1 ∨
∑
j∈[m] 1(Wj ≥ L)

=

∑
j∈[m] 1(Wj ≤ −L)

1 ∨
∑
j∈[m] 1(Wj ≥ L)

×
∑
j∈G 1(Wj ≥ L)∑

j∈[m] 1(Wj ≤ −L)
≤ αR(L), (11)

where R(L) =
∑

j∈G 1(Wj≥L)∑
j∈G 1(Wj≤−L) . The result follows if R(L)− 1 = o(1).

Denote G(t) = 1
|G|
∑
j∈G P(Wj ≥ t | D1) and G−(t) =

1
|G|
∑
j∈G P(Wj ≤ −t | D1). We will first provide two finite

sample results that uniformly control the ratio-type processes like G(t)
G−(t) .

Lemma B.4. Let rn = L1−η2
n (log 1

Ln
)

1
2 = O(n−

(1−η2)κ
2 (log n)

1
2 ) where 0 < η < 1. Assume that conditional on D1,

√
n∥µ̂− µ∗∥ = O(1). Uniformly for 0 ≤ t ≤ G−1

− (1/m),∣∣∣ G(t)
G−(t)

− 1
∣∣∣ ≤ O

(
rn +mn−

η2κ
2 + n

1
2 ∥µ∗ − µ̂∥

)
.

Lemma B.5. For any 1 < v < m be sufficiently large and 0 < δ < 1, we have with probability 1−O(v−(1−δ)),

sup
0≤t≤G−1(v/m)

∣∣∣[m0G(t)]
−1
∑
j∈G

1(Wj ≥ t)− 1
∣∣∣ ≲ v−δ/3, (12)

sup
0≤t≤G−1

− (v/m)

∣∣∣[m0G−(t)]
−1
∑
j∈G

1(Wj ≤ −t)− 1
∣∣∣ ≲ v−δ/3. (13)
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By the definition of the threshold rule, we have

L = inf
{
t ≥ 0 : 1 +

∑
j

1(Wj ≤ −t) ≤ αmax
(∑

j

1(Wj ≥ t), 1
)}
. (14)

We will first derive an upper bound of L so that Lemma B.4 and Lemma B.5 can be applied.

For any j ∈ G, fixed t1j = uj . For t∗ = supj∈G(2 log
1
Ln

u⊤
j Σuj)

1
2 +

√
n|u⊤

j (µ
∗ − µ̂)| = supj∈G∥uj∥ × Θ(

√
nδµ +√

log n), By Lemma B.1,

P(
∑
j∈G

1(Wj ≥ t∗) > 0 | D1) ≤
∑
j∈G

P(Wj ≥ t∗ | D1) ≲ m0n
−κ

2 ≤ mn−
κ
2 ,

P(
∑
j∈G

1(Wj ≤ −t∗) > 0 | D1) ≤
∑
j∈G

P(Wj ≤ −t∗ | D1) ≲ m0n
−κ

2 ≤ mn−
κ
2 .

Therefore
P(
∑
j∈G

1(Wj ≤ −t∗) = 0 | D1) = 1−O(mn−
κ
2 ), (15)

For the other side where j ∈ Bµ, denote vj =
√
n(x1j − µ̂). Observe that for j ∈ Bµ,

P(Wj < t∗ | D1) = P(n(x1j − µ̂)⊤(x2j − µ̂) < t∗ | D1)

=P(v⊤
j [
√
n(x2j − µ∗

j )] < t∗ − n(x1j − µ̂)⊤(µ∗
j − µ̂) | D1)

=P
(
v⊤
j (

√
n(x2j − µ∗

j ))√
vjΣjvj

<
t∗ − n(x1j − µ̂)⊤(µ∗

j − µ̂)√
vjΣjvj

∣∣∣∣ D1

)
By the condition on signals and the choice of t∗, the Berry-Esseen bound Lemma B.1 ensures that

P(Wj < t∗|D1) ≲ n−
κ
2 .

By taking the union bound, we obtain

P(
∑
j∈[m]

1(Wj ≥ t∗) ≥ ψm | D1) ≥ P(
∑
j∈Bµ

1(Wj ≥ t∗) ≥ ψm | D1) = 1−O(ψmn
−κ

2 ). (16)

Let t̃ = G−1
− (αψm

m ). By Lemma B.5, with probability at least 1 − O(ψ
−(1−δ)
m ), αψm

m = G−(t̃) = 1
m0

∑
j∈G 1(Wj ≤

−t̃)[1 +O(ψ
−δ/3
m )]. Hence combining with Equation 15, one obtains t̃ ≤ t∗. It also implies that

P(
∑
j∈[m]

1(Wj ≥ t̃) ≥ ψm | D1) ≥ P(
∑
j∈Bµ

1(Wj ≥ t̃) ≥ ψm | D1) = 1−O(ψmn
−κ

2 ). (17)

Therefore with probability at least 1−O(mn−
η2κ
2 + ψ

−(1−δ)
m + ψmn

−κ
2 ) = 1−O(mn−

η2κ
2 + ψ

−(1−δ)
m ),

1 +
∑
j∈[m]

1(Wj ≤ −t̃) = 1 +
∑
j∈G

1(Wj ≤ −t̃) = αψmm0

m[1 +O(ψ
−δ/3
m )]

≤ α
∑
j

1(Wj ≥ t̃).

