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ABSTRACT

Image enhancement finds wide-ranging applications in real-world scenarios due
to complex environments and the inherent limitations of imaging devices. Recent
diffusion-based methods yield promising outcomes but necessitate prolonged and
computationally intensive iterative sampling. In response, we propose InstaRevive,
a straightforward yet powerful image enhancement framework that employs score-
based diffusion distillation to harness potent generative capability and minimize
the sampling steps. To fully exploit the potential of the pre-trained diffusion model,
we devise a practical and effective diffusion distillation pipeline using dynamic
control to address inaccuracies in updating direction during score matching. Our
control strategy enables a dynamic diffusing scope, facilitating precise learning
of denoising trajectories within the diffusion model and ensuring accurate distri-
bution matching gradients during training. Additionally, to enrich guidance for
the generative power, we incorporate textual prompts via image captioning as
auxiliary conditions, fostering further exploration of the diffusion model. Extensive
experiments substantiate the efficacy of our framework across a diverse array of
challenging tasks and datasets, unveiling the compelling efficacy and efficiency
of InstaRevive in delivering high-quality and visually appealing results. Code is
available at https://github.com/EternalEvan/InstaRevive.

1 INTRODUCTION

Image enhancement seeks to improve the visual quality since images captured in wild scenarios
always suffer from various degradations, like noise, blur, downsampling and compression due to the
limitations of current imaging devices and complex environments. In recent years, great development
has been achieved in the image enhancement field using deep learning methods (Dong et al., 2014;
Zhang et al., 2017; Liang et al., 2021; Chen et al., 2021; Wang et al., 2022b; Zamir et al., 2022;
Chen et al., 2023b). While these methods yield commendable outcomes under specific, well-defined
degradations, they often fall short when faced with the complex conditions of real-world scenarios.
Thus, our basic goal is to construct an effective and robust image enhancement framework capable
of addressing various degradation conditions. This framework aims to deliver high-quality, visually
appealing results within a limited computational budget, making it more practical for real-world use.

Image enhancement is ill-posed due to unknown degradation processes, allowing for various possible
high-quality (HQ) results from low-quality (LQ) inputs. To address this problem, researchers have
explored a wide range of deep learning methods, which can be generally categorized into three
classes: predictive (Huang et al., 2020; Gu et al., 2019; Zhang et al., 2018a), GAN-based (Wang
et al., 2021a; Yuan et al., 2018; Fritsche et al., 2019; Zhang et al., 2021; Wang et al., 2021c) and
diffusion-based (Kawar et al., 2022; Wang et al., 2022a; Fei et al., 2023; Lin et al., 2023b; Yue et al.,
2023). Predictive methods use convolutional networks to estimate blurring kernels and recover images
but struggle with real-world conditions. To better handle real-world challenges, some approaches
leverage Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) to jointly learn the data
distribution of the images and various degradation types. GAN-based methods significantly enhance
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Figure 1: Our InstaRevive showcases remarkable image enhancement capabilities across diverse
tasks. Leveraging highly effective dynamic score matching with textual prompts, our framework
adeptly harnesses the rich knowledge within the pre-trained diffusion model for (a) blind image super-
resolution and (b) blind face restoration using only one single step. Furthermore, we demonstrate
that InstaRevive seamlessly generalizes to additional related tasks such as (c) face cartoonization.

image quality but require careful tuning of sensitive hyper-parameters during training. Recently,
diffusion models (DMs) (Ho et al., 2020; Rombach et al., 2022) have shown impressive visual
generation capacity for image synthesis tasks. Some methods (Kawar et al., 2022; Wang et al., 2022a;
Lin et al., 2023b; Yue et al., 2023) adopt the pre-trained diffusion models and restore the images
during the denoising sampling. Despite their improvements in visual quality, these methods require
lengthy and computationally intensive iterative inference.

To address the aforementioned challenges, we propose a novel diffusion distillation framework
tailored for image enhancement. To maintain the image quality of diffusion models, we leverage
the score-based distillation to align the HQ and generated data distributions. To accurately learn
denoising trajectories, we introduce a dynamic control strategy for the diffusion noise scope, enabling
the computation of precise scores and pseudo-GTs. This method not only refines distribution matching
gradients but also overcomes the deficiency of conventional score matching, as depicted in Figure 2.
After the dynamic score matching, our framework establishes a one-step mapping from low-quality
inputs to high-quality results. This mapping is carefully optimized to ensure that the output images
closely resemble the real-world HQ data distribution while distinctly diverging from undesirable
distributions characterized by visible artifacts. To further exploit the generative priors embedded
within the pre-trained text-to-image diffusion model, we use image captioning to extract natural
language prompts, incorporating these as conditioning inputs for our framework.

We evaluate our framework on two representative image enhancement tasks: 1) blind face restoration
(BFR) and 2) blind image super-resolution (BSR). Experimental results underscore the proficiency
of our InstaRevive across these tasks. For BFR, InstaRevive achieves 22.3259 PSNR and 19.78
FID on the synthetic CelebA-Test. Additionally, it sets new benchmarks with a FID of 38.73 on
the real-world LFW-Test. For BSR, we attain 0.4501 and 0.4722 MANIQA on the RealSet65 and
RealSR datasets, demonstrating both high enhancement quality and efficiency in a single step. To
further explore the potential of InstaRevive, we extend the applications of our framework to face
cartoonization. InstaRevive consistently delivers visually appealing and plausible enhancements,
underscoring the versatility and effectiveness of our framework, as illustrated in Figure 1.

2 RELATED WORKS

Image enhancement. Image enhancement involves tasks like denoising, deraining, and super-
resolution, etc. Conventional works (Dong et al., 2014; Huang et al., 2020; Zhang et al., 2018a; Dong
et al., 2015) utilize predictive models to estimate blur kernels and restore HQ images. With the rise
of vision transformers (Dosovitskiy et al., 2020; Liu et al., 2021), some methods (Chen et al., 2021)
incorporate the attention mechanism into basic architectures, yielding high-quality results. However,
these models struggle with real-world degradations. The advent of generative models has introduced
two main approaches in image enhancement, achieving significant success in complex blind image
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Figure 2: Comparison with existing score-based matching. (a) Existing score-based distillation uses
a broad range of perturbations, causing large noise to shift the generated result x far from the GT.
This results in inaccurate score estimations (depicted by low-quality pseudo-GT x̂0) and impedes the
distillation. (b) Our dynamic score matching adjusts σTmax to control the perturbation scale, ensuring
more accurate score estimations and aligning distributions more closely.

restoration tasks. One approach is GAN-based methods (Wang et al., 2021a; Yuan et al., 2018;
Fritsche et al., 2019; Zhang et al., 2021; Wang et al., 2021c;b; Yang et al., 2021; Zhou et al., 2022),
which process images in the latent space to handle tasks like BSR and BFR. However, GAN-based
methods require meticulous hyper-parameter tuning and they are often tailored to specific tasks,
limiting their versatility. The other approach involves diffusion models (Ho et al., 2020; Rombach
et al., 2022), known for their impressive image generation capabilities. Methods like (Wang et al.,
2023c; Yue & Loy, 2022; Yue et al., 2023; Kawar et al., 2022; Fei et al., 2023; Lin et al., 2023b; Yu
et al., 2024) design specific denoising structures to transfer image generation framework to image
enhancement task. However, the sampling of diffusion models is time-consuming. To address this,
some methods like (Xie et al., 2024; Wang et al., 2024; Zhu et al., 2024; Wu et al., 2024) employ
distillation frameworks to process images in less steps. Nevertheless, distillation results often suffer
from over-smoothing and reduced diversity, especially when facing complex degeneration.

