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ABSTRACT

The exploration-exploitation dilemma has been a central challenge in reinforcement
learning (RL) with complex model classes. In this paper, we propose a new
algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB)
for RL with general function approximation, where the Bellman operator of the
underlying Markov decision process (MDP) is assumed to map any value functions
into a function class with a bounded eluder dimension. Our key algorithmic design
includes (1) a general deterministic policy-switching strategy that achieves low
switching cost, (2) a monotonic value function structure with carefully controlled
function class complexity, and (3) a variance-weighted regression scheme that
exploits historical trajectories with high data efficiency. MQL-UCB achieves
minimax optimal regret of Õ(d

√
HK) when K is sufficiently large and near-

optimal policy switching cost of Õ(dH), with d being the eluder dimension of the
function class, H being the planning horizon, and K being the number of episodes.
Our work sheds light on designing provably sample-efficient and deployment-
efficient Q-learning with nonlinear function approximation.

1 INTRODUCTION
In reinforcement learning (RL), a learner interacts with an unknown environment and aims to
maximize the cumulative reward. As one of the most mainstream paradigms for sequential decision-
making, RL found extensive applications in many real-world problems (Kober et al., 2013; Mnih
et al., 2015; Lillicrap et al., 2015; Zoph & Le, 2016; Zheng et al., 2018). Theoretically, the RL
problem is often formulated as a Markov Decision Process (MDP) (Puterman, 2014). Achieving
the optimal regret bound for various MDP settings has been a long-standing fundamental problem
in RL research. In tabular MDPs where the state space S and the action space A are finite and
computationally tractable, the optimal regret bound has been well-established ranging from episodic
settings to discounted settings (Azar et al., 2017; Zanette & Brunskill, 2019; Zhang & Ji, 2019;
Simchowitz & Jamieson, 2019; Zhang et al., 2020; He et al., 2021b). Nevertheless, these regret
guarantees are intolerably large in many real-world applications, where the state space S and the
action space A are often large and even infinite.
As is commonly applied in applications, function approximation schemes have been adopted by
theorists to demonstrate the generalization across large state-action spaces, proving the performance
guarantees of various RL algorithms for specific function classes. Most close to the tabular MDPs,
there were recent works on MDP with linear function approximation under different assumptions
such as linear MDPs (Yang & Wang, 2019; Jin et al., 2020), linear mixture MDPs (Modi et al., 2020;
Ayoub et al., 2020; Zhou et al., 2021a). Among them, Zhou et al. (2021a) achieved nearly optimal
regret bounds for linear mixture MDPs through a model-based approach adopting variance-weighted
linear regression. Later, Hu et al. (2022) proposed LSVI-UCB+ algorithm, making an attempt to
improve the regret for linear MDP through an over-optimistic value function approach. However,
their analysis was later discovered to suffer from a technical issue (Agarwal et al., 2022; He et al.,
2022). To fix this issue, Agarwal et al. (2022) introduced similar over-optimistic value functions to
construct a monotonic variance estimator and a non-Markovian planning phase, achieving the first
statistically optimal regret for linear MDPs. Concurrently, He et al. (2022) proposed LSVI-UCB++,
which takes a different approach and employs a rare-switching technique to obtain the optimal regret.
In a parallel line of research, there has been a growing body of literaure proposing more general
frameworks to unify sample efficient RL algorithms, e.g., Bellman rank (Jiang et al., 2017), Witness
rank (Sun et al., 2019), eluder dimension (Russo & Van Roy, 2013), Bellman eluder dimension (Jin
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et al., 2021), Bilinear Classes (Du et al., 2021), Decision-Estimation Coefficient (Foster et al., 2021),
Admissible Bellman Characterization (Chen et al., 2022) and Decoupling Coefficient (Agarwal &
Zhang, 2022a;b). However, when applying these frameworks to linear MDPs, none of them can
achieve minimax optimal regret. Notably, Agarwal et al. (2022) proposed a novel algorithm dubbed
VOQL for RL with general function approximation, which, to our knowledge, is the only algorithmic
framework achieving optimal regret for RL beyond linear function approximation. However, VOQL
requires a complicated planning procedure, where the resulting policy does not act greedily with
respect to a single optimistic value function. It is natural to ask

Whether we can generalize the approach by He et al. (2022) to solve MDPs with general function
approximation and simple Markovian planning phase1 to achieve the optimal regret?

While the sample efficiency of RL algorithms for MDPs with nonlinear function classes has been
comprehensively researched, deployment efficiency (Matsushima et al., 2020) is also a major concern
in many real-world application scenarios. For example, in recommendation systems (Afsar et al.,
2022), it may take several weeks to deploy a new recommendation policy. On the other hand, the
system is capable of collecting an enormous amount of data every minute implementing a fixed policy.
As a result, it is computationally inefficient to change the executed policy after each data point is
collected as is demanded by most of the online RL algorithms in theoretical studies. To resolve this
issue, Bai et al. (2019) first introduced the concept of switching cost, defined as the number of policy
updates. Following this concept, a series of RL algorithms have been proposed on the theoretical side
with low switching cost guarantees (e.g., Zhang et al., 2020; Wang et al., 2021; Qiao et al., 2022;
Kong et al., 2021; Velegkas et al., 2022; Li et al., 2023). Among them, only Kong et al. (2021),
Velegkas et al. (2022), and Li et al. (2023) considered RL with general function approximation,
all of which achieved the switching cost of O(d2Hpolylog(K)), where d is the eluder dimension
of the underlying function class, H is the planning horizon, and K is the number of episodes. In
contrast, Gao et al. (2021) proved a Ω(dH/ log d) lower bound of switching cost for any deterministic
algorithms in learning linear MDPs. Therefore, the following question remains open:

Can we design an algorithm with Õ(dH) switching cost for MDPs with bounded eluder dimension?

In this paper, we answer the above two questions simultaneously by proposing a novel algorithm
Monotonic Q-Learning with UCB (MQL-UCB) with all the aforementioned appealing properties. At
the core of our algorithmic design are the following innovative techniques:

• We propose a novel policy-switching strategy based on the cumulative sensitivity of historical data.
To the best of our knowledge, this is the first deterministic rare-switching strategy for RL with
general function approximation which achieves Õ(dH) switching cost. We also prove a nearly
matching lower bound for any algorithm with arbitrary policies including both deterministic and
stochastic policies (See Theorem C.1 in Appendix C). Previous approaches for low switching
cost in RL with general function approximation are sampling-based (Kong et al., 2021; Velegkas
et al., 2022; Li et al., 2023) and highly coupled with a sub-sampling technique used for regression,
making it less efficient. When restricted to the linear case, sampling-based rare-switching has a
worse switching cost of Õ(d2H) (Section 3.3 in Kong et al. 2021; Theorem 3.3 in Velegkas et al.
2022; Section C in Li et al. 2023) than that in Wang et al. (2021).

• With the novel policy-switching scheme, we illustrate how to reduce the complexity of value
function classes while maintaining a series of monotonic value functions, strictly generalizing the
LSVI-UCB++ algorithm (He et al., 2022) to general function class with bounded eluder dimension.
Based on the structure of the value functions, we further demonstrate how MQL-UCB achieves
nearly minimax optimal sample complexity with delicately designed variance estimators. Our work
is the first work for RL with general function approximation that achieves the nearly minimax
optimal regret when specialized to linear MDPs, while still enjoys simple Markov planning phase.

It is worth noting that very recently, Xiong et al. (2023) also considered low-switching RL with
general function approximation, which achieves Õ(dH) switching cost. Compared to their approach,
our algorithm has a tractable value-iteration-based planning phase and enjoys a minimax optimal
regret guarantee at the same time. Qiao et al. (2023) also considered RL with low-switching cost
beyond linear function approximation, i.e., MDPs with low inherent Bellman error (Zanette et al.,

1Markovian planning phase means that the action executed by the algorithm only depends on the current
state instead of the prefix trajectory. It is more aligned with the empirical RL approaches since the estimated
value function is not well-defined under non-Markovian policy.
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Table 1: A comparison of existing algorithms in terms of regret and switching cost for linear MDP
and general function class with bounded eluder dimension and Bellman completeness. The results
hold for in-homogeneous episodic RL with horizon length H , number of episodes K where the total
reward obtained in an episode is not larger than 1. For regret, we only present the leading term when
K is large enough compared to other variables and hide poly-logarithmic factors in K, d or dim, H
and the constant. For linear MDPs, d is the dimension of the feature vectors. For general function
class, dim is a shorthand of the eluder dimension of the underlying function class, N is the covering
number of the value function class, and NS,A is the covering number of the state-action space.

Algorithm Regret # of Switches Model Class

LSVI-UCB
(Jin et al., 2020) d3/2H

√
K K

LSVI-UCB-RareSwitch
(Wang et al., 2021) d3/2H

√
K Õ(dH)

LSVI-UCB++
(He et al., 2022) d

√
HK Õ(dH)

Linear MDPs

F-LSVI
(Wang et al., 2020a) dim(F)

√
logN logNS,A ·H

√
K K

GOLF
(Jin et al., 2021)

√
dim(F) logN ·H

√
K K

Bounded eluder dimension
VOQL + Completeness

(Agarwal et al., 2022)
√
dim(F) logN ·HK Õ(d2H)

MQL-UCB
(Theorem 4.1)

√
dim(F) logN ·HK Õ(dH)

2020b) and generalized linear MDPs Wang et al. (2020b). Their approach can be seen as a slight
extension of RL with low-switching cost for linear MDPs, since in both settings, the covariance
matrix still exists and they can still use the determinant of the covariance as a criterion for policy
switching.

Notation. We use lower case letters to denote scalars and use lower and upper case bold face letters
to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd

and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean norm and
define ∥x∥Σ =

√
x⊤Σx. For two positive sequences {an} and {bn} with n = 1, 2, . . . , we write

an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1 and
write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn holds for all n ≥ 1.
We use Õ(·) to further hide the polylogarithmic factors except log-covering numbers. We use 1{·} to
denote the indicator function.
2 PRELIMINARIES
2.1 TIME-INHOMOGENEOUS EPISODIC MDP
We consider a time-inhomogeneous episodic Markov Decision Process (MDP), denoted by a tuple
M =M(S,A, H, {Ph}Hh=1, {rh}Hh=1). Here, S andA are the spaces of state and action, respectively,
H is the length of each episode, Ph : S × A × S → [0, 1] is the transition probability function at
stage h which denotes the probability for state s to transfer to next state s′ with current action a, and
rh : S × A → [0, 1] is the deterministic reward function at stage h. A policy π := {πh}Hh=1 is a
collection of mappings πh from a observed state s ∈ S to the simplex of action space A. For any
policy π = {πh}Hh=1 and stage h ∈ [H], we define the value function V π

h (s) and the action-value
function Qπ

h(s, a) as follows:

Qπ
h(s, a) = rh(s, a) + E

[ H∑
h′=h+1

rh′
(
sh′ , πh′(sh′)

)∣∣∣∣sh = s, ah = a

]
, V π

h (s) = Qπ
h(s, πh(s)),

where sh′+1 ∼ Ph′(·|sh′ , ah′). Then, we further define the optimal value function V ∗
h and the

optimal action-value function Q∗
h as V ∗

h (s) = maxπ V
π
h (s) and Q∗

h(s, a) = maxπ Q
π
h(s, a). For

simplicity, we assume the total reward for each possible trajectory (s1, a1, ..., sH , aH) satisfies∑H
h=1 rh(sh, ah) ≤ 1. Under this assumption, the value function V π

h (·) and Qπ
h(·, ·) are bounded in

[0, 1]. For any function V : S → R and stage h ∈ [H], we define the following first-order Bellman
operator Th and second-order Bellman operator T 2

h on function V :

ThV (sh, ah) = Esh+1

[
rh + V (sh+1)|sh, ah

]
, T 2

h V (sh, ah) = Esh+1

[(
rh + V (sh+1)

)2|sh, ah],
3



Under review as a conference paper at ICLR 2024

where sh+1 ∼ Ph(·|sh, ah) and rh = rh(sh, ah). For simplicity, we further define [PhV ](s, a) =

Es′∼Ph(·|s,a)V (s′) and [VhV ](s, a) = T 2
h V (sh, ah)−

(
ThV (sh, ah)

)2
. Using this notation, for each

stage h ∈ [H], the Bellman equation and Bellman optimality equation take the following forms:

Qπ
h(s, a) = ThV π

h+1(s, a), Q∗(s, a) = ThV ∗
h+1(s, a),

where V π
H+1(·) = V ∗

H+1(·) = 0. At the beginning of each episode k ∈ [K], the agent selects a
policy πk to be executed throughout the episode, and an initial state s1 is arbitrary selected by the
environment. For each stage h ∈ [H], the agent first observes the current state skh, chooses an
action following the policy πk

h, then transits to the next state with skh+1 ∼ Ph(·|skh, akh) and reward
rh(sh, ah). Based on the protocol, we defined the suboptimality gap in episode k as the difference
between the value function for selected policy πk and the optimal value function V ∗

1 (s
k
1)− V πk

1 (sk1).
Based on these definitions, we can define the regret in the first K episodes as follows:

Definition 2.1. For any RL algorithm Alg, the regret in the first K episodes is denoted by the sum of
the suboptimality for episode k = 1, . . . ,K,

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1),

where πk is the agent’s policy at episode k.

2.2 FUNCTION CLASSES AND COVERING NUMBERS

Assumption 2.2 (Completeness). Given F := {Fh}Hh=1 which is composed of bounded functions
fh : S ×A → [0, L]. We assume that for any function V : S → [0, 1] there exists f1, f2 ∈ Fh such
that for any (s, a) ∈ S ×A,

Es′∼Ph(·|s,a)
[
rh(s, a) + V (s′)

]
= f1(s, a), and Es′∼Ph(·|s,a)

[(
rh(s, a) + V (s′)

)2]
= f2(s, a).

We assume that L = O(1) throughout the paper.

