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Figure 1: Overview of the THEval benchmark. We have generated talking head videos by 17
both, state-of-the-art video- and audio-driven methods, based on a dataset of over 5,000 videos
spanning, resulting in 85,000 videos. We conduct a user study which demonstrates poor alignment
between existing metrics (left red box) and human ratings. Motivated by this, we proceed to introduce
the evaluation framework THEval, including 8 metrics related to (i) quality, (ii) naturalness, and
(iii) synchronization (center). These metrics are combined into a final score (right green box) that
showcases a high correlation of 0.870 with human ratings, thereby constituting a new benchmark for
evaluation of talking head videos.

ABSTRACT

Video generation has achieved remarkable progress, with generated videos increas-
ingly resembling real ones. However, the rapid advance in generation has outpaced
the development of adequate evaluation metrics. Currently, the assessment of
talking head generation primarily relies on limited metrics, evaluating general
video quality, lip synchronization, and on conducting user studies. Motivated by
this, we propose a new evaluation framework comprising 8 metrics related to three
dimensions (i) quality, (ii) naturalness, and (iii) synchronization. In selecting
the metrics, we place emphasis on efficiency, as well as alignment with human
preferences. Based on this considerations, we streamline to analyze fine-grained
dynamics of head, mouth, and eyebrows, as well as face quality. Our extensive
experiments on 85,000 videos generated by 17 state-of-the-art models suggest
that while many algorithms excel in lip synchronization, they face challenges with
generating expressiveness and artifact-free details. These videos were generated
based on a novel real dataset, that we have curated, in order to mitigate bias of
training data. Our proposed benchmark framework is aimed at evaluating the
improvement of generative methods. Original code, dataset and leaderboards will
be publicly released and regularly updated with new methods, in order to reflect
progress in the field.
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1 INTRODUCTION

Generative models have witnessed remarkable progress and are currently able to generate high-
resolution, highly realistic images (Xu et al., 2024b; Xue et al., 2024) and videos (Wang et al.,
2024b;a). However, the rapid advancement in generation has outpaced the development of adequate
evaluation metrics, see details on existing metrics and their limitations in Appendix F. Prominent
metrics in image quality evaluation, such as the Fréchet Inception Distance (FID), Inception Score
(IS), and Learned Perceptual Image Patch Similarity (LPIPS) are limited in capturing quality and
realism in generated data. Despite their limitations, most recent works in image generation are
predominantly evaluated by the means of FID and IS (Xu et al., 2024b; Yang et al., 2024), as well as
human user studies (Shi et al., 2024; Chen et al., 2024b).

Video quality evaluation encounters similar challenges as image quality assessment, primarily
relying on metrics such as FID, Fréchet Video Distance (FVD), and Inception Score (IS) (Wang
et al., 2024a; Qing et al., 2024), which have limitations for high-quality videos. These metrics
often omit motion quality and temporal coherence, necessitating human evaluation for such aspects.
Alternative metrics (Liu et al., 2024; Huang et al., 2024) have been proposed for general video quality
evaluation, assessing imaging and aesthetic quality, as well as for background consistency and motion
smoothness in the context of temporal evaluation.

Deviating from general text-based video generation, talking head (TH) generation involves an
audio-speech sequence, employed to animate a face image. Evaluating this specific setting requires
assessment of global image quality, as well as the quality of facial motions, including lip synchroniza-
tion, facial expression, and head pose movement, all contributing to the video’s overall naturalness.
Currently, evaluations (Xu et al., 2024a; Chen et al., 2024c) focus on two main parameters: image
quality, measured by metrics including FID, FVD, SSIM, and PSNR, which share issues found in
other video generation tasks, as well as lip synchronization quality, assessed using Euclidean distances
between landmarks or scores from the pretrained Syncnet neural network (Chung & Zisserman, 2016).
However, studies have shown that Syncnet is unstable (Yaman et al., 2024b) and sensitive to factors
such as mouth cropping and head pose. Additionally, the commonly used Syncnet confidence score
(LSE-C) and distance (LSE-D) have been found to correlate poorly with human preferences (Zhang
et al., 2024).

Motivated by the above and towards addressing the challenges of evaluating TH videos, we propose a
new framework, referred to as THEVAL. Our main contributions include the following.

• We introduce THEVAL, a new framework with 8 fine-grained metrics across three dimen-
sions (i) quality, (ii) naturalness, and (iii) synchronization that shows a Spearman correlation
coefficient of ρ = 0.870 between our Final Score and human ratings.

• We release a new, challenging evaluation dataset of over 5000 videos designed to test model
generalization on unseen videos.

• Through an extensive benchmark of 17 SOTA audio- and video-driven models, and provide
a detailed analysis of their strength and weaknesses.

• We conduct a user study, where participants compare (a) and (b), showcasing that THEval
strongly correlates with human preferences. It also reveals that all current metrics do not
well correlate with user preferences.

Ultimately, we here make the case that existing metrics for evaluating talking head videos are highly
limited and proceed to propose a novel evaluation framework THEval (see Figure 1), which aligns
with human preferences. THEval is intended for researchers and practitioners in the field of talking
head generation, providing a tool that identifies remaining challenges and fosters progress. Towards
this, We will make our benchmark publicly available, which includes dataset, code, and a live
leaderboard.

2 RELATED WORK

2.1 TALKING HEAD VIDEO GENERATION

TH video generation can be video or audio-driven. Video-driven methods animate a face image
using a driving video, effectively replacing the identity in the original footage. Early techniques

2
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utilized generative adversarial networks (GAN)-inversion or motion flow, while recent approaches
focus on directly controlling the latent space (Ni et al., 2023; Wang et al., 2024c). Such methods
tend to outperform audio-driven methods, as they reconstruct the motion and therefore encompass
fewer degrees of freedom. In contrast, audio-driven methods entail fewer constraints in their effort
to reproduce lip motion, expression, and head pose corresponding to the audio input. Text-driven
models (Wang et al., 2022a; Li et al., 2021) commonly convert text to audio or phonemes before
generating video, and therefore fall in this context under the category of audio-driven methods.

In this paper, we focus on audio- and video-driven TH generation that animate face images in RGB
space (Zhou et al., 2021; Wang et al., 2023), employing landmarks (Suzhen et al., 2021; Gururani
et al., 2023), or face mesh representations (Zhang et al., 2021; Thies et al., 2020). While some
methods produce 3D meshes, we note that THEval focuses solely on RGB videos. Audio-driven
methods can be based on CNNs, LSTMs, or more recent diffusion models (Yu et al., 2023a;b; Shen
et al., 2023). Challenges in generation of TH have to do with accurate lip synchronization, as well as
realistic face appearance, expressions and head movements. While state-of-the-art methods improve
in generating related videos, evaluating such aspects remains an open challenge.

2.2 EVALUATION OF TALKING HEAD VIDEOS

Image quality based metrics. Currently image quality is evaluated with metrics such as FID,
SSIM, PSNR (Xu et al., 2024a; Chen et al., 2024c). FID compares the probability density dis-
tributions of real and generated images, SSIM measures the similarity between real and gen-
erated images, and PSNR evaluates noise levels in the output videos. Such metrics face chal-
lenges with complex generated videos and are impacted by factors that do not affect video quality.

Final Score

Us
er

 V
ot

es

= 0.870

Lia-X
OmniAvatar
X-Portrait
Liveportrait
Echomimic

Hallo2
EmoPortrait
Controltalk
Sadtalker

Dimitra
MCNet
Lia
DaGan

FOM
Real3dPortrait
Wav2lip
Float

Figure 2: THEval–Human Correlation. A high
Spearman correlation coefficient (ρ = 0.870) con-
firms THEval’s strong alignment with human rat-
ings. Each point represents a human preference
for a state-of-the-art model win rate (y-axis) versus
its THEval score (x-axis). This validation enables
THEval to serve as an efficient proxy for costly
user studies.