Diffusion distillation. Diffusion distillation has gained attention for accelerating inference. Tradi-
tional diffusion acceleration methods such as (Zhao et al., 2023; Lu et al., 2022a;b) reduce sampling
steps from 1000 to around 50 by solving ordinary differential equations (ODEs), significantly cutting
inference time. Researchers have since introduced distillation techniques to reduce it to just a few or
even one step. Methods like (Huang et al., 2023; Luhman & Luhman, 2021) use regression loss in
pixel space for knowledge distillation. However, directly distilling the student model is challenging
due to the complexity of predicting noise at each time step and the extensive training required on
large-scale datasets. Progressive distillation (Meng et al., 2023; Salimans & Ho, 2022) address this
by iteratively reducing inference steps. Inspired by these approaches, some methods (Liu et al., 2023;
2022; Luo et al., 2023; Song et al., 2023) aim to find a straighter inference path that shortens the
sampling time to less than 5 steps. For one-step inference, (Yin et al., 2023; Nguyen & Tran, 2024)
propose one-step frameworks using score-based distillation and produce commendable image quality.
However, directly applying the score-based methods to image enhancement can result in inaccuracies
and over-smoothing. To overcome this, our InstaRevive introduces dynamic control, which precisely
learns the denoising trajectories and significantly improves enhancement results.

3 METHODOLOGY

In this section, we present the core concepts and detailed design of our InstaRevive. We will start with
a brief introduction to diffusion models and score-based distillation. Subsequently, we will elucidate
the motivation behind and the methodology of our dynamic score matching approach. Following this,
we discuss the additional guidance with natural language prompts and describe the implementation
of the framework. The overall pipeline of InstaRevive is depicted in Figure 3.

3.1 PRELIMINARIES

Diffusion models. Diffusion models are a family of generative models that can reconstruct the
distribution of data by learning the reverse process of a diffusion process. In this process, noise
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Figure 3: The overall framework of InstaRevive. InstaRevive utilizes a score-based diffusion
distillation framework for image enhancement. During training, we employ two score estimators to
calculate the gradients of the KL divergence. To improve estimation accuracy, we devise a dynamic
control strategy to regulate the diffusing scope and adjust loss function weights. During inference,
our generator can yield high-quality and visually appealing results in a single step.

is incrementally added to data, while the reverse process predicts the distribution of progressively
denoised data points. Given a random noise ϵ ∼ N (0, I), the diffusion process is defined as:

xt = αtx0 + σtϵ, (1)

where x0 and xt are the clean and noisy image, and {(αt, σt)}Tt=1 is the noise schedule. Conversely,
the reverse process starts from a pure noise xT ∼ N (0, I), and a denoising model ϵψ iteratively
predicts the noise, transitioning from xt+1 to xt. Specifically, in text-to-image diffusion models, the
text prompt y serves as guidance during each denoising step. The training objective is to minimize:

LDM = Ex0,ϵ,t ∥ϵ− ϵψ(xt, t,y)∥22 . (2)

After training, the diffusion model learns the gradient of data density ∇xt log pt(xt|y) via the noise
prediction network ϵψ . We denote this gradient as the score function of pt and it can be approximated
by ∇xt log pt(xt|y) ≈ −ϵψ(xt, t,y)/σt.

Score-based distillation. The score-based distillation (Poole et al., 2022; Wang et al., 2023a; Lin
et al., 2023a) was firstly introduced in text-to-3D generation. Given a 3D representation θ (e.g. NeRF)
and a rendering function g(·, c), the rendered image can be obtained by x0 = g(θ, c) with a specific
camera position c. The objective is to optimize this representation θ such that its 2D-rendered images
align with the pre-trained diffusion model’s outputs given a text prompt. However, directly addressing
this optimization problem is challenging due to the complexity of the diffusion model’s distribution,
often resulting in issues such as over-saturation or over-smoothing. To tackle this problem, (Wang
et al., 2023d) proposes Variational Score Distillation (VSD) by introducing an additional score
function estimated by another model ϵϕ(xt, t,y, c), which can be finetuned with LoRA (Hu et al.,
2021) during optimization with the diffusion loss as described in Equation 2. The final optimization
objective of VSD is derived as:

min
µ

Et,c [(σt/αt)ω(t)DKL(q
µ
t (xt|c,y)||pt(xt|yc))] , (3)

where t ∼ U(Tmin, Tmax), w(t) is a weighting function, yc is a view-specific prompt, and µ(θ|y) is
the probabilistic density of θ given the prompt.

3.2 DYNAMIC SCORE MATCHING FOR IMAGE ENHANCEMENT

Simplify the objective of image enhancement. The primary objective in optimizing image enhance-
ment tasks typically involves a regression term that penalizes the distance between the generated
result and the ground truth. However, relying solely on the regression term Lreg to train the generator
Gθ often yields unsatisfactory results. This is due to the complex and often irreversible degradation
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process xLQ = D(xHQ) encountered in real-world scenarios, which significantly impairs image
information. Under such challenging degradation conditions, it is difficult to construct a one-to-one
mapping between HQ and LQ images with only a simple regression approach. To ease this challenge,
we relax the optimization with another term that penalizes the distance between the distributions of
generated results and HQ images. Inspired by the score-based distillation, we formulated this term as
the KL divergence, and the optimization objective is revised as follows:

min
θ

ExLQ∼X ∥Gθ(xLQ)− xHQ∥22 + λDKL (p0||q0) , (4)

where X represents the set of LQ images, p0 and q0 denote the distribution of HQ images and
generated results, and λ is the weight factor. By minimizing these two terms concurrently, we
alleviate the learning difficulty and improve result diversity. The generated result x is not strictly
forced to match xHQ, but rather to fall within the HQ distribution, allowing for various plausible
results that reduce penalties. This additional term also acts as a regularization, preventing overfitting
and bolstering generator robustness. Unlike GANs, which train a discriminator and only provide
the probability of realness, our approach aims to expand the gradient of this term as score tensors
that explicitly point out the updating direction. Given the robust gradient estimation and extensive
knowledge of HQ images inherent in diffusion models, we leverage these models to compute the
gradient of these two distributions and optimize our generator through diffusion distillation.