Remark 2.3. Completeness is a fundamental assumption in RL with general function approximation,
as recognized in Wang et al. (2020b); Jin et al. (2021); Agarwal et al. (2022). Our assumption is the
same as that in Agarwal et al. (2022) and is slightly stronger than that in Wang et al. (2020a) and
Jin et al. (2021). More specifically, in Wang et al. (2020a), completeness is only required for the
first-order Bellman operator. In contrast, we necessitate completeness with respect to the second-order
Bellman operator, which becomes imperative during the construction of variance-based weights. Jin
et al. (2021) only requires the completeness for the function class Fh+1 (ThFh+1 ⊆ Fh). However,
the GOLF algorithm Jin et al. (2021) requires to solve an intricate optimization problem across
the entire episode. In contrast, we employ pointwise exploration bonuses as an alternative strategy,
which requires the completeness for function class V = {V : S → [0, 1]} , i.e., ThV ⊆ Fh. The
completeness assumption on the second moment is first introduced by Agarwal et al. (2022), and
is crucial for obtaining a tighter regret bound. More specifically, making use of the variance of the
value function at the next state is known to be crucial to achieve minimax-optimal regret bound in RL
ranging from tabular MDPs (Azar et al., 2017) to linear mixture MDPs (Zhou et al., 2021a) and linear
MDPs (He et al., 2022). In RL with general function approximation, the second-moment compleness
assumption makes the variance of value functions computationally tractable.

Definition 2.4 (Generalized Eluder dimension, Agarwal et al. 2022). Let λ ≥ 0, a sequence of
state-action pairs Z = {zi}i∈[T ] and a sequence of positive numbers σ = {σi}i∈[T ]. The gener-
alized Eluder dimension of a function class F : S × A → [0, L] with respect to λ is defined by
dimα,T (F) := supZ,σ:|Z|=T,σ≥α dim(F ,Z,σ)

dim(F ,Z,σ) :=
T∑

i=1

min

(
1,

1

σ2
i

D2
F (zi; z[i−1], σ[i−1])

)
,

D2
F (z; z[t−1], σ[t−1]) := sup

f1,f2∈F

(f1(z)− f2(z))2∑
s∈[t−1]

1
σ2
s
(f1(zs)− f2(zs))2 + λ

.

We write dimα,T (F) := H−1 ·
∑

h∈[H] dimα,T (Fh) for short when F is a collection of function
classes F = {Fh}Hh=1 in the context.

4



Under review as a conference paper at ICLR 2024

Remark 2.5. The D2
F quantity has been introduced in Agarwal et al. (2022) and Ye et al. (2023) to

quantify the uncertainty of a state-action pair given a collected dataset with corresponding weights. It
was inspired by Gentile et al. (2022) where an unweighted version of uncertainty has been defined
for active learning. Prior to that, Wang et al. (2020a) introduced a similar ‘sensitivity’ measure
to determine the sampling probability in their sub-sampling framework. As discussed in Agarwal
et al. (2022), when specialized to linear function classes, D2

F (zt; z[t−1], σ[t−1]) can be written as the
elliptical norm ∥zt∥2Σ−1

t−1

, where Σt−1 is the weighted covariance matrix of the feature vectors z[t−1].

Definition 2.6 (Bonus oracle D̄2
F ). In this paper, the bonus oracle is denoted by D̄2

F , which computes
the estimated uncertainty of a state-action pair z = (s, a) ∈ S × A with respect to historical
data z[t−1] and corresponding weights σ[t−1]. In detail, we assume that a computable function
D̄2

F (z; z[t−1], σ[t−1]) satisfies

DF (z; z[t−1], σ[t−1]) ≤ D̄F (z; z[t−1], σ[t−1]) ≤ C ·DF (z; z[t−1], σ[t−1]),

where C is a fixed constant.

Remark 2.7. Agarwal et al. (2022) also assumed access to such a bonus oracle defined in Defini-
tion 2.6, where they assume that the bonus oracle finds a proper bonus from a finite bonus class
(Definition 3, Agarwal et al. 2022). Our definition is slightly different in the sense that the bonus class
is not assumed to be finite but with a finite covering number. Previous works by Kong et al. (2021)
and Wang et al. (2020a) proposed a sub-sampling idea to compute such a bonus function efficiently
in general cases, which is also applicable in our framework. In a similar nonlinear RL setting, Ye
et al. (2023) assumed that the uncertainly D2

F can be directly computed, which is a slightly stronger
assumption. But essentially, these differences in bonus assumption only lightly affect the algorithm
structure and its analysis.

Definition 2.8 (Covering numbers of function classes). For any ϵ > 0, we define the following
covering numbers of the involved function classes:
1. For each h ∈ [H], there exists an ϵ-cover C(Fh, ϵ) ⊆ Fh with size |C(Fh, ϵ)| ≤ N (Fh, ϵ), such

that for any f ∈ F , there exists f ′ ∈ C(Fh, ϵ), such that ∥f − f ′∥∞ ≤ ϵ. For any ϵ > 0, we
define the uniform covering number of F with respect to ϵ as NF (ϵ) := maxh∈[H]N (Fh, ϵ).

2. There exists a bonus class B : S × A → R such that for any t ≥ 0, z[t] ∈ (S × A)t, σ[t] ∈ Rt,
the oracle defined in Definition 2.6 D̄F (·; z[t], σ[t]) is in B.

3. For bonus class B, there exists an ϵ-cover C(B, ϵ) ⊆ B with size |C(B, ϵ)| ≤ N (B, ϵ), such that
for any b ∈ B, there exists b′ ∈ C(B, ϵ), such that ∥b− b′∥∞ ≤ ϵ.

Remark 2.9. In general function approximation, it is common to introduce the additional assumption
on the covering number of bonus function classes. For example, in Ye et al. (2023), Agarwal &
Zhang (2022a), and Di et al. (2023), the authors either assumed the bonus function class is finite
or its covering number is bounded. Even when F is finite, the bonus function class DF can still be
very large. For example, consider F = {f1, f2} where f1 is 1 on every state-action pair, and f2 = 2
on every state-action pair. Then for ϵ = 1/4, the covering number of DF is at least the number of
state-action pairs. This is because the bonus functions resulted from taking each state-action pair as
historical data are far from each other in l∞ measure.

3 ALGORITHM
In this section, we will introduce our new algorithm, MQL-UCB. The detailed algorithm is provided
in Algorithm 1, and we will proceed to elucidate the essential components of our method in the
following subsections.
3.1 LOW POLICY-SWITCHING COST

For MQL-UCB algorithm, the value functions Qk,h, qQk,h, along with their corresponding policy
πk, undergo updates when the agent collects a sufficient number of trajectories within the dataset
that could significantly diminish the uncertainty associated with the Bellman operator ThV (·, ·)
through the weighted regression. In the context of linear bandit (Abbasi-Yadkori et al., 2011) or
linear MDPs (He et al., 2022), the uncertainty pertaining to the least-square regression is quantified
by the covariance matrix Σk. In this scenario, the agent adjusts its policy once the determinant of the
covariance matrix doubles, employing a determinant-based criterion. Nevertheless, in the general
function approximation setting, such a method is not applicable in the absence of the covariance
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matrix which serves as a feature extractor in the linear setting. Circumventing this issue, Kong et al.
(2021) proposed a sub-sampling-based method to achieve low-switching properties in nonlinear RL.
Their subsampling technique is inspired by Wang et al. (2021), which showed that one only needs
to maintain a small subset of historical data to obtain a sufficiently accurate least-square estimator.
Such a subset can be generated sequentially according to the sensitivity of a new coming data point.
However, their approach leads to a switching cost of Õ(d2H), which does not match the lower bound
in linear MDPs proposed by Gao et al. (2021).
To resolve this issue, we proposed a more general deterministic policy-updating framework for non-
linear RL. In detail, we use D̄2

Fh
(zi,h; z[klast−1],h, σ̄[klast−1],h) to evaluate the information collected

at the episode i, given the last updating klast. Once the collected information goes beyond a threshold
χ from last updating, i,e,∑

i∈[klast,k−1]

1

σ̄2
i,h

D̄2
Fh

(zi,h; z[klast−1],h, σ̄[klast−1],h) ≥ χ. (3.1)

the agent will perform updates on both the optimistic estimated value function and the pessimistic
value function. Utilizing the D2

Fh
-based criterion, we will show that the number of policy updates

can be bounded by O(H · dimα,K(F)). This further reduces the complexity of the optimistic value
function class and removes additional factors from a uniform convergence argument over the function
class. Specifically, we showcase under our rare-switching framework, the ϵ-covering number of the
optimistic value function class and the pessimistic value function class at episode k is bounded by

Nϵ(k) := [NF (ϵ/2) · N (B, ϵ/2pβK)]lk+1 (3.2)

where pβK is the maximum confidence radius as shown in Algorithm 1, which will be specified in
Lemmas F.3 and F.4.
3.2 EXECUTION PHASE
Our algorithm’s foundational framework follows the Upper Confidence Bound (UCB) approach. In
detail, for each episode k ∈ [K], we construct an optimistic value function Qk,h(s, a) during the
planning phase. Subsequently, in the exploration phase, the agent interacts with the environment,
employing a greedy policy based on the current optimistic value function Qk,h(s, a). Once the agent
obtains the reward rkh and transitions to the next state skh+1, these outcomes are incorporated into the
dataset, contributing to the subsequent planning phase.
3.3 WEIGHTED REGRESSION
The estimation of Q function in MQL-UCB extends LSVI-UCB proposed by Jin et al. (2020) to
general function classes. While the estimators in LSVI-UCB are computed from the classic least
squares regression, we construct the estimated value function pfk,h for general function classes by
solving the following weighted regression:

pfk,h = argmin
fh∈Fh

∑
i∈[k−1]

1

σ̄2
i,h

(fh(s
i
h, a

i
h)− rih − Vk,h+1(s

i
h+1))

2.

In the weighted regression, we set the weight σ̄k,h as

σ̄k,h = max
{
σk,h, α, γ · D̄1/2

Fh
(z; z[k−1],h, σ̄[k−1],h)

}
,

where σk,h is the estimated variance for the stochastic transition process, D̄Fh
(z; z[k−1],h, σ̄[k−1],h)

denotes the uncertainty of the estimated function pfk,h conditioned on the historical observations and

γ :=

√
log

2HK2 (2 log(L2k/α4) + 2) · (log(4L/α2) + 2) · N 4
F (ϵ) · N 2

ϵ (K)

δ
(3.3)

is used to properly balance the uncertainty across various state-action pairs. It is worth noting that Ye
et al. (2023) also introduced the uncertainty-aware variance in the general function approximation with
a distinct intention to deal with the adversarial corruption from the attacker. In addition, according to
the weighted regression, with high probability, the Bellman operator ThVk,h satisfies the following
inequality,

λ+
∑

i∈[k−1]σ̄
−2
i,h

(
pfk,h(s

i
h, a

i
h)− ThVk,h+1(s

i
h, a

i
h)
)2
≤ β2

k.
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According to the definition of Generalized Eluder dimension, the estimation error between the
estimated function pfk,h and the Bellman operator is upper bounded by:∣∣ pfk,h(s, a)− ThVk,h+1(s, a)

∣∣ ≤ pβkDFh
(z; z[k−1],h, σ̄[k−1],h)

Therefore, we introduce the exploration bonus bk,h and construct the optimistic value
function Qk,h(s, a),i.e., Qk,h(s, a) ≈ pfk,h(s, a) + bk,h(s, a), where bk,h(s, a) = pβk ·
D̄F
(
(s, a); z[k−1],h, σ[k−1],h

)
. Inspired by Hu et al. (2022); He et al. (2022); Agarwal et al. (2022), in

order to estimate the gap between the optimistic value function Vk,h(s) and the optimal value function
V ∗
h (s), we further construct the pessimistic estimator qfk,h by the following weighted regression

qfk,h = argmin
fh∈Fh

∑
i∈[k−1]

1

σ̄2
i,h

(fh(s
i
h, a

i
h)− rih − qVk,h+1(s

i
h+1))

2,

and introduce a negative exploration bonus when generating the pessimistic estimator. qQk,h(s, a) ≈
qfk,h(s, a)−qbk,h(s, a), where qbk,h(s, a) = qβk ·D̄F ((s, a); z[k−1],h, σ[k−1],h. Different from Agarwal
et al. (2022), the pessimistic value function qfk,h is computed from a similar weighted-regression
scheme as in the case of the optimistic estimator, which enables us to derive a tighter confidence set.
Algorithm 1 Monotonic Q-Learning with UCB (MQL-UCB)

Require: Regularization parameter λ, confidence radius {β̃k}k∈[K], {pβk}k∈[K] and {qβk}k∈[K].
1: Initialize klast = 0
2: For each stage h ∈ [H] and state-action (s, a) ∈ S ×A, set Q0,h(s, a)← H, qQ0,h(s, a)← 0
3: for episodes k = 1, . . . ,K do
4: Received the initial state sk1 .
5: for stage h = H, . . . , 1 do
6: if there exists a stage h′ ∈ [H] such that (3.1) holds then
7: pfk,h ← argminfh∈Fh

∑
i∈[k−1]

1
σ̄2
i,h

(fh(s
i
h, a

i
h)− rih − Vk,h+1(s

i
h+1))

2

8: qfk,h ← argminfh∈Fh

∑
i∈[k−1]

1
σ̄2
i,h

(fh(s
i
h, a

i
h)− rih − qVk,h+1(s

i
h+1))

2

9: f̃k,h ← argminfh∈Fh

∑
i∈[k−1]

(
fh(s

i
h, a

i
h)−

(
rih + Vk,h+1(s

i
h+1)

)2 )2
10: Qk,h(s, a)← min

{
pfk,h(s, a) + bk,h(s, a), Qk−1,h(s, a), 1

}
11: qQk,h(s, a)← max

{
qfk,h(s, a)−qbk,h(s, a), qQk−1,h(s, a), 0

}
12: Set the last updating episode klast ← k and number of policies as lk ← lk−1 + 1.
13: else
14: Qk,h(s, a)← Qk−1,h(s, a), qQk,h(s, a)← qQk−1,h(s, a) and lk ← lk−1.
15: end if
16: Set the policy πk as πk

h(·)← argmaxa∈AQk,h(·, a).
17: Vk,h(s)← maxaQk,h(s, a)

18: qVk,h(s)← maxa qQk,h(s, a)
19: end for
20: for stage h = 1, . . . ,H do
21: Take action akh ← πk

h(s
k
h)

22: Set the estimated variance σk,h as in (3.4).
23: σ̄k,h ← max

{
σk,h, α, γ ·D1/2

Fh
(z; z[k−1],h, σ̄[k−1],h)

}
.

