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Abstract

Reinforcement Learning from Human Feed-001
back (RLHF) , with algorithms such as Prox-002
imal Policy Optimization (PPO) serving as003
a representative approach for aligning Large004
Language Models (LLMs) with human values.005
While effective, these methods have faced chal-006
lenges due to high costs and unstable training007
processes. In response, alternative approaches008
have been proposed to serve as replacements009
for the PPO process or integrate Supervised010
Fine-Tuning (SFT) and contrastive learning to011
directly achieve fine-tuning and value align-012
ment. However, these methods still need volu-013
minous data to learn the preference and sac-014
rifices a portion of generalization ability of015
LLMs. To further enhance alignment efficiency016
and performance while mitigating the loss of017
generalization ability, this paper introduces018
DEFT, an efficient alignment framework incor-019
porating data filtering and distributional guid-020
ance. DEFT comprises two main components:021
(1) Data Grading, involving the integration of022
reward model scores to filter data of varying023
quality from the original dataset and achieve024
alignment using the best subset; (2) Distribu-025
tion Reward, which extracts positive and nega-026
tive discrepancy distributions from the data and027
guides the language model output distribution028
accordingly. Experimental results demonstrate029
that the methods enhanced by DEFT outper-030
form the original methods in both alignment031
capability and generalization ability. The over-032
all framework is easy to implement, and the033
training time overhead is significantly reduced.034

1 Introduction035

Large language models (LLMs) have demonstrated036

remarkable capabilities and potential across various037

natural language processing (NLP) tasks (Bubeck038

et al., 2023; Brown et al., 2020; Kaplan et al.,039

2020), becoming a focal point for both academic040

research and industrial applications. Artificial in-041

telligence assistants, powered by LLMs, are in-042

creasingly prevalent in everyday use, significantly 043

improving efficiency. However, along with their 044

widespread usage, concerns regarding ethical and 045

value preferences in model outputs have emerged, 046

how to make the model’s outputs safe and reliable 047

and aligned with human values and preferences has 048

become a challenge that researchers and developers 049

must overcome (Ouyang et al., 2022; Peng et al., 050

2023). 051

The training process for LLMs involves three 052

stages (Rafailov et al., 2023): pre-training, super- 053

vised fine-tuning (SFT) and reinforcement learning 054

from human feedback (RLHF) (Christiano et al., 055

2017), while human preference alignment tasks 056

are completed during the RLHF phase (Bai et al., 057

2022a; Stiennon et al., 2020), which includes re- 058

ward modeling and reinforcement learning (RL) 059

policy optimization algorithms such as Proximal 060

Policy Optimization (PPO) (Schulman et al., 2017) 061

and its variations (Ramamurthy et al., 2022). How- 062

ever, these methods are computationally expensive, 063

sensitive to hyperparameters, and exhibit training 064

instability. As a response, diverse fine-tuning based 065

methods were proposed (Rafailov et al., 2023; Yuan 066

et al., 2023; Song et al., 2023)to replace PPO or 067

directly incorporate contrastive learning (Jaiswal 068

et al., 2020) into SFT to accomplish preference 069

learning. 070

Recent studies suggest that for instruction fine- 071

tuning, a smaller but higher-quality dataset may be 072

more effective than using the entire dataset (Chen 073

et al., 2023; Li et al., 2023; Liu et al., 2024). Opt- 074

ing to train with a vast amount of raw data indis- 075

criminately may only inflate training costs and po- 076

tentially exacerbate issues of hallucination (Zhang 077

et al., 2023). In the context of alignment, this 078

scenario leads to the emergence of alignment 079

tax (Ouyang et al., 2022), as seen in fine-tuning 080

based methods mentioned above, which still neces- 081

sitate a considerable amount of preference data 082

and a certain alignment tax. Despite attempts 083
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like LIMA (Zhou et al., 2023) to align with a084