Score matching distillation framework. To solve the optimization problem in Equation 4, we aim
to diminish the KL divergence term DKL(q0||p0). Given the prompts y, we condition the probability
distributions on y. However, p0(x|y) vanishes when x is far away from HQ images, which makes the
training difficult to converge effectively. In response, Score-SDE (Song & Ermon, 2019; Song et al.,
2020) introduces a method that diffuses the original distributions with varying scales of noise indexed
by t and optimizes a series of KL divergences between these diffused distributions, DKL(pt||qt), the
gradient of which is:

∇θDKL = Et,ϵ,xLQ

[
−ω(t) (∇xt log pt(xt|y)−∇xt log qt(xt|y))

∂Gθ(xLQ,y)

∂θ

]
= Et,ϵ,xLQ

[
σtω(t) (ϵψ(xt,y)− ϵϕ(xt,y))

∂Gθ(xLQ,y)

∂θ

]
,

(5)

where xt is the noisy image obtained by Equation 1, pt and qt are the diffused distributions, and
ω(t) is the weight related to timestep t. (For detailed derivations, please refer to A.8.1.) The scores
of the diffused distributions can be estimated using two diffusion models, ϵψ and ϵϕ, as mentioned
earlier. With increasing t from 0 to T , the overlap between the diffused distributions grows, making
the scores well-defined and facilitating the calculation via the diffusion models. During training, we
backpropagate the gradient in Equation 5 to update the generator. Simultaneously, we update the
diffusion model ϵϕ to align with the generated distribution using the diffusion loss in Equation 2.

Dynamic noise control for effective matching. The accuracy of Equation 5 depends on the precise
estimation of gradients by the two score functions, ∇xt

log pt(xt|y) and ∇xt
log qt(xt|y). In an ideal

scenario, the diffusion models accurately compute these scores. However, during actual training, we
observe that the estimates from the diffusion models might deviate, leading to potential inaccuracies,
especially as t nears Tmax. As shown in Figure 2, this discrepancy can yield incorrect gradients for the
KL divergence, impeding effective parameter updates and hindering training progress. To overcome
this challenge, we propose the dynamic noise control strategy. Unlike the typical application scenarios
like text-to-image generation, where the generated image distribution diverges significantly from the
target distribution initially, in image enhancement, the generated distribution closely approximates
the high-quality distribution from the outset. Hence, we employ relatively subtle Gaussian noise
perturbations to the data distributions, ensuring the rationality of the two score functions. Furthermore,
this controlled noise diminishes the gap between xt and xGT, contributing to accurate score estimates.
Specifically, we regulate the added Gaussian noise level as follows:

Tmax = σ−1[κ · d(xHQ,x)], t ∼ U [0.02Tmax, Tmax] (6)

d(xHQ,x) =

√
ΣBi=1∥x

(i)
HQ − x(i)∥22/B (7)

where σ−1 is the inverse function of σt, κ is the control factor and B is the batch size. By adjusting
Tmax, we assure that Var(xt − x) ≤ Var(xTmax − x) = σ2

Tmax
I , controlling the distance between
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xt and xHQ via the triangle inequality (elaborated in Equation 15), which ensures more accurate
score computation at xt. Additionally, our score matching strategy is dynamic, allowing the generator
to focus on varying noise levels during different training stages. We denote the score matching loss
governed by this dynamic scheme as Ldsm. Specifically, Equation 6 results in different Tmax with
respect to the current discrepancy between HQ and generated distribution. As training advances and
these two distribution data become more aligned, a smaller Tmax guides the generator to concentrate
mainly on refining detailed artifacts in generated images.

Dynamic loss control for stable training. Next, we compare the regression loss and dynamic score
matching loss. Regression loss, commonly used in image restoration, penalizes pixel-level errors but
may miss perceptual quality. In contrast, dynamic score matching loss evaluates distribution similarity
between real and generated data, enhancing realism and texture, but lacking pixel-level guidance.
We employ two diffusion models ϵψ and ϵϕ, to estimate the gradients of the real and generated data
distribution, respectively. Both are initialized from pre-trained image generation diffusion models.
While ϵψ accurately estimates the gradient of the real data distribution, the gradient estimated by ϵϕ
is significantly less accurate. Consequently, Equation 5 fails to provide proper optimization directions
for minimizing the KL divergence, potentially hindering generator training or even introducing
negative effects. To balance these loss functions, we propose a dynamic control strategy. Early in
training, the regression loss drives effective optimization, as dynamic score matching is biased. As
the generator improves, regression loss becomes less informative, and score matching focuses on
refining finer details. In deployment, we use α to control the ratio between the two loss functions,
which is obtained by linearly mapping Tmax to the interval [0, 1].

3.3 GUIDANCE WITH NATURAL LANGUAGE PROMPTS

Leveraging the pre-trained diffusion model’s knowledge of the relationship between textual and
visual information, we introduce additional textual guidance to further improve image processing
capabilities. Unlike implicit visual features from LQ images, textual prompts provide explicit and
detailed descriptions, significantly aiding in our image enhancement. This is especially valuable
for severely degraded images, where visual perception alone may be ambiguous. To enable the
captioner to handle extremely low-quality images, we employ a pre-trained image restorer for coarse
restoration. Compared to the model backbone, the restorer holds much fewer parameters and exerts
minimal impact on inference speed. By incorporating proper textual prompts, we can set clear goals
for the enhancement result and generate reasonable outcomes from chaotic LQ images. This approach
also allows for creative and editable results, offering high controllability through human guidance,
enhancing restoration performance and extending the framework’s flexibility.

3.4 IMPLEMENTATION

We maintain a consistent framework structure across all tasks, employing the pre-trained diffusion
model to initialize the student and teacher models. This approach exploit the rich pre-trained
knowledge of image understanding and vision-language relationships acquired during the generation
task. Specifically, for the generator Gθ and two score estimators, ϵψ and ϵϕ, we initialize them with
identical weights from the pre-trained text-to-image diffusion model. To estimate the generated
distribution, we unfreeze the parameters of the score estimator ϵϕ. For the restorer, we employ
the lightweight module in (Liang et al., 2021) following (Lin et al., 2023b) to perform a coarse
restoration. To gather textual prompts, we utilize the multi-modal BLIP (Li et al., 2022a) as the image
captioner, extracting semantic contents in the images. To enhance the diversity, we concatenate xLQ

with random noise z and use a convolution layer to align the channel dimension. To approximate
the degradation conditions in BFR and BSR, we produce the synthetic data from HQ image by
xLQ = [(k ∗ xHQ) ↓r +n]JPEG, which consists of blur, noise, resize and JPEG compression.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Datasets. For blind face restoration (BFR), we utilize the Flickr-Faces-HQ (FFHQ) (Karras et al.,
2019), which encompasses 70,000 high-resolution images. We resize them to 512× 512 to match
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Table 1: Quantitative comparisons for BFR on the synthetic and real-world datasets. We
highlight the best and second best performance in bold and underline, respectively. We categorize
the methods into conventional (up), diffusion-based (middle) and distilled (bottom). Our InstaRevive
shows very competitive results compared with existing methods. We obtain remarkable image quality
and identity consistency with the leading FID and PSNR scores. Our framework also exhibits much
faster inference than the diffusion-based method.

