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ABSTRACT

Graph anomaly detection (GAD) has attracted growing interest for its crucial abil-
ity to uncover irregular patterns in broad applications. Semi-supervised GAD,
which assumes a subset of annotated normal nodes available during training, is
among the most widely explored application settings. However, the normality
learned by existing semi-supervised GAD methods is limited to the labeled nor-
mal nodes, often inclining to overfitting the given patterns. These can lead to
high detection errors, such as high false positives. To overcome this limitation,
we propose GraphNC, a graph normality calibration framework that leverages
both labeled and unlabeled data to calibrate the normality from a teacher model
(a pre-trained semi-supervised GAD model) jointly in anomaly score and node
representation spaces. GraphNC includes two main components, anomaly score
distribution alignment (ScoreDA) and perturbation-based normality regularization
(NormReg). ScoreDA optimizes the anomaly scores of our model by aligning
them with the score distribution yielded by the teacher model. Due to accurate
scores in most of the normal nodes and part of the anomaly nodes in the teacher
model, the score alignment effectively pulls the anomaly scores of the normal
and abnormal classes toward the two ends, resulting in more separable anomaly
scores. Nevertheless, there are inaccurate scores from the teacher model. To
mitigate the misleading by these scores, NormReg is designed to regularize the
graph normality in the representation space, making the representations of normal
nodes more compact by minimizing a perturbation-guided consistency loss solely
on the labeled nodes. Through comprehensive experiments on six benchmark
datasets, we show that, by jointly optimizing these two components, GraphNC
can 1) consistently and substantially enhance the GAD performance of teacher
models from different types of GAD methods and 2) achieve new state-of-the-art
semi-supervised GAD performance.

1 INTRODUCTION

Graph anomaly detection (GAD), aiming to identify irregular nodes in a graph, has gained increasing
attention due to its critical role in real applications such as detection of spams in social networks and
frauds in financial networks (Pang et al., 2021a; Ma et al., 2021; Qiao et al., 2025). Semi-supervised
GAD, which leverages a subset of labeled normal nodes to learn normal patterns, has gained signif-
icant attention in real-world applications (Qiao et al., 2024). This GAD setting is practical in that
normal nodes often account for the majority in a graph, and thus, it is significantly less costly to
obtain compared to abnormal samples that are scarce and their occurrence typically involves high fi-
nancial/reputation loss. However, compared to unsupervised GAD that is more popular, less studies
have been done on semi-supervised GAD. Furthermore, existing semi-supervised GAD methods are
primarily built on the limited labeled normal nodes, preventing them from learning the exact nor-
mal pattern, thus inclining to overfit the annotated normality (Ding et al., 2019; Wang et al., 2021;
Ding et al., 2021; Fan et al., 2020; Qiao et al., 2024). As a result, these methods suffer from high
detection errors—e.g., normal nodes that are dissimilar to the labeled normal nodes are detected as
anomalies (false positives) and vice versa (false negatives), especially the former one—due to the
large overlapped anomaly scores for the normal and abnormal nodes. These issues can be observed
in the results of a recent state-of-the-art (SOTA) method GGAD (Qiao et al., 2024) in Figs. 1 (a)
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and (b). The same phenomenon can also be observed in other semi-supervised methods like data
reconstruction and one-class classification-based methods (see App. C).

To address these issues, we propose GraphNC, a novel graph normality calibration framework that
exploits both labeled and unlabeled data to calibrate the normality learned from a teacher model
(i.e., a pre-trained semi-supervised GAD model) jointly in anomaly score and representation spaces.

(a) (b) 

(c)  GGAD (d) ScoreDA (e) GraphNC

FN
R

FP
R

Figure 1: (a) False positive rate and (b)
false negative rate results on Amazon (Dou
et al., 2020) and Tolokers (McAuley et al.,
2015). (c), (d), and (e) show the score dis-
tributions of normal and abnormal nodes for
GGAD, ScoreDA, and ScoreDA+NormReg
(i.e., GraphNC) on Amazon, where GGAD
is used as a teacher model in both ScoreDA
and GraphNC.

GraphNC includes two main components, namely
anomaly score distribution alignment (ScoreDA)
and perturbation-based normality regularization
(NormReg). ScoreDA optimizes the anomaly
scores of our model by aligning them with the score
distribution yielded by the teacher model. Due to
accurate scores in most of the normal nodes and
part of the anomaly nodes in the teacher model, the
score alignment effectively pulls the anomaly scores
of the normal and abnormal classes toward the two
ends, resulting in more separable anomaly scores, as
shown in Fig.1 (d). This helps reduce false positive
and false negative rates.

However, due to their inherent limitation men-
tioned above, the teacher models inevitably produce
some inaccurate anomaly scores, which may mis-
lead the score optimization in ScoreDA. To miti-
gate this issue, NormReg is devised to regularize
the graph normality in the representation space, en-
abling the student model to refine itself by minimiz-
ing a perturbation-guided consistency loss solely on
the labeled nodes. This normality calibration allows
our model to learn more compact normal representa-
tions, which helps pull the anomaly scores of many
normal nodes closer to each other and toward the
lower end of the anomaly score distribution, as shown in Fig. 1 (e).

By jointly optimizing these two components, GraphNC learns more generalized normality represen-
tations and more discriminative anomaly scores. Besides, GraphNC is a generic framework where
different pre-trained teacher models can be plugged into, and it can obtain better GAD performance
if the teacher model is stronger. In summary, our contributions are as follows

• We introduce GraphNC, a novel graph normality calibration framework that leverages both
labeled normal nodes and unlabeled data to calibrate normality learning from the teacher
model in both the score and feature spaces for semi-supervised GAD .

• In GraphNC, we introduce two new components: anomaly score distribution alignment
(ScoreDA) and perturbation-based normality regularization (NormReg). ScoreDA aligns
the scores of our model with those of the pre-trained teacher model, which helps push the
anomaly scores of the two classes toward opposite ends. Meanwhile, NormReg mitigates
the impact of inaccurate teacher scores by enforcing representation compactness among
normal nodes during alignment.

• GraphNC is a flexible framework where different teacher models can be plugged and
played, achieving consistently enhanced GAD improvement across three types of teacher
models, including data reconstruction-based, one-class-based, and anomaly-generation-
based approaches. Further, GraphNC gets better performance when the teacher model is
stronger. This is verfied by our comprehensive experiments on six benchmark datasets.

