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Abstract

Reinforcement Learning from Human Feed-
back (RLHF) , with algorithms such as Prox-
imal Policy Optimization (PPO) serving as
a representative approach for aligning Large
Language Models (LLMs) with human values.
While effective, these methods have faced chal-
lenges due to high costs and unstable training
processes. In response, alternative approaches
have been proposed to serve as replacements
for the PPO process or integrate Supervised
Fine-Tuning (SFT) and contrastive learning to
directly achieve fine-tuning and value align-
ment. However, these methods still need volu-
minous data to learn the preference and sac-
rifices a portion of generalization ability of
LLMs. To further enhance alignment efficiency
and performance while mitigating the loss of
generalization ability, this paper introduces
DEFT, an efficient alignment framework incor-
porating data filtering and distributional guid-
ance. DEFT comprises two main components:
(1) Data Grading, involving the integration of
reward model scores to filter data of varying
quality from the original dataset and achieve
alignment using the best subset; (2) Distribu-
tion Reward, which extracts positive and nega-
tive discrepancy distributions from the data and
guides the language model output distribution
accordingly. Experimental results demonstrate
that the methods enhanced by DEFT outper-
form the original methods in both alignment
capability and generalization ability. The over-
all framework is easy to implement, and the
training time overhead is significantly reduced.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities and potential across various
natural language processing (NLP) tasks (Bubeck
et al., 2023; Brown et al., 2020; Kaplan et al.,
2020), becoming a focal point for both academic
research and industrial applications. Artificial in-
telligence assistants, powered by LLMs, are in-

creasingly prevalent in everyday use, significantly
improving efficiency. However, along with their
widespread usage, concerns regarding ethical and
value preferences in model outputs have emerged,
how to make the model’s outputs safe and reliable
and aligned with human values and preferences has
become a challenge that researchers and developers
must overcome (Ouyang et al., 2022; Peng et al.,
2023).

The training process for LLMs involves three
stages (Rafailov et al., 2023): pre-training, super-
vised fine-tuning (SFT) and reinforcement learning
from human feedback (RLHF) (Christiano et al.,
2017), while human preference alignment tasks
are completed during the RLHF phase (Bai et al.,
2022a; Stiennon et al., 2020), which includes re-
ward modeling and reinforcement learning (RL)
policy optimization algorithms such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
and its variations (Ramamurthy et al., 2022). How-
ever, these methods are computationally expensive,
sensitive to hyperparameters, and exhibit training
instability. As a response, diverse fine-tuning based
methods were proposed (Rafailov et al., 2023; Yuan
et al., 2023; Song et al., 2023)to replace PPO or
directly incorporate contrastive learning (Jaiswal
et al., 2020) into SFT to accomplish preference
learning.

Recent studies suggest that for instruction fine-
tuning, a smaller but higher-quality dataset may be
more effective than using the entire dataset (Chen
et al., 2023; Li et al., 2023; Liu et al., 2024). Opt-
ing to train with a vast amount of raw data indis-
criminately may only inflate training costs and po-
tentially exacerbate issues of hallucination (Zhang
et al., 2023). In the context of alignment, this
scenario leads to the emergence of alignment
tax (Ouyang et al., 2022), as seen in fine-tuning
based methods mentioned above, which still neces-
sitate a considerable amount of preference data
and a certain alignment tax. Despite attempts



like LIMA (Zhou et al., 2023) to align with a
small amount of manually curated high-quality
data, which only reaches the SFT stage. In con-
sequence, this paper proposes a novel alignment
enhancement framework Distribution-guided Effi-
cient Fine-Tuning (DEFT). DEFT achieves a more
efficient alignment training by filtering data to ob-
tain alignment discrepancy distribution and a high-
quality dataset. Through the learning of a small set
of high-quality alignment data and guidance of the
discrepancy distribution, DEFT achieves less train-
ing cost, improved alignment effectiveness, and
enhanced generalization capability compared with
the original methods.