24: Receive next state skh+1
25: end for
26: end for
3.4 VARIANCE ESTIMATOR
In this subsection, we provide more details about the variance estimator σk,h, which measures the
variance of the value function Vk,h+1(s

k
h+1) caused by the stochastic transition from state-action pair

(skh, a
k
h). According to the definition of pfk,h, the difference between the estimator pfk,h and ThVk,h+1

satisfies

λ+
∑

i∈[k−1]

1

σ̄2
i,h

(
pfk,h(s

i
h, a

i
h)− ThVk,h+1(s

i
h, a

i
h)
)2

7
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≤ 2
∑

i∈[k−1]

1

σ̄2
i,h

(
f(sih, a

i
h)− pf∗k (s

i
h, a

i
h)
)
· pηih(Vk,h+1),

where pηkh(V ) =
(
rkh + V (skh+1)

)
− Es′∼Ph(skh,a

k
h)

[
rh(s

k
h, a

k
h, s

′) + V (s′)
]

denotes the stochastic
transition noise for the value function V . However, the generation of the target function Vk,h+1

relies on previously collected data z[klast], thus violating the conditional independence property.
Consequently, the noise term pηkh(Vk,h+1) may not be unbiased. To address this challenge, it becomes
imperative to establish a uniform convergence property over the potential function class, which is
first introduced in linear MDPs by (Jin et al., 2020).
Inspired by the previous works (Azar et al., 2017; Hu et al., 2022; Agarwal et al., 2022; He et al.,
2022), we decompose the noise of optimistic value function pηkh(Vk,h+1) into the noise of optimal value
function pηkh(V

∗
h+1) and the noise pηkh

(
Vk,h+1 − V ∗

h+1

)
to reduce the extra log

(
Nϵ(K)

)
dependency

in the confidence radius. With the noise decomposition, we evaluate the variances [VhV
∗
h+1](s, a)

and
[
Vh(Vk,h+1 − V ∗

h+1)
]
(s, a) separately.

For the variance of the optimal value function [VhV
∗
h+1](s, a), since the optimal value function V ∗

h+1
is independent with the collected data z[klast], it prevents a uniform convergence-based argument over
the function class. However, the optimal value function V ∗

h+1 is unobservable, and it requires several
steps to estimate the variance. In summary, we utilize the optimistic function Vk,h+1 to approximate
the optimal value function V ∗

h+1 and calculate the estimated variance [V̄hVk,h] as the difference
between the second-order moment and the square of the first-order moment of Vk,h

[V̄k,hVk,h+1] = T̄ 2
h Vk,h(s, a)−

(
T̄hVk,h+1(s, a)

)2
= f̃k,h − pf2k,h

Here, the approximate second-order moment f̃k,h and the approximate first-order moment pfk,h is
generated by the least-square regression (Lines 7 and 9). In addition, we introduce the exploration
bonus Ek,h to control the estimation error between the estimated variance and the true variance of
Vk,h+1 and Fk,h to control the sub-optimality gap between Vk,h+1 and V ∗

h+1:

Ek,h = (2Lβk + β̃k)min
(
1, D̄Fh(z; z[k−1],h, σ̄[k−1],h)

)
,

Fk,h =
(
log(N (F , ϵ) · Nϵ(K))

)
·min

(
1, 2 pfk,h(s

k
h, a

k
h)− 2 qfk,h(s

k
h, a

k
h) + 4βkD̄Fh(z; z[k−1],h, σ̄[k−1],h)

)
,

where

β̃k =

√
128 log

Nϵ(k) · N (F , ϵ) ·H
δ

+ 64Lϵ · k, βk =

√
128 · log Nϵ(k) · N (F , ϵ)H

δ
+ 64Lϵ · k/α2.

For the variance of the sub-optimality gap,
[
Vh(Vk,h+1 − V ∗

h+1)
]
(s, a), based on the structure of

optimistic and pessimistic value function, it can be approximate and upper bounded by
[Vh(Vk,h+1 − V ∗

h+1)](s
k
h, a

k
h) ≤ 2[Ph(Vk,h+1 − V ∗

h+1)](s
k
h, a

k
h)

≤ 2[Ph(Vk,h+1 − qVk,h+1)](s
k
h, a

k
h) ≈ 2 pfk,h(s

k
h, a

k
h)− 2 qfk,h(s

k
h, a

k
h),

where the approximate first-order moments pfk,h, qfk,h are generated by the least-square regression
(Lines 7 and 8) and can be dominated by the exploration bonus Fk,h.
In summary, we construct the estimated variance σk,h as:

σk,h =
√
[V̄k,hVk,h+1](skh, a

k
h) + Ek,h + Fk,h. (3.4)

3.5 MONOTONIC VALUE FUNCTION
As we discussed in the previous subsection, we decompose the value function Vk,h and evaluate
the variance [VhV

∗
h+1](s, a),

[
Vh(Vk,h+1 − V ∗

h+1)
]
(s, a) separately. However, for each state-action

pair (skh, a
k
h) and any subsequent episode i > k, the value function Vi,h and corresponding vari-

ance
[
Vh(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h) may differ from the previous value function Vk,h and variance[

Vh(Vk,h+1 − V ∗
h+1)

]
(skh, a

k
h). Inspired by He et al. (2022), we ensure that the pessimistic value

function qQk,h maintains a monotonically increasing property during updates, while the optimistic
value function Qk,h maintains a monotonically decreasing property. Leveraging these monotonic
properties, we can establish an upper bound on the variance as follows:[

Vh(Vi,h+1 − V ∗
h+1)

]
(skh, a

k
h) ≤ 2[Ph(Vi,h+1 − qVi,h+1)](s

k
h, a

k
h)

≤ 2[Ph(Vk,h+1 − qVk,h+1)](s
k
h, a

k
h) ≤ Fk,h.

In this scenario, the previously employed variance estimator σk,h offers a consistent and uniform
upper bound for the variance across all subsequent episodes.
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4 MAIN RESULTS
In this section, we present our main results on the regret guarantee of MQL-UCB.

Theorem 4.1. Suppose Assumption 2.2 holds for function classes F := {Fh}Hh=1 and Defini-
tion 2.4 holds with λ = 1. If we set α = 1/

√
H , ϵ = (KLH)−1, and set pβk = qβk :=√

O
(
log 2k2(2 log(L2k/α4)+2)·(log(4L/α2)+2)

δ/H

)
· [log(NF (ϵ)) + 1] +O(λ) +O(ϵkL/α2), then with

high probability, the regret of MQL-UCB is upper bounded as follows:

Regret(K) = Õ
(√

dim(F) logN ·HK
)

+ Õ
(
H2.5 dim2(F)

√
logN log(N · Nb) ·

√
H logN + dim(F) log(N · Nb)

)
,

where we denote the covering number of bonus function class byNb, the covering number of function
class F by N , and the dimension dimα,K(F) by dim(F). At the same time, the switching cost of
Algorithm 1 is bounded by O(dimα,K(F) ·H).

When the number of episodes K is sufficiently large, the leading term in our regret bound is
Õ
(√

dim(F) logN ·HK
)
. Our result matches the optimal regret achieved by Agarwal et al. (2022).

While their proposed algorithm involves the execution of a complicated and non-Markovian policy
with an action selection phase based on two series of optimistic value functions and the prefix
trajectory, MQL-UCB only requires the knowledge of the current state and a single optimistic
state-action value function Q to make a decision over the action space.
As a direct application, we also present the regret guarantee of MQL-UCB for linear MDPs.

Corollary 4.2. Under the same conditions of Theorem 4.1, assume that the underlying MDP is a
linear MDP such that F := {Fh}h∈[H] is composed of linear function classes with a known feature
mapping over the state-action space ϕ : S × A → Rd. If we set λ = 1, α = 1/

√
H , then with

probability 1−O(δ), the following cumulative regret guarantee holds for MQL-UCB:

Regret(K) = Õ
(
d
√
HK +H2.5d5

√
H + d2

)
.

Remark 4.3. The leading term in our regret bound, as demonstrated in Corollary 4.2, matches the
lower bound proved in Zhou et al. (2021a) for linear MDPs. Similar optimal regrets have also been
accomplished by He et al. (2022) and Agarwal et al. (2022) for linear MDPs. Since we also apply
weighted regression to enhance the precision of our pessimistic value functions, the lower order
term (i.e., H2.5d5

√
H + d2) in our regret has a better dependency on H than VOQL (Agarwal et al.,

2022) and LSVI-UCB++ (He et al., 2022), which may be of independent interest when considering
long-horizon MDPs. In addition, the switching cost of Algorithm 1 is bounded by Õ(dH), which
matches the lower bound in Gao et al. (2021) for deterministic algorithms and our new lower bound
in Theorem C.1 for arbitrary algorithms up to logarithmic factors. For more details about our lower
bound, please refer to Appendix C

4.1 CONNECTION BETWEEN D2
F -UNCERTAINTY AND ELUDER DIMENSION

Previous work by Agarwal et al. (2022) achieved the optimal regret bound
Õ(
√
dim(F) logN ·HK), where dim(F) is defined as the generalized eluder dimension

as stated in Definition 2.4. However, the connection between generalized eluder dimension and
eluder dimension proposed by Russo & Van Roy (2013) is still under-discussed 2. Consequently,
their results could not be directly compared with the results based on the classic eluder dimension
measure (Wang et al., 2020a) or the more general Bellman eluder dimension (Jin et al., 2021).
In this section, we make a first attempt to establish a connection between generalized eluder dimension
and eluder dimension in Theorem 4.4.

Theorem 4.4. For a function space G, α > 0, let dim be defined in Definition 2.4. WLOG,
we assume that for all g ∈ G and z ∈ Z , |g(z)| ≤ 1. Then the following inequality between

2Agarwal et al. (2022) (Remark 4) also discussed the relationship between the generalized eluder dimension
and eluder dimension. However, there exists a technique flaw in the proof and we will discuss it in Appendix B.

9



Under review as a conference paper at ICLR 2024

dim(F ,Z,σ) and dimE(G, 1/
√
T ) holds for all Z := {zi}i∈[T ] with zi ∈ Z and σ := {σi}i∈[T ] s.t.

α ≤ σi ≤M ∀i ∈ [T ]:∑
i∈[T ]

min

(
1,

1

σ2
i

D2
G
(
zi; z[i−1], σ[i−1]

))
≤ O(dimE(F , 1/

√
T ) log T log λT log(M/α) + λ−1).

According to the Theorem 4.4, the generalized eluder dimension is upper bounded by eluder dimen-
sion up to logarithmic terms. When the number of episodes K is sufficiently large, the leading term
in our regret bound in Theorem 4.1 is Õ

(√
dimE(F) logN ·HK

)
, where dimE(F) is the eluder

dimension of the function class F .
5 CONCLUSION AND FUTURE WORK
In this paper, we delve into the realm of RL with general function approximation. We proposed
the MQL-UCB algorithm with an innovative uncertainty-based rare-switching strategy in general
function approximation. Notably, our algorithm only require Õ(dH) updating times, which matches
with the lower bound established by (Gao et al., 2021) up to logarithmic factors, and obtains a
Õ(d
√
HK) regret guarantee, which is near-optimal when restricted to the linear cases. Nonetheless,

when dealing with function classes extending beyond linearity, the question arises as to whether
our algorithm maintains its near-optimality. As part of our future endeavors, we aim to develop a
theoretical lower bound that support the efficiency of our framework.
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A ADDITIONAL RELATED WORK
A.1 RL WITH LINEAR FUNCTION APPROXIMATION
In recent years, a substantial body of research has emerged to address the challenges of solving
Markov Decision Processes (MDP) with linear function approximation, particularly to handle the
vast state and action spaces (Jiang et al., 2017; Dann et al., 2018; Yang & Wang, 2019; Du et al.,
2019; Sun et al., 2019; Jin et al., 2020; Wang et al., 2020b; Zanette et al., 2020a; Yang & Wang, 2020;
Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a; He et al., 2021a; Zhou & Gu, 2022; He
et al., 2022; Zhao et al., 2023). These works can be broadly categorized into two groups based on the
linear structures applied to the underlying MDP. One commonly employed linear structure is known
as the linear MDP (Jin et al., 2020), where the transition probability function Ph and reward function
rh are represented as linear functions with respect to a given feature mapping ϕ : S × A → Rd.
Under this assumption, the LSVI-UCB algorithm (Jin et al., 2020) has been shown to achieve a regret
guarantee of Õ(

√
d3H4K). Subsequently, Zanette et al. (2020a) introduced the RLSVI algorithm,

utilizing the Thompson sampling method, to attain a regret bound of Õ(
√
d4H5K). More recently,

He et al. (2022) improved the regret guarantee to Õ(
√
d2H3K) with the LSVI-UCB++ algorithm,

aligning with the theoretical lower bound in Zhou et al. (2021a) up to logarithmic factors. Another
line of research has focused on linear mixture MDPs (Modi et al., 2020; Yang & Wang, 2020; Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a), where the transition probability is expressed
as a linear combination of basic models P1,P2, ..,Pd. For linear mixture MDPs, Jia et al. (2020)
introduced the UCRL-VTR algorithm, achieving a regret guarantee of Õ(

√
d2H4K). Subsequently,

Zhou et al. (2021a) enhanced this result to Õ(
√
d2H3K), reaching a nearly minimax optimal regret

bound. Recently, several works focused on time-homogeneous linear mixture MDPs, and removed
the dependency on the episode length (horizon-free) (Zhang & Ji, 2019; Zhou et al., 2021b; Zhao
et al., 2023).
A.2 RL WITH GENERAL FUNCTION APPROXIMATION
Recent years have witnessed a flurry of progress on RL with nonlinear function classes. To explore the
theoretical limits of RL algorithms, various complexity measures have been developed to characterize
the hardness of RL instances such as Bellman rank (Jiang et al., 2017), Witness rank (Sun et al., 2019),
eluder dimension (Russo & Van Roy, 2013), Bellman eluder dimension (Jin et al., 2021), Bilinear
Classes (Du et al., 2021), Decision-Estimation Coefficient (Foster et al., 2021), Admissible Bellman
Characterization (Chen et al., 2022), generalized eluder dimension (Agarwal et al., 2022). Among
them, only Agarwal et al. (2022) yields a near-optimal regret guarantee when specialized to linear
MDPs. In their paper, they proposed a new framework named generalized eluder dimension to handle
the weighted objects in weighted regression, which can be seen as a variant of eluder dimension. In
their proposed algorithm VOQL, they adopted over-optimistic and over-pessimistic value functions
in order to bound the variance of regression targets, making it possible to apply a weighted regression
scheme in the model-free framework.
A.3 RL WITH LOW SWITCHING COST
Most of the aforementioned approaches necessitate updating both the value function and the corre-
sponding policy in each episode, a practice that proves to be inefficient when dealing with substantial
datasets. To overcome this limitation, a widely adopted technique involves dividing the time sequence
into several epochs and updating the policy only between different epochs. In the context of the linear
bandit problem, Abbasi-Yadkori et al. (2011) introduced the rarely-switching OFUL algorithm, where
the agent updates the policy only when the determinant of the covariance matrix doubles. This method
enables the algorithm to achieve near-optimal regret of Õ(

√
K) while maintaining policy updates to

Õ(d logK) times. When the number of arms, denoted as |D|, is finite, Ruan et al. (2021) proposed
an algorithm with regret bounded by Õ(

√
dK) and a mere Õ(d log d logK) policy-updating times.