Thus L ≤ t̃ = G−1
− (αψm

m ). Under the above event, one can apply Lemma B.4 and Lemma B.5 so that∑
j∈G 1(Wj ≥ L)∑
j∈G 1(Wj ≤ −L)

= 1 +O
(
n−

(1−η2)κ
2 (log n)

1
2 +mn−

η2κ
2 + n

1
2 ∥µ∗ − µ̂∥+ (αψm)−δ/3

)
.

Accordingly,

FDP ≤ α

[
1 +O

(
n−

(1−η2)κ
2 (log n)

1
2 +mn−

η2κ
2 + n

1
2 ∥µ∗ − µ̂∥+ (αψm)−δ/3

)]
. (18)

16



ByMI: Byzantine Machine Identification with FDR Control

B.6. Proof of Corollary 3.7

Corollary 3.7 follows from Equation (17).

B.7. Proof of Lemma B.4 & Lemma B.5

Proof of Lemma B.4. For any j ∈ G, fixed t1j = uj . By Lemma B.2, for 0 ≤ t ≤ η(2 log 1
Ln

u⊤
j Σuj)

1
2 +

√
nu⊤

j (µ
∗− µ̂),

P(Wj ≥ t | D1) = P(u⊤
j t2j ≥ t−

√
nu⊤

j (µ
∗ − µ̂) | D1) = Φ(

t−
√
nu⊤

j (µ∗−µ̂)

(u⊤
j Σuj)

1
2

)[1 +O(rn)] = Φ( t

(u⊤
j Σuj)

1
2
)[1 +O(rn +

n
1
2 ∥µ̂− µ∗∥)]. Similarly, for 0 ≤ t ≤ η(2 log 1

Ln
u⊤
j Σuj)

1
2 −

√
nu⊤

j (µ
∗ − µ̂),

P(Wj ≤ −t | D1) = Φ
(
− t

(u⊤
j Σuj)

1
2

)[
1 +O(rn + n

1
2 ∥µ̂− µ∗∥)

]
.

Else if η(2 log 1
Ln

u⊤
j Σuj)

1
2 − |

√
nu⊤

j (µ
∗ − µ̂)| ≤ t ≤ G−1

− (1/m), by the Berry-Esseen Inequality Lemma B.1,

P(Wj ≥ t | D1) ≤ P
(
u⊤
j t2j ≥ η(2 log

1

Ln
u⊤
j Σuj)

1
2

∣∣∣ D1

)
≲ Lη

2

n = O(n−
η2κ
2 ).

The same result holds for P(Wj ≤ −t | D1). Now for a fixed t > 0, we can divide j ∈ [m] into two sets by the above
conditions on uj . Let I0,1 = {j ∈ G : t ≤ η(2 log 1

Ln
u⊤
j Σuj)

1
2 −

√
n|u⊤

j (µ
∗ − µ̂)|} and I0,2 = G \ I0,1. One can obtain∣∣∣ G(t)

G−(t)
− 1
∣∣∣ = |

∑
j∈G P(Wj ≥ t | D1)− P(Wj ≤ −t | D1)|∑

j∈G P(Wj ≤ −t | D1)

≤
|
∑
j∈I0,1

P(Wj ≥ t | D1)− P(Wj ≤ −t | D1)|∑
j∈G P(Wj ≤ −t | D1)

+
|
∑
j∈I0,2

P(Wj ≥ t | D1)− P(Wj ≤ −t | D1)|∑
j∈G P(Wj ≤ −t | D1)

≤
|
∑
j∈I0,1

P(Wj ≥ t | D1)− P(Wj ≤ −t | D1)|∑
j∈I0,1

P(Wj ≤ −t | D1)

+
max(

∑
j∈I0,2

P(Wj ≥ t | D1),
∑
j∈I0,2

P(Wj ≤ −t | D1))

m0/m

≲rn + n
1
2 ∥µ∗ − µ̂∥+mLη

2

n = O
(
n−

(1−η2)κ
2 (log n)

1
2 +mn−

η2κ
2 + n

1
2 ∥µ∗ − µ̂∥

)
.

Proof of Lemma B.5. Let z0 < z1 < · · · < zs ≤ 1 and ti = G−1(zi) where z0 = v
m and zi = v

m (1 + ξ)i with
s = ⌊ log(v/m)

log(1+ξ) ⌋ with some sufficiently small constant ξ > 0. Note that G(ti)/G(ti+1) = zi/zi+1 = 1/(1 + ξ) = 1−O(ξ)

uniformly in i. It is therefore enough to derive the convergence rate of the supremum,

D = sup
0≤i≤s

∣∣∣∣∣
∑
j∈G{1(Wj ≥ ti)− P(Wj ≥ ti)}

m0G(ti)

∣∣∣∣∣.
Note that the process of variance satisfies,

D(t) = E
[{∑

j∈G
1(Wj ≥ t)− P(Wj ≥ t | D1)

}2 ∣∣∣ D1

]

=
∑
j∈G

E
[{

1(Wj ≥ t)− P(Wj ≥ t | D1)
}2 ∣∣∣ D1

]
≤ m0G(t).

We obtain

P(D ≥ a) ≤
∑

0≤i≤s

P

(∣∣∣∣
∑
j∈G{1(Wj ≥ ti)− P(Wj ≥ ti)}

m0G(ti)

∣∣∣∣ ≥ a

)

≤ 1

a2

∑
0≤i≤s

1

m0G(ti)
≲

m

a2m0vξ
≲

1

a2ξv
.
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Hence with probability at least 1−O( 1
a2ξv ),

sup
0≤t≤G−1(v/m)

∣∣∣[m0G(t)]
−1
∑
j∈G

1(Wj ≥ t)− 1
∣∣∣ ≲ a+ ξ,

Finally, we simplify the above result. Consider the case that ξ = a = v−δ/3, we have with probability at least 1−O(v−(1−δ)),

sup
0≤t≤G−1(v/m)

∣∣∣[m0G(t)]
−1
∑
j∈G

1(Wj ≥ t)− 1
∣∣∣ ≲ v−δ/3.