Method
Synthetic Dataset Wild Datasets

FPS↑CelebA LFW WIDER

PSNR↑ SSIM↑ LPIPS↓ FID↓ IDS ↑ FID↓ FID↓
GPEN (Yang et al., 2021) 21.3995 0.5742 0.4687 23.92 0.48 51.97 46.35 7.278
GCFSR (He et al., 2022) 21.8791 0.6072 0.4577 35.49 0.44 52.20 40.86 9.243
GFPGAN (Wang et al., 2021b) 21.6953 0.6060 0.4304 21.69 0.49 52.11 41.70 8.152
VQFR (Gu et al., 2022) 21.3014 0.6132 0.4116 20.30 0.48 49.88 37.87 3.837
RestoreFormer (Wang et al., 2022c) 21.0025 0.5283 0.4789 43.77 0.56 48.43 49.79 4.964
DMDNet (Li et al., 2022b) 21.6617 0.6000 0.4828 64.79 0.67 43.36 40.51 3.454
CodeFormer (Zhou et al., 2022) 22.1519 0.5948 0.4055 22.19 0.47 52.37 38.78 5.188

DifFace-100 (Yue & Loy, 2022) 22.1483 0.6057 0.4129 19.95 0.61 46.17 37.42 0.225
ResShift-4 (Yue et al., 2023) 21.6858 0.5829 0.4082 20.03 0.59 50.09 37.21 3.623

InstaRevive (Ours) 22.3259 0.6109 0.4025 19.78 0.65 38.73 35.29 7.967

the input scale of the diffusion model. For evaluation, we leverage the widely used CelebA-Test
dataset (Liu et al., 2015), which consists of 3,000 synthetic HQ-LQ pairs. Additionally, to further
validate the effectiveness on real-world data, we employ 2 wild face datasets, LFW-Test (Wang
et al., 2021b) and WIDER-Test (Zhou et al., 2022) which contain face images with varying degrees
of degradation. For blind image super-resolution, we train our framework using the large-scale
ImageNet dataset (Deng et al., 2009) and evaluate on the RealSR (Cai et al., 2019) and RealSet65 (Yue
et al., 2023). Specifically, RealSR contains 100 LQ images captured by two different cameras in
diverse scenarios, while RealSet65 comprises 65 LQ images sourced from widely used datasets and
the Internet. For face cartoonization, we create a stylized dataset using the iterative sampling of
ControlNet (Zhang et al., 2023). This dataset includes 130,000 512× 512 images based on FFHQ.

Training details. We unfreeze two models in our framework during training: the generator Gθ and
the score estimator ϵϕ for the generated distribution. Both models are optimized with a batch size
of 32 and a learning rate of 1e-6 using two AdamW optimizers with a weight decay of 1e-2. We
initialize the generator and two score estimators by replicating the denoising transformer blocks
in (Chen et al., 2023a). For BFR and BSR, we employ the high-order degradation model in (Wang
et al., 2021c), training for 25K and 35K steps with 4 Nvidia A800 GPUs, respectively. For face
cartoonization, we finetune our pre-trained BFR model for an additional 10K steps. We set the KL
term weight to 1.0 and the control factor to 1.5 for optimal performance.

Metrics. To evaluate our InstaRevive’s performance on BFR, we calculate three traditional metrics,
including PSNR, SSIM and LPIPS (Zhang et al., 2018b), on the CelebA-Test dataset. However, these
metrics have their limitations in assessing visual quality as they often penalize high-frequence details
in our generated images, e.g., hair texture. Therefore, we also include the widely-used FID (Heusel
et al., 2017) score to measure overall image quality. Additionally, we compute the identity similarity
(IDS) using a pre-trained face perception network (Deng et al., 2019). For BSR, we leverage four
non-reference metrics MANIQA (Yang et al., 2022), MUSIQ (Ke et al., 2021), CLIPIQA (Wang
et al., 2023b) and NIQE to assess image quality. To demonstrate the efficiency of InstaRevive, we
also compare the throughput (FPS) of our framework with other methods.

4.2 MAIN RESULTS

Blind face restoration. Blind face restoration necessitates a convincing mapping from LQ to the
desired face image with high-quality details. We evaluate InstaRevive on both synthetic CelebA-
Test (Liu et al., 2015), with in-the-wild LFW-Test (Wang et al., 2021b) and WIDER-Test (Zhou et al.,
2022). Our comparative analysis involves recent state-of-the-art methods, including GPEN (Yang
et al., 2021), GCFSR (He et al., 2022), GFPGAN (Wang et al., 2021b), VQFR (Gu et al., 2022),
RestoreFormer (Wang et al., 2022c), DMDNet (Li et al., 2022b), CodeFormer (Zhou et al., 2022),
DifFace (Yue & Loy, 2022) (100 steps) and ResShift (Yue et al., 2023) (4 steps). As depicted in
Table 1, our InstaRevive achieves notable performance metrics, including 19.78 FID, 22.3258 PSNR
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    Real Input                GPEN              RestoreFormer          DMDNet            CodeFormer          DifFace-100            ResShift-4            InstaRevive       

Figure 4: Qualitative comparisons on the real-world faces. Our method demonstrates impressive
enhancement capabilities on real-world faces, producing high-fidelity and visually appealing faces.
Compared to other methods, InstaRevive exhibits robustness when handling challenging cases.
Table 2: Quantitative comparisons for BSR on real-world datasets. Our framework achieves
high-quality enhancement and outperforms existing methods in various image quality metrics.

Type Method RealSet65 RealSR

MANIQA↑ MUSIQ↑ NIQE↓ CLIPIQA↑ MANIQA↑ MUSIQ↑ NIQE↓ CLIPIQA↑

GAN

RealSR-JPEG (Ji et al., 2020) 0.2923 50.537 4.8042 0.5280 0.1738 36.071 6.9528 0.3614
RealESRGAN (Wang et al., 2021c) 0.3064 42.366 4.8909 0.3737 0.2037 29.034 7.7273 0.2363
BSRGAN (Zhang et al., 2021) 0.3876 65.578 5.5852 0.6160 0.3705 63.584 4.6606 0.5434
SwinIR-GAN (Liang et al., 2021) 0.2699 44.975 8.0458 0.4225 0.2727 43.219 7.7362 0.3637

Diffusion

StableSR (Wang et al., 2023c) 0.3643 59.670 4.8932 0.5633 0.3807 61.362 4.6778 0.5530
GDP (Fei et al., 2023) 0.2757 55.874 6.8496 0.6339 0.2865 59.378 7.0729 0.6533
ResShift-15 (Yue et al., 2023) 0.3958 61.330 5.9425 0.6537 0.3640 59.873 5.9820 0.5958
LDM-15 (Rombach et al., 2022) 0.2760 47.600 6.2490 0.4203 0.2909 50.926 5.9172 0.3932

Distilled SinSR (Wang et al., 2024) 0.4374 62.635 5.9675 0.7138 0.4015 59.278 6.2683 0.6638
InstaRevive (Ours) 0.4571 65.849 4.1995 0.6755 0.4722 64.535 4.2781 0.6577

and 0.4025 LPIPS, outperforming other methods. We also obtain comparable SSIM and IDS and
establish a higher upper bound of the diffusion-based methods. Furthermore, we achieve 38.73
FID on the LFW-Test, demonstrating high restoration quality for real-world images. We also attain
competitive performance on WIDER-Test. Besides, our InstaRevive demonstrates rapid processing
with a 7.967 FPS, significantly outpacing the diffusion-based methods. The qualitative results in
Figure 4 further illustrate that our method effectively restores face images degraded by real-world
conditions, consistently delivering visually appealing outcomes with single-step inference.

