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ABSTRACT

In the algorithm Intersort, Chevalley et al. (2024) proposed a score-based method to
discover the causal order of variables in a Directed Acyclic Graph (DAG) model, leveraging
interventional data to outperform existing methods. However, as a score-based method over
the permutahedron, Intersort is computationally expensive and non-differentiable, limiting
its ability to be utilised in problems involving large-scale datasets, such as those in genomics
and climate models, or to be integrated into end-to-end gradient-based learning frameworks.
We address this limitation by reformulating Intersort using differentiable sorting and
ranking techniques. Our approach enables scalable and differentiable optimization of
causal orderings, allowing the continuous score function to be incorporated as a regularizer
in downstream tasks. Empirical results demonstrate that causal discovery algorithms benefit
significantly from regularizing on the causal order, underscoring the effectiveness of our
method. Our work opens the door to efficiently incorporating regularization for causal order
into the training of differentiable models and thereby addresses a long-standing limitation
of purely associational supervised learning.

1 INTRODUCTION

Causal discovery is fundamental for understanding complex systems by identifying underlying causal
relationships from data. It has significant applications across various fields, including biology (Meinshausen
et al., 2016; Chevalley et al., 2022; 2023), medicine (Feuerriegel et al., 2024), and social sciences (Imbens &
Rubin, 2015), where causal insights inform decision-making and advance scientific knowledge. Traditionally,
causal discovery has relied heavily on observational data due to the practical challenges and costs associated
with conducting large-scale interventional experiments. However, observational data alone often necessitates
strong assumptions about the data distribution to ensure identifiability beyond the Markov equivalence class
(Spirtes et al., 2000; Shimizu et al., 2006; Hoyer et al., 2008).

The emergence of large-scale interventional datasets, particularly in domains like single-cell genomics
(Replogle et al., 2022; Datlinger et al., 2017; Dixit et al., 2016), introduces new opportunities and challenges
for causal discovery. Interventional data, obtained through targeted manipulations of variables, offers a
unique perspective by revealing causal mechanisms that may be obscured in purely observational studies.
Recently (Chevalley et al., 2024) introduced Intersort, which uses the notion of interventional faithfulness
and a score on causal orders, enabling the inference of causal orderings by comparing marginal distributions
across observational and interventional settings.

Despite its promising performance, Intersort faces significant limitations. Specifically, it lacks differentiability,
which hinders its integration into gradient-based learning frameworks commonly used in modern machine
learning. Additionally, scalability remains a challenge, making this method impractical for applications
involving large numbers of variables—a common scenario in fields such as genomics (Replogle et al., 2022;
Chevalley et al., 2022) and neuroscience that involve up to tens of thousands of variables.
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In this work, we address these challenges by extending Intersort to a continuous realm to make it both
differentiable and scalable. We achieve this by expressing the score in terms of a potential function and
utilizing differentiable sorting and ranking techniques, including the Sinkhorn operator (Cuturi, 2013). This
novel formulation allows us to incorporate a useful inductive bias into downstream tasks as a differentiable
constraint or regularizer, enabling seamless integration into gradient-based optimization frameworks.

We develop a causal discovery algorithm that integrates differentiable Intersort score into its objective
function. Our empirical evaluations on diverse simulated datasets—including linear, random Fourier features,
gene regulatory networks (GRNs) and neural network models—demonstrate that the proposed regularized
algorithm significantly outperforms baseline methods such as GIES (Hauser & Bühlmann, 2012) and DCDI
(Brouillard et al., 2020) on RFF and GRN data. Moreover, we demonstrate that our approach exhibits
robustness across different data distributions and noise types. The algorithm efficiently scales with large
datasets, maintaining consistent performance regardless of data size.

Our contributions pave the way for fully leveraging interventional data in various causal tasks in a scalable
and differentiable manner. By addressing the limitations of existing methods, we enable the application of
interventional faithfulness in large-scale settings and facilitate its integration into modern causal machine
learning pipelines.

2 RELATED WORK

Causal discovery is a fundamental problem in machine learning and statistics, aiming to uncover causal
relationships from data. Traditional methods can be broadly categorized into constraint-based, score-based,
and functional approaches. Algorithms like PC (Spirtes et al., 2000) and FCI (Spirtes, 2001) use conditional
independence tests to infer causal structures. These methods often require faithfulness and causal sufficiency
assumptions, which may not hold in real-world scenarios. Score-based approaches, such as GES (Chickering,
2002) and GIES (Hauser & Bühlmann, 2012), search over possible graph structures to maximize a goodness-
of-fit score. More recently, Zheng et al. (2018) introduced NOTEARS, a differentiable approach that
formulates causal discovery as a continuous optimization problem using an acyclicity constraint. Most
recently proposed models follow the idea of NOTEARS and are thus continuously differentiable, e.g. using
neural networks to model the functional relationships (Brouillard et al., 2020; Lachapelle et al., 2019).