C. Pseudocode of ByMI
The following algorithm outlines the steps of the ByMI method.

Algorithm 1 The ByMI Procedure
Input: Machines {Mj}mj=0, θ

1: Randomly split the samples on Mj into two sets D(1)
j and D(2)

j of equal size n
2 , for j ∈ [m].

2: Compute the empirical gradients g1j(θ) and g2j(θ) based on D(1)
j and D(2)

j with θ, for j ∈ [m].
3: Adopt the robust mean algorithm A to obtain the robust mean estimator ĝ(θ) based on {g1j(θ)}mj=0.
4: Calculate the ranking scores {Wj}mj=1 according to (2).
5: Compute the threshold L in (3).

Output: B̂ = {Mj :Wj ≥ L}.

D. Additional Numerical Results
D.1. Details of the Implementation

All the experiments are conducted on an Ubuntu 20.04 LTS server with 64 Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz,
128G RAM and the R platform with version 4.0.2. The code is available at https://github.com/mywang99/ByMI.

D.2. Choice of Scale Matrix

Here we compare three choices of the scale matrix Ω = diag{σ̂−2
1 , . . . , σ̂−2

d }.

Choice 1. Take σ̂k = MAD
(
g
(k)
1 (θ), · · · , g(k)m (θ)

)
, k = 1, · · · , d, where g(k)j (θ) is the k-th component of gj(θ).

Choice 2. Adopt Ω−1 = diag(Σ̂0) where Σ̂0 is the sample covariance of the samples on the master machine M0.

Choice 3. Let (σ̂2
1 , . . . , σ̂

2
d)

⊤ = ĝ2(θ)− ĝ(θ), where ĝ2(θ) and ĝ(θ) are the robust mean estimators of E[g(θ)2] and
E[g(θ)] respectively.

In the comparison, we choose the filtering estimator as the robust aggregator. Table 2 presents the results of ByMI-Filter
when p = 50 and 100 under Scenario A in Section 4.1. The result shows that all the choices can achieve FDR control and
there is little difference in TPRs and Pa, which implies that ByMI is not sensitive to the scale estimator. Note that Choice 1
is adopted across all the experiments.

D.3. Results of Other Robust Estimators Combined with ByMI

In this section, we examine the performance of different ByMI-based methods and the scale matrix Ω−1 = diag{σ̂2
1 , . . . , σ̂

2
d}

is adopted here. In the simulation studies, we consider five robust mean estimators which are listed as follows.
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Table 2. FDR(%), TPR(%) and Pa(%) adopting different scale estimator choices when b = 0.15 under Scenario A.

p = 50 p = 100

Method FDR TPR Pa FDR TPR Pa

Choice 1 9.2 97.5 38.6 8.9 98.7 57.0
Choice 2 9.4 97.8 40.6 9.1 98.8 60.4
Choice 3 9.4 98.1 47.2 9.1 99.0 64.0

• MOM, the median of means estimator (Yin et al., 2018),

• VRMOM, the variance reduced median-of-means estimator (Tu et al., 2021),

• GEOM, the geometric median (Minsker, 2015),

• GD, the first-order method (Cheng et al., 2020),

• Filtering, the filtering algorithm (Diakonikolas et al., 2017; Lai et al., 2016; Zhu et al., 2022).

Figure 6 reports the FDR and TPR curves over the shift size b with the contamination level ϱ = 0.05 under Scenario A in
Section 4.1. As can be seen, the FDR levels of almost all ByMI-based methods are close to the nominal level α = 0.1.
In the high-dimensional case, ByMI combined with dimension-dependent robust estimators, such as GEOM, MOM and
VRMOM, fail to achieve high TPRs and give larger FDRs. With the superiority of dimension-agnostic property, ByMI-GD
and ByMI-Filter control FDRs better and their TPRs are also higher.

FDR TPR Pa

p =
 50

p =
 100

0.140 0.145 0.150 0.155 0.160 0.140 0.145 0.150 0.155 0.160 0.140 0.145 0.150 0.155 0.160

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

b
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Figure 6. FDR, TPR and Pa of ByMI-type methods over shift size b when ϱ = 0.05 and p = 50, 100 under Scenario A. The black dashed
lines indicate the FDR level α = 0.1.

We also consider the combination of ByMI and the Randon point method (Kamp et al., 2017). Table 3 reports the empirical
results of FDR, TPR and Pa under Scenario A when b = 0.15 based on 500 replications, demonstrating that the Radon
point method shows comparable performance to the geometric median.

D.4. Results on Real Data

In this section, we conduct more experiments on the MNIST, F-MNIST and CIFAR10 datasets in various settings. The
results of other ByMI-based methods are also reported.
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Table 3. FDR(%), TPR(%) and Pa (%) of ByMI-type methods when b = 0.15 under Scenario A.

p = 50 p = 100

Method FDR TPR Pa FDR TPR Pa

ByMI-Filter 9.5 97.7 39.4 9.6 98.7 57.0
ByMI-Filter+ 9.0 100.0 100.0 9.3 100.0 100.0
ByMI-GEOM 10.0 95.7 20.8 10.3 96.6 27.6
ByMI-Radon 10.3 95.6 18.8 10.6 96.8 28.6

D.4.1. RESULTS FOR THE DEEP LEARNING TASK

We try the convolution neural network used in Zhu et al. (2023) with the IPM attack and the MNIST dataset. The results of
FDR, TPR and Pa in the first iteration are summarized in Table 4 based on 50 repeats. Both ByMI-Filter and ByMI-Filter+
can control the FDR error and achieve high TPRs.