In the realm of episodic reinforcement learning, Bai et al. (2019) and Zhang et al. (2021) delved
into tabular Markov Decision Processes, introducing algorithms that achieve a regret of Õ(

√
T )

and Õ(SA logK) updating times. Wang et al. (2021) later extended these results to linear MDPs,
unveiling the LSVI-UCB-RareSwitch algorithm. LSVI-UCB-RareSwitch delivers a regret bound
of Õ(d3H4K) with a policy switching frequency of Õ(d log T ), which matches the lower bound of
the switching cost (Gao et al., 2021) up to logarithmic terms. Furthermore, if the policy is updated
within fixed-length epochs (Han et al., 2020), the method is termed batch learning model, but this
falls beyond the scope of our current work. In addition, with the help of stochastic policies, Zhang
et al. (2022) porposed an algorithm with Õ(

√
K) regret guarantee and only Õ(H) swithcing cost for
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learning tabular MDPs. Later, Huang et al. (2022) employed the stochastic policy in learning linear
MDPs, which is able to find an ϵ-optimal policy with only Õ(H) switching cost.
B DISCUSSION ABOUT THE D2

F -UNCERTAINTY AND ELUDER DIMENSION
To start with, we first recall the concept of eluder dimension as follows.

Definition B.1 (Definition of eluder dimension, Russo & Van Roy 2013). The eluder dimension of a
function class G with domain Z is defined as follows:

• A point z ∈ Z is ϵ-dependent on z1, z2, · · · , zk ∈ Z with respect to G, if for all g1, g2 ∈ G such
that

∑k
i=1 [g1(zi)− g2(zi)]

2 ≤ ϵ it holds that |g1(z)− g2(z)| ≤ ϵ.
• Further z is said to be ϵ-independent of z1, z2, · · · , zk with respect to G, if z is not dependent on
z1, z2, · · · , zk.

• The eluder dimension of G, denoted by dimE(G, ϵ), is the length of the longest sequence of
elements in Z such that every element is ϵ′-independent of its predecessors for some ϵ′ ≥ ϵ.

With this definition, we can prove the Theorem 4.4.

Proof of Theorem 4.4. Let Ij (1 ≤ j ≤ ⌈log2M/α⌉) be the index set such that Ij ={
t ∈ [T ]|σt ∈ [2j−1 · α, 2jα]

}
.

Then we focus on the summation over Ij for each j. For simplicity, we denote the subsequence
{zi}i∈Ij by {xi}i∈[|Ij |]. Then we have∑

i∈Ij

min

(
1,

1

σ2
i

D2
G
(
zi; z[i−1], σ[i−1]

))
≤

∑
i∈[|Ij |]

min
(
1, 4D2

G
(
xi;x[i−1], 1[i−1]

))
To bound

∑
i∈[|Ij |] min

(
1, 4D2

G
(
xi;x[i−1], 1[i−1]

))
,∑

i∈[|Ij |]

min
(
1, 4D2

G
(
xi;x[i−1], 1[i−1]

))
≤ 4/λ+

∑
i∈[|Ij |]

4

∫ 1

1/λT

1
{
D2

G
(
xi;x[i−1], 1[i−1]

)
≥ ρ
}

dρ

≤ 4/λ+ 4

∫ 1

1/λT

∑
i∈[|Ij |]

1
{
D2

G
(
xi;x[i−1], 1[i−1]

)
≥ ρ
}

dρ (B.1)

Then we proceed by bounding the summation
∑

i∈[|Ij |] 1
{
D2

G
(
xi;x[i−1], 1[i−1]

)
≥ ρ
}

for each

ρ ≥ 1/(λT ). For short, let d := dimE(G, 1/
√
T ). Essentially, it suffices to provide an upper bound

of the cardinality of the subset Jj :=
{
i ∈ Ij |D2

G
(
xi;x[i−1], 1[i−1]

)
≥ ρ
}

.
For each i ∈ Jj , since D2

G
(
xi;x[i−1], 1[i−1]

)
≥ ρ, there exists g1, g2 in G such that

(g1(xi)−g2(xi))
2∑

t∈[i−1](g1(xt)−g2(xt))2+λ ≥ ρ/2. Here (g1(xi) − g2(xi))
2 ≥ λρ ≥ 1/T . Denote such value

of (g1(xi)− g2(xi))2 by L(xi). Then we consider split cJj into ⌈log2 T ⌉ layers such that in each
layer J k

j (k ∈ [⌈log2 T ⌉]), we have 1/T ≤ ξ ≤ L(xi) ≤ 2ξ for some ξ.
Denote the cardinality of J k

j by A and the subsequence {xi}i∈Ik
j

by {yi}i∈[A]. For the elements in
{y}, we dynamically maintain ⌊A/d⌋ queues of elements. We enumerate through {y} in its original
order and put the current element yi into the queue Q such that yi is ξ-independent of the current
elements in Q. By the Pigeonhole principle and the definition of eluder dimension d, we can find an
element yi in {y} such that yi is ξ-dependent of all the ⌊A/d⌋ queues before i.
Then by the definition of L(yi) and ξ, we can choose g1, g2 such that

(g1(yi)− g2(yi))2∑
t∈[i−1](g1(yt)− g2(yt))2 + λ

≥ ρ/2, 2ξ ≥ (g1(yt)− g2(yt))2 ≥ ξ. (B.2)

By the ξ-dependencies, we have
∑

t∈[i−1](g1(yt) − g2(yt))
2 ≥ ⌊A/d⌋ · ξ. At the same time∑

t∈[i−1](g1(yt)− g2(yt))2 ≤ 4ξ/ρ due to (B.2).
Thus, we deduce that A = |J k

j | ≤ O(d/ρ) for all k ∈ [⌈log2 T ⌉].
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Substituting it into (B.1), we have∑
i∈[|Ij |]

min
(
1, 4D2

G
(
xi;x[i−1], 1[i−1]

))
≤ 4/λ+ 4

∫ 1

1/λT

O(d/ρ · log2 T )dρ

= O(d log2 T · log λT + λ−1).

Here j is chosen arbitrarily. Hence, the generalized eluder dimension can be further bounded as
follows:∑
i∈[T ]

min

(
1,

1

σ2
i

D2
G
(
zi; z[i−1], σ[i−1]

))
≤ O(dimE(F , 1/

√
T ) log T log λT log(M/α) + λ−1).

In the following part, we will also discuss the issue in Agarwal et al. (2022) about the relationship
between the standard eluder dimension dimE and the generalized eluder dimension dim. In detail,
Agarwal et al. (2022) proposed the concept of Generalized Eluder dimension and made the following
claim:

Lemma B.2 (Remark 4, Agarwal et al. 2022). If we set the weight σ = 1, then the Generalized
Eluder dimension dim = supZ,σ:|Z|=T dim(F ,Z,1) satisfied

dim ≤ dimE(F ,
√
λ/T ) + 1,

where dimE denotes the standard Eluder dimension proposed in Russo & Van Roy (2013). In the proof
of Remark 4, Agarwal et al. (2022) claims that given the standard Eluder dimension dimE(F ,

√
λ) =

n, there are at most n different (sorted) indices {t1, t2, ..} such that D2
F (zti ; zti−1],1) ≥ ϵ2/λ.

However, according to the definition of D2
F -uncertainty, we only have

D2
F (z; z[t−1],1) := sup

f1,f2∈F

(f1(z)− f2(z))2∑
s∈[t−1](f1(zs)− f2(zs))2 + λ

.

However, zti is ϵ-dependence with z1, .., zti−1 is only a sufficient condition for the uncertainty
D2

F (z; z[t−1],1) rather than necessary condition. In cases where both (f1(z) − f2(z))2 ≥ ϵ2 and∑
s∈[t−1](f1(zs) − f2(zs))2 ≥ ϵ2 hold, the uncertainty D2

F (z; z[t−1],1) may exceed ϵ2/λ, yet it
will not be counted within the longest ϵ-independent sequence for the standard Eluder dimension.

C LOWER BOUND
In this section, we prove a new lower bound on the switching cost for RL with linear MDPs. Note
that linear MDPs belong to the class of MDPs studied in our paper with bounded generalized eluder
dimension. In particular, the generalized eluder dimension of linear MDPs is Õ(d).

Theorem C.1. For any algorithm Alg with expected switching cost less than dH/(16 logK), there
exists a hard-to-learn linear MDP, such that the expected regret of Alg is at least Ω(K).

Remark C.2. Theorem C.1 suggests that, to achieve a sublinear regret guarantee, an Ω̃(dH) switch-
ing cost is unavoidable. This lower bound does not violate the upper bound/lower bound of Õ(H)
proved in Zhang et al. (2022); Huang et al. (2022), which additionally assume that the initial state
sk1 is either fixed or sampled from a fixed distribution. In contrast, our work and Gao et al. (2021)
allow the initial state to be adaptively chosen by an adversarial environment, rendering the learning
of linear MDPs more challenging. When comparing our lower bound with the result in Gao et al.
(2021), it is worth noting that their focus is solely on deterministic algorithms, and they suggest that
an Ω̃(dH) switching cost is necessary. As a comparison, our result holds for any algorithm with
arbitrary policies including both deterministic and stochastic policies.

To prove the lower bound, we create a series of hard-to-learn MDPs as follows. Each hard-to-
learn MDP comprises d/4 distinct sub-MDPs denoted as M1, ..,Md/4. Each sub-MDP Mi is
characterized by two distinct states, initial state si,0 and absorbing state si,1, and shares the same
action set A = {a0, a1}. Since the state and action spaces are finite, these tabular MDPs can always
be represented as linear MDPs with dimension |S| × |A| = d.
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To generate each sub-MDPMi, for all stage h ∈ [H], a special action ai,h is uniformly randomly
selected from the action set {a0, a1}. Given the current state si,0, the agent transitions to the state
si,0 if it takes the special action ai,h. Otherwise, the agent transitions to the absorbing state si,1 and
remains in that state in subsequent stages. The agent will receive the reward 1 if it takes the special
action ai,H at the state si,0 during the last stage H . Otherwise, the agent always receives reward 0.
In this scenario, for sub-MDPMi, the optimal policy entails following the special action sequence
(ai,1, ai,2, ..., ai,H) to achieve a total reward of 1. In contrast, any other action sequence fails to yield
any reward.
Now, we partition the K episodes to d/4 different distinct epochs. For each epoch (ranging from
episodes 4(i− 1)K/d+ 1 to episode 4iK/d), we initialize the state as si,0 and exclusively focus on
the sub-MDPMi. The regret in each epoch can be lower bounded separately as follows:

Lemma C.3. For each epoch i ∈ [d/4] and any algorithm Alg capable of deploying arbitrary policies,
if the expected switching cost in epoch i is less than H/(2 logK), the expected regret of Alg in the
i-th epoch is at least Ω(K/d).

Proof of Lemma C.3. Given that each sub-MDP is independently generated, policy updates before
epoch i only offer information for the sub-MDPsM1, ...,Mi−1 and do not provide any information
for the current epoch i. In this scenario, there is no distinction between epochs and for simplicity, we
only focus on the first epoch, encompassing episodes 1 to 4K/d.
Now, let k0 = 0 and we denote K = {k1, k2, ...} as the set of episodes where the algorithm Alg
updates the policy. If Alg does not update the policy i times, we set ki = 4K/d+ 1. For simplicity,
we set C = 2 logK and for each i ≤ H/C, we define the events E as the algorithm Alg has not
reached the state s1,0 at the stage iC before the episode ki.
Conditioned on the events E1, ..., Ei−1, the algorithm Alg does not gather any information about
the special action a1,h for stage h ≥ (i− 1)C + 1. In this scenario, the special actions can still be
considered as uniformly randomly selected from the action set a0, a1. For each episode between ki−1

and ki, the probability that a policy π arrives at state s1,0 at stage iC is upper-bounded by:

Ea1,(i−1)C+1,...,a1,iC

[
ΠiC

h=1 Pr(πh(s1,0) = a1,h)
]

≤ Ea1,(i−1)C+1,...,a1,iC

[
ΠiC

h=(i−1)C+1 Pr(πh(s1,0) = a1,h)
]
=

1

2C
,

where the first inequality holds due to π(s1,0) = a1,h) ≤ 1 and the second equation holds due to the
random generation process of the special actions. Notice that there are at most K episodes between
the ki−1 and ki and after applying an union bound for all episodes, we have

Pr(Ei|E1, ..., Ei−1) ≤ 1− K

2C
= 1− 1

K
.

Furthermore, we have

Pr(EH/C) ≤ Pr(E1 ∩ E2 ∩ E3 ∩ ... ∩ EH/C)

= Π
H/C
i=1 Pr(Ei|E1, ..., Ei−1)

≤ (1− 1

1K
)H/C ≤ 1− H

CK
. (C.1)

Notice that the agent cannot receive any reward unless it has reached the state si,0 at the last stage
H . Therefore, the expected regret for the algorithm Alg for the sub-MDPM can be bounded by the
switching cost δ:

EM[Regret(Alg)] ≥ EM[1(EH/C)× (kH/C − 1)]

≥ EM[kH/C − 1]− H

C

≥ EM
[
1(δ < H/C) ·K/d

]
− H

C

≥ 4K/d− EM
[
δ
]
· 4KC
dH

− H

C
, (C.2)

where the first inequality holds due to the fact that the agent receives no reward before kH/C

conditioned on the event EH/C , the second inequality holds due to (C.1) with kH/C − 1 ≤ K, the
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third inequality holds due to the definition of kH/C and the last inequality holds due to E[1(x ≥
a)] ≤ E[x]/a for any non-negative random variable x. According to the result in (C.1), if the expected
switching E[δ] ≤ H/(2C), the expected regret is at least Ω(K), when K is large enough compared
to H .

With the help of Lemma C.1, we can prove Theorem C.1.