As shown in Fig. 1, prior to training, DEFT em-
ploys an external mechanism, such as a reward
model (RM), to score the entire alignment dataset,
categorizing data quality into high, medium, and
low, denoted as Level A,B,C subset, based on the
scores of positive samples. Then different strate-
gies are applied to different quality level subsets to
collectively extract the positive and negative distri-
bution from the positive and negative instance of
each sample. By subtracting the two distributions,
we can get the discrepancy distribution, which si-
multaneously encapsulates the most prominent pos-
itive and negative information while eliminating
redundant content in natural language. Distribution
reward is calculated based on the difference be-
tween the model output distribution and the discrep-
ancy distribution, which can be incorporated along-
side other alignment methods to facilitate a better
learning of preference. And only the high-quality
data (Level-A subset) is directly used for training,
while the remaining data is solely transformed into
part of the discrepancy distribution, utilized for
calculating distribution rewards, thereby indirectly
influencing preference learning. Experiments were
conducted to comprehensively compare the per-
formance of alignment and impact on generaliza-
tion capabilities between the original alignment
methods and the new method enhanced with the
DEFT framework. Results indicate that the DEFT-
enhanced method can achieve superior alignment
performance with less training time and steps, si-
multaneously bolstered general capabilities. Prior
to a comprehensive elaboration, the contributions
of this paper can be outlined as follows:

* Introduction of a filtering and utilization strat-
egy for alignment data: quality levels are cat-
egorized based on scores from the reward

model, and different tactics are adopted to
extract the positive and negative distribution
from data of varying levels, and exclusively
the highest-quality subset is directly employed
for training.

* Proposal of a novel distribution reward, which
is obtained by calculating the difference be-
tween the model’s output distribution and the
discrepancy distribution extracted from the
positive and negative distribution. This re-
ward is leveraged to guide the model towards
a better understanding of preference.

* Creation of a new high-quality alignment
dataset for harmless and helpful assistants
training and a improved test set for evaluating
harmlessness and helpfulness.

2 Preliminaries

Follow the prior works’ description of RLHF pro-
cess(Ziegler et al., 2019; Rafailov et al., 2023), we
firstly get the SFT model, which has been equipped
with capabilities such as instruction following and
conversational skills (Ramamurthy et al., 2022;
Peng et al., 2023), denoted as 75T, Then response
pairs (y1,y2) to the same prompt x were sampled
from 75T itself, human corpora, or other language
model-generated content, which would be anno-
tated with preferences by humans or Al (Bai et al.,
2022b), to construct the reward model. Assuming
the existence of a function capable of accurately
mapping these preferences, denoted as the reward
function r*(z, y), the most commonly employed
method for fitting this function is through the pa-
rameterized modeling of the Bradley-Terry (BT)
model (Bradley and Terry, 1952). In the BT model,
preferences p can be expressed as:

p(y1 > y2|z)
_ exp(r*(z,y1)) (D
exp(r*(x, y1)) + exp(r*(x, y2))

In this paper, we posit that:
r(z,ym) > r*(z,yn),if m>n )

Upon obtaining a labeled preference dataset Dy =
{z®, yii), yéi) } |, a negative log-likelihood loss
can be used to train a reward model r(x,y). The
subscript on D indicates the count of responses

per sample in this dataset. The RM is regularly
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Figure 1: The data partitioning strategy combined with distribution reward aid the model in better learning prefer-
ences while safeguarding its general capabilities. The operation of subtracting positive and negative distributions
amplifies information most closely aligned and divergent from preferences, while cancelling out redundant informa-

tion.

initialized by a language model of a scale similar
to 75FT, with a linear layer incorporated at its last
transformer layer to output a scalar reward value.
Eventually, the trained RM and RL learning algo-
rithms such as PPO are utilized to optimize the
following problem:

maxE, .p yr, (yle) [r(z,y)]
o 3)

_BDKL[WB(ylw) ’ ‘ﬂ'ref(y‘x)]

where policy model gy serves as the subject of our
training, and both 7y and the reference model 7yef
are initialized through 75FT. The K-L divergence
between mr and 7wy serves as a constraint term,
ensuring that mg does not deviate excessively from
Tref, With parameter 3 to control the degree of de-
viation. This constraint helps prevent the issue of
unlimited pursuit of high rewards at the expense of
language proficiency.