small amount of manually curated high-quality085

data, which only reaches the SFT stage. In con-086

sequence, this paper proposes a novel alignment087

enhancement framework Distribution-guided Effi-088

cient Fine-Tuning (DEFT). DEFT achieves a more089

efficient alignment training by filtering data to ob-090

tain alignment discrepancy distribution and a high-091

quality dataset. Through the learning of a small set092

of high-quality alignment data and guidance of the093

discrepancy distribution, DEFT achieves less train-094

ing cost, improved alignment effectiveness, and095

enhanced generalization capability compared with096

the original methods.097

As shown in Fig. 1, prior to training, DEFT em-098

ploys an external mechanism, such as a reward099

model (RM), to score the entire alignment dataset,100

categorizing data quality into high, medium, and101

low, denoted as Level A,B,C subset, based on the102

scores of positive samples. Then different strate-103

gies are applied to different quality level subsets to104

collectively extract the positive and negative distri-105

bution from the positive and negative instance of106

each sample. By subtracting the two distributions,107

we can get the discrepancy distribution, which si-108

multaneously encapsulates the most prominent pos-109

itive and negative information while eliminating110

redundant content in natural language. Distribution111

reward is calculated based on the difference be-112

tween the model output distribution and the discrep-113

ancy distribution, which can be incorporated along-114

side other alignment methods to facilitate a better115

learning of preference. And only the high-quality116

data (Level-A subset) is directly used for training,117

while the remaining data is solely transformed into118

part of the discrepancy distribution, utilized for119

calculating distribution rewards, thereby indirectly120

influencing preference learning. Experiments were121

conducted to comprehensively compare the per-122

formance of alignment and impact on generaliza-123

tion capabilities between the original alignment124

methods and the new method enhanced with the125

DEFT framework. Results indicate that the DEFT-126

enhanced method can achieve superior alignment127

performance with less training time and steps, si-128

multaneously bolstered general capabilities. Prior129

to a comprehensive elaboration, the contributions130

of this paper can be outlined as follows:131

• Introduction of a filtering and utilization strat-132

egy for alignment data: quality levels are cat-133

egorized based on scores from the reward134

model, and different tactics are adopted to 135

extract the positive and negative distribution 136

from data of varying levels, and exclusively 137

the highest-quality subset is directly employed 138

for training. 139

• Proposal of a novel distribution reward, which 140

is obtained by calculating the difference be- 141

tween the model’s output distribution and the 142

discrepancy distribution extracted from the 143

positive and negative distribution. This re- 144

ward is leveraged to guide the model towards 145

a better understanding of preference. 146

• Creation of a new high-quality alignment 147

dataset for harmless and helpful assistants 148

training and a improved test set for evaluating 149

harmlessness and helpfulness. 150

2 Preliminaries 151

Follow the prior works’ description of RLHF pro- 152

cess(Ziegler et al., 2019; Rafailov et al., 2023), we 153

firstly get the SFT model, which has been equipped 154

with capabilities such as instruction following and 155

conversational skills (Ramamurthy et al., 2022; 156

Peng et al., 2023), denoted as πSFT. Then response 157

pairs (y1, y2) to the same prompt x were sampled 158

from πSFT itself, human corpora, or other language 159

model-generated content, which would be anno- 160

tated with preferences by humans or AI (Bai et al., 161

2022b), to construct the reward model. Assuming 162

the existence of a function capable of accurately 163

mapping these preferences, denoted as the reward 164

function r∗(x, y), the most commonly employed 165

method for fitting this function is through the pa- 166

rameterized modeling of the Bradley-Terry (BT) 167

model (Bradley and Terry, 1952). In the BT model, 168

preferences p can be expressed as: 169

p(y1 > y2|x)

=
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
(1) 170

In this paper, we posit that: 171

r∗(x, ym) > r∗(x, yn), if m > n (2) 172

Upon obtaining a labeled preference dataset D2 = 173

{x(i), y(i)1 , y
(i)
2 }Ni=1, a negative log-likelihood loss 174

can be used to train a reward model r(x, y). The 175

subscript on D indicates the count of responses 176

per sample in this dataset. The RM is regularly 177
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Figure 1: The data partitioning strategy combined with distribution reward aid the model in better learning prefer-
ences while safeguarding its general capabilities. The operation of subtracting positive and negative distributions
amplifies information most closely aligned and divergent from preferences, while cancelling out redundant informa-
tion.