2 RELATED WORK

Graph Anomaly Detection. Existing GAD methods can be broadly categorized into unsupervised,
semi-supervised, and fully supervised approaches (Ma et al., 2021; Qiao et al., 2025). Unsupervised
methods typically assume that no labeled nodes are known, and they learn normal patterns through
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some proxy task designs such as reconstruction, one-class classification, and adversarial learning
(Ding et al., 2019; Wang et al., 2021; Ding et al., 2021). Although this setting is widely used in
anomaly detection, they overlook the abundance of normal samples, where normal nodes are less
costly to obtain than the abnormal nodes. The fully supervised methods, on the other hand, rely on
labeled normal and abnormal nodes and formulate the task as an imbalanced classification problem
(Liu et al., 2021a; Tang et al., 2022; Gao et al., 2023a;b; Chen et al., 2024; Liu et al., 2025). These
supervised methods rely on large labeled data, limiting their applicability in real-world scenarios,
especially those where anomalies are very infrequent and very costly to collect; they may overfit
labeled anomalies, failing to generalize to unseen anomalies (Wang et al., 2025). Semi-supervised
methods are generally more practical for real-world applications, as only a subset of labeled normal
nodes is required (Qiao et al., 2024; 2025). Only limited work has been done in this line. GGAD
(Qiao et al., 2024) is a recent work that utilizes the labeled normal nodes to generate synthetic
outliers that mimic real anomalies, and then trains a binary classifier on this data. It also shows
that popular unsupervised methods, such as reconstruction, one-class classification, or adversarial
learning-based methods, can be adapted to the semi-supervised settings by minimizing their loss on
the normal data only.

Semi-supervised Learning. Semi-supervised learning aim to leverage a small amount of labeled
data together with a large amount of unlabeled data to train models, aiming to achieve high perfor-
mance while reducing the cost of data annotation (Yang et al., 2022; Chen et al., 2022b). Representa-
tive semi-supervised learning approaches include pseudo-labeling and consistency-based methods.
The pseudo-labeling with confidence thresholding is highly successful and widely-adopted, which is
typically built on the smoothness assumption that neighboring data points in the feature space tend to
exhibit similar labels (Grandvalet & Bengio, 2004; Chen et al., 2023). However, such a mechanism
requires a quantity–quality trade-off, which undermines the learning process, since incorporating
more unlabeled data helps increase data coverage but often introduces noisy or unreliable pseudo-
labels (Pham et al., 2021; Kage et al., 2024). The consistency-based model enforces prediction
consistency under stochastic noise or data augmentation (Laine & Aila, 2016). Recent studies such
as RankMatch (Mai et al., 2024), InterLUDE (Huang et al., 2024), and SCHOOL (Mo et al., 2024),
have been proposed in different data modalities, including visual images, text, and graphs, aiming to
encourage stable predictions across views, thereby enhancing generalization and reducing reliance
on labeled data (Gui et al., 2024). However, they are mainly focused on classification tasks, differ-
ent from our anomaly detection task that has only one-class labels and unbounded distribution in the
anomaly class.

Many semi-supervised anomaly detection models that are trained on normal data have been proposed
for anomaly detection tasks, but they are focused on visual data (Wu et al., 2024; Cao et al., 2024),
failing to capture the complex structural information in the graph. There are also methods that aim
to leverage small labeled anomaly data and large unlabeled data, such as DevNet (Pang et al., 2019),
Deep SAD (Ruff et al., 2019), DPLAN (Pang et al., 2021b), PReNet (Pang et al., 2023), and RoSAS
(Xu et al., 2023), which explore a different problem setting from ours.

3 PROBLEM STATEMENT

Notations. Given an attributed graph G = (V, E ,X), where V denotes the node set with
vi ∈ V and |V| = N representing the total number of the node, E denotes the edge set, and
X = [x1,x2, . . . ,xN ] ∈ RN×M is a set of node attributes. Each node vi has a M -dimensional at-
tribute xi ∈ RM . The topological structure of G is represented by an adjacency matrix A ∈ RN×N .

Semi-supervised GAD. Let Va, Vn be two disjoint subsets of V , where Va represents abnormal node
set and Vn represents normal node set, and typically the number of normal nodes is significantly
greater than the abnormal nodes, i.e., |Vn| ≫ |Va|, then the goal of semi-supervised GAD is to learn
the mapping function f → R, such that f(v) < f(v′), where ∀v ∈ Vn, v′ ∈ Va , given a set of
labeled normal nodes Vl ⊂ Vn, with |Vl| = R, and no access to any labels of the abnormal nodes.
Vu = V/Vl is the set of the unlabeled nodes and used as test data.

Graph Neural Networks for Representation Learning. Graph Neural Networks (GNNs) are typ-
ically employed to learn the representation of each node due to their strong representation ability.
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Figure 2: Overview of GraphNC. The input graph consists of a small labeled normal node set and
a large unlabeled node set. GraphNC is based on a teacher-student network framework. ScoreDA
aims to align the anomaly scores of the student network with the anomaly scores yielded by an
existing semi-supervised GAD method to calibrate the normality in the score space. NormReg, on
the other hand, is introduced to utilize a consistency regularization loss function in representation
space to learn more compact representations of normal nodes, thereby reducing the negative impact
of inaccurate anomaly scores that may be produced by the teacher model. The teacher network is
pre-trained first, and it is frozen afterward, with only the student network being trained when jointly
optimizing ScoreDA and NormReg.

This can be formulated as follows

H(ℓ) = GNN
(
A,H(ℓ−1);W(ℓ)

)
(1)

where W(ℓ) are the parameters, which are updated during training, and H(ℓ) = {h1,h2, ...,hN}
denote the l-th (final) layer embeddings, which are the representation of all nodes at layer l. In this
paper, our student model adopts a 2-layer GNN as the backbone for representation learning, while
the teacher model uses the recommended GNN architecture in its original work.