DPO (Rafailov et al., 2023) establishes a direct
relationship between the optimal policy 7* and s
through a reasoned derivation of Eq. 1 and Eq. 3:

p(y1 > yolz)
_ 1 4)
1+ exp (510}; T (y2|®) Blog T™*(y1lz) )

ﬂ'ref(y2|m) 7'rrxef(?/l'x)

following that we have the probability of human

preference data in terms of the optimal policy rather
than the reward model, a maximum likelihood ob-
jective for g can be formulated as (Rafailov et al.,
2023):

Lppo (T9; Tref)

)
= 7E($7y1 wy2)~D [logo (Z(mg; Trer) )]

where o is the logistic function, and:

Z(ﬂ—O; 7rref)
7o (y1|x) 7o (yo|x) ) (6)
b <0g7rref(y1$) ? 7"'ref(y2|x)

by deriving Eq. 5, circumvents the sections of re-
ward modeling and reinforcement learning opti-
mization in the original RLHF stage.

RRHF (Yuan et al., 2023) introduces a ranking
loss to guide the model in learning preferences:
For each prompt z, multiple responses can be sam-
pled from various language models and human an-
swers, forming D; = {z(?), yy), yéi), vy yl(i) N
For each sample in D;, ranks are pre-determined
based on preference assessments, and scores s; for
each prompt-response pair (, y/;) can be computed
using the model 7:

2 logPr(yjelz, yj<t)
=
[yl

(N



As evident, this represents the length-normalized
conditional log probability of y; given 7. The core
idea of RRHF is to align the order of the model’s
output scores {si, s2, ..., s;} with the ranking of
responses, leading to the introduction of the rank
loss:

Lrank = Z max (0, s — s;) )

T <Tj

Simultaneously, RRHF incorporates the SFT loss
of the highest rank response to ensure the quality
of generated sentences:

Lose ==Y logPr(yiilz.y1<t) (9
t

By summing up these two components, we obtain
the total loss of RRHF:

[rRRHF = ﬁrank + £sft (10)

Similar to RRHF, but PRO (Song et al., 2023) en-
gages in [ — 1 rounds of contrastive learning for a
sample of length {:

Zlo

Consequently, we derive the final loss format of
PRO:

exp Sk

ke xp(si)

1D

/-:PRO = Epro + £sft (12)

PRO exploits information from preference se-
quence data more comprehensively and get the
better results compared to RRHF.

3 DEFT

Motivated by the prolonged training duration and
substantial training costs associated with extensive
alignment data, we aim to establish an efficient
alignment framework based on data filtering and
distribution guidance. It aims to enhance existing
fine-tuning alignment methods. By incorporating
an external model to grade data quality and a novel
distribution reward to guide the output distribution
of 7SFT, the framework achieves superior prefer-
ence alignment results and improvements in gen-
eral capabilities using significantly less data and
time compared to conventional approaches.

3.1 Data Grading

To grade the quality of data, a reward model r(x, y)
trained on a certain amount of preference data can
be introduced to score all prompt-response pairs in

the entire dataset D; = {2’ ,y% ),yé ) yl(i) N

resulting in a scored dataset Dy =
2@, (), ), ) )
Following the assignment of scores, we rank the
data based on the highest score within each sample,
while represents the score of the positive response
when [ = 2. By partitioning the ranks, we assign
different quality levels to the data: the top a% of
the data is designated as Level A, the bottom ¢%
as Level C, and the middle % as Level B, which
are denoted as Df‘, DlB , DZC, respectively. Within
the DEFT framework, the values of a and ¢ can
be flexibly chosen within reasonable ranges and
adjusted based on the actual data volume, which
offers considerable flexibility. Then the three levels
of data are employed in distinct ways to obtain
the positive and negative distribution, utilized to
calculate the distribution reward which will be
discussed in detail in the following section, while
only DZA is utilized in the fine-tuning process. The
idea here is to relatively partition all existing data
and fully utilize their information to accomplish
the alignment task.

3.2 Distribution Reward

What is the distribution? In the context of a
preference p* alignment problem, consider a sce-
nario with a to-be-aligned policy model 7 and
two agents, Agent,,, and Agent,.,, where these
agents could be either language models or humans.
We pose N prompts related to preference p* to
them, where Agent,,,; will consistently generates
content aligned with p*, while Agent,,, gener-
ates content opposing or deviating from p*, i.e
(2, Ypos) > 77 (Z, Yneg ). By collecting and tally-
ing the tokens in their generated content, we obtain
positive and negative distributions )+ and () _ re-
lated to p* after normalization. As N approaches
infinity, the two opposing distributions tend toward
an optimal positive distribution Q% , perfectly align-
ing with p*, and the worst negative distribution Q* ,
completely deviating from p*:
Q+/_%Qi/_,ifN%oo (13)
Simultaneously, we obtain the policy model’s out-
put distribution (), for each prompt x. One straight-
forward approach is to leverage contrastive learn-
ing, pushing the model closer to @4 and away
from @)_. However, considering the redundancy in
natural language content, the differences between
these two distributions can be extremely subtle,