Blind image super-resolution. Blind image super-resolution involves general image prior and
low-level structural knowledge. We evaluate our InstaRevive on RealSR (Cai et al., 2019) and Re-
alSet65 (Yue et al., 2023), comparing it with cutting-edge methods, including GAN-based RealESR-
GAN (Wang et al., 2021c), BSRGAN (Zhang et al., 2021), SwinIR-GAN (Liang et al., 2021), and
diffusion-based GDP (Fei et al., 2023), ResShift (Yue et al., 2023), LDM (Rombach et al., 2022)
and StableSR (Wang et al., 2023c). As shown in Table 2, our InstaRevive achieves outstanding
image quality with the highest MANIQA, MUSIQ and NIQE on both datasets. Note that our one-
step generator outperforms other methods that use iterative sampling by a significant margin on
NIQE. Additionally, we attain competitive CLIPIQA scores compared with the most recent method
employing diffusion distillation. We also provide qualitative comparison in Figure 5 with recent
multi-step models like DiffBIR (Lin et al., 2023b). As illustrated, our generator produces high-quality
enhancements and plausible details, despite utilizing only a single inference step, demonstrating an
excellent balance between efficiency and performance. Further analysis of the model parameters and
inference time is discussed in Section A.4. Moreover, on the synthetic ImageNet-Test dataset, our
method achieves impressive PSNR and SSIM metrics, as reported in Table 4 in the appendix.

4.3 ANALYSIS

Effective distillation of diffusion priors. The major challenge in adapting diffusion distillation to
image enhancement is converting the generative capacity into restoration power within a single-step
model. To demonstrate our framework enables effective diffusion distillation, we perform direct
distillation using only regression loss to supervise the generator’s outputs. Results in Table 3 and
Figure 6 indicate that this approach (w/o score) yields blurry outcomes with visible artifacts. In
contrast, our score matching approach, by minimizing the KL divergence, updates the student model
in a ”softer” and more effective way, thereby reducing the distance between the HQ image and the

8



Published as a conference paper at ICLR 2025

(b) BSRGAN (c) RealESRGAN (d) SwinIR-GAN (e) RealSR-JPEG (f) LDM-100

(a) LQ Input (g) ResShift-4 (h) ResShift-15 (i) DiffBIR-50 (j) SinSR-1 (k) InstaRevive-1

(b) BSRGAN (c) RealESRGAN (d) SwinIR-GAN (e) RealSR-JPEG (f) LDM-100

(a) LQ Input (g) ResShift-4 (h) ResShift-15 (i) DiffBIR-50 (j) SinSR-1 (k) InstaRevive-1

Figure 5: Qualitative comparisons on real-world datasets. Our InstaRevive delivers exceptional
details with just one-step inference. The numbers following each method indicate the corresponding
inference steps. More results and comparisons can be found in Figure. 9 and Figure. 10.

        LQ Input                        w/o score                     w/o dynamic                   w/o prompt                    InstaRevive                          GT               
  

             GT                          w/o prompt                    InstaRevive

Figure 6: Visual results of the ablations. Our dynamic score matching and prompt guidance
significantly enhance both image quality and controllability in the generated outputs.

current generated results. Unlike the one-to-one mapping, the KL divergence term allows for a range
of plausible outcomes, imparting more detailed and comprehensive knowledge to the student model.

Dynamic control for accurate learning. To evaluate the dynamic noise and loss control strategy, we
conducted an ablation study by removing it while keeping other hyper-parameters fixed. The results
(w/o dynamic), presented in Table 3 and Figure 6, demonstrate that the dynamic control strategy
greatly improves the quality of the generated images. Furthermore, the loss curves in Figure 7 indicate
that this approach accelerates training and shortens convergence time significantly. This highlights
the importance of maintaining the noise level within an appropriate range during the diffusion process
and dynamically adjusting the loss weights. This dynamic control strategy is particularly well-suited
for enhancement tasks, where the distributions of the generated and real images initially overlap,
necessitating a focus on the noisy image not too far away from xHQ, thus reducing the training
difficulty and enhancing the model performance.

Additional guidance with textual prompts. Textual prompts offer clear and explicit guidance for
the enhancement target. To evaluate their significance, we perform an ablation study using null
textual input for training and evaluation. As shown in Table 3 and Figure 6, the absence of textual
prompts (w/o prompt) results in a drop in performance, especially in more challenging scenarios.
This suggests that textual prompts are crucial for the teacher model ϵψ to generate the correct scores.

Limitations. Despite InstaRevive’s promising results within a one-step paradigm, it may produce
suboptimal results when encountering extreme degradation or complex content, as shown in Figure 19.
How to utilize the generative power to address these challenges remains an area for future exploration.
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Figure 7: Loss curves of the ablations. Our
design promotes faster convergence.

Table 3: Ablation studies. We perform ablations
on BFR and BSR to validate the effectiveness of In-
staRevive’s components. The results demonstrate
that score matching leads to effective distillation
and that dynamic control and textual prompts are
beneficial for overall performance.

Method FID↓ MANIQA↑
CelebA LFW RealSet65 RealSR

w/o score 26.45 51.03 0.4085 0.4259
w/o dynamic 22.43 45.39 0.4287 0.4463
w/o prompt 19.90 39.38 0.4374 0.4541

InstaRevive (Ours) 19.78 38.73 0.4571 0.4722

                                                                              “blue hair & red glasses”   “green eyes & hair clip”                                              “yellow hat & earrings”   “necklace & closed eyes”

     Real Input                                                        3D style                                                                                     oil painting style            

                                                                                “suit & yellow glasses”       “pink hat & beards”                                                  “red hair & sunglasses”      “long hair&earrings”

Figure 8: Qualitative results on face cartoonization. InstaRevive delivers high-quality results (Col.2
and 5). Furthermore, we can edit the details with textual prompts (Col.3, 4, 6 and 7), showcasing
high controllability. More comparisons can be found in Figure 13.

4.4 EXTENSIONS

To showcase InstaRevive’s versatility and controllability, we extend its application to the complex task
of controllable face cartoonization. This task entails not only altering the global style of the images
but also editing their detailed content based on the natural language prompts. After fine-tuning our
framework on the stylized face dataset, InstaRevive learns to edit the style and the semantic regions
from the pre-trained diffusion model and textual prompts. As illustrated in Figure 8, our generator
produces high-quality results with remarkable controllability. These results also affirm InstaRevive’s
potential for broader applications in image editing and enhancement tasks. To ensure high identity
consistency during image-to-image transitions, we utilize the IP-Adapter (Ye et al., 2023) as our
teacher model. The details and results are presented in Section. A.5. We further explore more tasks
including low-light enhancement and face inpainting, with findings detailed in Section. A.3.