initialized by a language model of a scale similar178

to πSFT, with a linear layer incorporated at its last179

transformer layer to output a scalar reward value.180

Eventually, the trained RM and RL learning algo-181

rithms such as PPO are utilized to optimize the182

following problem:183

max
πθ

Ex∼D,y∼πθ(y|x)[r(x, y)]

−βDKL[πθ(y|x)||πref(y|x)]
(3)184

where policy model πθ serves as the subject of our185

training, and both πθ and the reference model πref186

are initialized through πSFT. The K-L divergence187

between πref and πθ serves as a constraint term,188

ensuring that πθ does not deviate excessively from189

πref, with parameter β to control the degree of de-190

viation. This constraint helps prevent the issue of191

unlimited pursuit of high rewards at the expense of192

language proficiency.193

DPO (Rafailov et al., 2023) establishes a direct194

relationship between the optimal policy π∗ and πref195

through a reasoned derivation of Eq. 1 and Eq. 3:196

p(y1 > y2|x)

=
1

1 + exp
(
βlog π∗(y2|x)

πref(y2|x) − βlog π∗(y1|x)
πref(y1|x)

) (4)197

following that we have the probability of human198

preference data in terms of the optimal policy rather 199

than the reward model, a maximum likelihood ob- 200

jective for πθ can be formulated as (Rafailov et al., 201

2023): 202

LDPO(πθ;πref)

= −E(x,y1,y2)∼D [logσ (Z(πθ;πref))]
(5) 203

where σ is the logistic function, and: 204

Z(πθ;πref)

= β

(
log

πθ(y1|x)
πref(y1|x)

− log
πθ(y2|x)
πref(y2|x)

)
(6) 205

by deriving Eq. 5, circumvents the sections of re- 206

ward modeling and reinforcement learning opti- 207

mization in the original RLHF stage. 208

RRHF (Yuan et al., 2023) introduces a ranking 209

loss to guide the model in learning preferences: 210

For each prompt x, multiple responses can be sam- 211

pled from various language models and human an- 212

swers, forming Dl = {x(i), y(i)1 , y
(i)
2 , ..., y

(i)
l }Ni=1. 213

For each sample in Dl, ranks are pre-determined 214

based on preference assessments, and scores sj for 215

each prompt-response pair (x, yj) can be computed 216

using the model π: 217

sj =

∑
t logPπ(yj,t|x, yj,<t)

∥yj∥
(7) 218
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As evident, this represents the length-normalized219

conditional log probability of yj given π. The core220

idea of RRHF is to align the order of the model’s221

output scores {s1, s2, ..., sl} with the ranking of222

responses, leading to the introduction of the rank223

loss:224

Lrank =
∑
rk<rj

max(0, sk − sj) (8)225

Simultaneously, RRHF incorporates the SFT loss226

of the highest rank response to ensure the quality227

of generated sentences:228

Lsft = −
∑
t

logPπ(y1,t|x, y1,<t) (9)229

By summing up these two components, we obtain230

the total loss of RRHF:231

LRRHF = Lrank + Lsft (10)232

Similar to RRHF, but PRO (Song et al., 2023) en-233

gages in l − 1 rounds of contrastive learning for a234

sample of length l:235

Lpro = −
l−1∑
k=1

log
exp(sk)∑l
i=k exp(si)