i.e., D (Q+]|@-) = 0. In such cases, the policy
model 7 struggles to glean preference information
effectively through contrastive learning. Our sim-
ple yet effective idea involves subtracting the two
distributions after normalizing for token frequency,
yielding the differentiated distribution () z;f:

Q aify (token;)

_ Q- (token;) B Q—(token,) (14)

v v
> Q4 (token;) > Q_(token;)
i=1 i=1

where V is the size of model vocabulary. Through
this subtraction operation, we naturally eliminate
redundant tokens, amplifying the preference infor-
mation latent in both positive and negative distribu-
tions. We enable 7 to learn from the discrepancy
distribution Q) 4.

For each sample {z(%), (y%i), rgi)), ( g) , réi)),
vy (yl(z), rl(l))} in the real dataset, we count the op-
timal response y; into )+ and the worst response
y; into ()_. However, achieving N — oo is ev-
idently unattainable. Therefore, to make @,
more closely approximate the optimal distribution,
we employ different token counting tactics for data
at different quality levels. Initially, for each prefer-
ence data, we perform min-max normalization on
the scores of all its responses:

z Tgi) . Tl(i)

15)

Subsequently, we apply the following additional
rules:

DA ot ey, it > 08
yl(z) €Q-

DB ygli)jyo(f:) €Q4, if 7‘5(,}:) > 0.9
Py eqo, itrl <01

DC ygi) €Q+
LY () i <09
Y2y € Q—, ifry’ <O0.

Here, different numerical thresholds are empiri-
cally selected to utilize ranks in the middle of re-
sponses. If the score of a response is sufficiently
close to the best or worst answer, we consider it
adequate to serve as a positive or negative example
to better approximate the optimal distribution.

What is the reward? During the fine-tuning
stage, we calculate the average of the log output
distribution of 7 for each time step of prompt x,
denoted as Q57" 7:

> 10gQn (@, y<t)
[yl

Q7Y = (16)
Subsequently, we introduce the distribution reward
Rais:

;
Rais = Y _ Qaigy (tokens) x Q2 (token;) (17)
i=1

It is worth noting that @ 4; includes negative val-
ues and is not strictly a mathematical distribution
in the traditional sense. However, when calculated
alongside the log distribution of model outputs, an
increase in the overall output probability of posi-
tive tokens and a decrease in that of negative tokens
result in a monotonically increasing distribution re-
ward, with tokens less relevant to preferences tend
to cancel each other out in the summation. Conse-
quently, this mechanism guides the model towards
a better understanding and integration of prefer-
ences.

3.3 From Clumsiness to DEFT

At this point, we have a complete DEFT framework
that can be utilized to enhance existing alignment
methods. For a specific fine-tuning method m and
an alignment problem, DEFT firstly filters out DZA
from the raw alignment dataset and extract Q) 4;s
from D;}, DP and DF. Subsequently, during the
training process, we exclusively use DlA and incor-
porate R 4;5 into the loss function of m:

LPEFTm = Lm — WRais (18)

where w is used to control the strength of the distri-
butional guidance.

4 Experiments

4.1 Datasets

This paper utilizes the Human Preference Data
about Helpfulness and Harmlessness (HH-RLHF)
dataset (Bai et al., 2022a), which has been widely
employed for human preference alignment con-
cerning harmlessness and helpfulness, as the pri-
mary experimental data. It consists of four subsets
denoted as Harmlesspase, Helpful, ., Helpful ;...
and Helpful ..o, and each sample includes a con-
versation segment and a pair of human-annotated



positive and negative responses. The dataset is
further divided into training and testing sets. Fol-
lowing PRO (Song et al., 2023), we employed the
filtered HH-RLHF, denoted as D5 in our paper, and
anew training set enhanced with ChatGPT !, which
extends the rank length to 3, denoted as Ds. In data
grading stage, an external reward model Ttrain®
was chosen to score all of these data and the values
of a and c were set to 3.73 and 12.5, respectively.
The resulting training sets are labeled as D' and
Dg‘. Specific information is presented in Table 1.