Chevalley et al. (2024) recently introduced Intersort, a score-based algorithm to derive the causal order of
the variables when many single-variable interventions are available. Intersort relies on a light assumption
on the changes in marginal distributions across observational and interventional settings, as measure by a
statistical distance (see definition 3 subsequently). Intersort is a two-step algorithm, where the first step,
SORTRANKING, finds an initial ordering by taking into account the scale of the measured distances, and
the second step, LOCALSEARCH, search in a close neighbourhood in permutation space to improve the
score. Their algorithm suffers from scalability issues, as the second step, LOCALSEARCH, becomes
computationally intractable for large datasets. Moreover, it is unclear how this inductive bias can be applied
to downstream causal task, as the score is not differentiable with respect to a causal order and thus it cannot
be integrated into continuously differentiable models. Previous to Intersort, most methods to infer the causal
order of a system worked primarily on observational data. For example, EASE (Gnecco et al., 2021) leverages
extreme values to identify the causal order. Reisach et al. (2021) observed that the performance of continuously
differentiable causal discovery models on synthetic datasets strongly correlates with varsortability, which
measures to what extent the marginal variance corresponds to the true causal order. Similar ideas were
consequently developed to derive the causal order based on score matching (Rolland et al., 2022; Montagna
et al., 2023a;b).
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3 METHOD

3.1 DEFINITIONS AND ASSUMPTIONS

In this section, we introduce notations and definitions that are used throughout the paper inspired by (Pearl,
2009; Peters et al., 2017).

Let (M, d) be a metric space, and let P(M) denote the set of probability measures over M. We define D
to be a statistical distance function D : P(M) × P(M) → [0,∞) that measures the divergence between
probability distributions on M. Consider a set of d random variables X = (X1, X2, . . . , Xd) indexed by
V = {1, 2, . . . , d}, with joint distribution PX. We denote the marginal distribution of each variable as PXi

for i ∈ V . A causal graph is a tuple G = (V,E) of nodes and edges that form a Directed Acyclic Graph
(DAG), where V is the set of nodes (variables), and E ⊆ V × V is the set of directed edges representing
causal relationships. An edge (i, j) ∈ E indicates that variable Xi is a direct cause of variable Xj . Let AG

be the adjacency matrix of G, where AG
ij = 1 if (i, j) ∈ E, and AG

ij = 0 otherwise. For each node j ∈ V ,
the set of parents Pa(j) consists of all nodes with edges pointing to j, i.e., Pa(j) = {i ∈ V | (i, j) ∈ E}.
We denote the set of descendants of node i as DeG(i), which includes all nodes reachable from i via directed
paths. Similarly, the set of ancestors of i is denoted as AnG(i).

An SCM C = (S, PN ) consists of a set of structural assignments S and a joint distribution over exogenous
noise variables PN . Each variable Xj is assigned via a structural equation:

Xj = fj
(
XPa(j), Nj

)
,

where Nj is an exogenous noise variable, and XPa(j) are the parent variables of Xj .

In our work, we focus on interventions that modify the structural assignments of certain variables. Specifically,
we consider interventions where the structural assignment of a variable Xk is replaced by a new exogenous
variable Ñk, independent of its parents Xk = Ñk.

Definition 1. A causal order is a permutation π : V → {1, 2, . . . , d} such that for any edge (i, j) ∈ E, we
have π(i) < π(j). This ensures that causes precede their effects in the ordering (Peters et al., 2017).

Since G is acyclic, at least one causal order exists, though it may not be unique. We denote the set of all
causal orders consistent with G as Π∗.
Definition 2. To measure the discrepancy between a proposed permutation π and the true causal graph G, we
use the top order divergence (Rolland et al., 2022), defined as:

Dtop(G, π) =
∑

π(i)>π(j)

AG
ij .