Proof of Theorem C.1. For these constructed hard-to-learn MDPs and any given algorithm Alg, we
denote the expected switching cost for sub-MDPMi as δi.
According to Lemma C.3, we have

EMi
[Regret(Alg)] ≥ Pr

(
δi < H/(2 logK)

)
·K/d

≥
(
1− EMi

[δi] · 2 logK/H
)
·K/d, (C.3)

where the first inequality holds due to lemma C.1 and laast inequality holds due to E[1(x ≥ a)] ≤
E[x]/a for any non-negative random variable x. Taking a summation of (C.3) for all sub-MDps, we
have

EM[Regret(Alg)] =
d/4∑
i=1

EMi [Regret(Alg)]

≥
d/4∑
i=1

(
1− EMi

[δi] · 2 logK/H
)
·K/d

= (d/4− EM[δ] · 2 logK/H) ·K/d,
where δ is the total expected switching cost. Therefore, for any algorithm with total expected
switching cost less than dH/(16 logK), the expected is lower bounded by

EM[Regret(Alg)] ≥ (d/4− EM[δ] · 2 logK/H) ·K/d ≥ K/8.
Thus, we finish the proof of Theorem C.1.

D PROOF OF THEOREM 4.1
In this section, we provide the proof of Theorem 4.1.
D.1 HIGH PROBABILITY EVENTS
In this subsection, we define the following high-probability events:

E f̃k,h =

λ+
∑

i∈[k−1]

(
f̃k,h(s

i
h, a

i
h)− T 2

h Vk,h+1(s
i
h, a

i
h)
)2
≤ β̃2

k

 , (D.1)

E pf
k,h =

λ+
∑

i∈[k−1]

1

σ̄2
i,h

(
pfk,h(s

i
h, a

i
h)− ThVk,h+1(s

i
h, a

i
h)
)2
≤ β2

k

 , (D.2)

E qf
k,h =

λ+
∑

i∈[k−1]

1

σ̄2
i,h

(
qfk,h(s

i
h, a

i
h)− Th qVk,h+1(s

i
h, a

i
h)
)2
≤ β2

k

 , (D.3)

where

β̃k :=

√
128 log

Nϵ(k) · NF (ϵ) ·H
δ

+ 64Lϵ · k, βk :=

√
128 · log Nϵ(k) · NF (ϵ)H

δ
+ 64Lϵ · k/α2.

E f̃k,h, E
pf
k,h and E qf

k,h are the hoeffding-type concentration results for f̃k,h, pfk,h and qfk,h respectively.

Then we define the following bellman-type concentration events for pfk,h, qfk,h, which implies a
tighter confidence set due to carefully designed variance estimators and an inverse-variance weighted
regression scheme for the general function classes.

E pf
h =

{
λ+

k−1∑
i=1

1

(σ̄i,h′)2

(
pfk,h′(sih′ , aih′)− Th′Vk,h′+1(s

i
h′ , aih′)

)2
≤ pβ2

k, ∀h ≤ h′ ≤ H, k ∈ [K]

}
,
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E qf
h =

{
λ+

k−1∑
i=1

1

(σ̄i,h′)2

(
qfk,h′(sih′ , aih′)− Th′Vk,h′+1(s

i
h′ , aih′)

)2
≤ qβ2

k, ∀h ≤ h′ ≤ H, k ∈ [K]

}
,

(D.4)
where

pβ2
k = qβ2

k := O

(
log

2k2
(
2 log(L2k/α4) + 2

)
·
(
log(4L/α2) + 2

)
δ/H

)
· [log(NF (ϵ)) + 1]

+O(λ) +O(ϵkL/α2).

We also define the following events which are later applied to prove the concentration of pfk,h and
qfk,h by induction.

Ē pf
k,h =

{
λ+

∑
i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− ThVk,h+1(s

i
h, a

i
h)
)2
≤ pβ2

k

}
, (D.5)

where p1i,h is the shorthand for the following product of indicator functions
p1i,h := 1

(
[VhV

∗
h+1](s

i
h, a

i
h) ≤ σ̄2

i,h

)
· 1
(
[ThVi,h+1 − T V ∗

h+1] ≤ (logNF (ϵ) + logNϵ(K))−1σ̄2
i,h

)
· 1
(
Vi,h+1(s) ≥ V ∗

h+1(s) ∀s ∈ S
)
. (D.6)

Ē qf
k,h =

{
λ+

∑
i∈[k−1]

q1i,h

(σ̄i,h)2

(
qfk,h(s

i
h, a

i
h)− Th qVk,h+1(s

i
h, a

i
h)
)2
≤ qβ2

k

}
, (D.7)

where q1i,h is the shorthand for the following product of indicator functions

q1i,h := 1
(
[VhV

∗
h+1](s

i
h, a

i
h) ≤ σ̄2

i,h

)
· 1
(
[T V ∗

h+1 − Th qVi,h+1] ≤ (logNF (ϵ) + logNϵ(K))−1σ̄2
i,h

)
· 1
(

qVi,h+1(s) ≤ V ∗
h+1(s) ∀s ∈ S

)
. (D.8)

The following Lemmas suggest that previous events holds with high probability.

Lemma D.1. Let f̃k,h be defined as in line 9 of Algorithm 1, we have E f̃ :=
⋂

k≥1,h∈[H] E
f̃
k,h holds

with probability at least 1− δ, where E f̃k,h is defined in (D.1).

Lemma D.2. Let pfk,h be defined as in line 7 of Algorithm 1, we have E pf :=
⋂

k≥1,h∈[H] E
pf
k,h holds

with probability at least 1− δ, where E pf
k,h is defined in (D.2).

Lemma D.3. Let qfk,h be defined as in line 8 of Algorithm 1, we have E qf :=
⋂

k≥1,h∈[H] E
qf
k,h holds

with probability at least 1− δ, where E qf
k,h is defined in (D.3).

Lemma D.4. Let pfk,h be defined as in line 7 of Algorithm 1, we have Ē pf :=
⋂

k≥1,h∈[H] Ē
pf
k,h holds

with probability at least 1− 2δ, where E pf
k,h is defined in (D.5).

Lemma D.5. Let qfk,h be defined as in line · of Algorithm 1, we have Ē qf holds with probability at
least 1− 2δ.

D.2 OPTIMISM AND PESSIMISM

Based on the high probability events, we have the folloing lemmas for the function pfk,h(s, a) and
qfk,h(s, a)

Lemma D.6. On the events E pf
h and E qf

h , for eack episode k ∈ [K], we have∣∣ pfk,h(s, a)− ThVk,h+1(s, a)
∣∣ ≤ pβkDFh

(z; z[k−1],h, σ̄[k−1],h)∣∣ qfk,h(s, a)− Th qVk,h+1(s, a)
∣∣ ≤ qβkDFh

(z; z[k−1],h, σ̄[k−1],h),

where z = (s, a) and z[k−1],h = {z1,h, z2,h, .., zk−1,h}.
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Lemma D.7. On the events E pf
h+1 and E qf

h+1, for each stage h ≤ h′ ≤ H and episode k ∈ [K], we
have Qk,h(s, a) ≥ Q∗

h(s, a) ≥ qQk,h(s, a). Furthermore, for the value functions Vk,h(s) and qVk,h(s),
we have Vk,h(s) ≥ V ∗

h (s) ≥ qVk,h(s).

D.3 MONOTONIC VARIANCE ESTIMATOR
In this subsection, we introduce the following lemmas to construct the monotonic variance estimator.

Lemma D.8. On the events E f̃ , E pf and E qf , for eack episode k ∈ [K] and stage h ∈ [H], we have∣∣ pfk,h(s, a)− ThVk,h+1(s, a)
∣∣ ≤ βkDFh

(z; z[k−1],h, σ̄[k−1],h)∣∣ qfk,h(s, a)− Th qVk,h+1(s, a)
∣∣ ≤ βkDFh

(z; z[k−1],h, σ̄[k−1],h)∣∣f̃k,h(s, a)− T 2
h Vk,h+1(s, a)

∣∣ ≤ β̃kDFh
(z; z[k−1],h, σ̄[k−1],h)

where z = (s, a) and z[k−1],h = {z1,h, z2,h, .., zk−1,h}.

Lemma D.9. On the events E f̃ , E pf , E qf , E pf
h+1, E qf

h+1, for each episode k ∈ [K], the empirical
variance [V̄hVk,h+1](s

k
h, a

k
h) satisfies the following inequalities:∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h,∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h + Fk,h.

Lemma D.10. On the events E pf , E qf , E pf
h+1, E qf

h+1, for each episode k ∈ [K] and i > k, we have

(logNF (ϵ) + logNϵ(K)) ·
[
Vh(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h) ≤ Fi,h

(logNF (ϵ) + logNϵ(K)) ·
[
Vh(V

∗
h+1 − qVi,h+1)

]
(skh, a

k
h) ≤ Fi,h

Based on previous lemmas, we can construct an optimistic estimator σk,h for the transition variance.
Under this situation, the weighted regression have the following guarantee.

Lemma D.11. If the events E f̃ , E pf , E qf , Ē pf and Ē qf holds, then events E pf = E pf
1 and E qf = E qf

1 holds.

D.4 PROOF OF REGRET BOUND
In the subsection, we first define the following high probability events to control the stochastic noise
from the transition process:

E1 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

[Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h)

−
K∑

k=1

H∑
h′=h

(
Vk,h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
≤
√
2HK log(H/δ)

}
,

E2 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

[Ph(Vk,h+1 − qVk,h+1)
]
(skh, a

k
h)

−
K∑

k=1

H∑
h′=h

(
Vk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

)
≤
√
2HK log(H/δ)

}
.

According to Azuma–Hoeffding inequality (Lemma G.1), we direcly have the following results.

Lemma D.12. Events E1 and E2 holds with probability at least 1− 2δ.

Next, we need the following lemma to control the summation of confidence radius.

Lemma D.13. For any parameters β ≥ 1 and stage h ∈ [H], the summation of confidence radius
over episode k ∈ [K] is upper bounded by

K∑
k=1

min
(
βDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)
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≤ (1 + βγ2) dimα,K(Fh) + 2β
√

dimα,K(Fh)

√√√√ K∑
k=1

(σ2
k,h + α2),

where z = (s, a) and z[k−1],h = {z1,h, z2,h, .., zk−1,h}.
Then, we can deompose the total regret in the first K episode to the summation of variance∑K

k=1

∑H
h=1 σ

2
k,h as the following lemma.

Lemma D.14. On the events E pf = E pf
1 , E qf = E qf

1 and E1, for each stage h ∈ [H], the regret in the
first K episodes can be decomposes and controlled as:

K∑
k=1

(
Vk,h(s

k
h)− V πk

h (skh)
)
≤ 2CH(1 + χ)(1 + pβkγ

2) dimα,K(F) +
√

2HK log(H/δ)

+ 4C(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2),

and for all stage h ∈ [H], we further have
K∑

k=1

H∑
h=1

[
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h)

≤ 2CH2(1 + χ)(1 + pβkγ
2) dimα,K(F) + 4CH(1 + χ)pβk

√
dimα,K(Fh)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ 2
√
2H3K log(H/δ).

In addition, the gap betweeen the optimistic value function Vk,h(s) and pessimistic value function
qVk,h(s) can be upper bounded by the following lemma.

Lemma D.15. On the events E pf = E pf
1 , E qf = E qf

1 and E2, for each stage h ∈ [H], the regret in the
first K episodes can be decomposes and controlled as:

K∑
k=1

(
Vk,h(s

k
h)− qVk,h(s

k
h)
)
) ≤ 4CH(1 + χ)(1 + pβkγ

2) dimα,K(F) +
√

2HK log(H/δ)

+ 8C(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2),

and for all stage h ∈ [H], we further have
K∑

k=1

H∑
h=1

[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)

≤ 4CH2(1 + χ)(1 + pβkγ
2) dimα,K(Fh) + 8CH(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ 2
√
2H3K log(H/δ).

We define the following high probability event E3 to control the summation of variance.

E3 =

{ K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h) ≤ 3K + 3H log(1/δ)

}
.

According to Jin et al. (2018) (Lemma C.5)3, with probability at least 1− δ. Condition on this event,
the summation of variance

∑K
k=1

∑H
h=1 σ

2
k,h can be upper bounded by the following lemma.

3Jin et al. (2018) showed that
∑K

k=1

∑H
h=1[VhV

πk

h+1](s
k
h, a

k
h) = Õ(KH2 + H3) when∑

h = 1Hrh(sh, ah) ≤ H . In this work, we assume the total reward satisfied
∑H

h=1 rh(sh, ah) ≤ 1, and the
summation of variance is upper bounded by Õ(K +H)
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Lemma D.16. On the events E1, E2, E3, E pf = E pf
1 and E qf = E qf

1 , the total estimated variance is upper
bounded by:

K∑
k=1

H∑
h=1

σ2
k,h ≤ (logNF (ϵ) + logNϵ(K))×O

(
(1 + γ2)(βk +H pβk + β̃k)H dimα,K(F)

)
+ (logNF (ϵ) + logNϵ(K))

2 ×O
(
(βk +H pβk + β̃k)

2H dimα,K(F)
)

+O(K +KHα2).

With the help of all previous lemmas, we can prove the Theorem 4.1

Proof of Theorem 4.1. The low switching cost result is given by Lemma F.1.
After taking a union bound, the high probability events E1, E2, E3, E f̃ , E pf , E qf , Ē pf and Ē qf holds with
probability at least 1− 10δ. Conditioned on these events, the regret is upper bounded by

Regret(K)

=

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

k,1 (s
k
1)
)

≤
K∑

k=1

(
Vk,1(s

k
1)− V πk

k,1 (s
k
1)
)

≤ 2CH(1 + χ)(1 + pβKγ
2) dimα,K(F) +

√
2HK log(H/δ)

+ 4C(1 + χ)pβK

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

≤ O
(
H dimα,K(F) · (1 + pβK + γ2)

)
+O

(
pβK

√
dimα,K(F) ·

√
HK

)
+
√
2HK log(H/δ)

+O
(
H dimα,K(F)pβK(βK +H pβK + β̃K) · log[NF (ϵ) · Nϵ(K)]

)
+O

(
H dimα,K(F)pβK(1 + γ2)

)
= Õ

(
H3 dim2

α,K(F) · logNF

(
1

2KHL

)
· log

[
NF

(
1

2KHL

)
· N

(
B, 1

2KHLpβK

)])

+ Õ

(
H2.5 dim2.5

α,K(F) ·

√
logNF

(
1

2KHL

)
· log1.5

[
NF

(
1

2KHL

)
· N

(
B, 1

2KHLpβK

)])

+ Õ

(√
dimα,K(F) logNF

(
1

2KHL

)
·HK

)
(D.9)

where the first inequality holds due to Lemma D.7, the second inequality holds due to Lemma D.14
and the last inequality holds due to Lemma D.16. Thus, we complete the proof of Theorem 4.1.
We can reorganize (D.9) into the following upper bound for regret,

Regret(K) = Õ(
√
dim(F) logN ·HK)

+ Õ
(
H2.5 dim2(F)

√
logN log(N · Nb) ·

√
H logN + dim(F) log(N · Nb)

)
,

where we denote the covering number of bonus function class N
(
B, 1

2KHLpβK

)
by Nb, the covering

number of function class F by N and the dimension dimα,K(F) by dim(F).