In theory, the problem is that the dimension d of the gradients here will be enormous. In this case, the projection-based
alternatives like ByMI-Filter+ (in which we project the d-variate score to one dimension) can still be valid. For the ByMI
method where Ω is the identity matrix or with full-rank, the mean estimation error δµ can be large and it brings some
difficulties to obtain the FDR control theory. However, the results in Table 4 indicate that ByMI remains effective in
numerical experiments. This could be attributed to the fact that the matrix comprising all sample gradients (scores) of the
deep neural network has a low-rank structure, which implies a relatively small effective dimension.

Table 4. FDR(%), TPR(%) and Pa (%) of the IPM attack for the MNIST dataset in the deep learning task.

ϱ = 0.1 ϱ = 0.2

Method FDR TPR Pa FDR TPR Pa

ByMI-Filter 0.7 70.0 70.0 5.0 80.0 80.0
ByMI-Filter+ 0.7 60.0 60.0 3.6 80.0 80.0
ByMI-GEOM 1.3 70.0 70.0 9.4 70.0 70.0
Krum 48.3 66.4 60.0 44.3 69.1 65.0
FABA 48.3 66.4 50.0 65.6 42.8 40.0
Zeno 45.6 70.0 50.0 45.7 67.4 40.0

D.4.2. EXTRA RESULTS ON BYZANTINE MACHINE IDENTIFICATION

In the following experiments, we additionally compute the estimation error. To be specific, we use the average of the local
gradients on the normal machines as the oracle g∗ and measure the estimation error by the ℓ2-norm loss ∥ĝ − g∗∥ of the
aggregated gradient estimators.

Table 5 shows the performance of the proposed ByMI method in conjunction with various robust estimators and other
detection methods under the OOD attack when the contamination level ϱ = 0.15 and 0.2. Similar to the experiments in
Section 4.2, we summarize the results in the first iteration. For the ByMI-based methods, ByMI combined with dimension-
agnostic robust estimators, ByMI-Filter, ByMI-Filter+ and ByMI-GD, perform well reasonably. Meanwhile, ByMI combined
with other less robust estimators, such as MOM, VRMOM and GEOM, are unable to control the FDR at the desired level.
Due to the failure of p-value in the non-asymptotic environment, RMDP-BH detects almost all the machines as Byzantine
machines. Compared to ByMI-based methods, distance-based methods (Krum, FABA and Zeno) give larger FDRs and
lower TPRs. A similar phenomenon can be observed in Table 6, which summarizes results against different contamination
ratios under the IPM attack based on 500 replications.

D.4.3. RESULTS FOR THE RANDOM GRADIENT ATTACK

Besides the OOD attack and IPM attack, we conduct experiments on the random gradient attack. In detail, we replace the
gradient gi of the sample (yi,xi) on Byzantine machines by a Gaussian vector Nd(ḡ + 0.8ud, 0.7 diag(sg)) where ḡ is
the sample mean vector, sg corresponds to the sample variances of all the gradients {gi} and ud is uniformly sampled
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Table 5. FDR(%), TPR(%), Pa(%), |B̂| and Error (‰) of the OOD attack.

ϱ = 0.15 ϱ = 0.2

Dataset Method FDR TPR Pa |B̂| Error FDR TPR Pa |B̂| Error

MNIST

ByMI-Filter 7.9 99.0 94.8 23.8 4.1 8.9 99.4 96.2 31.9 5.4
ByMI-Filter+ 7.5 99.8 99.8 23.9 3.3 8.9 100.0 100.0 32.0 4.7
ByMI-GD 8.2 98.9 94.6 23.9 4.2 9.1 99.4 96.2 31.9 5.5
ByMI-GEOM 16.3 97.6 90.8 26.4 7.1 27.9 98.1 90.6 41.4 12.3
ByMI-VRMOM 16.6 98.0 92.2 26.6 7.0 24.5 98.6 93.2 39.3 11.0
ByMI-MOM 16.9 98.1 92.4 26.7 7.0 24.9 98.7 93.6 39.6 11.1
RMDP-BH 82.6 100.0 100.0 132.9 170.9 78.0 100.0 100.0 135.7 184.5
Krum 21.6 96.2 81.4 27.0 9.4 22.1 96.7 84.8 36.0 11.9
FABA 20.5 97.6 90.6 27.0 8.6 21.0 98.0 92.2 36.0 10.6
Zeno 23.0 94.5 75.2 27.0 10.1 24.6 93.6 69.4 36.0 14.0

F-MNIST

ByMI-Filter 8.3 94.1 84.0 22.9 7.3 10.1 97.1 83.4 31.6 8.5
ByMI-Filter+ 8.3 96.3 93.6 23.4 6.0 9.4 99.5 99.0 32.1 6.4
ByMI-GD 9.0 93.4 82.4 22.9 7.9 10.9 96.4 81.2 31.7 9.2
ByMI-GEOM 14.9 91.0 76.0 24.4 11.2 24.4 92.2 70.0 37.2 17.1
ByMI-VRMOM 14.8 92.5 79.6 24.7 10.4 22.1 94.9 75.0 36.5 14.4
ByMI-MOM 15.1 92.6 81.2 24.8 10.5 22.3 95.1 76.0 36.7 14.4
RMDP-BH 62.2 98.6 96.0 74.7 47.7 55.2 98.7 96.6 77.6 42.0
Krum 30.2 85.6 57.2 27.0 18.0 28.5 88.7 60.2 36.0 21.4
FABA 27.8 88.6 71.0 27.0 15.4 28.6 88.6 72.0 36.0 21.0
Zeno 34.0 81.0 43.6 27.0 20.4 37.1 78.1 34.6 36.0 30.8