Moreover, these metrics often do not align
with human ratings for high-quality images and
videos. In the context of audio-driven TH gen-
eration, experiments typically use small subsets
of videos (a few hundred to a few thousand) in
inference for efficiency. However, metrics such
as FID (and by extension FVD) can be biased
when assessed on limited samples, which may
not provide a sufficient basis for generalization.

Facial landmark based metrics. The LMD-
F and LMD-M metrics assess facial expres-
sion and head movement using facial landmarks,
showing better correlation with human evalua-
tions than other metrics (Zhang et al., 2024).
However, they impart significant limitations.
LMD-M penalizes small temporal lags that hu-
man evaluators might not notice, whereas LMD-
F imposes strong penalties for differences in
head motion and expression between generated
videos and ground truth. This penalization is
not justified as head motion and facial expres-
sion exhibit only weak correlation with audio
sequences. We note that naturalness yields high
human ratings, even in the presence of such dis-
crepancies. Nevertheless, LMD metrics remain
widely adopted, and the LMD-F variant is some-
times employed in evaluations involving real
head poses, where it often produces favorable
outcomes (Ma et al., 2023a;b).

Syncnet metrics. The most prominent metrics for lip synchronization are the Syncnet distance (LSE-
D) and confidence score (LSE-C). Syncnet, a CNN-based network, aims to capture the correlation
between audio and spatio-temporal features of the mouth region, calculating the audio offset (the
number of frames by which audio is early or late compared to video). LSE-D represents the feature
distance at the predicted offset, whereas LSE-C measures the difference between the minimum and
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median distances across various offsets. Syncnet metrics are effective for determining audio offsets
and identifying speakers in multi-person videos. Limitations of LSE-C and LSE-D include (1) highly
limited correlation with human evaluation (Zhang et al., 2024), (2) unreasonable values, e.g., ground
truth was widely outperformed by generation results (Xu et al., 2024a), (3) instability to factors such
as the cropped mouth region, image quality and brightness (Yaman et al., 2024b;a).

User studies. Given the above limitations of objective metrics, user studies remain a viable evaluation
for TH generation. However, associated limitations include the tedious and time-consuming nature of
such studies.

Current methods often use a few limited metrics, to summarize the complex process of generating TH.
Relying on single metrics can render aspects related to over or underperformance not interpretable.
Such aspects can be of different nature, e.g., accurate mouth movements, realistic head motion, as
well as overall appearance.

Motivated by the above gap, we propose THEVAL, a framework developed to enhance existing
metrics for evaluating TH videos. Rather than relying on a limited set of general metrics for assessing
performance of TH-generation models, we advocate for a detailed breakdown of relevant factors,
encompassing global head movement to nuanced expression. This decomposition facilitates a more
comprehensive understanding, enabling targeted improvements in future models.

3 METRICS IN THEVAL EVALUATION FRAMEWORK

We introduce our proposed THEVAL, which combines 8 algorithmic and perceptual metrics. Drawing
from recent video generation benchmarks (Huang et al., 2024), our framework entails 3 core dimen-
sions representing (i) quality, (ii) naturalness, as well as (iii) synchronization. A visual representation
of the results is available in Figure 3 and an in-depth formulation is described in Appendix B. We
proceed with the motivation and implementation of each metric.

3.1 QUALITY

This dimension reflects the perceptual appeal of a generated TH, with emphasis on clarity, sharpness,
and color fidelity.

(1) Global Aesthetics. We introduce a global aesthetics measure by adopting the Image Aesthetic
Assessment (IAA) component of TOPIQ (Chen et al., 2024a), which accounts for high-level attributes
such as composition, lighting, and color harmony, with Saes,j denoting the aesthetic score and N the
total number of frames

Global Aesthetics =
1

N

N∑
j=1

Saes,j . (1)

(2), (3) Mouth- and Face-Centric Quality. We propose a region-specific assessment strategy.
Specifically, we compute Image Quality Assessment (IQA) with TOPIQ for the full face and MUSIQ
(Ke et al., 2021) for the mouth region. To this end, we localize facial regions via landmarks and
extract IQA scores separately, with Q denoting the quality score for the face and mouth

Face / Mouth Quality =
1

N

N∑
j=1

Qface/mouth,j . (2)

Separating the mouth from the face allows us to explicitly quantify the distinct difficulty of synthesiz-
ing realistic mouth motion in generative video models.

3.2 NATURALNESS

Naturalness indicates the realism of facial behavior in TH videos. Prior work (Hauser et al., 2024)
shows that subtle facial asymmetries such as in eyebrow, mouth, or head motion enhance perceived
believability, appeal, and naturalness. Motivated by these findings, we include metrics that quantify
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lip, eyebrow, and head movement dynamics to assess whether TH videos exhibit realistic and engaging
facial behavior.

(4) The Lip Dynamics metric captures how natural and varied mouth movements appear over time.
For each frame, we detect the face and extract 40 lip landmarks. From these points, we compute
pairwise distances that describe the lip shape and configuration. By tracking how these distances
change across frames, the metric quantifies the variability and dynamics of lip motion throughout the
video.

(1) Global
Aesthetics

(2) Mouth
Quality

(3) Face
Quality

(4) Lip
Dynamics

(5) Head Motion
Dynamics

(6) Eyebrow
Dynamics

(7) Silent Lip         
Stability         

(8) Lip-Sync

Audio-driven

Hallo2
Echomimic
Dimitra

Sadtalker
Wav2lip
OmniAvatar

Real3dPortrait
FLOAT

(1) Global
Aesthetics

(2) Mouth
Quality

(3) Face
Quality

(4) Lip
Dynamics

(5) Head Motion
Dynamics

(6) Eyebrow
Dynamics

(7) Silent Lip         
Stability         

(8) Lip-Sync

Video-driven

Liveportrait
Controltalk
Lia

X-Portrait
Lia-X
EmoPortrait

FOM
DaGan
MCNet

Figure 3: Quantitative comparison of audio-driven (left) and video-driven (right) models on the
THEval framework. The radar charts visualize performance across our eight evaluation metrics,
revealing distinct performance profiles. Video-driven models generally achieve more balanced,
high-quality results, while audio-driven models exhibit greater variance, often excelling in dynamics
but struggling with overall naturalness. Scores that are farther from the center indicate superior
performance.

(5) The Head Motion Dynamics metric quantifies head movements in a video. We first estimate
the head’s orientation, specifically, its pitch, yaw, and roll, as well as the position of the head within
the frame. For each video segment, the metric follows changes in head pose angles and translations
over time. It is defined as follows, where σangle is the mean standard deviation of pitch, yaw, and roll
angles, V∆angle is the mean variance of their first-order temporal differences, and Vtrans is the mean
variance of face center translations

Head Motion Dynamics =
√(

σangle · V∆angle
)
+ Vtrans. (3)

(6) The Eyebrow Dynamics metric captures the variability of eyebrow movements in a video. For
each frame, we detect facial landmarks and calculate the relative distance between eyebrows and
eyes, normalized by the distance between eyes. The metric captures raising or lowering eyebrows
that are pertinent in conveying expressions and emotions. This metric reflects the average intensity of
these micro-movements throughout the video.