This divergence counts the number of edges that are inconsistent with the ordering π, i.e., edges where
the cause appears after the effect in the proposed ordering. For any causal order π∗ ∈ Π∗, we have
Dtop(G, π∗) = 0.
Assumption 1 (Interventional Faithfulness). Interventional faithfulness (Chevalley et al., 2024) assumes that
all directed paths in the causal graph manifest as significant changes in the distribution under interventions
as measured by a statistical distance. Specifically, if intervening on variable Xi leads to a detectable change
in the distribution of variable Xj , then there must be a directed path from Xi to Xj in the causal graph G.
Conversely, if there is no directed path from Xi to Xj , then intervening on Xi does not affect the distribution
of Xj beyond a significance threshold ϵ.

Interventional faithfulness allows us to use statistical divergences between observational and interventional
distributions to infer the causal ordering of variables. By assuming interventional faithfulness, we can relate
changes observed under interventions to the underlying causal structure. More formally, it is defined as:
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Definition 3 (Chevalley et al. (2024)). Given the distributions P C,(∅)
X and P

C,do(Xk:=Ñk)
X ,∀k ∈ I, we say

that the tuple (Ñ , C) is ϵ-interventionally faithful to the graph G associated to C if for all i ̸= j, i ∈ I, j ∈ V ,

D
(
P

C,(∅)
Xj

, P
C,do(Xi:=Ñi)
Xj

)
> ϵ if and only if there is a directed path from i to j in G.

3.2 DIFFERENTIABLE SCORE

While Intersort demonstrates cutting-edge results in discerning causal order among variables, its primary
drawback is the substantial computational cost, which restricts its application to small-scale problems. The
authors of the original paper acknowledged this limitation, confining their evaluation to a mere 30 nodes
Chevalley et al. (2024). A covariate set of this size is prohibitively small for many real-world problems, such
as those in genomics and climate change, where tens of thousands of variables are considered. We aim to
enhance the scalability of Intersort through a differentiable objective function. This not only facilitates scaling
to a considerably larger number of variables but also enables the integration of this algorithm in end-to-end
gradient-based model training. In the subsequent sections, we initially revisit the fundamental score that
underpins Intersort. Following this, we proceed to present a differentiable formulation, DiffIntersort, that
addresses these shortcomings.

Intersort score– Given an observational distribution P
C,(∅)
X and a set of interventional distributions Pint =

{P C,do(Xk:=Ñk)
X , k ∈ I}, I ⊆ V , Chevalley et al. (2024) define the following score for a permutation π, for

some statistical distance D : P(M)× P(M) → [0,∞), ϵ > 0, c ≥ 0:

S(π, ϵ,D, I, P C,(∅)
X ,Pint, c) =

∑
π(i)<π(j),i∈I,j∈V

(
D
(
P

C,(∅)
Xj

, P
C,do(Xi:=Ñi)
Xj

)
− ϵ
)

+ c · d · 1
D
(
P

C,(∅)
Xj

,P
C,do(Xi:=Ñi)

Xj

)
>ϵ

(1)

We parameterize an ordering of the variable as determined by a permutation of the variables π via a potential
p ∈ Rd such that π(i) < π(j) ⇐⇒ pi > pj . We write the permutation matrix associated to p as σ(p),
which is a d× d binary matrix. Let s : Rd → Rd be the sorting function, which sorts a vector of d numbers
in descending order. The Jacobian of s(p) with respect to p is equal to the permutation matrix σ(p). We
define (grad(p))ij = pi − pj , which is non-negative if and only if π(i) < π(j) in the associated topological
order. Applying the element-wise Step function produces (Step(grad(p)))ij = 1pi−pj>0 which is a matrix
of the possible edges according to the potential p.

We aim to rewrite the score such that it is parameterized by a potential p. By building the matrix D ∈ Rd×d

as

Dij =

{
D
((

P
C,(∅)
Xj

, P
C,do(Xi:=Ñi)
Xj

)
− ϵ
)
+ c · d · 1

D
(
P

C,(∅)
Xj

,P
C,do(Xi:=Ñi)

Xj

)
>ϵ

if i ∈ I

0 if i /∈ I
(2)

we can write the score in terms of the potential instead of permutation as follows:

S(p, ϵ,D, I, P C,(∅)
X ,Pint, c) =

∑
i,j

(D⊙ Step(grad(p)))ij . (3)

The relationship between the potential and permutation is clarified through the following theoretical result.
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Theorem 1. Let P = argmaxp S(p, ϵ,D, I, P C,(∅)
X ,Pint, c) s.t. pi ̸= pj∀i, j ∈ {1, · · · , d} be

the set of potentials that maximize the score, such that no two potentials are equal. Π =

argmaxπ S(π, ϵ,D, I, P C,(∅)
X ,Pint, c) be the set of permutations that maximize the Intersort score. For

all π ∈ Π, there is a p ∈ P such that π(i) < π(j) ⇐⇒ pi > pj .