4 METHODOLOGY

4.1 OVERVIEW OF THE PROPOSED GRAPHNC

The overview of the proposed GraphNC is shown in the Fig. 2. Given a pre-trained semi-supervised
GAD model, it includes two steps during training. (1) Given a graph with only a set of labeled
normal nodes, ScoreDA aligns the scores of our student model with the anomaly score distribution
produced by the pre-trained detector as the teacher model, thereby achieving normality calibration
in the score space. (2) NormReg subsequently complements score alignment by mitigating noise
in the teacher model’s anomaly scores through a consistency constraint in the representation space
on the labeled normal nodes, encouraging them to learn more compact normality representations.
During inference, the output scores from the student model are used to derive the anomaly scores.

4.2 ANOMALY SCORE DISTRIBUTION ALIGNMENT (SCOREDA)

The simplistic normal pattern extraction in existing semi-supervised GAD models, trained on only
a limited set of labeled normal samples, often is prone to overfit the patterns in the labeled data,
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resulting in high detection errors, such as elevated false positive rates, i.e., many normal samples
are misclassify as anomalies. We leverage ScoreDA to align the output scores of our model with
the score distribution produced by the teacher model. As the anomaly score distribution of the pre-
trained teacher model can correctly characterize most nodes, including most normal nodes and part
of the abnormal nodes in the score space, by aligning with this teacher scores, the student model is
enforced to push scores for the normal and abnormal classes toward the two opposite ends, resulting
in more separable anomaly scores. This effectively reduces the misclassification of normal samples,
leading to a lower false positive rate, while also yielding a decrease in the false negative rate.

Formally, let FT be the pre-trained teacher model, YT = FT (X,G; Θ) be the output scores for
the entire node set, where Θ are the trainable parameters, and YT = {yT1 , yT2 , ..., yTN} be the
anomaly score distribution of samples, then we leverage a student model FS with parameter Φ
which is implemented as the combination of GNN and MLP layers (i.e., FGNN with parametwers
Ω and FMLP with parameters ϕ respectively) to align the score set YT . For the student model,
let HS be the output of the GNN student model, for a node vi, the representation is then denoted
by hS

i = FGNN (xi,G; Ω). On top of that, we apply a MLP layer to obtain the predicted score,
ySi = FMLP (h

S
i ;ϕ). Finally, we employ the MSE loss to minimize the discrepancy between the

anomaly score from the student model YS and YT yielded by the teacher model, which is formu-
lated as follows:

LScoreDA =
1

|V|
∑
vi∈V
∥ySi − yTi ∥22, (2)

where |V| is the number of all nodes, including both labeled and unlabeled nodes. By minimizing
the score discrepancy between the teacher and the student, the accurate scores in YT helps enforce
the clusters of the anomaly scores in the normal and abnormal classes in the two opposite ends,
resulting in more separable anomaly scores.

4.3 PERTURBATION-GUIDED NORMALITY REGULARIZATION (NORMREG)

Due to the inherent limitations in normality characterization and the reliance on a limited set of
normal samples, teacher models inevitably produce some inaccurate scores. Solely applying score
alignment can enforce the fitting of the student model to these inaccurate scores, thereby misleading
the optimization of the student model. To address this challenge, we further introduce NormReg to
calibrate the learned normality in the representation space based on solely the labeled normal nodes,
enabling the student to not only learn from the teacher but also self-refine.

To this end, we utilize an node attribute-based masking mechanism that randomly masks a pro-
portion ω of the attributes on labeled normal nodes to learn consistent representations for these
nodes. This masking creates an augmented graph G̃, which contains many variations of the labeled

(a) GraphNC w/o NormReg (b) GraphNC w/ NormReg (c) Average Deviation

D
istan

ce

Figure 3: (a) and (b) provide t-SNE visualiza-
tion of the node representations for GraphNC
with/without using NormReg. (c) The average de-
viation of the normal class on Tolokers.

normal nodes, simulating diverse normal pat-
terns that may be different from the ones de-
rived directly from the labeled nodes. Thus,
enforcing consistency over the representations
of these augmented nodes and the labeled nor-
mal nodes helps cluster the normality from both
the labeled nodes and their augmented versions
closer. Formally, let HS

i and H̃S
i be the origi-

nal and augmented node representations in the
student model respectively, NormReg then min-
imizes the discrepancy between the represen-
tations of the original node and its augmented
counterpart by optimizing the following loss
function LNormReg:

LNormReg = − 1

|Vl|
∑
vi∈Vl

∥∥∥hS
i − h̃S

i

∥∥∥2
2
, (3)

where Vl are the labeled normal nodes, and hS
i ∈ HS

i and h̃S
i ∈ H̃S

i are the original and augmented
representations for node vi respectively. As shown in Figs. 3 (a) and (b), by adding LNormReg , the
representation distributions of the normal nodes obtained by GraphNC are more compact compared
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to GraphNC without using LNormReg . This demonstrates that the regularization effectively miti-
gates the negative impact of inaccurate anomaly scores from the teacher model. To provide more
evidence, we also compute average deviation of normal nodes to the normal class prototype on four
datasets, and it is clear that the deviation is significantly reduced after applying NormReg, as illus-
trated in Fig. 3 (c). Beyond the empirical demonstrations, our theoretical analysis also show that
NormReg can well complement ScoreDA in lowering the detection errors.
Theorem 1. Let σ2

T and σ2
S denote the variance of the anomaly scores yielded by the teacher model

and the student model in the normal class, respectively, then under our GraphNC framework, the
student model achieves shrinking score variance (i.e., σ2

S < σ2
T ) by minimizing LNormReg while

applying LScoreDA, thereby reducing False Positive Rate (FPR) and False Negative Rate (FNR).

The proof can be found in App. D. According to Theorem 1, minimizing LNormReg complements
LScoreDA in reducing the intra-class score variance of normal classes in the student model, which
can also be observed when comparing the scores of the normal class in Fig. 1(e) to that in Fig. 1(d),
lowering both FPR and FNR, especially the FPR.

4.4 TRAINING AND INFERENCE

Training. During training, the student model is optimized by aligning its score distribution with that
of the teacher model, while also minimizing the consistency regularization. To be specific, the total
loss function LGraphNC is formulated as a combination of the LScoreDA and LNormReg:

LGraphNC = LScoreDA + αLNormReg, (4)

where α is a hyper-parameter that adjusts the influence of normality consistency regularization in
optimization.