3.3 SYNCHRONIZATION

Synchronization assesses the extent to which a TH’s lip movements correspond with the accom-
panying speech. Previous research (Chae-Yeon et al., 2025) indicates that viewers are sensitive to
misalignment and tend to favor scenarios where the intensity of lip and jaw movements corresponds to
the audio volume. Building on these findings, we incorporate metrics that evaluate lip stability during
silent intervals and the alignment of mouth openness with speech intensity to determine whether TH
videos demonstrate realistic and expressive lip synchronization.
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(7) The Silent Lip Stability relates to the mouth movement during silent periods. Silent frames are
detected using a VAD model, considering only segments longer than 300 ms. For each frame, facial
landmarks are extracted, and the vertical distances between upper and lower lips are computed and
normalized by the interocular distance. Stability is quantified using the median absolute deviation of
these distances across all silent frames.

(8) The Lip-Sync metric evaluates the degree of alignment between mouth movements and the spoken
audio. First, we use the same VAD model as (7) Silent Lip Stability to identify frames containing
speech. For each frame, we compute the mouth openness Ot by measuring the normalized distance
between the upper and lower lip landmarks, and the corresponding audio volume Vt from the Root-
Mean-Square (RMS) energy. Both the mouth openness and audio volume signals are independently
normalized to a [0, 1] range. The final lip-sync metric is the mean absolute difference between these
two normalized signals. The lip-sync metric Lsync is calculated as

Lsync =
1

S

∑
t∈S

∣∣∣∣ Ot −min(OS)

max(OS)−min(OS)
− Vt −min(VS)

max(VS)−min(VS)

∣∣∣∣ , (4)

where S is the set of speech frames, and OS and VS are the sets of mouth openness and volume
values for those frames, respectively.

Final Score To provide a single, interpretable measure for evaluating TH-videos, we compute a
final composite score that aggregates performance across the three key dimensions (i) quality, (ii)
Naturalness, and (iii) Synchronization. This score is derived from the eight metrics that we introduced,
which are first normalized relative to a ground-truth (GT) reference and then averaged into a single
value. For normalization, a model’s score on a specific metric is determined by its similarity to the
ground truth (GT) value, as expressed by the following equation.

s = 1− |Model Score − GT Score|
GT Score

, (5)

where a score of 1 indicates a perfect match with the ground truth, lower values reflect increasing
deviation.

4 EXPERIMENTS

We present a series of experiments designed to validate the effectiveness of our proposed evaluation
framework, including the new evaluation dataset, the methods compared, and the correlation with
human ratings.

4.1 THEVAL DATASET

To thoroughly assess the generalization capabilities of contemporary TH models, we present the
THEVAL DATASET, a new benchmark designed to highlight the benefits and limitations of the models
under evaluation. Our primary goal was to create an evaluation set with samples explicitly not seen
during the training of the models we evaluate. The dataset was constructed by sourcing 5,011 video
from a wide range of 31 public YouTube channels, ensuring a rich variety of content across multiple
languages, including Spanish, Italian, English, French, Japanese, and Chinese. Each video have a
single speaker, a clear and primarily frontal view of the face, and high-fidelity 1080p resolution. This
resulted in a final dataset of over 18 hours of content, with an average video length of 13 seconds.
Visual examples showcasing this diversity are presented in Figure 6.

4.2 SETUP

Compared Methods. We evaluate the following 17 state-of-the-art TH generation models for video-
driven approaches, Controltalk (Zhao et al., 2024), Liveportrait (Guo et al., 2024), LIA (Wang
et al., 2022b), X-Portrait (Xie et al., 2024), LIA-X (Wang et al., 2025), EmoPortrait (Drobyshev
et al., 2024), MCNet (Hong & Xu, 2023), DaGan (Hong et al., 2022), FOM (Siarohin et al.,
2019) and audio-driven approaches Hallo2 (Cui et al., 2024), EchoMimic (Chen et al., 2024c),
Wav2Lip (Prajwal et al., 2020), SadTalker (Zhang et al., 2023), Dimitra (Chopin et al., 2025),
OmniAvatar (Gan et al., 2025), Real3dPortrait (Ye et al., 2024) and FLOAT (Ki et al., 2024).
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Figure 4: Visual examples from our new THEval dataset. Our benchmark is curated for diversity,
featuring a wide range of subjects, head poses, and expressions from multiple linguistic backgrounds
(including Spanish, Italian, English, French, Japanese, and Chinese). This dataset is specifically
designed to test the generalization capabilities of talking head generation models on truly unseen
data.

Details associated to the above methods are provided in Appendix E. Each method is executed with
its default hyperparameters, and model weights provided by the authors or official repositories. For
a fair comparison, we provide the same audio and reference frames for each method, in order to
generate videos. We do not evaluate 3D Gaussian Splatting or Neural Radiance Fields methods, as
they require multi-view inputs and are limited to a fixed set of pretrained identities, making them
unsuitable for our single-view, multi-identity setting.

Table 1: Evaluation results of 17 TH Generation Models on the THEval Dataset. We compare
state-of-the-art audio-driven and video-driven models across our proposed categories of (i) quality,
(ii) synchronization, and (iii) naturalness. The results highlight the distinct performance profiles of
the two approaches. For each metric, higher values indicate better performance. The scores in bold
represent the three best scores per dimension.

Model Quality Synchronization
(1) Global Aesthetics ↑ (2) Mouth Quality ↑ (3)Face Quality ↑ (7) Silent Lip Stability ↑ (8) Lip-Sync ↑

A
ud

io
D

ri
ve

n

Hallo2 (Cui et al., 2024) 0.9619 0.9254 0.9017 0.9620 0.9502
OmniAvatar (Gan et al., 2025) 0.9767 0.9919 0.9521 0.6160 0.9972
Echomimic (Chen et al., 2024c) 0.8499 0.9617 0.9514 0.8251 0.9964
FLOAT (Ki et al., 2024) 0.8713 0.9868 0.9645 0.6958 0.9992
Sadtalker (Zhang et al., 2023) 0.9576 0.9142 0.6005 0.6806 0.9794
Dimitra (Chopin et al., 2025) 0.9523 0.8798 0.7914 0.8555 0.9430
Real3dPortrait (Ye et al., 2024) 0.8597 0.8732 0.7934 0.7072 0.9695
Wav2lip (Prajwal et al., 2020) 0.9090 0.9180 0.6762 0.6388 0.8849

V
id

eo
D

ri
ve

n

LIA-X (Wang et al., 2025) 0.9466 0.9195 0.8705 0.9087 0.9644
Liveportrait (Guo et al., 2024) 0.9464 0.9760 0.8784 0.9316 0.9980
X-Portrait (Xie et al., 2024) 0.9502 0.9990 0.9568 0.9924 0.9407
EmoPortrait (Drobyshev et al., 2024) 0.9542 0.8799 0.7957 0.9354 0.9608
Controltalk (Zhao et al., 2024) 0.7759 0.8360 0.7584 0.9163 0.9897
MCNet (Hong & Xu, 2023) 0.7499 0.7655 0.4771 0.8669 0.9541
DaGan (Hong et al., 2022) 0.7547 0.7646 0.5105 0.7452 0.9719
LIA (Wang et al., 2022b) 0.7265 0.7622 0.4899 0.5741 0.9913
FOM (Siarohin et al., 2019) 0.7516 0.7566 0.4875 0.5970 0.9929

Model Naturalness Final Score ↑

(4) Lip Dynamics ↑ (5) Head Motion ↑ (6) Eyebrow Dynamics ↑

A
ud

io
D

ri
ve

n

Hallo2 (Cui et al., 2024) 0.9883 0.2395 0.8530 0.8477
OmniAvatar (Gan et al., 2025) 0.4650 0.6039 0.8488 0.8064
Echomimic (Chen et al., 2024c) 0.7930 0.3806 0.8071 0.8207
FLOAT (Ki et al., 2024) 0.4266 0.5115 0.8945 0.7938
Sadtalker (Zhang et al., 2023) 0.8276 0.2867 0.6084 0.7319
Dimitra (Chopin et al., 2025) 0.7863 0.1279 0.6372 0.7467
Real3dPortrait (Ye et al., 2024) 0.7348 0.0895 0.3170 0.6680
Wav2lip (Prajwal et al., 2020) 0.6966 0.1124 0.3662 0.6502