CIFAR10

ByMI-Filter 7.3 87.0 74.0 17.2 11.8 6.7 84.2 69.4 22.0 16.5
ByMI-Filter+ 8.7 91.9 88.2 18.4 9.4 8.4 95.1 92.8 25.2 10.1
ByMI-GD 7.2 87.2 75.0 17.2 11.6 6.7 85.7 70.0 22.4 15.5
ByMI-GEOM 13.6 79.1 64.4 17.5 19.3 21.7 74.4 57.2 25.8 32.0
ByMI-VRMOM 13.0 82.7 67.0 18.0 17.0 17.6 77.6 61.6 24.5 27.5
ByMI-MOM 14.4 83.6 68.0 18.6 17.1 19.5 78.6 62.4 25.5 27.7
RMDP-BH 49.8 84.2 76.8 35.3 32.7 49.1 76.0 69.6 37.8 42.3
Krum 51.7 61.7 36.6 23.0 39.2 53.4 58.2 37.6 30.0 56.1
FABA 51.8 61.6 44.6 23.0 38.3 54.8 56.6 45.0 30.0 56.8
Zeno 57.8 54.0 26.6 23.0 43.9 61.1 48.6 22.2 30.0 65.4

from the unit sphere. Table 7 reports the empirical results of FDR, TPR and Pa under the random gradient attack with
different contamination levels based on 500 replications. Similar to the OOD attack and IPM attack, ByMI combined with
dimension-agnostic robust estimators, ByMI-Filter, ByMI-FIlter+ and ByMI-GD, perform well reasonably. In contrast,
RMDP-BH and distance-based methods (Krum, FABA and Zeno) do little to identify the Byzantine machines.

D.4.4. RESULTS FOR LARGER CONTAMINATION LEVELS

We conduct more experiments on the three real datasets under the three attacks with ϱ = 0.3, 0.35, 0.4, 0.45. All experiments
are repeated 500 times. From Table 9, we can see that the ByMI-type methods obtain high TPRs. ByMI-Filter controls
the FDR well when ϱ increases to 0.4. ByMI-Filter+ and ByMI-GD can control the FDR even when ϱ = 0.45. Similar
phenomenons can be observed in Table 8 and Table 10.
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Table 6. FDR(%), TPR(%), Pa(%), |B̂| and Error (‰) of the IPM attack when the attack parameter a = 0.2.

ϱ = 0.15 ϱ = 0.2

Dataset Method FDR TPR Pa |B̂| Error FDR TPR Pa |B̂| Error

MNIST

ByMI-Filter 7.5 100.0 100.0 23.9 3.6 8.3 100.0 100.0 31.8 4.9
ByMI-Filter+ 7.9 100.0 100.0 24.1 3.4 8.7 100.0 100.0 32.0 4.6
ByMI-GD 8.0 100.0 100.0 24.1 3.7 8.7 99.8 99.8 31.9 5.2
ByMI-GEOM 21.6 96.2 96.2 28.2 9.5 37.3 93.4 93.4 46.6 18.9
ByMI-VRMOM 31.2 97.4 97.4 33.1 11.5 48.7 97.4 97.4 59.2 21.6
ByMI-MOM 38.5 98.2 98.2 37.8 13.4 60.5 99.0 99.0 76.0 28.3
RMDP-BH 86.3 82.2 82.2 130.4 201.4 85.4 71.0 71.0 130.2 252.0
Krum 68.1 39.1 27.2 27.0 47.4 71.6 35.2 25.6 36.0 72.2
FABA 96.5 4.3 2.8 27.0 74.2 98.9 1.4 1.0 36.0 108.4
Zeno 95.4 5.7 2.6 27.0 72.2 97.9 2.6 1.2 36.0 105.3

F-MNIST

ByMI-Filter 7.7 100.0 100.0 24.0 4.4 8.6 99.8 99.8 31.9 6.4
ByMI-Filter+ 8.1 100.0 100.0 24.1 4.2 9.7 100.0 100.0 32.3 6.2
ByMI-GD 8.5 100.0 100.0 24.2 4.7 9.1 100.0 100.0 32.1 6.4
ByMI-GEOM 20.7 95.8 95.8 27.8 11.3 36.0 92.8 92.8 45.4 22.7
ByMI-VRMOM 26.2 98.0 98.0 30.7 11.8 41.6 95.8 95.8 51.4 23.2
ByMI-MOM 35.0 98.6 98.6 35.8 14.4 57.1 98.8 98.8 70.8 31.2
RMDP-BH 77.7 62.6 62.6 71.5 85.1 85.4 38.6 38.6 74.2 141.3
Krum 51.7 59.3 47.8 27.0 41.3 53.5 57.7 48.6 36.0 61.0
FABA 81.7 22.4 15.6 27.0 74.8 94.5 6.9 5.4 36.0 128.3
Zeno 76.5 28.9 16.2 27.0 67.5 88.2 14.6 5.6 36.0 114.4