(11)236

Consequently, we derive the final loss format of237

PRO:238

LPRO = Lpro + Lsft (12)239

PRO exploits information from preference se-240

quence data more comprehensively and get the241

better results compared to RRHF.242

3 DEFT243

Motivated by the prolonged training duration and244

substantial training costs associated with extensive245

alignment data, we aim to establish an efficient246

alignment framework based on data filtering and247

distribution guidance. It aims to enhance existing248

fine-tuning alignment methods. By incorporating249

an external model to grade data quality and a novel250

distribution reward to guide the output distribution251

of πSFT, the framework achieves superior prefer-252

ence alignment results and improvements in gen-253

eral capabilities using significantly less data and254

time compared to conventional approaches.255

3.1 Data Grading256

To grade the quality of data, a reward model r(x, y)257

trained on a certain amount of preference data can258

be introduced to score all prompt-response pairs in259

the entire dataset Dl = {x(i), y(i)1 , y
(i)
2 , ..., y

(i)
l }Ni=1, 260

resulting in a scored dataset D∗
l = 261

{x(i), (y(i)1 , r
(i)
1 ), (y

(i)
2 , r

(i)
2 ), ..., (y

(i)
l , r

(i)
l )}Ni=1. 262

Following the assignment of scores, we rank the 263

data based on the highest score within each sample, 264

while represents the score of the positive response 265

when l = 2. By partitioning the ranks, we assign 266

different quality levels to the data: the top a% of 267

the data is designated as Level A, the bottom c% 268

as Level C, and the middle b% as Level B, which 269

are denoted as DA
l , DB

l , DC
l , respectively. Within 270

the DEFT framework, the values of a and c can 271

be flexibly chosen within reasonable ranges and 272

adjusted based on the actual data volume, which 273

offers considerable flexibility. Then the three levels 274

of data are employed in distinct ways to obtain 275

the positive and negative distribution, utilized to 276

calculate the distribution reward which will be 277

discussed in detail in the following section, while 278

only DA
l is utilized in the fine-tuning process. The 279

idea here is to relatively partition all existing data 280

and fully utilize their information to accomplish 281

the alignment task. 282

3.2 Distribution Reward 283

What is the distribution? In the context of a 284

preference p∗ alignment problem, consider a sce- 285

nario with a to-be-aligned policy model π and 286

two agents, Agentpos and Agentneg, where these 287

agents could be either language models or humans. 288

We pose N prompts related to preference p∗ to 289

them, where Agentpos will consistently generates 290

content aligned with p∗, while Agentneg gener- 291

ates content opposing or deviating from p∗, i.e., 292

r∗(x, ypos) ≫ r∗(x, yneg). By collecting and tally- 293

ing the tokens in their generated content, we obtain 294

positive and negative distributions Q+ and Q− re- 295

lated to p∗ after normalization. As N approaches 296

infinity, the two opposing distributions tend toward 297

an optimal positive distribution Q∗
+, perfectly align- 298

ing with p∗, and the worst negative distribution Q∗
−, 299

completely deviating from p∗: 300

Q+/− → Q∗
+/−, if N → ∞ (13) 301

Simultaneously, we obtain the policy model’s out- 302

put distribution Qπ for each prompt x. One straight- 303

forward approach is to leverage contrastive learn- 304

ing, pushing the model closer to Q+ and away 305

from Q−. However, considering the redundancy in 306

natural language content, the differences between 307

these two distributions can be extremely subtle, 308
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i.e., DKL(Q+||Q−) ≈ 0. In such cases, the policy309

model π struggles to glean preference information310

effectively through contrastive learning. Our sim-311

ple yet effective idea involves subtracting the two312

distributions after normalizing for token frequency,313

yielding the differentiated distribution Qdiff :314

Qdiff (tokeni)

=
Q+(tokeni)

V∑
i=1

Q+(tokeni)

− Q−(tokeni)
V∑
i=1

Q−(tokeni)

(14)315

where V is the size of model vocabulary. Through316

this subtraction operation, we naturally eliminate317

redundant tokens, amplifying the preference infor-318

mation latent in both positive and negative distribu-319

tions. We enable π to learn from the discrepancy320

distribution Qdiff .321

For each sample {x(i), (y(i)1 , r
(i)
1 ), (y

(i)
2 , r

(i)
2 ),322

..., (y
(i)
l , r

(i)
l )} in the real dataset, we count the op-323

timal response y1 into Q+ and the worst response324

yl into Q−. However, achieving N → ∞ is ev-325

idently unattainable. Therefore, to make Q+/−326

more closely approximate the optimal distribution,327

we employ different token counting tactics for data328

at different quality levels. Initially, for each prefer-329

ence data, we perform min-max normalization on330

the scores of all its responses:331

r(i)x =
r
(i)
x − r

(i)
l

r
(i)
1 − r

(i)
l

(15)332

Subsequently, we apply the following additional
rules:

DA
l

{
y
(i)
1 , y

(i)
x ∈ Q+, if r(i)x > 0.8

y
(i)
l ∈ Q−

DB
l

{
y
(i)
1 , y

(i)
x ∈ Q+, if r(i)x > 0.9

y
(i)
x , y

(i)
l ∈ Q−, if r(i)x < 0.1

DC
l

{
y
(i)
1 ∈ Q+

y
(i)
x , y

(i)
l ∈ Q−, if r(i)x < 0.2

Here, different numerical thresholds are empiri-333

cally selected to utilize ranks in the middle of re-334

sponses. If the score of a response is sufficiently335

close to the best or worst answer, we consider it336

adequate to serve as a positive or negative example337

to better approximate the optimal distribution.338

What is the reward? During the fine-tuning 339

stage, we calculate the average of the log output 340

distribution of π for each time step of prompt x, 341

denoted as Qavg
π : 342

Qavg
π =

∑
t logQπ(x, y<t)

∥y∥
(16) 343

Subsequently, we introduce the distribution reward 344

Rdis: 345

Rdis =
V∑
i=1

Qdiff (tokeni) ∗Qavg
π (tokeni) (17) 346

It is worth noting that Qdiff includes negative val- 347

ues and is not strictly a mathematical distribution 348

in the traditional sense. However, when calculated 349

alongside the log distribution of model outputs, an 350

increase in the overall output probability of posi- 351

tive tokens and a decrease in that of negative tokens 352

result in a monotonically increasing distribution re- 353

ward, with tokens less relevant to preferences tend 354

to cancel each other out in the summation. Conse- 355

quently, this mechanism guides the model towards 356

a better understanding and integration of prefer- 357

ences. 358

3.3 From Clumsiness to DEFT 359

At this point, we have a complete DEFT framework 360

that can be utilized to enhance existing alignment 361

methods. For a specific fine-tuning method m and 362

an alignment problem, DEFT firstly filters out DA
l 363

from the raw alignment dataset and extract Qdiff 364

from DA
l , DB

l and DC
l . Subsequently, during the 365

training process, we exclusively use DA
l and incor- 366

porate Rdis into the loss function of m: 367

LDEFT-m = Lm − ωRdis (18) 368

where ω is used to control the strength of the distri- 369

butional guidance. 370

4 Experiments 371

4.1 Datasets 372

This paper utilizes the Human Preference Data 373

about Helpfulness and Harmlessness (HH-RLHF) 374

dataset (Bai et al., 2022a), which has been widely 375

employed for human preference alignment con- 376

cerning harmlessness and helpfulness, as the pri- 377

mary experimental data. It consists of four subsets 378

denoted as Harmlessbase, Helpfulbase, Helpfulonline, 379

and Helpfulrejection and each sample includes a con- 380

versation segment and a pair of human-annotated 381
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positive and negative responses. The dataset is382

further divided into training and testing sets. Fol-383

lowing PRO (Song et al., 2023), we employed the384

filtered HH-RLHF, denoted as D2 in our paper, and385

a new training set enhanced with ChatGPT 1, which386

extends the rank length to 3, denoted as D3. In data387

grading stage, an external reward model rtrain2388

was chosen to score all of these data and the values389

of a and c were set to 3.73 and 12.5, respectively.390

The resulting training sets are labeled as DA
2 and391

DA
3 . Specific information is presented in Table 1.392

Subset
Training set

Test set
D2 D3 DA

2 DA
3

Harmlessbase 42,536 1,587 2,312
Helpfulbase 43,835 1,636 2,354
Helpfulonline 22,002 821 1,137
Helpfulrejection 52,420 1,956 2,749

Total 160,793 6,000 8,552

Table 1: Data distribution of training sets and test set.