Inference. During inference, since the student model FS calibrates the normality of the teacher and
yields more accurate scores, its output scores can be directly employed as an anomaly score, which
is defined as:

S(vi) = FS(vi,xi,G,Φ∗), (5)
where Φ∗ = {Ω∗, ϕ∗} is the optimized parameter set of the student model.

5 EXPERIMENTS

Datasets. We evaluate the effectiveness of the GraphNC across six real-world GAD datasets drawn
from diverse domains, including social networks: Reddit (Kumar et al., 2019)), online shopping co-
review networks: Amazon (Dou et al., 2020) and YelpChi (Dou et al., 2020), a co-purchase network:
Photo (Shchur et al., 2018), a collaboration network: Tolokers (McAuley et al., 2015), and financial
networks: T-Finance (Tang et al., 2022). Additional description and statistical results are provided
in App. A. Note that some unsupervised methods, such as CoLA (Liu et al., 2021b), GRADATE
(Duan et al., 2023), and HUGE (Pan et al., 2025), cannot be adapted to semi-supervised setting due
to their design more relying on fully unlabeled data, which are excluded from our comparison.

Competing Methods. The competing methods include reconstruction-based methods: DOMI-
NANT (Ding et al., 2019) and AnomalyDAE (Fan et al., 2020), one-class classification: OCGNN
(Wang et al., 2021), adversarial learning based methods: AEGIS (Ding et al., 2021) and GAAN
(Chen et al., 2020), affinity maximization-based methods: TAM (Qiao & Pang, 2023), and anomaly
generation-based method: GGAD (Qiao et al., 2024). A more detailed description of competing
methods can be found in the App. B. Except GGAD that is specifically designed for the semi-
supervised setting, the competing methods are primarily unsupervised methods, which are adapted
to our semi-supervised setting following (Qiao et al., 2024): reconstruction is performed using only
the normal nodes, the one-class center calculation is based on only the normal nodes, the adversarial
discriminator is trained with the normal nodes, and the affinity maximization is also applied on the
normal nodes solely.

Evaluation Metric. Following (Liu et al., 2021b; Qiao et al., 2024), two widely-used metrics,
AUROC and AUPRC, are used to evaluate the performance of all methods. For both metrics, a higher
value denotes a better performance. Moreover, for each method, we report the average performance
after 5 independent runs with different random seeds.
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Table 1: AUROC and AUPRC results on six real-world GAD datasets. For each dataset, the best
performance per column within each metric is boldfaced, with the second-best underlined. “Avg”
denotes the average performance of each method.

Metric Method Dataset
Amazon T-Finance Reddit YelpChi Tolokers Photo Avg.

AUROC

DOMINANT 0.8867 0.6167 0.5194 0.6314 0.5121 0.5314 0.6162
AnomalyDAE 0.9171 0.6027 0.5280 0.6161 0.6047 0.5272 0.6326

OCGNN 0.8810 0.5742 0.5622 0.6155 0.4803 0.6461 0.6265
AEGIS 0.7593 0.6728 0.5605 0.6022 0.4451 0.5936 0.6055
GAAN 0.6531 0.3636 0.5349 0.5605 0.3785 0.4355 0.4876
TAM 0.8405 0.5923 0.5829 0.6075 0.4847 0.6013 0.6182

GGAD 0.9443 0.8228 0.6354 0.6180 0.5340 0.6476 0.7003
GraphNC 0.9613 0.8340 0.6420 0.6630 0.6505 0.7693 0.7533

AUPRC

DOMINANT 0.7289 0.0542 0.0414 0.2237 0.2217 0.1283 0.2330
AnomalyDAE 0.7748 0.0538 0.0362 0.2064 0.2697 0.1177 0.2431

OCGNN 0.6895 0.0492 0.0400 0.1937 0.2138 0.1501 0.2227
AEGIS 0.2616 0.0685 0.0441 0.2192 0.1943 0.1110 0.1497
GAAN 0.0856 0.0324 0.0362 0.1724 0.1693 0.0768 0.0945
TAM 0.5183 0.0551 0.0446 0.2184 0.2178 0.1087 0.1938

GGAD 0.7922 0.1825 0.0520 0.2261 0.2502 0.1442 0.2745
GraphNC 0.8403 0.3667 0.0560 0.2389 0.3082 0.3561 0.3610

Implementation Details. Our GraphNC model is implemented in Pytorch 1.10.0 with Python 3.8,
and all the experiments are performed using GeForce RTX 3090 (24GB). GraphNC is optimized
using the Adam optimizer (Kinga et al., 2015) with a learning rate of 5e − 3 for Photo and Reddit
that have relatively high attribute dimensions, and 5e − 4 for Amazon, T-Finance, YelpChi, and
Tolokers that have relatively low attribute dimensions, to avoid overfitting. The pre-trained teacher
is set to GGAD (Qiao et al., 2024) by default, the experimental results of other teacher models can
be found in Sec. 5.2. α that controls the importance of NormReg is set to 0.01 and the mask ratio
for the augment mechanism is set 0.30 by default.

5.1 MAIN EXPERIMENTS

The main comparison results are shown in Table 1, where all models use 15% labeled normal nodes
during training. From the results, we find that GGAD surpasses reconstruction-based, one-class
classification, and adversarial learning approaches, suggesting that the classifier based on anomaly
generation is particularly effective for learning the normality in semi-supervised GAD. We observe
that GraphNC consistently outperforms all the semi-supervised methods on the six datasets, hav-
ing an average 7.1% AUROC and 31.5% AUPRC improvement over the best competing method
GGAD. These experimental results show that despite building upon GGAD, GraphNC consistently
outperforms GGAD, indicating that the two components in GraphNC can effectively calibrate the
normality learned from GGAD by aligning its scores with the output of GGAD, while at the same
time refining itself through representation regularization to mitigate inaccurate anomaly scores from
GGAD. Besides, although the reconstruction-based, one-class classification-based, and affinity max-
imized methods achieve competitive performance on Amazon, T-Finance, and YelpChi, they still
largely underperform GraphNC. This is primarily because their modeling of normal patterns is less
effective than that of the anomaly-generation-based method GGAD.