The proof can be found in the appendix in section 6.1. This score is still not practically useful as it provides
non-informative gradients for p. To remedy this, inspired by Annadani et al. (2023) we define L ∈ {0, 1}d×d

as a matrix with upper triangular part to be 1, and vector o = [1, . . . , d]. They propose the formulation

Step(grad(p)) = σ(p)Lσ(p)T where σ(p) = argmax
σ′∈Σd

pT (σ′o) (4)

where Σd represents the space of all d dimensional permutation matrices. This formulation opens the door to
use tools from the differentiable permutation optimization literature. More specifically, we need to build a
smooth approximation to the argmax operator in the definition of σ(p). Fortunately, theoretical results for
this transformation is already known in the optimization literature which is built upon the concept of Sinkhorn
Operator that we briefly discuss in the following. We refer readers to the original paper (Sinkhorn, 1964) and
further applications (Adams & Zemel, 2011) of Sinkhorn operator for detailed presentation.

The Sinkhorn operator, S(M), on a matrix M , involves a sequence of alternating row and column normal-
izations, known as Sinkhorn iterations. Mena et al. (2018) demonstrated that the non-differentiable argmax
problem

σ = argmax
σ′∈Σd

⟨σ′,M⟩F (5)

can be relaxed using an entropy regularizer, where the solution is given by S(M/t). Specifically, they showed
that S(M/t) = argmaxσ′∈Bd

⟨σ′,M⟩+ th(σ′), where h(·) denotes the entropy function. This regularized
solution converges to the solution of eq. (5) as t → 0, shown by limt→0 S(M/t). The implication for our
setting is that we can write eq. (4) as

argmax
σ′∈Σd

pT (σ′o) = argmax
σ′∈Σd

⟨σ′,poT ⟩F = lim
t→0

S
(
poT

t

)
. (6)

In practice, we approximate the limit with a value of t > 0 and a certain number of iterations T , which
results in a differentiable and doubly stochastic matrix in the d-dimensional Birkhoff polytope Bd. The
parameter t > 0 acts as a temperature controlling the smoothness of the approximation. In our experiments,
we use t = 0.05 and T = 500. We then apply the Hungarian algorithm Kuhn (1955) to obtain a binary
matrix, and use the straight-through estimator in the backward pass. The resulting binary matrix is denoted as
ST
bin(po

T /t) with "bin" emphasizing a binary-valued matrix. As a result, the score becomes differentiable
and can be differentiated through the iterations of the Sinkhorn operator. By replacing the non-differentiable
part of eq. (2) with this matrix, the complete form of the differentiable score (we call it DiffIntersort) is
derived as

S(p, ϵ,D, I, P C,(∅)
X ,Pint, t, T ) =

∑
i,j

(
D⊙

(
ST

bin

(
poT

t

)
LST

bin

(
poT

t

)T
))

ij

. (7)

For the rest of the paper, we drop in subscript "bin" and use S(p) for conciseness.The maximizers of the
DiffIntersort score and the Intersort score are equal for t → 0 and T → ∞ (Theorem 1). The DiffIntersort
score S(p) can be maximized with respect to the potential vector p using gradient descent algorithms. This
allows us to find the ordering of variables that best aligns with the interventional data, according to the
statistical distances captured in D.
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3.3 CAUSAL DISCOVERY ALGORITHM

After deriving the differentiable score in the previous section, we now proceed to use the score in a causal
discovery algorithm. Let’s consider a dataset X ∈ Rn×d consisting of n observations of d variables
{X1, X2, . . . , Xn}. We assume the data to be generated from an unknown Structural Equation Model (SEM),
which can be described by a Directed Acyclic Graph (DAG) G representing the causal relationships among
variables. Our goal is to recover the causal structure and ordering of the variables from both observational
and interventional data. We introduce a potential vector p ∈ Rd that induces a permutation representing
the causal ordering of variables. Let S(p) be the DiffIntersort score, which measures the consistency of
the ordering induced by p with the interventional data. The causal discovery can then be formulated as a
constrained optimization problem

min
θ,p

Lfit(θ,p) subject to p ∈ argmin
p′

S(p′) (8)

where θ represents the parameters of the causal mechanisms (e.g., weight matrices in linear models), and
Lfit(θ,p) is the fitting loss that measures how well the model with parameters θ explains the observed
data. The constraint ensures that the potential vector p minimizes the DiffIntersort score, thus enforcing a
causal ordering consistent with the interventional data. We transform the constrained optimization into an
unconstrained penalized problem

min
θ,p

Lfit(θ,p) + λS(p), (9)

where λ > 0 is a regularization parameter controlling the trade-off between fitting the data and enforcing the
causal ordering through the DiffIntersort score.