V
id

eo
D

ri
ve

n

LIA-X (Wang et al., 2025) 0.9030 0.6233 0.9090 0.8806
Liveportrait (Guo et al., 2024) 0.9913 0.7548 0.9997 0.9345
X-Portrait (Xie et al., 2024) 0.9611 0.6091 0.7897 0.8999
EmoPortrait (Drobyshev et al., 2024) 0.9159 0.5136 0.5840 0.8174
Controltalk (Zhao et al., 2024) 0.5476 0.5058 0.9785 0.7885
MCNet (Hong & Xu, 2023) 0.8925 0.2297 0.9132 0.7311
DaGan (Hong et al., 2022) 0.8262 0.3029 0.8362 0.7140
LIA (Wang et al., 2022b) 0.6912 0.3080 0.8920 0.6794
FOM (Siarohin et al., 2019) 0.6743 0.3269 0.8613 0.6810
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Implementation Details. We employ MediaPipe Face Mesh (Lugaresi et al., 2019) for extracting
facial landmarks, including eyes, lips, and eyebrows, across all frames. Head pose metrics are
computed using FaceXFormer (Narayan et al., 2024). Finally, to detect speech segments in the audio
we use Silero VAD (Silero, 2024).

Ground Truth as Reference. We include comparisons with ground-truth GT videos as reference,
in order to compute absolute differences with the generation methods. This allows us to quantitatively
evaluate the resemblance of each method to real facial behavior. For instance, in metrics such as (5)
Head Motion Dynamics, a low score indicates that the generated head movements are too subtle as
opposed to ground truth, whereas a high score suggests exaggerated head motions.

4.3 THEVAL CORRELATION WITH HUMAN RATING

Towards validating our metrics, we conduct a user study in Hugging Face Space. Participants are
asked to evaluate paired real and generated videos based on the same audio. Pairing included all
combinations, i.e., real and generated videos, as well as generated videos pertained to all combinations
of the seventeen state-of-the-art methods. Participants were instructed by ”Please watch both videos
and select which one looks more realistic”. The instruction aims at minimizing cognitive load and
reducing rating errors, ensuring participants could make consistent and intuitive judgments. In total,
we acquired 3,519 ratings, distributed equally among the seventeen models. We then compute the
Spearman correlation coefficient between normalized metric scores and human preference scores.
We observe strong alignment between our THEval metrics and human opinion scores, as reported
in Figure 2 and Table 2. The final THEval score is highly correlated with human ratings, with a
strong correlation of ρ = 0.870. In addition, the individual metrics exhibit high correlations with
human preferences. We note that (4) Lip Dynamics and (8) Lip-Sync are of lower correlation, which
is expected as human perception of realism integrates multiple cues reflected by the 8 metrics. By
combining complementary expert metrics, our framework achieves a strong aggregated alignment
with human preference, advocating for the composite design of THEval.

Table 2: Correlation between metrics and human ratings. We report Spearman’s rank correlation
coefficient (ρ), p-values, and 95% Confidence Intervals (CI) between each metric and human prefer-
ences. The 95% CIs are obtained via bootstrapping with n = 10,000 resamples. The results clearly
show that our proposed metrics and final scores have a strong, significant alignment with human
ratings.

Metric Correlation (ρ) p-value 95% CI

LSE-C -0.164 0.530 [-0.613, 0.388]
LSE-D -0.269 0.297 [-0.675, 0.282]
FVD 0.289 0.260 [-0.321, 0.782]
FID 0.210 0.416 [-0.344, 0.710]
LMD-F 0.231 0.389 [-0.392, 0.775]
LMD-L 0.227 0.399 [-0.389, 0.759]

(1) Global Aesthetics 0.544 0.020 [0.129, 0.795]
(2) Mouth Visual Quality 0.765 < 0.001 [0.498, 0.917]
(3) Face Quality 0.699 0.001 [0.430, 0.875]
(4) Lip Dynamics 0.414 0.088 [-0.155, 0.769]
(5) Head Motion Dynamics 0.763 < 0.001 [0.418, 0.942]
(6) Eyebrow Dynamics 0.527 0.025 [0.060, 0.856]
(7) Silent Lip Stability 0.484 0.042 [0.033, 0.808]
(8) Lip-Sync 0.404 0.097 [-0.143, 0.775]

Quality 0.713 0.001 [0.424, 0.895]
Naturalness 0.702 0.001 [0.217, 0.862]
Synchronization 0.603 0.008 [0.323, 0.919]

Final Score 0.870 < 0.0001 [0.648, 0.967]

In contrast, SyncNet, landmark-based metrics, FID, and FVD demonstrate minor to no alignment
with human ratings. These results indicate that our approach provides a reliable alternative to current
evaluation metrics.
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Further details on the user study including the user study interface and algorithm details to ensure fair
evaluation are in Appendix A.

5 DISCUSSION

5.1 AUDIO-DRIVEN METHODS

We note that audio-driven approaches consistently struggle w.r.t. facial expressiveness, as well
as head pose movement, which is reflected in the videos. In addition, FLOAT and OmniAvatar
tend to exaggerate mouth movements. In the case of OmniAvatar, this is due to the employed
image-to-video model WanVideo (Wan et al., 2025), which generates exaggerated articulations that
appear unnatural, reflected in the scores of metrics (4) Lip Dynamics and (7) Silent Lip Stability.
Furthermore, we observe that in longer videos, OmniAvatar exhibits temporal drift, with the facial
identity gradually diverging from the source, visual artifacts becoming increasingly visible, and a
perceptible orange color emerge, all of which reduce overall video quality. This temporal instability
prevents OmniAvatar from achieving the highest ranking in our benchmark, despite its otherwise
strong performance. Visual examples are availabe in Appendix D.

Naturally, newer audio-driven methods perform well w.r.t. overall video quality and visual appeal
compared to earlier approaches, thanks to advances in backbone architectures and training data.
However, amplified expressions pose a remaining challenge. By disentangling synchronization,
expressiveness, and quality, THEval effectively highlights these nuanced behavior.

5.2 VIDEO-DRIVEN METHODS

Video-driven methods, by contrast to audio-driven ones, exhibit stronger expressivity, while also
maintaining reliable synchronization. This is due to the fact that motion priors from driving videos
allow for generation of realistic head dynamics and subtle facial expressions. We observe that earlier
video-driven models incorporate visible artifacts, particularly in case of large head movements. Such
artifacts manifest as tearing, blur, or instability in the facial regions, leading to lower overall quality
scores in our benchmark. This trade-off between expressivity and quality is effectively highlighted
by our proposed metrics, which separate naturalness-related measures from face and mouth quality
assessments.

Overall, the best-performing video-driven models showcase a strong balance between expressivity,
synchronization, and visual fidelity, obtaining a higher Final Score in THEval. Our results indicate
that the Final Score reflects these trade-offs well, ranking methods based on human perception.