5.2 GRAPHNC ENABLED THREE TEACHER MODELS

To demonstrate that GraphNC is flexible and can be plugged into various teacher models, in addi-
tion to the default teacher model GGAD, we further evaluate the performance GraphNC when plug-
ging the reconstruction-based method DOMINANT and the one-class classification-based method
OCGNN as a pre-trained teacher model into our model. The AUROC and AUPRC results are shown
in Table 3. It is clear from the results that, similar to the results using GGAD as the teacher model,
GraphNC can substantially and consistently improve the performance of DOMINANT and OCGNN
in terms of both AUROC and AUPRC. In particular, on Tolokers and Photo, both teacher models
struggle to deliver strong performance, whereas applying GraphNC leads to substantial gains in both
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Table 2: Results of GraphNC using different teacher models. (‘*’) denotes the teacher model used.

Metric Method Dataset
Amazon T-Finance Reddit YelpChi Tolokers Photo Avg.

AUROC

DOMINANT 0.8867 0.6167 0.5194 0.6314 0.5121 0.5314 0.6162
GraphNC (DOMINANT) 0.8936 0.7985 0.5260 0.6543 0.6977 0.6829 0.7088

OCGNN 0.8810 0.5742 0.5622 0.6155 0.4803 0.6461 0.6265
GraphNC (OCGNN) 0.9241 0.6819 0.6093 0.6447 0.6069 0.7068 0.6956

GGAD 0.9443 0.8228 0.6354 0.6180 0.5340 0.6476 0.7003
GraphNC (GGAD) 0.9613 0.8340 0.6420 0.6630 0.6505 0.7693 0.7533

AUPRC

DOMINANT 0.7289 0.0542 0.0414 0.2237 0.2217 0.1283 0.2330
GraphNC (DOMINANT) 0.7290 0.1703 0.0414 0.2375 0.3465 0.1526 0.2795

OCGNN 0.6895 0.0492 0.0400 0.1937 0.2138 0.1501 0.2227
GraphNC (OCGNN) 0.7372 0.0748 0.0512 0.2116 0.2814 0.1823 0.2564

GGAD 0.7922 0.1825 0.0520 0.2261 0.2502 0.1442 0.2745
GraphNC (GGAD) 0.8403 0.3667 0.0560 0.2389 0.3082 0.3561 0.3610

Table 3: AUROC and AUPRC results comparison of GraphNC and its five variants.

Metric Method Amazon T-Finance Reddit YelpChi Tolokers Photo Avg.

AUROC

OT 0.9443 0.8228 0.6354 0.6180 0.5340 0.6476 0.7003
OT+NormReg 0.8956 0.8455 0.6317 0.6050 0.5843 0.6731 0.7058
OT+NormReg-Finetune 0.9060 0.8008 0.6089 0.5729 0.5396 0.6307 0.6764
OT+ScoreDA 0.9511 0.8300 0.6364 0.6263 0.5811 0.7397 0.7274
OT+ScoreDA+NormReg* 0.9452 0.8278 0.6212 0.6271 0.6492 0.7433 0.7356
OT+ScoreDA+NormReg 0.9613 0.8340 0.6420 0.6630 0.6505 0.7693 0.7533

AUPRC

OT 0.7922 0.1825 0.0520 0.2261 0.2502 0.1442 0.2745
OT+NormReg 0.6568 0.2413 0.0520 0.2108 0.2688 0.1649 0.2657
OT+NormReg-Finetune 0.7008 0.1406 0.0454 0.1820 0.2465 0.1310 0.2410
OT+ScoreDA 0.8189 0.2566 0.0530 0.2111 0.2567 0.2969 0.3155
OT+ScoreDA+NormReg* 0.8180 0.1971 0.0523 0.1866 0.3034 0.2697 0.3045
OT+ScoreDA+NormReg 0.8403 0.3667 0.0560 0.2389 0.3082 0.3561 0.3610

AUROC and AUPRC, resulting in a 36.2% and 26.3% AUROC improvement on Tolokers for DOM-
INANT and OCGNN, respectively. The main reason is that aligning the score distribution from the
pre-trained teacher model in GraphNC enables the student to calibrate the coarse normality learned
by the teacher. This is because that GraphNC can not only inherit the strengths of the teacher but
also correct its inaccuracies and refines normality on its own, resulting in consistent performance
improvements. Importantly, given a better teacher model, GraphNC can obtain better GAD perfor-
mance, e.g., GraphNC (GGAD) vs. GraphNC (DOMINANT) and GraphNC (OCGNN).

5.3 ABLATION STUDY

In this section, we perform an ablation study to evaluate the contribution of each component in
GraphNC. To this end, several variants of GraphNC are introduced. (1) Only Teacher (OT) directly
uses the pre-trained semi-supervised teacher model to derive the anomaly score. (2) OT+NormReg
incorporates NormReg into the pre-training of the teacher model. (3) OT+NormReg+Finetune
leverages NormReg to fine-tune the pre-trained teacher. (4) OT+ScoreDA includes the student
model and adds ScoreDA on top of OT (i.e., optimizing GraphNC using ScoreDA only). (5)
OT+ScoreDA+NormReg* applies NormReg on top of OT+ScoreDA but it applies the NormReg
loss on all nodes instead of the labeled normal nodes only. OT+ScoreDA+NormReg is the default
full model using both ScoreDA and NormReg. The experimental results are shown in Table 3. We
observe that OT+ScoreDA enhances the performance of OT, achieving the second-best results on
four datasets in terms of AUPRC. This demonstrates that the ScoreDA component can effectively
calibrate the normality learned from the teacher, ensuring better separation between normal and ab-
normal classes. However, OT+ScoreDA underperforms the full model (the last row) on all datasets,
highlighting that the negative impact of inaccurate anomaly scores from the teacher model can be
effectively mitigated by the NormReg component. On the other hand, applying NormReg directly to
the teacher via either joint optimization (OT+NormReg) or finetuning (OT+NormReg+Finetune) can
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improve OT to some extent. This justifies the effectiveness of NormReg from a different perspective,
but NormReg works best when working in the student model and combining with ScoreDA due to
its joint effects in minimizing the detection errors discussed in our theoretical analysis. Besides, we
also conduct the ablation study on other teacher models to further analyze the effectiveness of each
module in GraphNC. The results can be found in the App. C.2

5.4 HYPERPARAMETER SENSITIVITY ANALYSIS

(a)  (b)  

(c)  (d)  

(e)  Results on Photo (f) Results on Reddit 

R R

Figure 4: (a-d) AUROC and AURPC re-
sults w.r.t α and ω. (e-f) AUROC results
w.r.t R on Photo and Reddit.