As an example, a linear causal model can be constructed as

Xj =

d∑
i=1

WjiXi + bj +Nj , (10)

where Wji are the entries of the weight matrix W ∈ Rd×d, bj is the bias term, and Nj is a noise
term. To enforce the causal ordering induced by p, we use the permuted upper-triangular matrix
Mp = ST

bin(po
T /t)LST

bin(po
T /t)T , which is a d × d matrix with d(d − 1)/2 entries equal to 1. The

matrix represents the possible locations of edges in the graph according to the causal ordering p. By element-
wise multiplication W̃ = W ◦MT

p , matrix Mp acts as a mask to ensure that variable Xj can only depend
on variables preceding it in the causal ordering. The predicted values can be written in terms of the entries of
W̃ as X̂j =

∑d
i=1 W̃jiXi + bj .

Inspired by the fitting loss in Shen et al. (2023), we define the fitting loss Lfit(θ) as:

Lfit(θ,p) =
1

n0

n0∑
i=1

ℓ(xi, x̂i; θ,p) + γ
∑
e∈E

ωe

 1

ne

ne∑
i=1

ℓe(xi, x̂i; θ,p)−
1

n0

n0∑
i=1

ℓ0(xi, x̂i; θ,p)

 , (11)

where ℓ(xi, x̂i; θ) is the mean absolute error (MAE) loss function for observational sample i, ℓe(xi, x̂i; θ) is
the loss for samples in environment e. In our case, an environment corresponds to an intervention on one
variable. γ ≥ 0 is a parameter controlling the emphasis on invariance across environments. We use γ = 0.5.
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ωe are weights for each environment. We set ωe = 1
|E| . E is the set of environments, with 0 ∈ E denoting

the reference observational environment. ne is the number of samples in environment e ∈ E . The loss
encourages the model to fit the data in the reference environment while penalizing deviations in performance
across different environments, promoting robustness to interventions. This should encourage the weights to
corresponds to the true causal weights, as the equivalence between robustness and causality is well established
(Meinshausen, 2018).

Combining the fitting loss and the regularization terms, the final loss function is:

L(θ,p) = 1

n0

n0∑
i=1

ℓ(xi, x̂i; θ,p)

+ γ
∑
e∈E

ωe

 1

ne

ne∑
i=1

ℓe(xi, x̂i; θ,p)−
1

n0

n0∑
i=1

ℓ0(xi, x̂i; θ,p)


+ λ1 ∥W∥1 + λ2S(p).

(12)

This loss function includes all the components: (1) Data Fitting Loss Measures how well the model predicts
the observed data, adjusted for interventions, (2) Environment Invariance Penalty Encourages the model to
have consistent performance across different environments, (3) L1 Regularization: Promotes sparsity in the
weight matrix W, (4) DiffIntersort Regularization: Incorporates interventional faithfulness by penalizing
with the DiffIntersort score S(p) eq. (7) . We also note that no acyclicity constraint is needed as the weight
matrix is enforced to be acyclic through the masking based on the causal order p.

4 EMPIRICAL RESULTS

We next evaluate the proposed DiffIntersort differentiable score both in its effectiveness in deriving the causal
order of a system, as well as it usefulness as a differentiable constraint in a causal discovery model.