5 CONCLUSION

We propose InstaRevive, a one-step image enhancement framework that excels in efficiency and
effectiveness across various tasks. Empowered by the dynamic control strategy for score matching
distillation and additional guidance with textual prompts, InstaRevive enables accurate computation of
gradients for both HQ and generated data distributions, thereby significantly accelerating the training
process while improving the result quality in only one-step inference. We also extend InstaRevive to
face cartoonization, showcasing its strong generalization. We hope our attempt can inspire future
work to further exploit diffusion priors for image enhancement.

Acknowledgment: This work was supported in part by the National Key Research and Development
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Figure 9: More qualitative results on real-world images with larger resolution. InstaRevive
excels at enhancing real-world images with high resolutions, such as 2K. This figure contrasts the
input (left) with InstaRevive’s output (right), highlighting its impressive visual performance.

A APPENDIX

A.1 MORE QUALITATIVE RESULTS

We extend our framework to accommodate higher-resolution images with diverse aspect ratios. As
illustrated in Figure 9, we provide more qualitative results on larger-scale images, demonstrating
our model’s ability to manage high-resolution images and restore pixel-level details. For further

16



Published as a conference paper at ICLR 2025

(b) BSRGAN (c) RealESRGAN (d) SwinIR-GAN (e) RealSR-JPEG (f) LDM-100

(g) LDM-15 (h) ResShift-15 (i) ResShift-4 (j) SinSR-1 (k) InstaRevive-1(a) LQ Input

(b) BSRGAN (c) RealESRGAN (d) SwinIR-GAN (e) RealSR-JPEG (f) LDM-100

(g) LDM-15 (h) ResShift-15 (i) ResShift-4 (j) SinSR-1 (k) InstaRevive-1(a) LQ Input

(b) BSRGAN (c) RealESRGAN (d) SwinIR-GAN (e) RealSR-JPEG (f) LDM-100

(g) LDM-15 (h) ResShift-15 (i) ResShift-4 (j) SinSR-1 (k) InstaRevive-1(a) LQ Input

Figure 10: More qualitative comparisons on real-world datasets. InstaRevive demonstrates high-
performance blind image super-resolution on real-world images, consistently producing clear and
detailed results with only a single inference step.

evaluation, we compare our method with recent state-of-the-art approaches, including OSEDiff (Wu
et al., 2024) and SUPIR (Yu et al., 2024), in Figure 12. The results reveal that our framework delivers
highly competitive performance. Moreover, we showcase more comparisons on the BSR task in
Figure 10, highlighting InstaRevive’s versatility in enhancing styles ranging from comic images to
real photos. We also provide more qualitative results of BFR tasks in Figure 11. Our InstaRevive
successfully restores real-world images with challenging degradations, demonstrating the efficacy
and robustness of our framework. For face cartoonization, we compare our InstaRevive with current
diffusion-based methods like SDEdit (Meng et al., 2021) (40 steps) and InstuctPix2Pix (Brooks et al.,
2023) (100 steps). As shown in Figure 13, our framework yields visually appealing outcomes with
finer details. Note that our framework only requires one step for inference.

A.2 QUANTITATIVE RESULT ON SYNTHETIC DATASET

To further assess the consistency of results in the BSR task, we conduct evaluations on the synthetic
ImageNet-Test dataset, as proposed in ResShift (Yue et al., 2023). This dataset comprises 3,000
images randomly selected from the ImageNet validation set based on the widely-used degradation
model. The results, presented in Table 4, indicate that our method achieves highly competitive
consistency metrics, such as PSNR and SSIM. Additionally, we report the performance of SwinIR-
GAN (Liang et al., 2021), which serves as the restorer in our framework. The results reveal that
the restorer struggles to handle complex degradation scenarios, resulting in subpar performance.
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    Real Input                GPEN              RestoreFormer          DMDNet            CodeFormer          DifFace-100            ResShift-4            InstaRevive       

Figure 11: More qualitative comparisons on the real-world faces. Our method performs plausible
enhancement on real-world faces, producing high-fidelity and visually satisfactory faces. Compared
to other methods, InstaRevive enjoys robustness in front of challenging cases.

      Real Input               OSEDiff-1                SUPIR-50            InstaRevive-1                Real Input               OSEDiff-1                SUPIR-50            InstaRevive-1          

Figure 12: Qualitative comparisons with recent methods. We present visual comparisons with
additional methods, demonstrating that our model consistently delivers satisfactory results.

This highlights the strength of the generator in our framework, further validating its effectiveness in
addressing challenging degradations.

Table 4: Quantitative comparison on ImageNet-Test. Our InstaRevive demonstrates strong
performance across various consistency metrics.

Method PSNR↑ SSIM ↑ LPIPS ↓
BSRGAN (Zhang et al., 2021) 24.42 0.659 0.259
SwinIR-GAN (Liang et al., 2021) 23.97 0.667 0.239
ResShift (Yue et al., 2023) 24.90 0.673 0.228
SinSR (Wang et al., 2024) 24.56 0.657 0.221
InstaRevive (Ours) 25.77 0.721 0.232

A.3 MORE EXTENDED TASKS

Our framework is versatile and not specifically designed for any single task. To demonstrate its
broader applicability, we extend our experiments to include (1) face inpainting, (2) low-light image
enhancement, (3) denoising, (4) deblurring, (5) image-to-image transition, (6) deraining. We also
compare part of our performance with GDP (Fei et al., 2023). Notably, our generator performs
one-step inference while GDP requires 1,000 steps for sampling.

Face inpainting. For face inpainting, we employ the script from GPEN (Yang et al., 2021) to draw
irregular polyline masks on face images as our inputs and fine-tune our BFR model for 10K iteration.
During inference, we resize the mask to the latent map’s shape and use it to maintain the visible area
on the inputs. As shown in Figure 14, our InstaRevive successfully reconstructs the challenging cases
and seamlessly completes them with coherent content.

Low-light image enhancement. For low-light image enhancement, we fine-tune the BSR model with
10K iterations using the LoL dataset (Wei et al., 2018). Our results, shown in Figure 14, demonstrate

18



Published as a conference paper at ICLR 2025

     Real Input                     SDEdit                 InstructPix2Pix             InstaRevive                    SDEdit                 InstructPix2Pix              InstaRevive                             

                                                                             3D style                                                                                     oil painting style            

Figure 13: More qualitative comparisons on face cartoonization. Our InstaRevive produces
high-quality results compared with other diffusion-based methods, underscoring its exceptional
generalization capability for various enhancement tasks.

   Masked Input            GDP-1000                 Ours-1                      Low-light Input                          GDP-1000                                Ours-1

Figure 14: Face inpainting and low-light enhancement of InstaRevive. Our framework demon-
strates the capability to produce satisfactory results across a range of challenging tasks.

promising outcomes with less noise compared to GDP. These findings illustrate that our method can
effectively generalize to these additional challenges.