We evaluate the sensitivity of GraphNC w.r.t. the loss
moderator α, mask ratio ω, and training size R. A de-
tailed analysis on time complexity can be found App. E.

Performance w.r.t. the loss moderator α. As shown
in Figs. 4 (a-b), our model GraphNC remains gener-
ally stable as the consistency regularization weight α
varies. However, on Tolokers and YelpChi, the perfor-
mance slightly declines as α increases. This is mainly
because excessive emphasis on the consistency may lead
to an overly compressed representation space, which may
in turn weaken the representation discriminability.

Performance w.r.t. the mask ratio ω. We evaluate
GraphNC under different masking ratios. As shown in
Figs. 4 (c-d), we observe that increasing the masking ra-
tio ω generally enhances the performance of GraphNC
on Tolokers and T-Finance, while leading to performance
degradation on Photo and YelpChi. This suggests that dif-
ferent datasets benefit from different levels of augmenta-
tion, depending on the variation in the underlying normal-
ity. For consistency, we set ω to 0.3 across all datasets.

Performance w.r.t. the training size R. To explore
the impact of training size R, we compare GraphNC with
four semi-supervised GAD methods using varying num-
bers of training normal nodes, as shown in Figs.4 (e-f).
Similar with other competing methods, with the increase
of training size R, our model GraphNC generally per-
forms better and it maintains the superiority over other
competing methods, demonstrating the effectiveness of
GraphNC using different scales of labeled training data.

6 CONCLUSION

In this paper, we propose GraphNC, a generic graph normality calibration framework designed to
enhance existing semi-supervised GAD methods, achieving substantial and consistent performance
improvements across different types of existing approaches. GraphNC is composed of two key
components: ScoreDA and NormReg. The ScoreDA module aligns the anomaly scores with the
anomaly score distribution produced by the teacher model, effectively pushing the anomaly scores
for the normal and abnormal classes toward opposite ends. This alignment ensures a clearer sepa-
ration between normal and abnormal nodes in the score space, thereby leading to a lower FPR and
FNR. The NormReg module is introduced to reduce the impact of inaccurate scores in the anomaly
score distribution served by the teacher, enabling GraphNC to learn more compact normal repre-
sentations. GraphNC is comprehensively verified by empirical results on six GAD datasets, which
show that GraphNC consistently enhances performance of three different types of teacher models,
and it obtains better performance if the teacher model is stronger.

Limitation and Future work. A potential limitation of GraphNC is that it relies on an assumption
that the pre-trained teacher model performs fairly well to provide informative supervision signals
for the ScoreDA component. Future work will explore other sources, such as some labeled anomaly
data or expert knowledge, as supplementary supervision to reduce its reliance on the teacher model.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The datasets used in our exper-
iments are all publicly available, and the construction and analysis of the data are presented in detail
in App. A. The implementation details, including model configurations and training hyperparame-
ters, are thoroughly documented in Sec. 5. The source code has been submitted as supplementary
materials.
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A DETAILED DESCRIPTION OF DATASETS

The key statistics of the datasets are presented in Table 4. A detailed introduction of these datasets
is given as follows.

• Amazon (Dou et al., 2020): It is a co-review network obtained from the Musical Instrument
category on Amazon.com. There are also three relations: U-P-U (users reviewing at least
one same product), U-S-U (users having at least one same star rating within one week), and
U-V-U (users with top-5% mutual review similarities).

• T-Finance (Tang et al., 2022): It is a financial transaction network where the node repre-
sents an anonymous account and the edge represents two accounts that have transaction
records. Some attributes of logging like registration days, logging activities, and interac-
tion frequency, etc, are used as the features of each account. Users are labeled as anomalies
if they fall into categories such as fraud, money laundering, or online gambling

• Reddit (Kumar et al., 2019): It is a user-subreddit graph which captures one month’s worth
of posts shared across various subreddits at Reddit. The node represents the users, and
the text of each post is transformed into a feature vector and the features of the user and
subreddits are the feature summation of the post they have posted. The anomalies are the
used who have been banned by the platform

• YelpChi (Dou et al., 2020): Similar to Amazon-all, YelpChi-all incorporates three types
of edges: R-U-R (reviews written by the same user), R-S-R (reviews of the same product
with identical star ratings), and R-T-R (reviews of the same product posted within the same
month). YelpChi-all is then constructed by merging these different relations into a single
unified relation (Chen et al., 2022a; Qiao & Pang, 2023).

• Tolokers (McAuley et al., 2015): It is obtained from the Toloka crowdsourcing platform,
where the node represents the person who has participated in the selected project, and the
edge represents two workers work on the same task. The attributes of the node are the
profile and task performance statistics of workers

• Photo (Shchur et al., 2018): It is an Amazon co-purchase network where nodes represent
products and edges indicate co-purchase relationships. Each node is described by a bag-of-
words representation derived from user reviews

B DESCRIPTION OF BASELINES

A more detailed introduction of the nine competing GAD models is given as follows.

• DOMINANT (Ding et al., 2019): It uses a three-layer GCN to reconstruct both structure
and attributes, and the resulting reconstruction error on both structure and attribute is taken
as the anomaly score.

• AnomalyDAE (Fan et al., 2020): It incorporates graph attention into the GNN-based struc-
ture and attribute encoders, where the anomaly score is derived from the reconstruction
error.

• OCGNN (Wang et al., 2021): It applies a one-class approach on the GNN, aiming to com-
bine the representational power of the GNN with the anomaly detection capability of one-
class classification. The anomaly score is computed by measuring the distance of each
point from the center.

• AEGIS (Ding et al., 2021): It leverages a generative adversarial network (GAN), where the
generator is designed to produce pseudo anomalies, while the discriminator distinguishes
between genuine normal nodes and the generated anomalies.

• GAAN (Chen et al., 2020): It leverages a generative adversarial network where fake graph
nodes are generated. Then the covariance matrix for real nodes and fake nodes are computer
to enhace the node. Finally, a discriminator is trained to recognize whether two connected
nodes are from a real or fake node.