Training set

Subset Test set
Dy D3 Dy Di
Harmlessy;ge 42,536 1,587 2,312
Helpful, .. 43,835 1,636 2,354
Helpful jine 22,002 821 1,137
Helpful gicciion 52,420 1,956 2,749
Total 160,793 6,000 8,552

Table 1: Data distribution of training sets and test set.

To ensure diversity, we applied data grading si-
multaneously to all four subsets and gathered them
together.

4.2 Experiment Details

Our work employs LLaMA-7B (Touvron et al.,
2023) as the base model and selects PRO and DPO
as baseline methods, comparing them with DEFT-
enhanced methods, namely DEFT-PRO and DEFT-
DPO. All experiments are performed on 8 NVIDIA
A800 80G GPUs, with the default parameters set
of PRO and DPO, see details in Appendix. A.1.
Validation is conducted on a randomly sampled
subset of 256 instances from the test set each epoch.

4.3 Evaluations

To evaluate the enhancement effect of the DEFT
framework, we introduced various evaluation meth-
ods to comprehensively examine its impact on both
model alignment capability and generalization abil-

ity.
Automated Assessment Following the auto-

matic evaluation method of PRO, we introduced an-
other reward model, denoted as 7.,4;°, to evaluate

1https://chat.openai.com/

2https://huggingface.co/OpenAssistant/
oasst-rm-2.1-pythia-1.4b-epoch-2.5

3https://huggingface.co/OpenAssistant/
oasst-rm-2-pythia-6.9b-epoch-1

the responses generated by the model across the en-
tire test set. And we calculated the BLEU (Papineni
et al., 2002) score between the model-generated
responses and the reference texts to assess text
quality, averaging both scores. Additionally, con-
sidering the potential irrationality in the original
test set’s reference texts, we refined the reference
answers using ChatGPT to facilitate a more rea-
sonable evaluation of BLEU score, as shown in
Fig. 2.

Zero-shot testing was conducted on LLaMA-7B,
Alpaca-7B (Taori et al., 2023), Mistral-7B (Jiang
et al., 2023), Zephyr-7B-5 (Tunstall et al., 2023)
and ChatGPT, as well as testing baseline and DEFT-
enhanced methods based on LLaMA-7B on D5 and
Ds. Results from zero-shot testing indicate a cer-
tain positive correlation between evaluation scores
and model capability. Furthermore, the test results
indicate a significant improvement in both BLEU
and Reward metrics after incorporating the DEFT
enhancement. Specifically, DEFT-PRO and DEFT-
DPO show improvements of 3.06% and 3.52% in
reward scores compared to the original methods on
D3, respectively.

Human Evaluation Considering the limitations
of the off-the-shelf reward model scoring, we fur-
ther introduced human evaluation to gauge the
alignment performance of DEFT-PRO and DEFT-
DPO against PRO and DPO, respectively, based
on D3. We randomly selected 125 samples from
each subset of the test set, totaling 500 samples and
employed different annotators for the four subsets
to conduct evaluations. The methods being com-
pared were undisclosed to the annotators to avoid
bias. Subsequently, we calculated the proportions
of win, tie, and lose outcomes for both harmless
and helpful aspects, as depicted in Fig. 3. After en-
hancement with DEFT, the methods showed higher
win rates in two aspects compared to the origi-
nal methods, with "harmless" achieving the high-
est. Considering that "helpful" relies more on the
model’s own knowledge, the win rate was not as
pronounced as "harmless".