CIFAR10

ByMI-Filter 7.4 100.0 100.0 19.6 5.4 6.5 100.0 100.0 25.9 6.3
ByMI-Filter+ 9.1 100.0 100.0 20.0 6.0 8.1 100.0 100.0 26.3 7.1
ByMI-GD 7.5 100.0 100.0 19.6 5.4 6.6 100.0 100.0 25.9 6.5
ByMI-GEOM 22.4 96.8 96.8 23.6 15.2 40.4 96.4 96.4 42.3 30.6
ByMI-VRMOM 23.4 98.0 98.0 24.2 14.8 36.8 98.4 98.4 39.9 25.9
ByMI-MOM 41.3 99.4 99.4 33.4 22.8 64.1 99.8 99.8 70.2 53.3
RMDP-BH 86.0 2.0 2.0 18.8 109.4 89.2 0.2 0.2 19.9 146.9
Krum 74.5 32.5 22.8 23.0 79.2 88.4 14.5 11.6 30.0 144.3
FABA 98.3 2.1 1.8 23.0 112.0 100.0 0.0 0.0 30.0 162.0
Zeno 97.1 3.7 1.8 23.0 108.7 99.9 0.1 0.0 30.0 159.7

22



ByMI: Byzantine Machine Identification with FDR Control

Table 7. FDR(%), TPR(%) and Pa(%) of the random gradient attack with different contamination levels.

MNIST F-MNIST CIFAR10

Method FDR TPR Pa FDR TPR Pa FDR TPR Pa

ϱ = 0.1

ByMI-Filter 6.0 100.0 100.0 6.9 99.4 99.2 5.6 100.0 100.0
ByMI-Filter+ 6.6 98.0 98.0 6.4 82.6 82.4 7.1 100.0 100.0
ByMI-GD 6.5 99.8 99.8 7.2 99.0 99.0 6.0 100.0 100.0
ByMI-GEOM 9.2 99.0 98.8 10.0 98.2 98.0 9.9 100.0 100.0
ByMI-VRMOM 11.9 99.1 99.0 12.6 98.4 98.4 10.7 100.0 100.0
ByMI-MOM 13.5 99.2 99.2 14.7 98.4 98.4 15.5 100.0 100.0
RMDP-BH 90.3 94.6 94.6 90.2 45.4 44.8 82.5 10.5 9.8
Krum 87.8 15.7 5.8 89.7 13.3 4.2 82.5 21.9 8.6
FABA 100.0 0.1 0.0 99.3 0.9 0.0 99.9 0.1 0.0
Zeno 99.8 0.3 0.0 98.9 1.4 0.0 99.6 0.5 0.0

ϱ = 0.15

ByMI-Filter 6.8 100.0 100.0 7.1 100.0 100.0 7.3 100.0 100.0
ByMI-Filter+ 8.6 100.0 100.0 8.9 99.6 99.6 10.3 100.0 100.0
ByMI-GD 7.3 100.0 100.0 7.9 100.0 100.0 7.5 100.0 100.0
ByMI-GEOM 18.6 98.4 98.4 17.8 95.0 94.8 20.5 99.4 99.2
ByMI-VRMOM 24.7 99.8 99.8 21.7 98.0 98.0 21.2 99.4 99.4
ByMI-MOM 29.8 100.0 100.0 29.4 98.2 98.2 36.5 99.8 99.8
RMDP-BH 87.2 83.2 82.8 91.5 21.2 20.6 85.7 0.8 0.6
Krum 81.0 23.4 4.0 84.3 19.3 3.0 73.2 34.3 19.0
FABA 100.0 0.0 0.0 99.9 0.2 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 99.6 0.5 0.0 99.8 0.2 0.0

ϱ = 0.2

ByMI-Filter 7.4 100.0 100.0 7.8 99.8 99.8 6.7 100.0 100.0
ByMI-Filter+ 9.7 100.0 100.0 10.3 100.0 100.0 8.7 100.0 100.0
ByMI-GD 7.9 100.0 100.0 8.5 99.6 99.6 7.0 100.0 100.0
ByMI-GEOM 34.2 94.2 94.2 31.7 88.8 88.4 38.6 99.2 99.0
ByMI-VRMOM 42.3 98.5 98.2 35.0 96.1 95.8 34.1 99.8 99.8
ByMI-MOM 52.3 99.2 99.2 50.3 98.6 98.6 59.5 100.0 100.0
RMDP-BH 86.0 68.2 67.4 95.2 5.8 5.6 89.2 0.0 0.0
Krum 88.4 14.4 7.6 87.5 15.5 5.8 94.9 6.4 4.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
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Table 8. FDR(%), TPR(%) and Pa(%) of the OOD attack with larger contamination levels.

MNIST F-MNIST CIFAR10

Method FDR TPR Pa FDR TPR Pa FDR TPR Pa

ϱ = 0.3

ByMI-Filter 8.6 98.4 91.4 9.0 92.5 76.8 8.2 84.2 66.6
ByMI-Filter+ 8.9 100.0 100.0 9.7 99.6 99.2 9.9 98.8 97.4
ByMI-GD 9.0 98.5 92.0 9.4 92.8 75.6 8.3 84.9 67.0
ByMI-GEOM 51.9 95.5 79.6 43.4 84.0 56.8 40.3 69.9 41.4
ByMI-VRMOM 45.0 96.4 83.2 36.4 86.7 62.4 32.8 73.8 46.8
ByMI-MOM 45.2 96.5 83.4 37.0 87.3 63.6 34.7 75.7 49.8
RMDP-BH 67.1 99.8 98.6 51.3 93.1 83.6 62.8 56.9 38.8
Krum 24.9 92.1 82.6 39.7 74.0 59.8 76.8 28.3 25.4
FABA 24.8 92.3 89.2 42.2 70.9 63.2 73.3 32.5 29.6
Zeno 31.4 84.2 40.8 47.7 64.2 12.0 74.8 30.6 5.0