We first evaluate the DiffIntersort score in it ability to recover the causal order in simulated graphs and
distance matrices. We here reproduce the experiment of (Chevalley et al., 2024). We compare the top order
divergence of DiffIntersort to SORTRANKING, and to Intersort for 5 and 30 variables, and the upper-bounds
of Thm 2 and Thm 4 derived in (Chevalley et al., 2024). Intersort does not scale beyond 100 variables. The
upper-bounds serve as a sanity check to assess how far to the true optimum of the score the approximate
solution is. We evaluate on both Erdős-Rényi distribution (Erdős et al., 1960) and scale-free network modelled
by the Barabasi-Albert distribution Albert & Barabási (2002), with varying edge densities and intervention
coverage. The results are reported in fig. 1 for 2000 variables and in figs. 5 and 6 for 5, 30, 100 and 1000
variables. It is crucial that our score is optimizable up to at least 2000 variables as it is a common scale in real
world datasets such as single-cell transcriptomics (Replogle et al., 2022). As observed, DiffIntersort fulfills
the upper-bounds for all settings, even at large scale. At large scale, it also outperforms SORTRANKING
in almost all settings. Those results validate our proposed approach of solving the Intersort problem in a
continuous and differentiable framework, and guarantees that it is not limited by scale.

We now evaluate our method, DiffIntersort, on simulated data and compare its performance to various
baseline methods. We follow the experimental setup of Chevalley et al. (2024) to ensure a fair and consistent
evaluation across different domains. Specifically, we generate graphs from an Erdős-Rényi distribution (Erdős
et al., 1960) with an expected number of edges per variable c ∈ {1, 2}. Data is simulated using both linear
relationships and random Fourier features (RFF) additive functions to capture non-linear dependencies. In
addition to these synthetic datasets, we apply our models to simulated single-cell RNA sequencing data

7
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(a) Simulation ER with 2000 variables (b) Simulation SF with 2000 variables

Figure 1: Simulation and comparison between the bounds of Thm 2 and 4 of Chevalley et al. (2024) for
Erdős-Rényi (ER, left) and scale-free networks (SF, right) for 2000 variables. We compare the causal order
obtained by maximizing our proposed DiffIntersort score and the output of SORTRANKING. For each
setting, we draw 1 graphs per setting, following a ER distribution with a probability of edges per variable
pe in {0.0001, 0.00005, 0.00002} and following a Barabasi-Albert SF distribution, with average edge per
variable in {1, 2, 3}. A setting is the tuple (pint, pe), where pe = 2E(#edges)

d(d−1) for the SF distribution. Then,
for each graph, we run the algorithm on 1 configuration, where each configuration corresponds to a draw of
the targeted variables following pint. We have pint ∈ {0.25, 0.33, 0.5, 0.66, 0.75}. The settings are ordered
on the x-axis following what is called the effective intervention ratio pint√

pe
(Chevalley et al., 2024).

generated using the SERGIO tool (Dibaeinia & Sinha, 2020), utilizing the code provided by Lorch et al.
(2022) (MIT License, v1.0.5). We also test our method on neural network functional data following the setup
of Brouillard et al. (2020), using the implementation from Nazaret et al. (2023) (MIT License, v0.1.0). To
assess the impact of interventions, we vary the ratio of intervened variables in the set 25%, 50%, 75%, 100%.
All datasets are standardized based on the mean and variance of the observational data to eliminate the
Varsortability artifact identified by Reisach et al. (2021). For the linear and RFF domains, the noise distribution
is chosen uniformly at random from the following options: uniform Gaussian (noise scale independent of
the parents), heteroscedastic Gaussian (noise scale functionally dependent on the parents), and Laplace
distribution. In the neural network domain, the noise distribution is Gaussian with a fixed variance. We
conduct experiments on 10 simulated datasets for each domain and each ratio of intervened variables. The
observational datasets contain 5,000 samples, and each intervention dataset comprises 100 samples, mirroring
the sample sizes typically found in real single-cell transcriptomics studies (Replogle et al., 2022).

We compare the performance of DiffIntersort and SORTRANKING (Chevalley et al., 2024) as measured by
the top order divergence Dtop on 100 variables in fig. 2. For the DiffIntersort score and the Intersort score,
we use the same parameters as in Chevalley et al. (2024): ϵ = 0.3 for linear, RFF and NN data, and ϵ = 0.5
for GRN data, and c = 0.5. We use the Wasserstein distance (Villani et al., 2009) for the statistical metric.
Results for 10 and 30 variables, additionally compared to Intersort, can be found in the appendix in fig. 7.
As can be observed, the performance of the two algorithms is close. This demonstrates that the optimizing
DiffIntersort can be solved at scale using continuously differentiable optimization also on realistic synthetic
data.