• TAM (Qiao & Pang, 2023): It first reveals the ’one class homophily’ and introduces the
new anomaly measure score ’local node affinity’. As the local node affinity can not be
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Table 4: Key statistics of GAD datasets.

Datasets Amazon T-Finance Reddit YelpChi Tolokers Photo
#Nodes 11,944 39,357 10,984 45,941 11,758 7,484
#Edges 4,398,392 21,222,543 168,016 3,846,979 519,000 119,043

#Attributes 25 10 64 32 10 745
Anomaly 9.5% 4.6% 3.3% 14.52% 21.8% 4.9%
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Figure 5: The score distribution of DOMINANT along the corresponding NomrDR enabled DOM-
INANT on Amazon (Dou et al., 2020)

directly obtained based on the embedding, it is optimized on truncated graphs where non-
homophily edges are removed iteratively. The local node affinity is calculated on the
learned representations on the truncated graphs.

• GGAD (Qiao et al., 2024): It employs two priors related to anomalies, asymmetric local
affinity and egocentric closeness, to generate pseudo anomaly nodes that can well simulate
the real abnormal nodes. Then, a binary one-class classifier is trained based on the existing
normal nodes and generated outliers for semi-supervised GAD.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SORE DISTRIBUTION VISUALIZATION ON OTHER TEACHER MODEL

In this section, we visualized the score distributions of the reconstruction-based method DOMI-
NANT and the one-class classification method OCGNN, along with their corresponding GraphNC-
enabled models on the Amazon. As shown in the Fig. 6, we observe that the GraphNC-enabled
model achieves better separation between normal and abnormal classes, further demonstrating that
GraphNC can substantially and consistently enhance performance.

C.2 ABLATION STUDY ON OTHER TEACHER MODELS

We also conduct the ablation study on the GraphNC-enabled other two teacher models to demon-
strate the effectiveness of each module in the GraphNC. We employ the reconstruction-based
method, DOMINANT, and one-class classification-based method, OCGNN as the teacher model
and make a comparison with the variant of GraphNC. The experimental results are shown in the
Table. 5 We observe that GraphNC outperforms the corresponding variant on most of the datasets
for both DOMINANT and OCGNN. This further demonstrates the flexibility and effectiveness of
GraphNC in enhancing existing semi-supervised methods.
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Figure 6: The score distribution of OCGNN along the corresponding GraphNC enabled OCGNN
on Amazon (Dou et al., 2020)

Table 5: AUROC and AUPRC results comparison of the proposed method GraphNC and its variants.
Metric Method Amazon T-Finance Reddit YelpChi Tolokers Photo Avg.

AUROC

DOMINANT

OT+ScoreDA+NormReg 0.8936 0.7985 0.5260 0.6543 0.6977 0.6829 0.7088
OT+ScoreDA 0.7103 0.7069 0.4623 0.5125 0.5342 0.6384 0.5941
OT+NormReg-Finetune 0.6054 0.4920 0.5192 0.6299 0.6258 0.5188 0.5651
OT+NormReg 0.7320 0.5041 0.5968 0.6315 0.5943 0.5128 0.5952
OT 0.8867 0.6167 0.5194 0.6314 0.5121 0.5314 0.6162

OCGNN

OT+ScoreDA+NormReg 0.9255 0.6819 0.6093 0.6447 0.6069 0.7068 0.6956
OT+ScoreDA 0.9158 0.4101 0.5235 0.6411 0.6134 0.6913 0.6325
OT+NormReg-Finetune 0.8274 0.5960 0.4939 0.4738 0.5309 0.5588 0.5801
OT+NormReg 0.9095 0.6113 0.5820 0.6248 0.5245 0.6478 0.6499
OT 0.8810 0.5742 0.5622 0.6155 0.4803 0.6461 0.6265

AUPRC

DOMINANT

OT+ScoreDA+NormReg 0.7290 0.3703 0.0414 0.2375 0.3465 0.1526 0.2795
OT+ScoreDA 0.1466 0.1759 0.0312 0.1581 0.2445 0.1274 0.1472
OT+NormReg-Finetune 0.0750 0.0415 0.0330 0.2292 0.2793 0.1122 0.1283
OT+NormReg 0.1094 0.0424 0.0486 0.2307 0.2445 0.1066 0.1303
OT 0.7289 0.0542 0.0414 0.2237 0.2217 0.1283 0.2330

OCGNN

OT+ScoreDA+NormReg 0.6617 0.0748 0.0512 0.2116 0.2814 0.1823 0.2564
OT+ScoreDA 0.6298 0.0350 0.0327 0.2112 0.2915 0.1782 0.2297
OT+NormReg-Finetune 0.4785 0.0554 0.0326 0.1382 0.2433 0.1093 0.1762
OT+NormReg 0.7015 0.0567 0.0444 0.2036 0.2415 0.1525 0.2333
OT 0.6895 0.0492 0.0400 0.1937 0.2138 0.1501 0.2227

D THEORETICAL ANALYSIS

Theorem 1. Let σ2
T and σ2

S denote the variance of the anomaly scores yielded by the teacher model
and the student model in the normal class, respectively, then under our GraphNC framework, the
student model achieves shrinking score variance (i.e., σ2

S < σ2
T ) by minimizing LNormReg while

applying LScoreDA, thereby reducing False Positive Rate (FPR) and False Negative Rate (FNR).

Proof. We denote the teacher model’s score on the normal class by the random variable T (i.e.,
ST |y = 0)∼ (µ0, σ

2
T ), which follows a sub-Gaussian distribution, with a mean of µ0 and a variance

of V ar(T ) = σ2
T . The law of total variance is given by

V ar(T ) = V ar(E[T |X]) + E(V ar(T |X)), (6)
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where X is the input feature. The optimal solution of the student model FS learned through soft
score distillation with the input feature is F∗

S(X) = E[T |X], then we have

V ar(F∗
S(X)) = V ar(E[T |X]) ≤ V ar(T ) = σ2

T . (7)

By optimizing the LScoreDA, the variance of the predicted scores of the student model on normal
nodes is usually not larger than that of the teacher model.