6 CONCLUSIONS

We introduced a comprehensive benchmark and an evaluation dataset, referred to as THEVAL,
streamlined to evaluate generated talking head (TH) videos. The eight metrics in THEval cover the
three key dimensions (i) quality, (ii) naturalness, and (iii) synchronization. Our benchmark enables
both, fine-grained and efficient assessment of TH videos. Experiments show that THEVAL metrics
correlate strongly with human preference, unlike currently used metrics, which often fail to reflect
perceptual ratings. We further observe that state-of-the-art audio- and video-driven generative models
still face challenges in producing realistic lip movements, natural expressiveness, and artifact-free
rendering. Specifically, audio-driven methods have advanced w.r.t. synchronization, however often
lack natural head motion and may incorporate exaggerated expressions. At the same time recent video-
driven counterparts generate more expressive and realistic videos. Our THEval metrics capture this
illustratively, and by aggregating them into a Final Score, THEval provides both, detailed diagnostics
and a final measure that matches human preference, rendering it a much-needed benchmark for
talking head generation. We aim at fostering the development of new generation methods. Future
work will extend the benchmark to more diverse scenarios, such as multiple humans and side views.
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7 ETHICS STATEMENT

This work introduces THEval, a benchmark for talking head generation, with careful consideration
of its ethical implications. The dataset was sourced from public videos and curated for diversity
to ensure fair evaluation. An anonymized user study was conducted to validate the metrics. We
acknowledge the potential for misuse of ”deepfake” technology and aim to contribute to its responsible
development. By providing a robust, human-aligned evaluation framework, THEval helps researchers
better understand model capabilities and limitations which is a step for creating effective detection
methods and safeguards. To foster transparency, we will release the full benchmark, dataset, and
code.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we will make our code, the THEval dataset, and a regularly
updated leaderboard publicly available. Section 4 of the main paper provides a comprehensive
description of our experimental setup, including the dataset creation process (Section 4.1), the models
evaluated, and implementation details (Section 4.2). Further mathematical details for all proposed
metrics are available in Appendix B, and a thorough description of the user study can be found in
Appendix A. The specific state-of-the-art methods used for benchmarking are detailed in Appendix
E, and all models were used with their official, publicly available code and default hyperparameters.

REFERENCES

Rec. itu-r bt.1359-1 1 recommendation itu-r bt.1359-1 relative timing of sound and vision for
broadcasting, 1998.

Lee Chae-Yeon, Oh Hyun-Bin, Han EunGi, Kim Sung-Bin, Suekyeong Nam, and Tae-Hyun Oh.
Perceptually accurate 3d talking head generation: New definitions, speech-mesh representation,
and evaluation metrics. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 21065–21074, 2025.

Chaofeng Chen, Jiadi Mo, Jingwen Hou, Haoning Wu, Liang Liao, Wenxiu Sun, Qiong Yan, and
Weisi Lin. Topiq: A top-down approach from semantics to distortions for image quality assessment.
IEEE Transactions on Image Processing, 33:2404–2418, 2024a. doi: 10.1109/TIP.2024.3378466.

Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, and William W
Cohen. Subject-driven text-to-image generation via apprenticeship learning. Advances in Neural
Information Processing Systems, 36, 2024b.

Zhiyuan Chen, Jiajiong Cao, Zhiquan Chen, Yuming Li, and Chenguang Ma. Echomimic: Life-
like audio-driven portrait animations through editable landmark conditions. arXiv preprint
arXiv:2407.08136, 2024c.

Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find
them. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Baptiste Chopin, Tashvik Dhamija, Pranav Balaji, Yaohui Wang, and Antitza Dantcheva. Dim-
itra: Audio-driven diffusion model for expressive talking head generation. arXiv preprint
arXiv:2502.17198, 2025.

J. S. Chung and A. Zisserman. Out of time: automated lip sync in the wild. In Proceedings of the
Asian Conference on Computer Vision Workshops (ACCVW), 2016.

Jiahao Cui, Hui Li, Yao Yao, Hao Zhu, Hanlin Shang, Kaihui Cheng, Hang Zhou, and Siyu Zhu and
Jingdong Wang. Hallo2: Long-duration and high-resolution audio-driven portrait image animation,
2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikita Drobyshev, Antoni Bigata Casademunt, Konstantinos Vougioukas, Zoe Landgraf, Stavros
Petridis, and Maja Pantic. Emoportraits: Emotion-enhanced multimodal one-shot head avatars,
2024.

Qijun Gan, Ruizi Yang, Jianke Zhu, Shaofei Xue, and Steven Hoi. Omniavatar: Efficient audio-driven
avatar video generation with adaptive body animation, 2025. URL https://arxiv.org/
abs/2506.18866.

Jianzhu Guo, Dingyun Zhang, Xiaoqiang Liu, Zhizhou Zhong, Yuan Zhang, Pengfei Wan, and
Di Zhang. Liveportrait: Efficient portrait animation with stitching and retargeting control. arXiv
preprint arXiv:2407.03168, 2024.

Siddharth Gururani, Arun Mallya, Ting-Chun Wang, Rafael Valle, and Ming-Yu Liu. SPACE:
Speech-driven Portrait Animation with Controllable Expression. 2023.

Klay Max Hauser, Christos Mousas, Nicoletta Adamo, Minsoo Choi, Richard Mayer, and Fangzheng
Zhao. The effect of dynamic facial asymmetries on the perceived believability, appeal, and
naturalness of animated agents. In ACM Symposium on Applied Perception, 2024.

Fa-Ting Hong and Dan Xu. Implicit identity representation conditioned memory compensation
network for talking head video generation. In ICCV, 2023.

Fa-Ting Hong, Longhao Zhang, Li Shen, and Dan Xu. Depth-aware generative adversarial network
for talking head video generation. 2022.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
quality transformer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5148–5157, 2021.

Taekyung Ki, Dongchan Min, and Gyeongsu Chae. Float: Generative motion latent flow matching
for audio-driven talking portrait. arXiv preprint arXiv:2412.01064, 2024.

Lincheng Li, Suzhen Wang, Zhimeng Zhang, Yu Ding, Yixing Zheng, Xin Yu, and Changjie Fan.
Write-a-speaker: Text-based emotional and rhythmic talking-head generation. In Proceedings of
the AAAI conference on artificial intelligence (AAAI), volume 35, 2021.

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
video generation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan
Zhang, Chuo-Ling Chang, Ming Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg,
and Matthias Grundmann. Mediapipe: A framework for perceiving and processing reality. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2019.

Yifeng Ma, Suzhen Wang, Zhipeng Hu, Changjie Fan, Tangjie Lv, Yu Ding, Zhidong Deng, and Xin
Yu. Styletalk: One-shot talking head generation with controllable speaking styles. 37, 2023a.

Yifeng Ma, Shiwei Zhang, Jiayu Wang, Xiang Wang, Yingya Zhang, and Zhidong Deng. Dreamtalk:
When expressive talking head generation meets diffusion probabilistic models. arXiv preprint
arXiv:2312.09767, 2023b.

Kartik Narayan, Vibashan VS, Rama Chellappa, and Vishal M Patel. Facexformer: A unified
transformer for facial analysis. arXiv preprint arXiv:2403.12960, 2024.

11

https://arxiv.org/abs/2506.18866
https://arxiv.org/abs/2506.18866


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haomiao Ni, Changhao Shi, Kai Li, Sharon X. Huang, and Martin Renqiang Min. Conditional
image-to-video generation with latent flow diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

K R Prajwal, Rudrabha Mukhopadhyay, Vinay P. Namboodiri, and C.V. Jawahar. A lip sync expert is
all you need for speech to lip generation in the wild. In Proceedings of the ACM International
Conference on Multimedia (ACM-MM), 2020.

Zhiwu Qing, Shiwei Zhang, Jiayu Wang, Xiang Wang, Yujie Wei, Yingya Zhang, Changxin Gao, and
Nong Sang. Hierarchical spatio-temporal decoupling for text-to-video generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Shuai Shen, Wenliang Zhao, Zibin Meng, Wanhua Li, Zheng Zhu, Jie Zhou, and Jiwen Lu. Difftalk:
Crafting diffusion models for generalized audio-driven portraits animation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instantbooth: Personalized text-to-image
generation without test-time finetuning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.
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A APPENDIX: USER STUDY DETAILS

A.1 WEBSITE AND ALGORITHM DETAILS

Figure 5: Screenshot of our user study interface. The interface was designed to be intuitive and
easy to use for human raters. Both videos can be played simultaneously using the Play/Pause Both
button, and participants indicate which video appears more realistic by selecting one of the two
highlighted choice buttons.