We now evaluate our causal discovery method on synthetic datasets generated using linear structural equation
models (SEMs), gene regulatory network (GRN) models, random Fourier features (RFF) models, and neural
network (NN) models as presented previously. For each model type, we consider variable sizes of 10, 30,
and 100 to assess scalability and performance across different problem dimensions. We use two evaluation
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(a) Linear 100 variables (b) RFF 100 variables (c) GRN 100 variables (d) NN 100 variables

Figure 2: Top order diverge scores (lower is better) assessing the quality of the derived causal order, comparing
our method based on the DiffIntersort score to SORTRANKING on 100 variables, for various types of data.

(a) GRN, 30 vars, SHD (b) Linear, 30 vars, SHD (c) RFF, 30 vars, SHD (d) NN, 30 vars, SHD

Figure 3: Comparison of SHD (lower is better) for GRN, Linear, RFF, and Neural Network data with varying
numbers for 30 variables. Our method (CausalDisco with and without constraint) achieves lower SHD values
compared to baseline methods on GRN and RFF data. GIES outperforms on the linear data and DCDI
performs slightly better.

metrics: Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) and Structural Intervention Distance
(SID) (Peters & Bühlmann, 2015) to compare the inferred graphs with the true causal graphs. We compared
to two baselines, namely GIES (Hauser & Bühlmann, 2012) and DCDI (Brouillard et al., 2020). We note
that those two baselines do not scale to 100 variables. For our model, we compare the performance of our
proposed causal discovery model with and without the DiffIntersort constraint. We present the results for
the SHD metrics at 30 variables in fig. 3. The results for 10 and 30 variables for SHD can be found in the
appendix in fig. 8. The results for SID can be found in fig. 9l in the appendix.

As can be seen, the DiffIntersort constraint is consistently beneficial in terms of performance on both metrics,
for all types of data and at all considered scales. This comparison validates the usefulness of inducing the
interventional faithfulness inductive bias to a causal models via the DiffIntersort score. We expect that this
approach may be applicable to other causal tasks of interest, in settings where a large set of single variable
interventions are available. Compared to baselines, our model outperforms on the GRN and RFF data. GIES
is the best model on linear data, and DCDI has a slightly better performance on NN data. GIES and DCDI do
not scale to 100 variables but we would expect the results to be the same, as our algorithm has an F1 score
that is almost unaffected by the number of variables (see fig. 4). The results on the F1 score also shows the
robustness of our causal discovery model with the DiffIntersort constraint to the number of variables.

5 CONCLUSION

In this work, we addressed the scalability and differentiability limitations of Intersort, a score-based method
for discovering causal orderings using interventional data. By reformulating the Intersort score through

9
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Figure 4: F1 score of our algorithm with DiffIntersort constraint for the four considered data types over the
fraction of intervened variables for 10, 30 and 100 variables. As can be observed, apart for the GRN data, the
performance is consistent across the scale of the number of variables as there is no major drop in performance
at 100 variables compared to 10 and 30 variables.

differentiable sorting and ranking techniques—specifically utilizing the Sinkhorn operator—we enabled the
scalable and differentiable optimization of causal orderings. This reformulation allows the Intersort score
to be integrated as a continuous regularizer in gradient-based learning frameworks, facilitating its use in
downstream causal discovery tasks. Our proposed approach not only preserves the theoretical advantages
of Intersort but also significantly improves its practical applicability to large-scale problems. Empirical
evaluations demonstrate that incorporating the differentiable Intersort score into a causal discovery algorithm
leads to superior performance compared to existing methods, particularly in complex settings involving
non-linear relationships and large numbers of variables. The algorithm exhibits robustness across various data
distributions and noise types, effectively scaling with increasing data size without compromising performance.
By bridging the gap between interventional faithfulness and differentiable optimization, our work opens new
avenues for integrating interventional data into modern causal machine learning pipelines. This advancement
holds promise for a wide range of applications dealing with large covariate sets where understanding causal
relationships is crucial, such as genomics, neuroscience, environmental, and social sciences.

While our approach enhances the scalability and differentiability of causal discovery using interventional
data, several avenues for future research remain. One potential direction is to integrate our differentiable
Intersort score into more complex models, such as deep neural networks, to further improve causal discovery
in high-dimensional and highly non-linear settings. Another promising area is the application of the differen-
tiable Intersort approach to real-world datasets in domains like genomics or healthcare, where large-scale
interventional data are increasingly available.
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6 APPENDIX