Denoising. To evaluate the denoising capabilities of our approach, we focus on addressing salt-and-
pepper noise, a common artifact arising during imaging or data transmission. Our one-step generator
is trained over 8K iterations using randomly generated salt-and-pepper noise with probabilities
varying between 0.02 and 0.1. As illustrated in Row 1 of Figure 15, the proposed method effectively
removes this noise while preserving the fidelity of the input content.

Deblurring. The trained BSR model is inherently capable of performing deblurring tasks, as it
leverages the degradation model from Real-ESRGAN Wang et al. (2021c), which incorporates a
variety of blur types. As demonstrated in Row 2 of Figure 15, our proposed InstaRevive effectively
restores clarity to blurred images, delivering sharper details and well-defined edges.

Image-to-image transition. Beyond face cartoonization, a more complex challenge lies in transition-
ing between real-world image domains. To investigate this, we utilize the BDD100k dataset Yu et al.
(2020) for training, specifically focusing on the “day-to-night” transition. Our generator is trained for
10K iterations to achieve this task. As shown in Figure 15, the proposed model generates visually
realistic and temporally consistent night-time images from daytime inputs.

Deraining. For training, we employ the RainTrainH Yang et al. (2017), RainTrainL Yang et al.
(2017), and Rain12600 Fu et al. (2017) datasets, and evaluate our framework on the Rain-100L
dataset Yang et al. (2019). As illustrated in Figure 15, our approach effectively eliminates rainy
regions, producing clean and visually appealing results.

A.4 PARAMETERS AND INFERENCE TIME

As noted in our limitations, our one-step generator cannot surpass larger models employing multi-step
inference. However, it achieves a favorable balance between efficiency and performance. To provide
a clear comparison of model parameters and inference time (evaluated on an Nvidia 3090 GPU), we
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Figure 15: More extended tasks of InstaRevive. Our framework demonstrates strong performance
across more tasks, including denoising, deblurring, image-to-image transitions, and deraining.

present Table 5, which includes state-of-the-art methods on RealSet65. Additionally, we fine-tune
a generator based on the denoising U-Net from Stable Diffusion 2.1 and include its results for
reference. As demonstrated in Table 5, our DiT-based generator achieves image quality comparable
to SUPIR (Yu et al., 2024) and DiffBIR (Lin et al., 2023b), while maintaining the inference speed
advantages of one-step methods. The U-Net variant also delivers competitive results, although it
exhibits a minor decrease in efficiency compared to the DiT-based model. Furthermore, our method
achieves comparable performance to OSEDiff (Wu et al., 2024), which incorporates additional tuning
of the VAE encoder within the diffusion model.

Table 5: Comparison on parameter and inference time. Our generator strikes an effective balance
between computational efficiency and performance.

Method Params. Inference Time (s) MANIQA↑ MUSIQ↑
ResShift-15 (Yue et al., 2023) 121M 1.13 0.3958 61.33
SinSR-1 (Wang et al., 2024) 119M 0.12 0.4374 62.64
OSEDiff-1 (Wu et al., 2024) 866M 0.18 0.4573 65.68
SUPIR-50 (Yu et al., 2024) 3.86B 14.88 0.4735 66.79
DiffBIR-50 (Lin et al., 2023b) 1.22B 10.27 0.4612 66.24

InstaRevive-1 (U-Net) 865M 0.18 0.4547 65.48
InstaRevive-1 (DiT) 611M 0.14 0.4571 65.85
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                                                                  “3D style”                                                                                “oil painting style” 

     Input                 SDEdit              ZeCon             Clipstyler             Ours                SDEdit              ZeCon            Clipstyler              Ours 

Figure 16: Qualitative comparison with style transfer methods. Please zoom in for the best view.

       Real Input                         “wearing black glasses”                              Real Input                       “blonde hair and red hat”       

Figure 17: Image-to-image transition with identity consistency. The generated image maintains a
similar identity to that of the input image.

A.5 IMAGE-TO-IMAGE TRANSITION WITH IDENTITY CONSISTENCY

In tasks like image cartoonization, maintaining the source image’s identity is not essential. However,
in many other applications, such as face swapping and style transfer, identity consistency is crucial.
Compared with style transfer methods like Clipstyler (Kwon & Ye, 2022) and ZeCon (Yang et al.,
2023), our face cartoonization model falls behind in identity similarity, as shown in Figure 16. To
address this, we can utilize a teacher model equipped with identity-preservation capabilities. This
enables our generator to learn image-to-image transitions while retaining identity. In our experiment,
we employed the IP-Adapter (Ye et al., 2023), a diffusion-based model with an image prompt adapter,
as our teacher model ϵϕ. After training with InstaRevive’s framework, our generator demonstrated a
proficient capacity for identity preservation, as illustrated in Figure 17.

A.6 ABOUT DIVERSITY AND CONSISTENCY

Consistency is our primary concern in the BFR and BSR tasks. We employ a regression loss to
ensure consistency and prevent unnecessary hallucinations during training. However, it is important
to stress that, as discussed in works like BSRGAN (Zhang et al., 2021), these tasks are inherently
ill-posed. The degradation processes in real-world scenarios are often complex and unknown, leading
to irreversible damage to images. This allows various plausible results from the low-quality input.
It’s notable that the allowance for multiple results does not necessarily cause inconsistency as long
as they align with the input. To demonstrate the diversity of the output, we provide visual results in
Figure 18, showing five diverse outputs from different initial noises. These outputs include various
shapes of the hat and slight differences in face identity, but all share consistency with the input.

A.7 FAILURE CASES

InstaRevive encounters challenges when dealing with extremely challenging scenarios. As illus-
trated in Figure 19, our model faces difficulties with severely blurred inputs (left half) and images
containing intensive objects and complex content (right half). Compared to GAN-based methods
like BSRGAN (Zhang et al., 2021) which introduce many artifacts and blur, InstaRevive generates
cleaner images. However, the final results may still exhibit unrealistic regions due to the challenging
scenarios. Recently, some multi-step methods like SUPIR (Yu et al., 2024) attempt to handle these
limitations with large-scale models that generate finer details but at the cost of significant computa-
tional resources and extended inference times. Despite these advancements, they also fall short in
completely resolving these issues, sometimes leading to artificial and unrealistic regions.

21



Published as a conference paper at ICLR 2025

     Real Input                                                                          Diverse Outputs               

                                                             Diverse Output           

Figure 18: Diversity of InstaRevive. Our framework can produce a range of results based on different
initial noise inputs. While all outcomes are plausible, they exhibit slight variations in detail.

       LQ Input                 BSRGAN                    Ours                      LQ Input                 BSRGAN                    Ours

Figure 19: Failure cases. Our framework may give unsatisfactory results when confronted with
severe degradation or complex content.