To ensure a fair and unbiased comparison between methods, the algorithm selects videos randomly
from common videos of all methods. By choosing videos at random, the evaluation avoids over-
representing any specific content or scenario, which could otherwise skew results. Additionally, the
algorithm randomly assigns each method to the left or right position in the user interface for each
comparison to mitigates positional bias, ensuring that participants preferences are based on the video
quality itself rather than the side on which it appears. Screenshot of the website is available on
Figure 5.

B APPENDIX: MATHEMATICAL DETAILS OF METRICS

This appendix provides more detailed mathematical explanations for the 8 metrics used in the THEval
framework. These metrics are categorized into video quality, naturalness, and synchronization.

B.1 VIDEO QUALITY METRICS

(1) Global Aesthetics Global Aesthetics are assessed using the Image Aesthetic Assessment (IAA)
component of the TOPIQ model (Chen et al., 2024a), which is pre-trained on the AVA dataset. Let Ij
be the j-th frame of a video with N frames. The TOPIQ IAA model, denoted fIAA, computes an
aesthetic score for each frame:

Saes,j = fIAA(Ij) (6)
This score reflects properties such as composition, lighting, and color harmony. The final Global
Aesthetics score for the video is the average of these per-frame scores:

Global Aesthetics =
1

N

N∑
j=1

Saes,j (7)

(2) Face Quality Face Quality is evaluated using the Image Quality Assessment (IQA) component
of the TOPIQ model (Chen et al., 2024a), pre-trained on the CGFIQA dataset. For each frame Ij , the
face region Fj is detected and cropped. The TOPIQ IQA model for faces, fIQAface

, then computes a
quality score:

Qface,j = fIQAface
(Fj) (8)

The Face Quality score for the video is the average of these per-frame face quality scores:

Face Quality =
1

N

N∑
j=1

Qface,j (9)
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(3) Mouth Quality Mouth Quality is assessed using the MUSIQ (Multi-scale Image Quality
Transformer) model (Ke et al., 2021), specifically its IQA variant pre-trained on the SPAQ dataset.
For each frame Ij , the mouth region Mj is detected using facial landmarks and subsequently cropped.
The MUSIQ IQA model, fIQAmouth

, predicts a quality score for this region:

Qmouth,j = fIQAmouth
(Mj) (10)

The Mouth Quality score for the video is the average of these per-frame mouth region quality scores:

Mouth Quality =
1

N

N∑
j=1

Qmouth,j (11)

B.2 NATURALNESS METRICS

(4) Lip Dynamics This metric quantifies the variability of lip movements. For each frame j, K
lip landmarks Lj,k = (xj,k, yj,k) for k = 1, . . . ,K (where K = 40) are extracted. A feature vector
sj = (dj,1, dj,2, . . . , dj,M ) consisting of M selected pairwise Euclidean distances between these
landmarks is computed for each frame j. These distances capture the lip shape. The variability for
each distance component m across N frames is its standard deviation:

σm =

√√√√ 1

N − 1

N∑
j=1

(dj,m − d̄m)2 (12)

where d̄m = 1
N

∑N
j=1 dj,m is the mean of the m-th distance component over all frames. The Lip

Dynamics score is the average of these standard deviations, representing the overall variability in lip
shape:

Lip Dynamics =
1

M

M∑
m=1

σm (13)

(5) Head Motion Dynamics The Head Motion Dynamics metric quantifies the complexity and
dynamism of head movements by combining measures of angular motion range, variability of angular
velocities, and variability of head position within the frame. For a video with N frames, the process
begins with estimating head pose parameters for each frame j = 1, . . . , N . These parameters include
head orientation angles: pitch (θp,j), yaw (θy,j), and roll (θr,j), all expressed in degrees. Additionally,
the 2D coordinates of the center of the detected face (cx,j , cy,j) in the frame are determined. Let
P = θp,1, . . . , θp,N , Y = θy,1, . . . , θy,N , and R = θr,1, . . . , θr,N denote the sequences of pitch, yaw,
and roll angles, respectively. Similarly, Tx = cx,1, . . . , cx,N and Ty = cy,1, . . . , cy,N represent the
sequences of x and y coordinates of the face center.

To assess the range of angular motion, the standard deviation for each angular sequence is calculated:

σP = std(P ) (14)

σY = std(Y ) (15)

σR = std(R) (16)

The average of these standard deviations, denoted σangle, is then computed as:

σangle =
σP + σY + σR

3
(17)

Next, the variability of angular velocities is determined. First-order differences, approximating
angular velocities, are computed for each angle sequence (for N > 1):

∆Pj = θp,j − θp,j−1 for j = 2, . . . , N (18)

and similarly for ∆Yj and ∆Rj . Let ∆P,∆Y,∆R be these sequences of differences. The variance
of these differences is then calculated:

V∆P = var(∆P ) (19)
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V∆Y = var(∆Y ) (20)
V∆R = var(∆R) (21)

The average variance of these angular differences, V∆angle, is given by:

V∆angle =
V∆P + V∆Y + V∆R

3
(22)

The variability of the head’s position is assessed using the translation coordinates. Their variances
are computed:

VTx
= var(Tx) (23)

VTy
= var(Ty) (24)

The average variance of translations, Vtrans, is then:

Vtrans =
VTx

+ VTy

2
(25)

Finally, the Head Motion Dynamics score is computed by combining these components:

Head Motion Dynamics =
√
(σangle · V∆angle) + Vtrans (26)

(6) Eyebrow Dynamics This metric measures the variability of eyebrow movements. For each
frame j, facial landmarks for the eyebrows and eyes are detected. A representative vertical distance
deb,j between the eyebrows and the eyes is calculated. This distance is normalized by the inter-ocular
distance dio,j (distance between the centers of the eyes) in that frame to account for face scale and
head distance from the camera:

d′eb,j =
deb,j
dio,j

(27)

The Eyebrow Dynamics score is the standard deviation of this normalized relative distance over all
N frames:

Eyebrow Dynamics =

√√√√ 1

N − 1

N∑
j=1

(d′eb,j − d′eb)
2 (28)

where d′eb is the mean of d′eb,j over all frames.

B.3 SYNCHRONIZATION METRICS

(7) Silent Lip Stability This metric evaluates the stability of mouth closure during sustained silent
periods, using a robust estimator to reduce the impact of outlier frames. First, the audio is analyzed
using the Silero-VAD model to identify silent segments. Only segments with a duration of at least
300 ms are retained. Let Ssilent denote the set of frame indices belonging to these segments.

For each frame j ∈ Ssilent, facial landmarks are detected using MediaPipe Face Mesh. For P pre-
defined pairs of upper and lower lip landmarks, the vertical distances are calculated, normalized by
the inter-ocular distance dio,j to account for face scale. The per-frame average mouth opening is
then:

dlip,j =
1

P

P∑
p=1

|yupper,p,j − ylower,p,j |
dio,j

(29)

where yupper,p,j and ylower,p,j are the vertical coordinates of the p-th upper and lower lip landmarks in
frame j.

We then employ the Median Absolute Deviation (MAD) is then employed to measure the variability
of the lips movements during the silence period:

MADlip = median
(∣∣dlip,j − d̃lip

∣∣), j ∈ Ssilent (30)

where d̃lip is the median of dlip,j over all j ∈ Ssilent.