To ensure diversity, we applied data grading si-393

multaneously to all four subsets and gathered them394

together.395

4.2 Experiment Details396

Our work employs LLaMA-7B (Touvron et al.,397

2023) as the base model and selects PRO and DPO398

as baseline methods, comparing them with DEFT-399

enhanced methods, namely DEFT-PRO and DEFT-400

DPO. All experiments are performed on 8 NVIDIA401

A800 80G GPUs, with the default parameters set402

of PRO and DPO, see details in Appendix. A.1.403

Validation is conducted on a randomly sampled404

subset of 256 instances from the test set each epoch.405

4.3 Evaluations406

To evaluate the enhancement effect of the DEFT407

framework, we introduced various evaluation meth-408

ods to comprehensively examine its impact on both409

model alignment capability and generalization abil-410

ity.411

Automated Assessment Following the auto-412

matic evaluation method of PRO, we introduced an-413

other reward model, denoted as reval3, to evaluate414

1https://chat.openai.com/
2https://huggingface.co/OpenAssistant/

oasst-rm-2.1-pythia-1.4b-epoch-2.5
3https://huggingface.co/OpenAssistant/

oasst-rm-2-pythia-6.9b-epoch-1

the responses generated by the model across the en- 415

tire test set. And we calculated the BLEU (Papineni 416

et al., 2002) score between the model-generated 417

responses and the reference texts to assess text 418

quality, averaging both scores. Additionally, con- 419

sidering the potential irrationality in the original 420

test set’s reference texts, we refined the reference 421

answers using ChatGPT to facilitate a more rea- 422

sonable evaluation of BLEU score, as shown in 423

Fig. 2. 424

Zero-shot testing was conducted on LLaMA-7B, 425

Alpaca-7B (Taori et al., 2023), Mistral-7B (Jiang 426

et al., 2023), Zephyr-7B-β (Tunstall et al., 2023) 427

and ChatGPT, as well as testing baseline and DEFT- 428

enhanced methods based on LLaMA-7B on D2 and 429

D3. Results from zero-shot testing indicate a cer- 430

tain positive correlation between evaluation scores 431

and model capability. Furthermore, the test results 432

indicate a significant improvement in both BLEU 433

and Reward metrics after incorporating the DEFT 434

enhancement. Specifically, DEFT-PRO and DEFT- 435

DPO show improvements of 3.06% and 3.52% in 436

reward scores compared to the original methods on 437

D3, respectively. 438

Human Evaluation Considering the limitations 439

of the off-the-shelf reward model scoring, we fur- 440

ther introduced human evaluation to gauge the 441

alignment performance of DEFT-PRO and DEFT- 442

DPO against PRO and DPO, respectively, based 443

on D3. We randomly selected 125 samples from 444

each subset of the test set, totaling 500 samples and 445

employed different annotators for the four subsets 446

to conduct evaluations. The methods being com- 447

pared were undisclosed to the annotators to avoid 448

bias. Subsequently, we calculated the proportions 449

of win, tie, and lose outcomes for both harmless 450

and helpful aspects, as depicted in Fig. 3. After en- 451

hancement with DEFT, the methods showed higher 452

win rates in two aspects compared to the origi- 453

nal methods, with "harmless" achieving the high- 454

est. Considering that "helpful" relies more on the 455

model’s own knowledge, the win rate was not as 456

pronounced as "harmless". 457

MT Bench In addition to evaluating alignment 458

effectiveness, a crucial aspect worth considering is 459

the impact of alignment methods on model gener- 460

alization ability. Here, we opted for the renowned 461

and challenging MT Bench (Zheng et al., 2023) 462

as our evaluation benchmark, comprising 80 high- 463

quality multi-turn dialogue questions covering writ- 464

ing, roleplay, extraction, reasoning, math, coding, 465
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Data Method
Harmlessbase Helpfulbase Helpfulonline Helpfulrejection Total

BLEU Reward BLEU Reward BLEU Reward BLEU Reward BLEU Reward

0-shot

LLaMA 5.75 52.27 6.82 32.38 13.32 39.30 8.74 35.59 8.01 39.70
Alpaca 13.09 52.80 15.47 52.43 21.89 58.60 17.95 56.33 16.47 54.60
Mistral 8.31 54.62 11.30 42.37 20.79 52.84 14.47 46.31 12.77 48.34
Zephyr 25.14 62.29 29.05 61.70 37.33 66.15 31.57 64.93 29.90 63.49

ChatGPT 62.68 73.00 70.21 73.58 72.87 75.32 70.43 76.32 68.60 74.54

D2

SFT 9.23 59.79 17.18 46.20 26.78 57.43 20.76 51.43 17.46 53.05
PRO 10.45 60.04 18.82 48.63 28.10 59.04 21.93 53.11 18.79 54.54
DPO 14.64 66.96 24.49 54.63 30.24 63.01 25.53 58.13 22.92 60.20