ϱ = 0.35

ByMI-Filter 10.0 98.0 89.6 10.3 91.8 71.8 9.2 81.8 57.4
ByMI-Filter+ 9.5 100.0 99.8 9.6 99.8 99.2 9.3 99.1 98.0
ByMI-GD 9.4 98.3 91.4 10.1 92.8 72.2 8.7 84.5 63.0
ByMI-GEOM 56.0 94.6 74.2 49.7 83.6 51.0 44.6 67.4 37.4
ByMI-VRMOM 51.2 95.6 77.6 44.0 85.7 54.4 38.9 70.3 41.6
ByMI-MOM 51.4 95.7 77.8 44.8 86.6 56.4 41.7 72.9 43.4
RMDP-BH 62.2 99.4 96.0 50.5 88.4 69.6 71.6 47.1 27.8
Krum 36.5 77.0 75.2 61.7 46.4 45.6 88.6 14.0 14.0
FABA 31.6 82.9 80.8 58.1 50.7 47.8 81.7 22.5 22.0
Zeno 38.2 74.9 15.0 55.9 53.4 4.4 80.6 23.9 2.2

ϱ = 0.4

ByMI-Filter 12.4 98.6 87.2 12.8 88.6 64.0 11.4 78.7 53.0
ByMI-Filter+ 9.3 100.0 100.0 10.2 99.9 99.8 9.8 99.5 98.0
ByMI-GD 9.4 99.3 92.2 10.4 91.2 72.0 9.1 83.5 62.6
ByMI-GEOM 56.7 96.0 73.0 52.6 82.4 48.6 47.9 69.7 38.0
ByMI-VRMOM 54.0 96.6 77.6 48.5 84.1 53.0 44.1 71.7 42.0
ByMI-MOM 54.1 96.7 78.0 49.2 84.5 53.6 45.1 73.5 44.4
RMDP-BH 57.8 99.5 96.0 54.8 83.2 55.0 75.3 44.4 20.4
Krum 57.7 51.6 51.6 87.7 15.0 15.0 98.2 2.2 2.2
FABA 42.6 70.1 69.2 76.2 29.1 27.6 91.7 10.2 10.0
Zeno 44.5 67.7 5.6 64.4 43.4 0.4 85.8 17.4 0.0

ϱ = 0.45

ByMI-Filter 23.0 95.7 76.0 23.3 86.5 49.4 16.1 72.3 42.0
ByMI-Filter+ 9.7 100.0 100.0 10.2 99.6 99.4 12.2 97.5 96.0
ByMI-GD 14.3 98.5 88.8 12.8 93.6 69.8 10.1 82.5 61.2
ByMI-GEOM 53.7 93.7 51.4 51.7 83.0 26.4 49.5 68.4 25.4
ByMI-VRMOM 52.3 95.0 66.6 49.8 85.8 40.4 46.0 71.2 36.8
ByMI-MOM 52.4 95.2 66.8 50.3 86.5 40.6 48.3 73.0 38.2
RMDP-BH 53.8 98.9 90.4 61.7 76.6 42.2 81.6 35.6 13.2
Krum 99.8 0.2 0.2 100.0 0.0 0.0 100.0 0.0 0.0
FABA 68.6 38.0 37.2 95.3 5.7 5.2 97.3 3.3 3.2
Zeno 59.5 48.9 0.0 73.7 31.7 0.0 89.0 13.6 0.0
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Table 9. FDR(%), TPR(%) and Pa(%) of the IPM attack with larger contamination levels.

MNIST F-MNIST CIFAR10

Method FDR TPR Pa FDR TPR Pa FDR TPR Pa

ϱ = 0.3

ByMI-Filter 9.0 99.8 99.8 9.1 100.0 100.0 8.1 100.0 100.0
ByMI-Filter+ 8.9 100.0 100.0 9.4 100.0 100.0 9.4 100.0 100.0
ByMI-GD 8.7 100.0 100.0 9.0 100.0 100.0 8.0 99.8 99.8
ByMI-GEOM 66.6 99.0 99.0 65.9 98.4 98.4 67.8 99.6 99.6
ByMI-VRMOM 65.5 99.6 99.6 62.0 98.0 98.0 57.3 97.6 97.6
ByMI-MOM 68.7 100.0 100.0 68.3 100.0 100.0 68.9 100.0 100.0
RMDP-BH 95.4 15.4 15.4 96.8 7.8 7.8 97.2 0.0 0.0
Krum 100.0 0.0 0.0 94.3 7.0 7.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 99.5 0.6 0.6 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 98.3 2.1 0.6 100.0 0.0 0.0

ϱ = 0.35

ByMI-Filter 9.9 99.4 99.4 10.1 99.0 99.0 9.4 100.0 100.0
ByMI-Filter+ 9.2 100.0 100.0 9.9 100.0 100.0 9.9 100.0 100.0
ByMI-GD 8.7 100.0 100.0 9.3 99.6 99.6 8.3 100.0 100.0
ByMI-GEOM 64.2 100.0 100.0 63.9 100.0 100.0 64.8 100.0 100.0
ByMI-VRMOM 62.8 99.8 99.8 60.9 99.4 99.4 58.3 99.0 99.0
ByMI-MOM 64.3 100.0 100.0 64.2 100.0 100.0 64.8 100.0 100.0
RMDP-BH 99.2 2.4 2.4 98.7 2.4 2.4 99.2 0.0 0.0
Krum 100.0 0.0 0.0 99.7 0.4 0.4 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 99.6 0.4 0.0 100.0 0.0 0.0