E PROOF OF LEMMAS IN APPENDIX B
In this section, we provide the detailed proof of lemmas in Appendix B.
E.1 PROOF OF HIGH PROBABILITY EVENTS
E.1.1 PROOF OF LEMMA D.1

Proof of Lemma D.1. We first prove that for an arbitrarily chosen h ∈ [H], E f̃k,h holds with probabil-
ity at least 1− δ/H for all k.
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For simplicity, in this proof, we denote T 2
h Vk,h+1(s

i
h, a

i
h) as f̃∗k (s

i
h, a

i
h) where f̃∗k ∈ Fh exists

due to our assumption. For any function V : S → [0, 1], let η̃kh(V ) =
(
rkh + V (skh+1)

)2 −
Es′∼skh,a

k
h

[(
r(skh, a

k
h, s

′) + V (s′)
)2]

.
By simple calculation, for all f ∈ Fh, we have∑

i∈[k−1]

(
f(sih, a

i
h)− f̃∗k (sih, aih)

)2
+ 2

∑
i∈[k−1]

(
f(sih, a

i
h)− f̃∗k (sih, aih)

)
· η̃ih(Vk,h+1)︸ ︷︷ ︸

I(f,f̃∗
k ,V )

=
∑

i∈[k−1]

[(
rih + Vk,h+1(s

i
h)
)2 − f(sih, aih)]2 − ∑

i∈[k−1]

[(
rih + Vk,h+1(s

i
h)
)2 − f̃∗k (sih, aih)]2 .

Due to the definition of f̃k,h, we have∑
(i,j)∈[k−1]×[H]

(
f̃k,h(s

i
j , a

i
j)− f̃∗k (sij , aij)

)2
+ 2I(f̃k,h, f̃

∗
k , Vk,h+1) ≤ 0. (E.1)

Then we give a high probability bound for −I(f, f̃∗k , Vk,h+1) through the following calculation.
Applying Lemma G.4, for fixed f , f̄ and V , with probability at least 1− δ,

−I(f, f̄ , V ) := −
∑

i∈[k−1]

(
f(sih, a

i
h)− f̄(sih, aih)

)
· η̃ih(V )

≤ 8λ
∑

i∈[k−1]

(
f(sih, a

i
h)− f̄(sih, aih)

)2
+

1

λ
· log 1

δ
.

By the definition of V in line · of Algorithm 1, Vk,h+1 lies in the optimistic value function class Vk
defined in (F.4). Applying a union bound for all the value functions V c in the corresponding ϵ-net Vc,
we have

−I(f, f̄ , V c) ≤ 1

4

∑
i∈[k−1]

(
f(sih, a

i
h)− f̄(sih, aih)

)2
+ 32 · log Nϵ(k)

δ

holds for all k with probability at least 1− δ.
For all V such that ∥V − V c∥∞ ≤ ϵ, we have |ηih(V )− ηih(V c)| ≤ 4ϵ. Therefore, with probability
1− δ, the following bound holds for I(f, f̄ , Vk,h+1):

−I(f, f̄ , Vk,h+1) ≤
1

4

∑
i∈[k−1]

(
f(sih, a

i
h)− f̄(sih, aih)

)2
+ 32 · log Nϵ(k)

δ
+ 4ϵ · k,

To further bound I(f̃k,h, f̃∗k , Vk,h+1) in (E.1), we apply an ϵ-covering argument on Fh and show that
with probability at least 1− δ,

−I(f̃k,h, f̃∗k , Vk,h+1) ≤
1

4

∑
i∈[k−1]

(
f̃k,h(s

i
h, a

i
h)− f̃∗k (sih, aih)

)2
+ 32 · log Nϵ(k) · NF (ϵ)

δ

+ 16Lϵ · k (E.2)

for probability at least 1− δ.
Substituting (E.2) into (E.1) and rearranging the terms,∑

i∈[k−1]

(
f̃k,h(s

i
h, a

i
h)− f̃∗k (sih, aih)

)2
≤ 128 log

Nϵ(k) · NF (ϵ) ·H
δ

+ 64Lϵ · k

for all k with probability at least 1− δ/H .
Finally, we apply a union bound over all h ∈ [H] to conclude that E f̃ holds with probability at least
1− δ.
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E.1.2 PROOF OF LEMMAS D.2 AND D.3
Proof of Lemma D.2. Similar to the proof of Lemma D.1, we first prove that for an arbitrarily chosen
h ∈ [H], E pf

k,h holds with probability at least 1− δ/H for all k.

In this proof, we denote ThVk,h+1(s
i
h, a

i
h) as pf∗k (s

i
h, a

i
h) where pf∗k ∈ Fh exists due to our assumption.

For any function V : S → [0, 1], let pηkh(V ) =
(
rkh + V (skh+1)

)
−Es′∼skh,a

k
h

[
rh(s

k
h, a

k
h, s

′) + V (s′)
]
.

For all f ∈ Fh, we have∑
i∈[k−1]

1

(σ̄i,h)2

(
f(sih, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

+ 2
∑

i∈[k−1]

1

(σ̄i,h)2

(
f(sih, a

i
h)− pf∗k (s

i
h, a

i
h)
)
· pηih(Vk,h+1)︸ ︷︷ ︸

I(f, pf∗
k ,V )

=
∑

i∈[k−1]

1

(σ̄i,h)2
[
rih + Vk,h+1(s

i
h)

2 − f(sih, aih)
]2 − ∑

i∈[k−1]

1

(σ̄i,h)2

[
rih + Vk,h+1(s

i
h)− pf∗k (s

i
h, a

i
h)
]2
.

By the definition of pfk,h, we have∑
i∈[k−1]

1

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

+ 2I( pfk,h, Vk,h+1) ≤ 0. (E.3)

Then we give a high probability bound for −I( pfk,h, pf∗k , Vk,h+1) through the following calculation.
Applying Lemma G.4, for fixed f , f̄ and V , with probability at least 1− δ,

−I(f, f̄ , V ) := −
∑

i∈[k−1]

1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V )

≤ 8λ
1

α2

∑
i∈[k−1]

1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)2
+

1

λ
· log 1

δ
.

By the definition of V in line · of Algorithm 1, Vk,h+1 lies in the optimistic value function class Vk
defined in (F.4). Applying a union bound for all the value functions V c in the corresponding ϵ-net Vc,
we have

−I(f, f̄ , V c) ≤ 1

4

∑
i∈[k−1]

1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)2
+

32

α2
· log Nϵ(k)

δ

holds for all k with probability at least 1− δ.
For all V such that ∥V − V c∥∞ ≤ ϵ, we have |ηih(V )− ηih(V c)| ≤ 4ϵ. Therefore, with probability
1− δ, the following bound holds for I(f, f̄ , Vk,h+1):

−I(f, f̄ , Vk,h+1) ≤
1

4

∑
i∈[k−1]

1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)2
+

32

α2
· log Nϵ(k)

δ
+ 4ϵ · k/α2,

To further bound I( pfk,h, pf∗k , Vk,h+1) in (E.3), we apply an ϵ-covering argument on Fh and show that
with probability at least 1− δ,

−I( pfk,h, pf∗k , Vk,h+1) ≤
1

4

∑
i∈[k−1]

1

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

+ 32 · log Nϵ(k) · NF (ϵ)

δ

+ 16Lϵ · k/α2. (E.4)

Substituting (E.4) into (E.3) and rearranging the terms, we have∑
i∈[k−1]

1

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2
≤ 128 · log Nϵ(k) · NF (ϵ)H

δ
+ 64Lϵ · k/α2

for all k with probability at least 1− δ/H . Then we can complete the proof by using a union bound
over all h ∈ [H].

Proof of Lemma D.3. The proof is almost identical to the proof of Lemma D.2.
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E.1.3 PROOF OF LEMMAS D.4 AND D.5
Proof of Lemma D.4. Similar to the proof of Lemma D.1, we first prove that for an arbitrary h ∈ [H],

Ē pf
k,h holds with probability at least 1− δ/H for all k.

In this proof, we denote ThVk,h+1(s
i
h, a

i
h) as pf∗k (s

i
h, a

i
h) where pf∗k ∈ F exists due to our assumption.

For any function V : S → [0, 1], let pηkh(V ) =
(
rkh + V (skh+1)

)
−Es′∼skh,a

k
h

[
rh(s

k
h, a

k
h, s

′) + V (s′)
]
.

For all f ∈ Fh, we have∑
i∈[k−1]

p1i,h

(σ̄i,h)2

(
f(sih, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

+ 2
∑

i∈[k−1]

p1i,h

(σ̄i,h)2

(
f(sih, a

i
h)− pf∗k (s

i
h, a

i
h)
)
· pηih(Vk,h+1)︸ ︷︷ ︸

I(f, pf∗
k ,V )

=
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
[
rih + Vk,h+1(s

i
h)

2 − f(sih, aih)
]2 − ∑

i∈[k−1]

p1i,h

(σ̄i,h)2

[
rih + Vk,h+1(s

i
h)− pf∗k (s

i
h, a

i
h)
]2
.

Due to the definition of pfk,h, we have∑
i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

+ 2I( pfk,h, Vk,h+1) ≤ 0. (E.5)

Then it suffices to bound the value of I(f, f̄ , Vk,h+1) for all f, f̄ ∈ F .
Unlike the proof for Lemma D.1, we decompose I(f, f̄ , Vk,h+1) into two parts:

I(f, f̄ , Vk,h+1) =
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V ∗

h+1)

+
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(Vk,h+1 − V ∗

h+1). (E.6)

Then we bound the two terms separately.
For the first term, we first check the following conditions before applying Lemma G.2, which is a
variant of Freedman inequality. For fixed f and f̄ , we have

E

[
p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V ∗

h+1)

]
= 0,

since sih+1 is sampled from Ph(·|sih, aih).
Next, we need to derive a bound for the maximum absolute value of each ‘weighted’ transition noise:

max
i∈[k−1]

∣∣∣∣∣ p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V ∗

h+1)

∣∣∣∣∣
≤ 4 max

i∈[k−1]

∣∣∣∣∣ p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)∣∣∣∣∣
≤ 4 max

i∈[k−1]

1

(σ̄i,h)2

√√√√√D2
Fh

(
zi,h; z[i−1],h, σ̄[i−1],h

) ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ


≤ 4 · γ−2

√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ, (E.7)

where the second inequality follows from the definition of DFh
in Definition 2.4, the last inequality

holds since σ̄i,h ≥ γ ·D1/2
Fh

(
zi,h; z[i−1],h, σ̄[i−1],h

)
according to line 23 in Algorithm 1. From the

definition of p1i,h in (D.6) we directly obtain the following upper bound of the variance:∑
i∈[k−1]

E

[
p1i,h

(σ̄i,h)4
(
f(sih, a

i
h)− f̄(sih, aih)

)2 · pηih(V ∗
h+1)

2

]
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≤ 4
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)2 ≤ 4L2k/α2 := V.

Applying Lemma G.2 with V = 4L2k/α2, M = 2L/α2 and v = m = 1, for fixed f , f̄ , k, with
probability at least 1− δ/(2k2 · NF (ϵ) ·H),

−
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V ∗

h+1) (E.8)

≤ ι

√√√√√2

8
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)2
+ 1


+

2

3
ι2

8γ−2

√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ+ 1

 (E.9)

≤
(
4ι+

16

3
ι2γ−2

)√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ+

√
2ι+

2

3
ι2, (E.10)

where ι := ι1(k, h, δ) =

√
log

2k2
(
2 log( 4L2k

α2 )+2
)
·(log( 4L

α2 )+2)·NF (ϵ)

δ/H .

Using a union bound across all f, f̄ ∈ C(Fh, ϵ) and k ≥ 1, with probability at least 1− δ/H ,

−
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V ∗

h+1)

≤
(
4ι+

16

3
ι2γ−2

)√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ+

√
2ι+

2

3
ι2 (E.11)

holds for all f, f̄ ∈ C(Fh, ϵ) and k. Due to the definition of ϵ-net, we deduce that for pfk,h and pf∗k ,

−
∑

i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)
· pηih(V ∗

h+1)

≤
(
4ι+

16

3
ι2γ−2

)√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2

(
pfk,h(sτh, a

τ
h)− pf∗k (s

τ
h, a

τ
h)
)2

+ λ+
√
2ι+

2

3
ι2

+

(
4ι+

16

3
ι2γ−2

)√
16kϵL/α2 + 8ϵk/α2. (E.12)

For the second term in (E.6), the following inequality holds for all V ∈ Vk,h+1,

E
[

1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V − V ∗

h+1)

]
= 0,

max
i∈[k−1]

∣∣∣∣ 1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(V − V ∗

h+1)

∣∣∣∣
≤ 4 max

i∈[k−1]

∣∣∣∣ 1

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)∣∣∣∣
≤ 4 max

i∈[k−1]

1

(σ̄i,h)2

√√√√D2
Fh

(
zi,h; z[i−1],h, σ̄[i−1],h

) ∑
τ∈[k−1]

1

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ

= 4 · γ−2

√√√√ ∑
τ∈[k−1]

1

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ,

26



Under review as a conference paper at ICLR 2024

where the calculation is similar to that in (E.7).
We denote the sum of variance by var(V − V ∗

h+1) as follows for simplicity:

var(V − V ∗
h+1) :=

∑
i∈[k−1]

E

[
p1i,h

(σ̄i,h)4

(
f(sih, a

i
h)− f̄(sih, a

i
h)
)2

· pηi
h(V − V ∗

h+1)
2

]
(E.13)

≤ k · L2/α4. (E.14)

For Vk,h+1, we have

var(Vk,h+1 − V ∗
h+1) :=

∑
i∈[k−1]

E

[
p1i,h

(σ̄i,h)4
(
f(sih, a

i
h)− f̄(sih, aih)

)2 · pηih(Vk,h+1 − V ∗
h+1)

2

]

≤ 4

logNF (ϵ) + logNϵ(K)

∑
i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)2
,

where the second inequality holds due to the definition of p1i,h in (D.6).
With a similar argument as shown in (E.8)∼(E.12), we have with probability at least 1− δ/(2k2 ·
NF (ϵ) · Nϵ(k − 1) ·H), for a fixed f , f̄ , k and V , (applying Lemma G.2, with V = k · L2/α4 and
M = 2L/α2, v = (logNF (ϵ) + logNϵ(K))−1/2, m = v2. )