Furthermore, the designed LNormReg loss further shrinks the intra-class variance of normal classes
on the student model. µ0 can be regarded as the potential true center of the normal class, and then
the representation of each normal node vi in the two views of the student model can be written as
hi = µ0 + ϵi, h̃i = µ0 + ϵ̃i, where ϵi and ϵ̃i are the perturbations or noise introduced by two
different views. We assume that the perturbations in both views are statistically independent and
have zero mean, i.e., E[ϵi] = E[ϵ̃i] = 0. By substituting hi and h̃i into the LNormReg , we can
redefine it as

LNormReg =
1

|Vl|
∑
vi∈Vl

∥ϵi − ϵ̃i∥22 (8)

By unfolding the loss and then computing its expectations, we obtain

E[∥ϵi − ϵ̃i∥22] = E[∥ϵi∥22 + ∥ϵ̃i∥22 − 2⟨ϵi, ϵ̃i⟩]
= E[∥ϵi∥22] + E[∥ϵ̃i∥22]− 2⟨E[ϵi],E[ϵ̃i]⟩

(9)

Since ϵi and ϵ̃i are independent, and ⟨E[ϵi],E[ϵ̃i]⟩ = 0. We have,

E[∥ϵi − ϵ̃i∥22] = E[∥ϵi∥22] + E[∥ϵ̃i∥22] = σ2
ϵ + σ2

ϵ̃ , (10)

where σ2
ϵ and σ2

ϵ̃ are the population variances of the two views in the student model, respectively.
By minimizing LNormReg , the node embeddings tend to be consistent across the two views (i.e.,
the consistent variances pattern) and the population variance decreases, making the normal node
embeddings more compactly clustered around µ0. It is known that V ar(F∗

S(X)) corresponds to
the variance of the normal class in the student model when considering only the distillation loss
LScoreDA. Therefore, when LNormReg is taken into account, the variance of the normal class in the
student model satisfies σ2

S = V ar(F∗
S(H)) < V ar(F∗

S(X)) ≤ σ2
T , where H is the output of the

student model.

Since ST |y = 0 follows a sub-Gaussian distribution, there exists σT such that for t > 0 it satisfies

P(ST − µ0 ≥ t) ≤ exp(− t2

2σ2
T
) (11)

Given an arbitrary fixed threshold τ (µ0 < τ ), if the predicted score of a sample exceeds this
threshold, the sample is classified as abnormal. According to Eq. (11) and taking t = τ − µ0, we
have,

P(Ss ≥ τ |y = 0) ≤ exp(− (τ − µ0)
2

2σ2
S

), P(ST ≥ τ |y = 0) ≤ exp(− (τ − µ0)
2

2σ2
T

) (12)

Since σ2
S < σ2

T , P(Ss ≥ τ |y = 0) < P(ST ≥ τ |y = 0). It indicates that the probability of the
student model wrongly identifying an abnormal node as a normal node is lower than that of the
teacher model, thereby reducing FNR.

Similarly, if the predicted score is below this threshold, the node is classified as normal. We compute
the probabilities of the student model (P(Ss < τ |y = 0)) and the teacher model (P(ST < τ |y = 0))
predicting it as a normal node as follows,

P(Ss < τ |y = 0) = 1− P(Ss ≥ τ |y = 0), P(ST < τ |y = 0) = 1− P(ST ≥ τ |y = 0). (13)

Since P(Ss ≥ τ |y = 0) < P(ST ≥ τ |y = 0), we have,

1− P(Ss ≥ τ |y = 0) ≥ 1− P(ST ≥ τ |y = 0). (14)

Finally, we derive P(Ss < τ |y = 0) > P(ST < τ |y = 0), which can equivalently be expressed
as P(Ss < τ |y = 1) < P(ST < τ |y = 1), given that the anomaly detection task uses binary
labels (y = 0 for normal and y = 1 for abnormal). It indicates that the probability of misclassifying
a normal node as abnormal is lower in the student model than in the teacher model, leading to a
reduced FPR.
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Algorithm 1 GraphNC
Input: Graph G = (V, E ,X); Pre-trained Semi-supervised GAD Model FT ; Student Model FS

with parameters Φ; Labeled Normal nodes Vl ⊂ V; Number of training epochs E; Trade-off weight
α.

Output: Anomaly score ySi for each node vi ∈ V .

1: Initialize parameters Θ for the student model FS .
2: Obtain the anomaly scores distribution YT = FT (X,G; Θ) = {yT1 , yT2 , ..., yTN} from the

teacher model.
3: Create an augmented feature matrix X′ by applying RandomMask to features of nodes in Vl.
4: for e = 1 to E do
5: for vi in V do
6: Obtain the representation for node vi: hS

i ← FGNN (xi,G,X; Ω).
7: Obtain the augmented representation for node vi: h̃S

i ← FGNN (x̃i, G̃, X̃; Ω).
8: Obtain the anomaly score of student model for node vi: ySi = FMLP (h

S
i ;ϕ).

9: end for
10: // — Anomaly Score Distribution Alignment (ScoreDA) —

LScoreDA = 1
|V|

∑
vi∈V ∥ySi − yTi ∥22.

11: // — Perturbation-based Regularization (NormaReg) —

12: LNormReg = − 1
|Vl|

∑
vi∈Vl

∥∥∥hS
i − h̃S

i

∥∥∥2
2
.

13: // — Total Loss Function —
14: LGraphNC ← LScoreDA + α · LNormReg .
15: Minizing LGraphNC and update parameters of student model, Φ = {Ω, ϕ} by gradient de-

scending .
16: end for
17: return Anomaly scores S(vi) = FS(vi,xi,G,Φ∗), for each node vi ∈ V

E TIME COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of GraphNC. Since it is designed as a plug-in frame-
work that can be integrated with various teacher models to enhance GAD, we focus here only on
the complexity of the additional module itself. We employ the combination of GCN and one MLP
layer as the student model in GraphNC. The GCN takes O(EM +NMd), where E is the number
of edges in the graph, N is the number of nodes, M is the dimension of the attribute, and d is the
dimension of representation. The MLP used for feature transformation in GraphNC is O(NMd).
In GraphNC, ScoreDA aims to align the student score with the output score distribution, which will
take O(N). The NormReg aiming to minimize the distance between two views, which will also take
O(N) The total complexity isO(EM +2NMd+2N)+T, where T is the time complexity of the
corresponding teacher model.

F ALGORITHM

The algorithm of GraphNC is summarized in Algorithm 1
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