ϱ = 0.4

ByMI-Filter 11.9 98.6 98.6 11.5 98.4 98.4 11.0 99.8 99.8
ByMI-Filter+ 9.7 100.0 100.0 9.8 100.0 100.0 9.6 100.0 100.0
ByMI-GD 9.7 100.0 100.0 9.3 99.6 99.6 8.3 100.0 100.0
ByMI-GEOM 60.3 100.0 100.0 60.2 100.0 100.0 60.4 100.0 100.0
ByMI-VRMOM 58.7 100.0 100.0 57.4 99.6 99.6 55.8 99.6 99.6
ByMI-MOM 60.0 100.0 100.0 59.9 100.0 100.0 60.2 100.0 100.0
RMDP-BH 99.7 0.8 0.8 100.0 0.0 0.0 100.0 0.0 0.0
Krum 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

ϱ = 0.45

ByMI-Filter 18.7 88.4 88.4 18.1 89.0 89.0 14.4 98.2 98.2
ByMI-Filter+ 10.0 100.0 100.0 9.8 100.0 100.0 10.1 100.0 100.0
ByMI-GD 9.6 100.0 100.0 9.9 99.8 99.8 8.8 99.8 99.8
ByMI-GEOM 54.9 100.0 100.0 54.8 100.0 100.0 55.5 100.0 100.0
ByMI-VRMOM 53.6 100.0 100.0 52.6 99.6 99.6 51.5 99.4 99.4
ByMI-MOM 54.8 100.0 100.0 54.7 100.0 100.0 55.5 100.0 100.0
RMDP-BH 99.6 0.8 0.8 100.0 0.0 0.0 100.0 0.0 0.0
Krum 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
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Table 10. FDR(%), TPR(%) and Pa(%) of the random gradient attack with larger contamination levels.

MNIST F-MNIST CIFAR10

Method FDR TPR Pa FDR TPR Pa FDR TPR Pa

ϱ = 0.3

ByMI-Filter 8.0 100.0 100.0 8.1 100.0 100.0 7.8 100.0 100.0
ByMI-Filter+ 9.9 100.0 100.0 9.8 100.0 100.0 10.1 100.0 100.0
ByMI-GD 8.5 100.0 100.0 8.6 99.8 99.8 8.0 100.0 100.0
ByMI-GEOM 66.3 98.8 98.8 67.0 93.6 93.6 67.4 100.0 100.0
ByMI-VRMOM 64.2 98.8 98.8 58.5 91.0 90.8 55.8 99.4 99.0
ByMI-MOM 67.7 100.0 100.0 67.3 99.6 99.6 68.6 100.0 100.0
RMDP-BH 95.4 15.6 14.6 97.9 0.2 0.2 97.8 0.0 0.0
Krum 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

ϱ = 0.35

ByMI-Filter 8.8 100.0 100.0 8.9 99.6 99.6 7.4 100.0 100.0
ByMI-Filter+ 10.0 100.0 100.0 10.0 100.0 100.0 9.9 100.0 100.0
ByMI-GD 8.5 100.0 100.0 8.7 99.8 99.8 7.2 100.0 100.0
ByMI-GEOM 64.1 100.0 100.0 63.9 100.0 100.0 64.7 100.0 100.0
ByMI-VRMOM 62.6 99.2 99.2 60.2 96.6 96.0 57.2 99.0 99.0
ByMI-MOM 63.9 100.0 100.0 63.7 100.0 100.0 64.6 100.0 100.0
RMDP-BH 98.2 5.2 4.6 99.6 0.0 0.0 99.6 0.0 0.0
Krum 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

ϱ = 0.4

ByMI-Filter 9.9 99.2 99.0 10.4 96.8 96.6 9.4 99.8 99.8
ByMI-Filter+ 10.1 100.0 100.0 10.0 100.0 100.0 10.1 100.0 100.0
ByMI-GD 8.4 100.0 100.0 9.0 100.0 100.0 7.9 100.0 100.0
ByMI-GEOM 60.1 100.0 100.0 60.0 100.0 100.0 60.3 100.0 100.0
ByMI-VRMOM 58.5 100.0 100.0 57.4 98.2 98.2 55.5 99.4 99.2
ByMI-MOM 59.7 100.0 100.0 59.6 100.0 100.0 60.1 100.0 100.0
RMDP-BH 99.5 1.2 1.2 99.8 0.0 0.0 100.0 0.0 0.0
Krum 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

ϱ = 0.45

ByMI-Filter 11.6 97.6 97.4 12.8 93.2 92.8 10.9 99.2 99.2
ByMI-Filter+ 10.1 100.0 100.0 10.0 100.0 100.0 10.0 100.0 100.0
ByMI-GD 9.0 100.0 100.0 9.4 99.8 99.8 8.3 100.0 100.0
ByMI-GEOM 54.7 100.0 100.0 54.6 100.0 100.0 55.5 100.0 100.0
ByMI-VRMOM 53.6 100.0 100.0 52.6 99.4 99.4 52.3 99.1 98.8
ByMI-MOM 54.6 100.0 100.0 54.5 100.0 100.0 55.4 100.0 100.0
RMDP-BH 99.8 0.4 0.4 100.0 0.0 0.0 100.0 0.0 0.0
Krum 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
FABA 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Zeno 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
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