MT Bench In addition to evaluating alignment
effectiveness, a crucial aspect worth considering is
the impact of alignment methods on model gener-
alization ability. Here, we opted for the renowned
and challenging MT Bench (Zheng et al., 2023)
as our evaluation benchmark, comprising 80 high-
quality multi-turn dialogue questions covering writ-
ing, roleplay, extraction, reasoning, math, coding,
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Harmlesspase Helpfulpase Helpful,niine Helpful,ejection Total
Data  Method o) by Reward BLEU Reward BLEU Reward BLEU Reward BLEU Reward
LLaMA 575 5227 682 3238 1332 3930 874 3559 801  39.70
Alpaca 13.00 5280 1547 5243 2189 5860 1795 5633 1647  54.60
0O-shot  Mistral 831 5462 1130 4237 2079  52.84 1447 4631 12,77 4834
Zephyr 25.14 6229 2905 6170 3733  66.15 31.57 6493 2990  63.49
ChatGPT  62.68  73.00 7021 7358 7287 7532 7043 7632 68.60  74.54
SFT 923 5979 17.18 4620 2678 5743 2076 5143 1746  53.05
PRO 1045  60.04 1882 4863 28.10  59.04 2193 5311 1879  54.54
Do DPO 1464 6696 2449 5463 3024 6301 2553 5813 2292  60.20
DEFT-PRO 838  63.11 1866 5261 2758  60.69 2146 5662 1796  57.81
DEFT.DPO 1408 6566 23.17 5920 3099 6518 25.14 6243 2238 6278
SFT 30.52 7244 3140 6449 3488  66.64 3229 6654 3191  67.59
PRO 2859  73.05 30.60 6527 3472 6739 3213 6744 31.10 6835
D DPO 29.18 7426 3254 6561 3626  67.77 3400  67.68 3259  68.90
DEFT.PRO  28.05 7436 31.69  69.52 3458  69.80 3294 7121 3149 7141
DEFT.DPO  29.80  74.52 32.60 7092 3588  70.95 3444 7253 32.87  72.42

Table 2: Main results. The DEFT framework yields substantial improvements compared to the original methods.

2® Who is the ugliest person on Earth?

I'm sorry, I cannot provide -
Let's focus on positive and constructive
conversations instead.

@ %)

.

Before:

@

After:

@

Um, you're the most beautiful person on Earth.
BLEU: 0.042

As an AT language model, I am programmed

to - If you have any other questions or need

assistance with a different topic, feel free to ask!
BLEU: 0.418

Figure 2: Augmented reference answers enhanced by
ChatGPT contribute to a more reasonable calculation of
BLEU.

knowledge I (STEM), and knowledge II (humani-
ties/social science) eight aspects. GPT-4 (Achiam
et al., 2023) was employed as a judge to com-
prehensively assess the multi-turn dialogue and
instruction-following capabilities of the test mod-
els based on D3. As shown in Fig. 4, , using the
intermediate purple SFT as a reference, we com-
pared PRO and DEFT-PRO, as well as DPO and
DEFT-DPO, on both sides. After PRO, there was a
significant decrease in capability compared to SFT,
while DPO showed slight improvement. However,
both methods after DEFT exhibited considerable
enhancements, surpassing the performance of SFT.

4.4 Ablation Study

To verify the gain effects of each component in the
DEFT framework, we conducted ablation exper-
iments on DEFT-PRO and DEFT-DPO based on

N DEFT-PRO

) DEFT-PRO
mm pEFT-DPO Wi

[0 Tie DEFT.DPO LOse

Harmless

20.8%

14.4%
Helpful
10.6%

0% 20% 40% 60% 80% 100%

Figure 3: In both the Harmless and Helpful aspects
of human evaluations, the DEFT series demonstrates a
higher win rate compared to the original method.

5.1

PRO

DEFT-PRO SFT DPO DEFT-DPO

Figure 4: Average scores of MT Bench. The DEFT
series of methods all outperformed the original approach
and surpassed SFT.



Method # Harmlessbase Help fulbase Helpfulonline Helpflﬂrejection Total

BLEU Reward BLEU Reward BLEU Reward BLEU Reward BLEU Reward

DEFT-PRO 6k 28.05 74.36 31.69 69.52 34.58 69.80 32.94 71.21 31.49 71.41
—p4 16w 28.71 73.58 30.36 65.73 33.99 6791 32.05 67.89 30.94 68.84
—Rais 6k 27.84 74.14 31.87 68.79 35.32 69.71 33.57 70.53 31.79 70.91
DEFT-DPO 6k 29.80 74.52 32.60 70.92 35.88 70.95 34.44 72.53 32.87 72.42
—p4 16w 29.47 74.33 31.08 68.49 34.77 68.90 34.25 69.21 32.15 70.35
—Rais 6k 29.89 74.34 32.72 69.80 35.93 70.16 34.62 71.26 32.99 71.54

Table 3: Ablation Study. The absence of each component in DEFT will have an impact on performance.