The Silent Lip Stability score is given by this MAD value:

Silent Lip Stability (Robust) = MADlip (31)
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(8) Lip-Sync The Lip-Sync metric quantifies the temporal alignment between mouth movements
and the speech signal. First, the audio is extracted from the video, and Voice Activity Detection
(VAD) is performed using the Silero-VAD model to identify speech segments. Let Sspeech denote the
set of frame indices corresponding to detected speech frames.

For each frame j, the mouth openness oj is computed using facial landmarks from MediaPipe Face
Mesh. The vertical distance between the mean position of the upper lip landmarks and the mean
position of the lower lip landmarks is normalized by the inter-ocular distance dio,j to account for
face scale:

oj =

∣∣ȳupper,j − ȳlower,j
∣∣

dio,j
(32)

Simultaneously, the short-time root-mean-square (RMS) energy of the audio signal is computed to
obtain a per-frame speech volume vj . Both oj and vj are min-max normalized over Sspeech:

o∗j =
oj −min(oSspeech)

max(oSspeech)−min(oSspeech) + ϵ
, v∗j =

vj −min(vSspeech)

max(vSspeech)−min(vSspeech) + ϵ
(33)

where ϵ is a small constant added to avoid division by zero.

The Lip-Sync score is the mean absolute difference between the normalized mouth openness and
normalized speech volume over all frames in Sspeech:

Lip-Sync =
1

|Sspeech|
∑

j∈Sspeech

∣∣o∗j − v∗j
∣∣ (34)

C APPENDIX: ADDITIONAL EXPERIMENTS ON SYNCNET INSTABILITY

Our experiments showed that Syncnet LSE-C and LSE-D can be influenced by the way audio and
video are encoded. Indeed, when changing the audio encoding from mp4a to mpga, the LSE-D
and LSE-C vary significantly. When tested on the entire HDTF dataset, we notice that the average
absolute difference in LSE-D and LSE-C between videos with mp4a or mpga audio is 0.4. This
absolute difference can even reach values as high as 1.2 for some samples. We observe similar
results when comparing video using H.264 and H.265 encodings. In both experiments there are no
noticeable qualitative differences from a human evaluation standpoint. This confirms the findings of
(Yaman et al., 2024b) that Syncnet is not stable and can be influenced by various factor unrelated to
lips synchronization.

D TEMPORAL DRIFT IN OMNIAVATAR

Figure 6: Temporal drift in OmniAvatar outputs over time. Ten frames are shown, sampled every 75
frames, illustrating gradual facial identity divergence, increasing visual artifacts, and the emergence
of a color cast in longer videos.

E APPENDIX: DESCRIPTION OF STATE-OF-THE-ART TH-GENERATION
METHODS USED FOR BENCHMARKING

Controltalk (Zhao et al., 2024) is a talking face generation method to control face expression
deformation based on driven audio, constructing the head pose and facial expression (lip motion) for
both single image or sequential video inputs in a unified manner.
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DaGAN (Hong et al., 2022) is a Depth-aware Generative Adversarial Network that first recovers
dense 3D facial geometry (i.e., depth maps) from face videos in a self-supervised manner. This depth
information is then used to guide the estimation of sparse facial keypoints and to learn a 3D-aware
cross-modal attention mechanism, improving the generation of accurate face structures and motion
fields.

Dimitra (Chopin et al., 2025) is a diffusion based framework for TH generation that uses 3D
motions as an intermediate step. It leverages audio features, phonemes and text to generate fully
animated, realistic TH videos.

EchoMimic (Chen et al., 2024c) uses audio speech to drive landmark sequences and employs a
Latent Diffusion Model to convert input images into an efficient latent representation that is driven
with the landmark sequence. It generates realistic results at high resolution.

EMOPortraits (Drobyshev et al., 2024) builds upon the MegaPortraits model to enhance its
capability for rendering intense and asymmetric facial expressions. It introduces architectural changes
and a new training pipeline, including a novel dataset with extreme emotions (FEED), and incorporates
a speech-driven mode, making it a multimodal framework for high-fidelity avatar animation.

Hallo2 (Cui et al., 2024) generates long-duration, high-resolution audio-driven portrait animations.
It uses a patch-drop technique for temporal consistency, vector quantization for high resolution, and
supports textual prompts for expression control.

LIA (Wang et al., 2022b) is a self-supervised autoencoder that animates images by linear navigation
in its latent space, removing the need for explicit structure representation. Motion is constructed by
the linear displacement of latent codes, using a learned set of orthogonal motion directions.

LIA-X (Wang et al., 2025) is an interpretable portrait animator designed as an autoencoder that
models motion transfer as a linear navigation of motion codes. It incorporates a Sparse Motion
Dictionary to disentangle facial dynamics into interpretable factors, enabling a controllable ’edit-
warp-render’ strategy for precise manipulation of facial semantics.

Liveportrait (Guo et al., 2024) is an efficient video-driven portrait animation framework using an
implicit-keypoint-based approach for good generalization and controllability. It features stitching and
retargeting modules for precise control over elements including eye and lip movements with minimal
computational cost.

MCNet (Hong & Xu, 2023) proposes a Memory Compensation Network to address ambiguities
from dramatic motions in talking head generation. It learns a global facial meta-memory bank that
provides structure and appearance priors. An implicit identity representation, learned from keypoints
and features of the source image, is used to query this memory bank and compensate for warped
features, particularly in occluded regions.

FOM (Siarohin et al., 2019) proposes novel motion representations for animating articulated objects
by identifying and tracking object parts as regions rather than keypoints. In a fully unsupervised man-
ner, it infers motion from the principal axes of these regions, disentangles shape and pose to prevent
identity leakage, and models global background motion separately with an affine transformation.

OmniAvatar (Gan et al., 2025) is an audio-driven video generation model focused on creating
full-body animations with adaptive and natural movements. It employs a LoRA-based training
approach on a foundation model and introduces a multi-hierarchical, pixel-wise audio embedding
strategy to enhance lip-sync accuracy and ensure audio features guide the entire body motion, not
just the face.

Real3DPortrait (Ye et al., 2024) is a framework for realistic 3D talking portrait synthesis. It
improves 3D reconstruction by distilling knowledge from a 3D face generative model into an
image-to-plane network. It facilitates animation with a motion adapter and synthesizes a complete,
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realistic video by individually modeling the head, torso, and background, supporting both audio and
video-driven inputs.

SadTalker (Zhang et al., 2023) is a method for generating TH that produces realistic 3D motion
coefficients for animated, audio-driven TH from a single image. It leverages full-image animation
capabilities and utilizes pre-trained models to enhance the expressiveness and authenticity of the
animated TH.

Wav2Lip (Prajwal et al., 2020) is a lip synchronization model for videos, aligning lip movements
with audio segments for different identities in various settings. It uses a lip-sync discriminator based
on Syncnet to enhance the precision of lip movements in TH videos. Wav2Lips does not generate the
entire TH but only the mouth region. The generated mouth region is then integrated into the original
video without altering the rest of the content.

X-Portrait (Xie et al., 2024) is a conditional diffusion model for expressive portrait animation. It
uses a pre-trained Stable Diffusion model as a rendering backbone and achieves fine-grained motion
control via ControlNet. It interprets dynamics directly from the raw driving video (implicit control)
rather than relying on intermediate representations such as landmarks, and uses a cross-identity
training scheme to mitigate identity leakage from the driver.

F APPENDIX: EXPLANATION OF EXISTING METRICS

In this section we elaborate on the existing metrics for video evaluation, as well as on their limitations.

FID: The Fréchet Inception Distance (FID) constitutes an improvement of the Inception Score (IS).
is a metric designed to evaluate the quality of generated images or videos. FID is computed by first
extracting features from real and generated images using an inception network. Then, the features are
treated as samples from two multivariate Gaussian distributions (real and generated) and the Fréchet
distance between the two distributions is computed.