A.8 THEORY OF DYNAMIC SCORE MATCHING

A.8.1 DETAILS ABOUT SCORE MATCHING DISTILLATION

We start by expanding the KL divergence term DKL(q0||p0) as:

DKL(q0||p0) = E
x∼q0

(
log

(
q0(x|y)
p0(x|y)

))
= E

xLQ∼X
x=Gθ(xLQ,y)

(− (log p0(x|y)− log q0(x|y))) , (8)

where X is the LQ image dataset. To find the optimal point, we calculate the gradient as follows:

∇θDKL = E
xLQ∼X

x=Gθ(xLQ,y)

[
− (∇x log p0(x|y)−∇x log q0(x|y))

∂Gθ(xLQ,y)

∂θ

]
, (9)

where we denote the first two gradient terms ∇x log p0(x|y) and ∇x log q0(x|y) as the scores of HQ
images and generated images, respectively. These scores, akin to gradients of data density, suggest the
use of diffusion models for computation. Ideally, the above optimization will match the distributions
of HQ images and generated results. However, the score can easily diverge when the probability
term is small—specifically, p0(x|y) vanishes when x is far away from HQ images. Another issue is
that the score estimator, the diffusion model, performs best with noisy images obtained through the
diffusion process. Score-SDE (Song & Ermon, 2019; Song et al., 2020) introduces a method that
diffuses the original distributions with varying scales of noise indexed by t and optimizes a series of
KL divergences between these diffused distributions, DKL(qt||pt).
Assuming that the characteristic functions of distribution q0 and p0 are ϕq0(s) and ϕp0(s). The
diffusion process satisfying that xt = αtx+ σtϵ, where ϵ ∼ N (0, I). Considering the property of
characteristic function, we obtain that:

ϕpt(s) = ϕp0(αts)ϕϵ(σts) = exp(−σ2
t s

2

2
)ϕp0(αts) (10)

In the same way, we can get ϕqt(s) = exp(−σ2
t s

2

2 )ϕq0(αts). Therefore, we conclude that

DKL(qt||pt) = 0 ⇔ qt = pt ⇔ ϕqt = ϕpt ⇔ ϕq0 = ϕp0 ⇔ q0 = p0 (11)

For each t, DKL(qt||pt) and DKL(q0||p0) reach their minimum values simultaneously. So it is
equivalent to minimize DKL(qt||pt). Similar to Equation equation 9, the gradient of this KL
divergence is:
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∇θDKL = Et,ϵ,xLQ

[
− (∇xt

log pt(xt|y)−∇xt
log qt(xt|y))

∂Gθ(xLQ,y)

∂θ

]
(12)

Additionally, we adopt the same time-dependent scalar weight ω(t) for better training dynamics.
We utilize a pre-trained diffusion model ϵϕ to estimate ∇xt

log qt(xt|y) and train another diffusion
model ϵψ to predict ∇xt

log pt(xt|y). Therefore, the total gradient of the KL divergence becomes:

∇θDKL = Et,ϵ,xLQ

[
ω(t)σt (ϵψ(xt|y)− ϵϕ(xt|y))

∂Gθ(xLQ,y)

∂θ

]
, (13)

A.8.2 DETAILS ABOUT DYNAMIC NOISE CONTROL

Predicted noise ϵψ , pseudo-GT x̂0 and score sψ . We first clarify the relationship between these
three important predicted targets in diffusion models. As detailed in (Luo, 2022), we actually have
x̂0 = (xt − σtϵψ)/αt, and sψ = −ϵψ/σt. Furthermore, we have:

∥sψ(xt, t,y)−∇xt logp(xt|y)∥22 =
1

σ2
t

∥ϵψ − ϵ0∥22 =

√
αtα3

t−1

σ4
t

∥x̂0(xt, t)− x0∥22 (14)

Where x0 is GT, and ϵ0 is the GT noise. Therefore, we conclude that the accuracy of predicted noise
ϵψ , pseudo-GT x̂0 and score sψ is consistent, allowing us to determine the accuracy of the other two
based on the accuracy of any one of them.

The motivation and rationale for controlling Tmax. As figured out in 2, the estimates of gradients
for real data distribution could be inaccurate or overly smoothed when xt is far away from xHQ, so we
hope to limit their mean distance. Considering the diffusion process that xt = αtx+σtϵ, ϵ ∼ N (0, I)
and using triangle inequality, we obtain that

Et∥xt − xHQ∥2 ≤ Et∥xt − x∥2 + ∥xHQ − x∥2
= Et∥(αt − 1)x+ σtϵ∥2 + ∥xHQ − x∥2
≤ |αt − 1|∥x∥2 + σtEt∥ϵ∥2 + ∥xHQ − x∥2

(15)

Given that ∥x∥2,Et∥ϵ∥2, ∥xHQ−x∥2 are all constants, the upper bound of Et∥xt−xHQ∥2 is indeed
controlled by noise schedule αt, σt. When t = 0, αt = 1 and σt = 0. As t increases, αt approaches
0, while σt tends to 1. Therefore, the upper bound of Et∥xt − xHQ∥2 will monotonically increase
with t. By utilizing a limited Tmax, we can reduce the expected distance between xt and xHQ, thus
ensuring better score estimates.

A.9 MORE IMPLEMENTATION DETAILS

Datasets. For BFR, we use FFHQ (CC BY-NC-SA 4.0) (Karras et al., 2019) for training, which
contains 70,000 face images in 1024× 1024 resolution. For evaluation, we utilize synthetic dataset
CelebA (custom, research-only, non-commercial) (Liu et al., 2015) with 3,000 HQ-LQ pairs. We
also employ LFW-Test (custom, research-only) (Wang et al., 2021b) and WIDER-Test (custom,
research-only) (Zhou et al., 2022) for in-the-wild evaluation. For BSR task, we use large-scale
ImageNet (custom, research, non-commercial) (Deng et al., 2009) for training, and we leverage
RealSR (repository link) (Cai et al., 2019) and RealSet65 (NTU S-Lab License 1.0) (Yue et al., 2023)
as benchmarks.

Training details. The training process is efficient with our dynamic score matching strategy, which
focuses on refining detailed content in LQ images. To train this framework, we utilize 4 Nvidia
A800 GPUs with approximately 2.5 days. As demonstrated in Section. 3, we concurrently update
the parameters of the generator Gθ and the score estimator ϵϕ. To achieve this, we adopt a two-
stage training pipeline. Firstly, we calculate the regression loss and the KL divergence using the
generated result x. For the regression loss, we employ the Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018b) for better quality. The KL divergence is backpropagated as equation 5.
Following this, we update the score estimator ϵϕ to align the generated distribution q0. We detach x
and compute the diffusion loss according to equation 2. This step ensures that ϵϕ accurately learns
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the distribution of the generated images and provides precise scores. Note that we use two optimizers
for these two models, respectively. In our framework, we mainly manipulate images in a latent
space established by a trained VQGAN, which comprises an encoder E and a decoder D, facilitating
seamless conversion between pixel space and latent space. To compute the LPIPS, we need to convert
the latent codes to pixel space with the decoder D.

A.10 CODE

We have included the complete source code for our method in the ./code folder. This folder
contains all the necessary files and instructions to reproduce our experiments with the InstaRevive
framework.
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