6.1 PROOFS

Proof of Theorem 1. First, let us recall that we have p ∈ Rd, and π ∈ {0, 1, . . . , d}d, where ∀i, j ∈
{0, 1, . . . , d}, πi ̸= πj . We thus trivially have that any permutation π can be represented by a potential p, by
pi = −πi∀i ∈ {0, 1, . . . , d}. We now have to prove that if π ∈ Π, then the corresponding potential pπ ∈ P.
Let s = maxπ S(π, ϵ,D, I, P C,(∅)

X ,Pint, c) be the maximum achievable score. The sum of the score is over
the elements of Dij where πi < πj . For all these pairs of indices, we also have that pπi > pπj , and thus
for all those pairs, we also have (Step(grad(pπ)))ij = 1. This exactly corresponds to the elements that are
non-zero and thus contribute to the sum in eq. (3). Thus we have that S(pπ) = s, and as such pπ ∈ P, which
concludes the proof.

6.2 ADDITIONAL EXPERIMENTS

(a) Simulation ER with 5 variables (b) Simulation ER with 30 variables

(c) Simulation ER with 100 variables (d) Simulation ER with 1000 variables

Figure 5: Comparison of performance on simulated ER graphs in terms of Dtop divergence between the two
bounds of (Chevalley et al., 2024), DiffIntersort, Intersort and SORTRANKING. For each setting, we draw
multiple graphs, where a setting is the tuple (pint, pe). Then, for each graph, we run the algorithm on multiple
configurations, where a configuration corresponds to a set of intervened variables following pint. We have
pint ∈ {0.25, 0.33, 0.5, 0.66, 0.75} for all scales. For 5 variables, we have pe ∈ {0.5, 0.66, 0.75}. For 30,
we have pe ∈ {0.05, 0.1, 0.2}. For 1000 variables, we have pe ∈ {0.005, 0.002, 0.001}. For 20000 variables
settings, we have pe ∈ {0.0001, 0.00005, 0.00002}. Those edge probabilities approximately correspond to
an average of 1, 2 or 3 edges per variable.
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(a) Simulation SF with 5 variables (b) Simulation SF with 30 variables

(c) Simulation SF with 100 variables (d) Simulation SF with 1000 variables

Figure 6: Comparison of performance on simulated SF graphs in terms of Dtop divergence between the two
bounds of (Chevalley et al., 2024), DiffIntersort, Intersort and SORTRANKING. For each setting, we draw
multiple graphs, where a setting is the tuple (pint, pe). The networks follow a Barabasi-Albert SF distribution,
with average edge per variable in {1, 2, 3}. A setting is the tuple (pint, pe), where pe = 2E(#edges)

d(d−1) . Then,
for each graph, we run the algorithm on multiple configurations, where a configuration corresponds to a set of
intervened variables following pint. We have pint ∈ {0.25, 0.33, 0.5, 0.66, 0.75} for all scales.
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(a) Linear 10 variables (b) Linear 30 variables

(c) RFF 10 variables (d) RFF 30 variables

(e) GRN 10 variables (f) GRN 30 variables

(g) NN 10 variables (h) NN 30 variables

Figure 7: Top order diverge scores (lower is better) assessing the quality of the derived causal order, comparing
our method based on the DiffIntersort score to SORTRANKING and Intersort on 10 and 30 variables, for
various types of data.
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(a) GRN, 10 vars, SHD (b) Linear, 10 vars, SHD (c) RFF, 10 vars, SHD (d) NN, 10 vars, SHD

(e) GRN, 100 vars, SHD (f) Linear, 100 vars, SHD (g) RFF, 100 vars, SHD (h) NN, 100 vars, SHD

Figure 8: Comparison of Structural Hamming Distance (SHD) and Structural Intervention Distance (SID) for
Gene, Linear, RFF, and Neural Network models with varying numbers of variables. Our method (DiffIntersort)
consistently achieves lower SHD and SID values compared to baseline methods, indicating more accurate
causal graph recovery.
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(a) GRN, 10 vars, SID (b) GRN, 30 vars, SID (c) GRN, 100 vars, SID

(d) Linear, 10 vars, SID (e) Linear, 30 vars, SID (f) Linear, 100 vars, SID

(g) RFF, 10 vars, SID (h) RFF, 30 vars, SID (i) RFF, 100 vars, SID

(j) NN, 10 vars, SID (k) NN, 30 vars, SID (l) NN, 100 vars, SID

Figure 9: Comparison SID (lower is better) for GRN, Linear, RFF, and Neural Network models with varying
numbers of variables. Our method (DiffIntersort) consistently achieves lower SHD and SID values compared
to baseline methods, indicating more accurate causal graph recovery.
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