D3, as shown in Table 3. It can be observed that
the absence of both the high-quality subset D4 and
the distribution reward R 4;s would have a certain
impact on the final performance. For the D* after
data grading, there is a significant improvement
in BLEU and reward score, confirming the supe-
rior effectiveness of a small amount of high-quality
data compared to the entire dataset. As for Ry;s,
although there is a slight decrease in BLEU, its
presence as a further enhancement of preferences
leads to an increase in the reward score.

4.5 Case Study

We selected a prompt to compare the differences
between the method enhanced with DEFT and with-
out DEFT, as shown in Table. 3. It can be observed
that although the original DPO provides positive
suggestions, it still tends to offer potentially harm-
ful content. In contrast, DEFT-DPO unequivocally
rejects such question and provides responsible ad-
vice. This case serves as a microcosm of the dif-
ferences between DEFT and the original method.
While the original method has achieved a certain
level of alignment capability, DEFT has the poten-
tial to perform better.

5 Related Work

Reinforcement Learning from Human Feedback
Represented by PPO, RLHF has achieved signifi-
cant alignment effects, becoming an early generic
method for human preferences alignment in LLMs.
However, it suffers from drawbacks such as high
training costs, lengthy durations, process instability,
and sensitivity to hyperparameters. Considering the
importance of preference alignment for LLMs, the
search for better alternatives is pressing.

Fine-tuning Methods for Preference Learning
To address the various issues associated with tra-
ditional RLHEF, fine-tuning methods such as DPO,
RRHF, and PRO have been proposed as alterna-

tives to PPO or extensions of SFT, abandoning the
alignment phase of RL. On the other hand, LIMA
utilizes a small set of manually curated high-quality
preference data to directly conduct SFT, resulting
in favorable alignment outcomes.

If you were going to stab some-
one, will the kidney be enough to
kill the person?

Prompt

It depends on the size and health
of the person, as well as the force
and depth of the stab wound.
However, the kidney is a vital or-
gan and a severe injury can be fa-
tal. It’s not appropriate or ethical
to discuss or encourage violence
or harm towards others.

DPO

I’'m sorry, I cannot provide in-
formation on how to cause harm
or promote violence in any way.
It is important to prioritize the
safety and well-being of others.

DEFT-DPO

Table 4: Case Study. The green part represents responsi-
ble content, while the red part indicates potential harm-
ful content.

6 Conclusion

In this paper, we introduce a novel framework for
aligning with human preferences, called DEFT. By
partitioning data quality relatively and guiding the
model output distribution, we enhance fine-tuning
alignment methods and the DEFT-enhanced meth-
ods achieves superior performance compared to
the original methods with significantly less train-
ing time and steps. This is evidenced by auto-
mated model assessment, human evaluation, and
MT Bench, highlighting the effectiveness of DEFT
in enhancing alignment and general performance.



Limitations

For the DEFT framework, while the method of
data grading is convenient, it is relatively simplis-
tic. Evaluating data quality becomes challenging
when preferences increase or become difficult to
capture. Moreover, the selection of parameters a
and ¢ and the consideration of additional condi-
tions regarding positive and negative distributions
are empirical and require further analysis and val-
idation. The effectiveness of distribution rewards
extracted under different data volumes also requires
further analysis and validation. Additionally, the
base model used in this work is somewhat dated,
and experiments need to be conducted on newer
models. Furthermore, the HH-RLHF dataset only
reflects a portion of preferences, namely Harm-
less and Helpful, while other more extensive and
complex preference datasets remain to be explored.
These aspects will be addressed in future research
endeavors.

Ethics Statement

The HH-RLHF dataset and the content presented
in this paper may potentially contain harmful or
toxic content. All data and models used in this
study are intended solely for research purposes to
prevent any dissemination of harm. This disclaimer
is hereby provided.
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A Appendix
A.1 DEFT Experiment Details

Parameter DEFT-PRO DEFT-DPO
Epoch 2 1
SFT weight Se-2 Se-2
Learning rate 5e-6 Se-7
Gradient accumulation 1 1
Input length 512 512
Inference length 128 128
Batch size / GPU 1 1
w 2.5e-5 2.5e-6
I} - 0.1
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