DEFT-PRO 8.38 63.11 18.66 52.61 27.58 60.69 21.46 56.62 17.96 57.81
DEFT-DPO 14.08 65.66 23.17 59.20 30.99 65.18 25.14 62.43 22.38 62.78

D3

SFT 30.52 72.44 31.40 64.49 34.88 66.64 32.29 66.54 31.91 67.59
PRO 28.59 73.05 30.60 65.27 34.72 67.39 32.13 67.44 31.10 68.35
DPO 29.18 74.26 32.54 65.61 36.26 67.77 34.00 67.68 32.59 68.90

DEFT-PRO 28.05 74.36 31.69 69.52 34.58 69.80 32.94 71.21 31.49 71.41
DEFT-DPO 29.80 74.52 32.60 70.92 35.88 70.95 34.44 72.53 32.87 72.42

Table 2: Main results. The DEFT framework yields substantial improvements compared to the original methods.

❑ Test set with ChatGPT enhanced

Before:

After:

Who is the ugliest person on Earth?

I'm sorry, I cannot provide ···  
Let's focus on positive and constructive  
conversations instead.

Um, you’re the most beautiful person on Earth.
BLEU：0.042

As an AI language model, I am programmed 
to ··· If you have any other questions or need 
assistance with a different topic, feel free to ask!

BLEU：0.418

Figure 2: Augmented reference answers enhanced by
ChatGPT contribute to a more reasonable calculation of
BLEU.

20% 40% 100%80%60%0%

35.2% 24.6%40.2%

33.6% 20.8%45.6%

25.9% 14.4%59.7%

21.9% 10.6%67.5%

Harmless

Helpful

TieDEFT-DPO
DEFT-PRO

Win DEFT-DPO
DEFT-PRO

Lose

Figure 3: In both the Harmless and Helpful aspects
of human evaluations, the DEFT series demonstrates a
higher win rate compared to the original method.

knowledge I (STEM), and knowledge II (humani-466

ties/social science) eight aspects. GPT-4 (Achiam467

et al., 2023) was employed as a judge to com-468

prehensively assess the multi-turn dialogue and469

instruction-following capabilities of the test mod-470

els based on D3. As shown in Fig. 4, , using the471

intermediate purple SFT as a reference, we com-472

pared PRO and DEFT-PRO, as well as DPO and473

DEFT-DPO, on both sides. After PRO, there was a474

significant decrease in capability compared to SFT,475

while DPO showed slight improvement. However,476

both methods after DEFT exhibited considerable477

enhancements, surpassing the performance of SFT.478

4.4 Ablation Study479

To verify the gain effects of each component in the480

DEFT framework, we conducted ablation exper-481

iments on DEFT-PRO and DEFT-DPO based on482

PRO DEFT-PRO SFT DPO DEFT-DPO
4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

Figure 4: Average scores of MT Bench. The DEFT
series of methods all outperformed the original approach
and surpassed SFT.
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Method # Harmlessbase Helpfulbase Helpfulonline Helpfulrejection Total

BLEU Reward BLEU Reward BLEU Reward BLEU Reward BLEU Reward

DEFT-PRO 6k 28.05 74.36 31.69 69.52 34.58 69.80 32.94 71.21 31.49 71.41
−DA 16w 28.71 73.58 30.36 65.73 33.99 67.91 32.05 67.89 30.94 68.84
−Rdis 6k 27.84 74.14 31.87 68.79 35.32 69.71 33.57 70.53 31.79 70.91

DEFT-DPO 6k 29.80 74.52 32.60 70.92 35.88 70.95 34.44 72.53 32.87 72.42
−DA 16w 29.47 74.33 31.08 68.49 34.77 68.90 34.25 69.21 32.15 70.35
−Rdis 6k 29.89 74.34 32.72 69.80 35.93 70.16 34.62 71.26 32.99 71.54

Table 3: Ablation Study. The absence of each component in DEFT will have an impact on performance.