−
∑

i∈[k−1]

p1i,h

(σ̄i,h)2
(
f(sih, a

i
h)− f̄(sih, aih)

)
· pηih(Vk,h+1 − V ∗

h+1)

≤ ι
√

2
(
2var(V − V ∗

h+1) + (logNF (ϵ) + logNϵ(K))
−1
)

+
2

3
ι2

8γ−2

√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2
(
f(sτh, a

τ
h)− f̄(sτh, aτh)

)2
+ λ+ (logNF (ϵ) + logNϵ(K))

−1

 .

where

log
2k2

(
2 log L2k(logNF (ϵ)·Nϵ(K))1/2

α4 + 2
)
·
(
log( 4L(logNF (ϵ)·Nϵ(K))

α2 ) + 2
)
· NF (ϵ) · Nϵ(k)

δ/H

≤ log
2k2

(
2 log L2k

α4 + 2
)
·
(
log( 4Lα2 ) + 2

)
· N 4

F (ϵ) · N 2
ϵ (K)

δ/H
:= ι22(k, h, δ)

Using a union bound over all (f, f̄ , V ) ∈ C(Fh, ϵ)× C(Fh, ϵ)× Vc
k,h+1 and all k ≥ 1, we have the

inequality above holds for all such f, f̄ , V, k with probability at least 1− δ/H .
There exists a V c

k,h+1 in the ϵ-net such that ∥Vk,h+1 − V c
k,h+1∥∞ ≤ ϵ. Then we have

−
∑

i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)
· pηih(Vk,h+1 − V ∗

h+1)

≤ O

(
ι2(k, h, δ)√

logNF (ϵ) + logNϵ(K)
+
ι2(k, h, δ)

2

γ−2

)

·

√√√√ ∑
τ∈[k−1]

p1τ,h

(σ̄τ,h)2

(
pfk,h(sτh, a

τ
h)− pf∗k (s

τ
h, a

τ
h)
)2

+ λ

+O(ϵkL/α)2) +O

(
ι22(k, h, δ)

logNF (ϵ) + logNϵ(K)

)
, (E.15)

for all k with at least probability 1− δ/H .
Substituting (E.15) and (E.12) into (E.5), we can conclude that∑
i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2
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≤ O

( ι2(k, h, δ)√
logNF (ϵ) + logNϵ(K)

+ ι2(k, h, δ)
2 · γ−2

)2
+O

((
ι1(k, h, δ) + ι1(k, h, δ)

2/γ2
)2)

From the definition of γ in (3.3), we can rewrite the upper bound of the squared loss∑
i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

as follows:

λ+
∑

i∈[k−1]

p1i,h

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− pf∗k (s

i
h, a

i
h)
)2

≤ O

log
2k2

(
2 log L2k

α4 + 2
)
·
(
log( 4Lα2 ) + 2

)
δ/H

 · [log(NF (ϵ)) + 1] +O(λ) +O(ϵkL/α2).

Proof of Lemma D.5. The proof is almost identical to the proof of Lemma D.4.

E.2 PROOF OF OPTIMISM AND PESSIMISM
E.2.1 PROOF OF LEMMA D.6
Proof of Lemma D.6. Acoording to the definition of D2

F function, we have(
pfk,h(s, a)− ThVk,h+1(s, a)

)2
≤ D2

Fh
(z; z[k−1],h, σ̄[k−1],h)×

(
λ+

k−1∑
i=1

1

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− ThVk,h+1(s

i
h, a

i
h)
)2)

≤ pβ2
k ×D2

Fh
(z; z[k−1],h, σ̄[k−1],h),

where the first inequality holds due the definition of D2
F function with the Assumption 2.2 and the

second inequality holds due to the events E pf
h . Thus, we have∣∣ pfk,h(s, a)− ThVk,h+1(s, a)

∣∣ ≤ pβkDFh
(z; z[k−1],h, σ̄[k−1],h).

With a similar argument, for the pessimitic value function qfk,h, we have(
qfk,h(s, a)− Th qVk,h(s, a)

)2
≤ D2

Fh
(z; z[k−1],h, σ̄[k−1],h)×

(
λ+

k−1∑
i=1

1

(σ̄i,h)2

(
qfk,h(s

i
h, a

i
h)− Th qVk,h+1(s

i
h, a

i
h)
)2)

≤ qβ2
k ×D2

Fh
(z; z[k−1],h, σ̄[k−1],h),

where the first inequality holds due the definition of D2
F function with the Assumption 2.2 and the

second inequality holds due to the events E qf
h . In addition, we have∣∣ qfk,h(s, a)− Th qVk,h+1(s, a)

∣∣ ≤ pβkDFh
(z; z[k−1],h, σ̄[k−1],h).

Thus, we complete the proof of Lemma D.6.

E.2.2 PROOF OF LEMMA D.7
Proof of Lemma D.7. We use induction to prove the optimistic and pessimistic property. First, we
study the basic case with the last stage H + 1. In this situation, Qk,H+1(s, a) = Q∗

h(s, a) =
qQk,h(s, a) = 0 and Vk,h(s) = V ∗

h (s) =
qVk,h(s) = 0 holds for all state s ∈ S and action a ∈ A.

Therefore, Lemma D.7 holds for the basic case (stage H + 1).
Second, if Lemma D.7 holds for stage h+ 1, then we focuse on the stage h. Notice that the event
Ẽh directly imlpies the event Ẽh+1. Therefore, according to the induction assumption, the following
inequality holds for all state s ∈ S and episode k ∈ [K].

Vk,h+1(s) ≥ V ∗
h+1(s) ≥ qVk,h(s). (E.16)
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Thus, for all episode k ∈ [K] and state-action pair (s, a) ∈ S ×A, we have

pfk,h(s, a) + bk,h(s, a)−Q∗
h(s, a)

≥ ThVk,h+1(s, a)− pβk ·DFh
(z; z[k−1],h, σ̄[k−1],h) + bk,h(s, a)−Q∗

h(s, a)

≥ ThVk,h+1(s, a)−Q∗
h(s, a)

= PhVk,h+1(s, a)− PhV
∗
h (s, a)

≥ 0, (E.17)

where the first inequality holds due to Lemma D.6, the second inequality holds due to the definition
of the exploration bonuse bk,h and the last inequality holds due to the (E.16). Therefore, the optimal
value function Q∗

h(s, a) is upper bounded by

Q∗
h(s, a) ≤ min

{
min

1≤i≤k

pfi,h(s, a) + bi,h(s, a), 1
}
≤ Qk,h(s, a), (E.18)

where the first inequlity holds due to (E.17) with the fact that Q∗
h(s, a) ≤ 1 and the second inequality

holds due to the update rule of value function Qk,h.
With a similar argument, for the pessimistic estimator qfk,h, we have

qfk,h(s, a)− bk,h(s, a)−Q∗
h(s, a)

≤ Th qVk,h+1(s, a) + qβk ·DFh
(z; z[k−1],h, σ̄[k−1],h)− bk,h(s, a)−Q∗

h(s, a)

≤ Th qVk,h+1(s, a)−Q∗
h(s, a)

= Ph
qVk,h+1(s, a)− PhV

∗
h (s, a)

≤ 0, (E.19)

where the first inequality holds due to Lemma D.6, the second inequality holds due to the definition
of the exploration bonuse bk,h and the last inequality holds due to the (E.19). Therefore, the optimal
value function Q∗

h(s, a) is lower bounded by

Q∗
h(s, a) ≥ max

{
max
1≤i≤k

qfi,h(s, a)− bi,h(s, a), 0
}
≥ qQk,h(s, a), (E.20)

where the first inequlity holds due to (E.19) with the fact that Q∗
h(s, a) ≥ 0 and the second inequality

holds due to the update rule of value function qQk,h.
Furthermore, for the value functions Vk,h and qVk,h, we have

Vk,h(s) = max
a

Qk,h(s, a) ≥ max
a

Q∗
h(s, a) = V ∗

h (s),

qVk,h(s) = max
a

qQk,h(s, a) ≤ max
a

Q∗
h(s, a) = V ∗

h (s),

where the first inequality holds due to (E.18) and the second inequality holds due to (E.20). Thus, by
induction, we complete the proof of Lemma D.7.

E.3 PROOF OF MONOTONIC VARIANCE ESTIMATOR
E.3.1 PROOF OF LEMMA D.8
Proof of Lemma D.8. Acoording to the definition of D2

F function, we have(
pfk,h(s, a)− ThVk,h+1(s, a)

)2
≤ D2

Fh
(z; z[k−1],h, σ̄[k−1],h)×

(
λ+

k−1∑
i=1

1

(σ̄i,h)2

(
pfk,h(s

i
h, a

i
h)− ThVk,h+1(s

i
h, a

i
h)
)2)

≤ β2
k ×D2

Fh
(z; z[k−1],h, σ̄[k−1],h),

where the first inequality holds due the definition of D2
F function with the Assumption 2.2 and the

second inequality holds due to the events E pf . Thus, we have∣∣ pfk,h(s, a)− ThVk,h+1(s, a)
∣∣ ≤ βkDFh

(z; z[k−1],h, σ̄[k−1],h).
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For the pessimitic value function qfk,h, we have(
qfk,h(s, a)− Th qVk,h(s, a)

)2
≤ D2

Fh
(z; z[k−1],h, σ̄[k−1],h)×

(
λ+

k−1∑
i=1

1

(σ̄i,h)2

(
qfk,h(s

i
h, a

i
h)− Th qVk,h+1(s

i
h, a

i
h)
)2)

≤ β2
k ×D2

Fh
(z; z[k−1],h, σ̄[k−1],h),

where the first inequality holds due the definition of D2
F function with the Assumption 2.2 and the

second inequality holds due to the events E qf . In addition, we have∣∣ qfk,h(s, a)− Th qVk,h+1(s, a)
∣∣ ≤ βkDFh

(z; z[k−1],h, σ̄[k−1],h).

With a similar argument, for the second-order estimator f̃k,h, we have(
f̃k,h(s, a)− T 2

h Vk,h(s, a)
)2

≤ D2
Fh

(z; z[k−1],h, σ̄[k−1],h)×

(
λ+

k−1∑
i=1

1

(σ̄i,h)2

(
f̃k,h(s

i
h, a

i
h)− T 2

h Vk,h+1(s
i
h, a

i
h)
)2)

≤ β̃2
k ×D2

Fh
(z; z[k−1],h, σ̄[k−1],h),

where the first inequality holds due the definition of D2
F function with the Assumption 2.2 and the

second inequality holds due to the events E f̃ . Therefore, we have∣∣f̃k,h(s, a)− T 2
h Vk,h(s, a)

∣∣ ≤ β̃kDFh
(z; z[k−1],h, σ̄[k−1],h).

Now, we complete the proof of Lemma D.8.

E.3.2 PROOF OF LEMMA D.9
Proof of Lemma D.9. First, according to Lemma D.8, we have∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣

=
∣∣∣f̃k,h − pf2k,h − [PhV

2
k,h+1](s

k
h, a

k
h) +

(
[PhVk,h+1](s

k
h, a

k
h)
)2∣∣∣

≤
∣∣∣ pf2k,h −

(
[PhVk,h+1](s

k
h, a

k
h)
)2∣∣∣+ ∣∣f̃k,h − [PhV

2
k,h+1](s

k
h, a

k
h)
∣∣

≤ 2L
∣∣∣ pfk,h −

(
[PhVk,h+1](s

k
h, a

k
h)
)∣∣∣+ ∣∣f̃k,h − [PhV

2
k,h+1](s

k
h, a

k
h)
∣∣

≤ (2Lβk + β̃k)DFh
(z; z[k−1],h, σ̄[k−1],h)

= Ek,h, (E.21)

where the first inequality holds due to |a + b| ≤ |a| + |b|, the second inequality holds due to
|a2 − b2| = |a− b| · |a+ b| ≤ |a− b| · 2max(|a|, |b|) and the last inequalirtnholds due to Lemma
D.8.
For the difference between variances [VhVk,h+1](s

k
h, a

k
h) and [VhV

∗
h+1](s

k
h, a

k
h), it can be upper

bounded by∣∣[VhVk,h+1](s
k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

=
∣∣∣[PhV

2
k,h+1](s

k
h, a

k
h)−

(
[PhVk,h+1](s

k
h, a

k
h)
)2 − [Ph(V

∗
h+1)

2](skh, a
k
h) +

(
[PhV

∗
h+1](s

k
h, a

k
h)
)2∣∣∣

≤
∣∣[PhV

2
k,h+1](s

k
h, a

k
h)− [Ph(V

∗
h+1)

2](skh, a
k
h)
∣∣+ ∣∣∣([PhVk,h+1](s

k
h, a

k
h)
)2 − ([PhV

∗
h+1](s

k
h, a

k
h)
)2∣∣∣

≤ 4
(
[PhVk,h+1](s

k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)

≤
(
[PhVk,h+1](s

k
h, a

k
h)− [Ph

qVk,h+1](s
k
h, a

k
h)
)

≤ pfk,h(s
k
h, a

k
h)− qfk,h(s

k
h, a

k
h) + 2βkDFh

(z; z[k−1],h, σ̄[k−1],h) (E.22)

where the first inequality holds due to |a + b| ≤ |a| + |b|, the second inequality holds due to
1 ≥ Vk,h+1(·) ≥ V ∗

h+1(·) ≥ 0 (Lemma D.7), the third inequality holds due to V ∗
h+1(·) ≥ qVk,h+1(·)
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(Lemma D.7) and the last inequality holds due to Lemma D.8. Combining the results in (E.21) and
(E.22) with the fact that 0 ≤ Vk,h+1(·), V ∗

h+1(·) ≤ 1, we have∣∣[V̄hVk,h+1](s
k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤
∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣+ ∣∣[VhVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤ Ek,h + Fk,h.

Thus, we complete the proof of Lemma D.9.

E.3.3 PROOF OF LEMMA D.10

Proof of Lemma D.10. On the events E pf and E pf
h+1, we have[

Vh(Vi,h+1 − V ∗
h+1)

]
(skh, a

k
h)

= [Ph(Vi,h+1 − V ∗
h+1)

2](skh, a
k
h)−

(
[Ph(Vi,h+1 − V ∗

h+1)](s
k
h, a

k
h)
)2

≤ [Ph(Vi,h+1 − V ∗
h+1)

2](skh, a
k
h)

≤ 2
[
Ph(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h)

≤ 2
(
[PhVi,h+1](s

k
h, a

k
h)− [Ph

qVk,h+1](s
k
h, a

k
h)
)

≤ 2
(
[PhVk,h+1](s

k
h, a

k
h)− [Ph

qVk,h+1](s
k
h, a

k
h)
)
, (E.23)

where the first equation holds since the reward function is deterministic, the second inequality holds
due to Lemma D.7 with the fact that 0 ≤ Vi,h+1(s), V

∗
h+1(s) ≤ 1 and the third inequality holds due

to Lemma D.7 and the last inequality holds due to the fact that Vk,h+1 ≥ Vi,h+1.