The Fréchet distance measures the distance between a generated image set and a source dataset, and
is calculated as

FID = ||µr − µg||22 + Tr(Σr +Σg − 2(ΣrΣg)
1/2), (35)

where µr and µg are the mean feature vectors of the real and generated images respectively, Σr and
Σg are the covariance matrices of the real and generated images respectively.

FID is highly dependent on the performance of inception network and assumes that the images
features follow a Gaussian distribution which might not be true. FID is also biased when evaluated on
a finite set due to the assumption of Gaussian distribution (Chong & Forsyth, 2020). To be accurate,
FID must be evaluated on a set that is large enough which might not be possible for all generation
tasks. When used for video evaluation FID will only evaluate independent frame quality without
regards for the temporal coherency.

FVD: The Fréchet Video Distance (FVD) is similar to FID but uses a network adapted for videos to
extract the features. FVD is calculated as

FVD = ||µr − µg||22 + Tr(Σr +Σg − 2(ΣrΣg)
1/2, (36)

where µr and µg are the mean feature vectors of the real and generated videos respectively, Σr and
Σg are the covariance matrices of the real and generated videos respectively.

FVD has the same limitations as FID, and despite using an adapted network FVD still tends to focus
more on single frame quality than on temporal coherence which is essential to evaluate videos.

IS: The Inception Distance (IS), uses an inception network that gives the probability of an image to
belong to a certain class. Then, it uses the Kullback-Leibler divergence to compute a score related to
the quality and diversity of the generated images. Specifically, the score is calculated to evaluate two
factor: Intra-Class Similarity (high-quality images should have a strong probability of belonging to a
single class) and inter-Class Diversity (generated images should belong to a variety of classes) and is
calculated as

IS = exp
(
Ex∼pg [KL(p(y|x)||p(y))]

)
, (37)
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Where x ∼ pg denotes that x is sampled from the generated images distribution pg, p(y|x) is the
conditional probability distribution over the classes given the image x and p(y) is the marginal
probability distribution over the classes, computed as Ex∼pg

[p(y|x)].
However similarly to FID, this metric is very reliant on the inception network. It is unable to evaluate
the intra-class diversity and will not work with images of classes not seen during the training of the
inception network.

LMD-F: The Landmark Distance Face (LMD-F) is a metric to evaluate TH videos. LMD-F computes
the average euclidean distance between the facial landmarks extracted for a real videos and those of a
generated one for the same conditioning input (e.g driving audio speech). For LMD-F all of the face
landmarks are used. LMD-F is calculated as

LMD-F = ||xf − x′
f ||2 (38)

where xf and x′
f are the facial landmarks of the real and generated video respectively.

While LMD-F has been shown to correlate better than other metrics with human evaluation (Zhang
et al., 2024), it still suffers from being a direct comparison to the ground truth. Indeed, different
head motions and expressions between the generated sequence and the ground truth will be strongly
penalized. At the same time, this difference is expected since head motion and expression are only
loosely correlated to the audio sequence. However, as long as both look natural, human evaluators
will give a high rating to the video even if it is different from the ground truth.

LMD-M: The Landmark Distance Mouth (LMD-M) is a metrics to evaluate TH videos. LMD-M
compute the average euclidean distance between the facial landmarks extracted for a real videos and
those of a generated one for the same conditioning input (e.g driving audio speech). For LMD-M
only the landmarks pertaining to the mouth area landmarks are used.

LMD-M = ||xm − x′
m||2 (39)

where xm and x′
m are the mouth landmarks of the real and generated video respectively.

While LMD-M has been shown to correlate better than other metrics with human evaluation (Zhang
et al., 2024), it still suffers from being a direct comparison to the ground truth. This direct comparison
causes small temporal lags to be penalized when it wouldn’t be noticed by human evaluators according
to the recommendation by the International Telecommunication Union (199, 1998).

LPIPS: The Learned Perceptual Image Patch Similarity (LPIPS) measures the perceptual similarity
between two images and try to provide a score that align with human perception. LPIPS uses a
pre-trained CNN to obtain deep-features and computes the similarity between these features. The
LPIPS value of CNN layer l is calculated as

LPIPSl(x, x
′) =

∑
l

wl · ||fl(x)− fl(x
′)||2, (40)

where fl(x) and fl(x
′) are the feature representations of the real image x and the generated image x

at layer l, wl are the weights of layer l. The final LPIPS score is a weighted sum of the LPIPSl across
all the layers of the network.

While LPIPS aligns better with human evaluation it is still very dependent on the pre-trained network
and is sensitive to image alignment.

PSNR: The Peak Signal-to-Noise Ratio (PSNR) compares two images at the pixel level by measuring
the ratio between the maximum possible power of a signal (the original image) and the power of
corrupting noise (the generated image). It is calculated as

PSNR = 10 · log10
(

MAX2

MSE

)
(41)

MSE =
1

mn

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]
2
, (42)

where MAX is the maximum possible pixel value of the image (usually 255), I(i, j) represents the
pixel value at position (i, j) in the original image, and K(i, j) represents the pixel value at position
(i, j) in the reconstructed image. The sums are taken over all pixels in the m× n image.
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PSNR does not take the structure of the image into account, is very sensitive to noise and to outliers
which can lead to low correlation with human evaluation.

SSIM: The Structural Similarity (SSIM) is a score that evaluates the similarity between two images.
It is obtained by combining three components : the difference in brightness between the images, the
difference in contrast between the images and the structural similarities between the images across
small patches. SSIM is calculated as

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y) (43)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(44)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(45)

s(x, y) =
σxy + C3

σxσy + C3
, (46)

where µx and µy are the means of the images x and y, σx and σy are the standard deviations of
the images x and y, σxy is the covariance between the images x and y, C1, C2, and C3 are small
constants to stabilize the division when the denominators are close to zero. l(x, y), c(x, y) and s(x, y)
correspond to the luminance comparison, contrast comparison and structure comparison respectively.

SSIM need the images to be perfectly aligned in order to be accurate. Also, since it use small patches,
it focus on local structure rather than global which lead to low correlation with human perception on
complex images.

Syncnet: Syncnet (Chung & Zisserman, 2016) is a CNN-based network, aims to capture the
correlation between audio and spatio-temporal features of the mouth region, calculating the audio
offset (the number of frames by which audio is early or late compared to video). Its distance (LSE-D)
and confidence score (LSE-C) are widely use to evaluate audio-lip synchronization in TH video.
While Syncnet is good at evaluating the audio offset, finding the speaker in a video containing
multiple persons or detecting unrelated audio (e.g dubbing) it is less useful when comparing two
videos with similar lip synchronization (e.g videos generated by two different methods). In fact it
has been shown that LSE-C and LSE-D have very limited correlation with human evaluation (Zhang
et al., 2024). Some recent methods (Xu et al., 2024a) were even able to outperform the ground truth
by a large margin on these metrics, showcasing their limitations. Additionally recent works (Yaman
et al., 2024b;a) have shown that Syncnet is not stable and can easily be influenced by factors outside
of lip synchronization (e.g mouth cropping, image quality, brightness...) making it difficult to apply
on the diverse datasets used today. Additionally, our own experiments have shown that Syncnet is
sensitive to audio and video encoding even when there are not noticeable difference for a human
observer (Appendix C)

LSE-D: The Syncnet Distance (LSE-D) compute the distance between audio and video features at
the offset predicted by Syncnet. See Syncnet entry for limitations.

LSE-C: The Syncnet Confidence score (LSE-C) computes the difference between the minimum and
the median of the features distances over all possible offsets (−10 ≤ offset ≤ 10, offset ∈ Z).
See Syncnet entry for limitations.

G USE OF LARGE LANGUAGE MODELS

We clarify the involvement of large language models (LLMs) is only for improving and polishing the
manuscript
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