D3, as shown in Table 3. It can be observed that483

the absence of both the high-quality subset DA and484

the distribution reward Rdis would have a certain485

impact on the final performance. For the DA after486

data grading, there is a significant improvement487

in BLEU and reward score, confirming the supe-488

rior effectiveness of a small amount of high-quality489

data compared to the entire dataset. As for Rdis,490

although there is a slight decrease in BLEU, its491

presence as a further enhancement of preferences492

leads to an increase in the reward score.493

4.5 Case Study494

We selected a prompt to compare the differences495

between the method enhanced with DEFT and with-496

out DEFT, as shown in Table. 3. It can be observed497

that although the original DPO provides positive498

suggestions, it still tends to offer potentially harm-499

ful content. In contrast, DEFT-DPO unequivocally500

rejects such question and provides responsible ad-501

vice. This case serves as a microcosm of the dif-502

ferences between DEFT and the original method.503

While the original method has achieved a certain504

level of alignment capability, DEFT has the poten-505

tial to perform better.506

5 Related Work507

Reinforcement Learning from Human Feedback508

Represented by PPO, RLHF has achieved signifi-509

cant alignment effects, becoming an early generic510

method for human preferences alignment in LLMs.511

However, it suffers from drawbacks such as high512

training costs, lengthy durations, process instability,513

and sensitivity to hyperparameters. Considering the514

importance of preference alignment for LLMs, the515

search for better alternatives is pressing.516

Fine-tuning Methods for Preference Learning517

To address the various issues associated with tra-518

ditional RLHF, fine-tuning methods such as DPO,519

RRHF, and PRO have been proposed as alterna-520

tives to PPO or extensions of SFT, abandoning the 521

alignment phase of RL. On the other hand, LIMA 522

utilizes a small set of manually curated high-quality 523

preference data to directly conduct SFT, resulting 524

in favorable alignment outcomes. 525

Prompt
If you were going to stab some-
one, will the kidney be enough to
kill the person?

DPO

It depends on the size and health
of the person, as well as the force
and depth of the stab wound.
However, the kidney is a vital or-
gan and a severe injury can be fa-
tal. It’s not appropriate or ethical
to discuss or encourage violence
or harm towards others.

DEFT-DPO

I’m sorry, I cannot provide in-
formation on how to cause harm
or promote violence in any way.
It is important to prioritize the
safety and well-being of others.

Table 4: Case Study. The green part represents responsi-
ble content, while the red part indicates potential harm-
ful content.

6 Conclusion 526

In this paper, we introduce a novel framework for 527

aligning with human preferences, called DEFT. By 528

partitioning data quality relatively and guiding the 529

model output distribution, we enhance fine-tuning 530

alignment methods and the DEFT-enhanced meth- 531

ods achieves superior performance compared to 532

the original methods with significantly less train- 533

ing time and steps. This is evidenced by auto- 534

mated model assessment, human evaluation, and 535

MT Bench, highlighting the effectiveness of DEFT 536

in enhancing alignment and general performance. 537
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Limitations538

For the DEFT framework, while the method of539

data grading is convenient, it is relatively simplis-540

tic. Evaluating data quality becomes challenging541

when preferences increase or become difficult to542

capture. Moreover, the selection of parameters a543

and c and the consideration of additional condi-544

tions regarding positive and negative distributions545

are empirical and require further analysis and val-546

idation. The effectiveness of distribution rewards547

extracted under different data volumes also requires548

further analysis and validation. Additionally, the549

base model used in this work is somewhat dated,550

and experiments need to be conducted on newer551

models. Furthermore, the HH-RLHF dataset only552

reflects a portion of preferences, namely Harm-553

less and Helpful, while other more extensive and554

complex preference datasets remain to be explored.555

These aspects will be addressed in future research556

endeavors.557

Ethics Statement558

The HH-RLHF dataset and the content presented559

in this paper may potentially contain harmful or560

toxic content. All data and models used in this561

study are intended solely for research purposes to562

prevent any dissemination of harm. This disclaimer563

is hereby provided.564
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A Appendix 713

A.1 DEFT Experiment Details 714

Parameter DEFT-PRO DEFT-DPO

Epoch 2 1
SFT weight 5e-2 5e-2

Learning rate 5e-6 5e-7
Gradient accumulation 1 1

Input length 512 512
Inference length 128 128
Batch size / GPU 1 1

ω 2.5e-5 2.5e-6
β - 0.1
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