With a similar argument, on the events E qf and E qf
h+1, we have[

Vh(V
∗
h+1 − qVi,h+1)

]
(skh, a

k
h)

= [Ph(V
∗
h+1 − qVi,h+1)

2](skh, a
k
h)−

(
[Ph(V

∗
h+1 − qVi,h+1)](s

k
h, a

k
h)
)2

≤ [Ph(V
∗
h+1 − qVi,h+1)

2](skh, a
k
h)

≤ 2
[
Ph(V

∗
h+1 − qVi,h+1)

]
(skh, a

k
h)

≤ 2
(
[PhVk,h+1](s

k
h, a

k
h)− [Ph

qVi,h+1](s
k
h, a

k
h)
)

≤ 2
(
[PhVk,h+1](s

k
h, a

k
h)− [Ph

qVk,h+1](s
k
h, a

k
h)
)
, (E.24)

where the first inequality holds since the reward function is deterministic, the second and third
inequality holds due to Lemma D.7 with the fact that 0 ≤ qVi,h+1(s), V

∗
h+1(s) ≤ H , the last

inequality the fact qVk,h+1(s) ≤ qVi,h+1(s). For both variances
[
Vh(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h) and[

Vh(V
∗
h+1 − qVi,h+1)

]
(skh, a

k
h), they are upper bounded by

2
(
[PhVk,h+1](s

k
h, a

k
h)− [Ph

qVk,h+1](s
k
h, a

k
h)
)

= 2ThVk,h+1(s
k
h, a

k
h)− 2Th qVk,h+1(s

k
h, a

k
h)

≤ 2 pfk,h(s
k
h, a

k
h)− 2 qfk,h(s

k
h, a

k
h) + 4βkDFh

(z; z[k−1],h, σ̄[k−1],h), (E.25)

where the first inequality holds due to Lemma D.8 and the second inequality holds due to the
definition of Fk,h. Substituting the result in (E.25) into (E.23), (E.24) and combining the fact that[
Vh(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h),
[
Vh(V

∗
h+1 − qVi,h+1)

]
(skh, a

k
h) ≤ 1, we finish the proof of Lemma

D.10.

E.4 PROOF OF LEMMAS IN SECTION D.4
E.4.1 PROOF OF LEMMA D.11
Proof of Lemma D.11. We use induction to shows that the conclusion in Lemma D.7 and events
E pf
h , E qf

H holds for each stage h ∈ [H]. First, for the basic situation (stage H + 1), Qk,H+1(s, a) =

Q∗
h(s, a) =

qQk,h(s, a) = 0 and Vk,h(s) = V ∗
h (s) =

qVk,h(s) = 0 holds for all state s ∈ S and action
a ∈ A. Therefore, Lemma D.7 holds for the basic case (stage H + 1)
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Second, if Lemma D.7 holds for stage h+ 1, then we focuse on the stage h. According to Lemmas
D.10 and Lemma D.9, we have the following inequalitys:

σ2
i,h = [V̄hVi,h+1](s

i
h, a

i
h) + Ei,h +Di,h ≥ [V̄hV

∗
h+1](s

i
h, a

i
h),

σ2
i,h ≥ Fi,h ≥ (logNF (ϵ) + logNϵ(K)) ·

[
Vh(Vk,h+1 − V ∗

h+1)
]
(sih, a

i
h),

σ2
i,h ≥ Fi,h ≥ (logNF (ϵ) + logNϵ(K)) ·

[
Vh(V

∗
h+1 − qVk,h+1)

]
(sih, a

i
h),

where the first inequality holds due to Lemma D.9, the second and third inequality holds due to
Lemma D.10. Thus, the indicator function in events Ē pf

h and Ē qf
h holds, which implies events E pf

h ,

E qf
H holds. Furthermore, when events E pf

h , E qf
H holds, then Lemma D.7 holds for stage h. Thus, we

complete the proof of Lemma D.11 by induction.

E.4.2 PROOF OF LEMMA D.13
Proof of Lemma D.13. For each stage h, we divide the episodes {1, 2, ..,K} to the following sets:

I1 = {k ∈ [K] : DFh
(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h ≥ 1},

I2 = {k ∈ [K] : DFh
(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h < 1, σ̄k,h = σk,h},

I3 = {k ∈ [K] : DFh
(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h < 1, σ̄k,h = α},

I4 = {k ∈ [K] : DFh
(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h < 1, σ̄k,h = γ ×D1/2

Fh
(z; z[k−1],h, σ̄[k−1],h)}.

The number of episode in set I1 is upper bounded by

|I1| =
∑
k∈I1

min
(
D2

Fh
(z; z[k−1],h, σ̄[k−1],h)/σ̄

2
k,h, 1

)
≤ dimα,K(Fh),

where the equation holds due to D2
Fh

(z; z[k−1],h, σ̄[k−1],h)/σ̄
2
k,h ≥ 1 and the inequality holds due to

the definition of Generalized Eluder dimension. Thus, for set I1, the summation of confidence radius
is upper bounded by∑

k∈I1

min
(
βDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)
≤ |I1| ≤ dimα,K(Fh). (E.26)

For set I2, the summation of confidence radius is upper bounded by∑
k∈I2

min
(
βDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)

≤
∑
k∈I2

βDFh
(z; z[k−1],h, σ̄[k−1],h)

≤ β
√∑

k∈I2

σ2
k,h ·

√∑
k∈I2

D2
Fh

(z; z[k−1],h, σ̄[k−1],h)/σ̄
2
k,h

≤ β
√

dimα,K(Fh)

√∑
k∈I2

σ2
k,h, (E.27)

where the second inequality holds due to Cauchy-Schwartz inequality with σk,h = σ̄k,h and the
last inequality holds due to the definition of Generalized Eluder dimension with the fact that
DFh

(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h < 1.
With a similar argument, the summation of confidence radius over set I3 is upper bounded by∑

k∈I3

min
(
βDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)

≤
∑
k∈I3

βDFh
(z; z[k−1],h, σ̄[k−1],h)

≤ β
√∑

k∈I3

α2 ·
√∑

k∈I3

D2
Fh

(z; z[k−1],h, σ̄[k−1],h)/σ̄
2
k,h
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≤ β
√
dimα,K(Fh)

√∑
k∈I3

α2, (E.28)

where the second inequality holds due to Cauchy-Schwartz inequality with σ̄k,h = α and the
last inequality holds due to the definition of Generalized Eluder dimension with the fact that
DFh

(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h < 1.
Finally, the summation of confidence raduis over set I4 is upper bounded by With a similar argument,
the summation of confidence radius over set I3 is upper bounded by∑

k∈I4

min
(
βDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)

≤
∑
k∈I4

βDFh
(z; z[k−1],h, σ̄[k−1],h)

=
∑
k∈I4

βγ2D2
Fh

(z; z[k−1],h, σ̄[k−1],h)/σ̄
2
k,h

≤ βγ2 dimα,K(Fh), (E.29)

where the first equation holds due to σ̄k,h = γ ×D1/2
Fh

(z; z[k−1],h, σ̄[k−1],h) and the last inequality
holds due to the definition of Generalized Eluder dimension with DFh

(z; z[k−1],h, σ̄[k−1],h)/σ̄k,h <
1.
Combining the results in (E.26), (E.27), (E.28) and (E.29), we have

K∑
k=1

min
(
βDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)

≤ (1 + βγ2) dimα,K(Fh) + 2β
√

dimα,K(Fh)

√√√√ K∑
k=1

(σ2
k,h + α2).

Thus, we complete the proof of Lemma D.13.

E.4.3 PROOF OF LEMMA D.14
Proof of Lemma D.14. First, for each stage h ∈ [H] and episode k ∈ [K], the gap between Vk,h(skh)
and V πk

h (skh) can be decomposed as:

Vk,h(s
k
h)− V πk

h (skh)

= Qk,h(s
k
h, a

k
h)−Qπk

h (skh, a
k
h)

≤ min
(

pfklast,h(s, a) + bklast,h(s, a), 1
)
− ThVk,h+1(s

k
h, a

k
h)

+ ThVk,h+1(s
k
h, a

k
h)− ThV πk

h+1(s
k
h, a

k
h)

≤
[
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h) + min

(
pβklastDFh

(z; z[klast−1],h, σ̄[klast−1],h), 1
)
+min

(
bklast,h(s

k
h, a

k
h), 1

)
≤
[
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h) + 2C ·min

(
pβklastDFh

(z; z[klast−1],h, σ̄[klast−1],h), 1
)

≤
[
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h) + 2C(1 + χ) ·min

(
pβkDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)

= Vk,h+1(s
k
h+1)− V πk

h+1(s
k
h+1) +

[
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+ 2C(1 + χ) ·min

(
pβkDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)
, (E.30)

where the first inequality holds due to the definition of value function Qk,h(s
k
h, a

k
h), the sec-

ond inequality holds due to Lemma D.6, the third inequality holds due to bklast,h(s
k
h, a

k
h) ≤

C ·DFh
(z; z[klast−1],h, σ̄[klast−1],h) and the last inequality holds due to Lemma F.2. Taking a summation

of (E.30) over all episode k ∈ [K] and stage h′ ≥ h, we have

K∑
k=1

(
Vk,h(s

k
h)− V πk

h (skh)
)
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≤
K∑

k=1

H∑
h′=h

([
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

))
+

K∑
k=1

H∑
h′=h

2C(1 + χ) ·min
(

pβkDFh
(z; z[k−1],h, σ̄[k−1],h), 1

)
≤

K∑
k=1

H∑
h′=h

2C(1 + χ) ·min
(

pβkDFh
(z; z[k−1],h, σ̄[k−1],h), 1

)
+
√

2HK log(H/δ)

≤
H∑

h′=h

2C(1 + χ)(1 + pβkγ
2) dimα,K(Fh′) +

H∑
h′=h

4C(1 + χ)pβk

√
dimα,K(Fh′)

√√√√ K∑
k=1

(σ2
k,h′ + α2)

+
√
2HK log(H/δ)

≤ 2CH(1 + χ)(1 + pβkγ
2) dimα,K(Fh) + 4C(1 + χ)pβk

√√√√ H∑
h′=h

dimα,K(Fh′)

√√√√ K∑
k=1

H∑
h′=h

(σ2
k,h′ + α2)

+
√
2HK log(H/δ)

≤ 2CH(1 + χ)(1 + pβkγ
2) dimα,K(Fh) + 4C(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+
√
2HK log(H/δ), (E.31)

where the first inequality holds due to (E.30), the second inequality holds due to event E1, the third
inequality holds due to Lemma D.13, the fourth inequality holds due to Cauchy-Schwartz inequality
and the last inequality holds due to

∑H
h′=h dimα,K(Fh′) ≤

∑H
h′=1 dimα,K(Fh′) = H dimα,K(F).

Furthermore, taking a summation of (E.31), we have
K∑

k=1

H∑
h=1

[
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h)

=

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+

K∑
k=1

H∑
h=1

([
Ph(Vk,h+1 − V πk

h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

))
≤

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
+
√
2HK log(H/δ)

≤ 2CH2(1 + χ)(1 + pβkγ
2) dimα,K(F) + 4CH(1 + χ)pβk

√
dimα,K(Fh)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ 2
√
2H3K log(H/δ),

where the first inequality holds due to event E1 and the second inequality holds due to (E.31). Thus,
we complete the proof of Lemma D.14.

E.4.4 PROOF OF LEMMA D.15
Proof of Lemma D.15. Similar to the proof of Lemma D.14, for each stage h ∈ [H] and episode
k ∈ [K], the gap between Vk,h(skh) and qVk,h(s

k
h) can be decomposed as:

Vk,h(s
k
h)− qVk,h(s

k
h)

≤ Qk,h(s
k
h, a

k
h)− qQk,h(s

k
h, a

k
h)

≤ min
(

pfklast,h(s, a) + bklast,h(s, a), 1
)
− ThVk,h+1(s

k
h, a

k
h)
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−max
(

qfklast,h(s, a)− bklast,h(s, a), 0
)
+ Th qVk,h+1(s

k
h, a

k
h)

+ ThVk,h+1(s
k
h, a

k
h)− Th qVk,h+1(s

k
h, a

k
h)

≤
[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h) + 2 ·min

(
pβklastDFh

(z; z[klast−1],h, σ̄[klast−1],h), 1
)

+ 2 ·min
(
bklast,h(s

k
h, a

k
h), 1

)
≤
[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h) + 4C ·min

(
pβklastDFh

(z; z[klast−1],h, σ̄[klast−1],h), 1
)

≤
[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h) + 4C(1 + χ) ·min

(
pβkDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)

= Vk,h+1(s
k
h+1)− qVk,h+1(s

k
h+1) +

[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

)
+ 4C(1 + χ) ·min

(
pβkDFh

(z; z[k−1],h, σ̄[k−1],h), 1
)
, (E.32)

where the first and second inequalities holds due to the definition of qVk,h(s
k
h) and Vk,h(skh), the

third inequality holds due to Lemma D.6 with pβklast = qβklast , the fourth inequality holds due to
bklast,h(s

k
h, a

k
h) ≤ C ·DFh

(z; z[klast−1],h, σ̄[klast−1],h) and the last inequality holds due to Lemma F.2.
Taking a summation of (E.32) over all episode k ∈ [K] and stage h′ ≥ h, we have

K∑
k=1

(
Vk,h(s

k
h)− qVk,h(s

k
h)
)

≤
K∑

k=1

H∑
h′=h

([
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

))
+

K∑
k=1

H∑
h′=h

4C(1 + χ) ·min
(

pβkDFh
(z; z[k−1],h, σ̄[k−1],h), 1

)
≤

K∑
k=1

H∑
h′=h

4C(1 + χ) ·min
(

pβkDFh
(z; z[k−1],h, σ̄[k−1],h), 1

)
+
√

2HK log(H/δ)

≤
H∑

h′=h

4C(1 + χ)(1 + pβkγ
2) dimα,K(Fh′) +

H∑
h′=h

8C(1 + χ)pβk

√
dimα,K(Fh′)

√√√√ K∑
k=1

(σ2
k,h′ + α2)

+
√
2HK log(H/δ)

≤ 4CH(1 + χ)(1 + pβkγ
2) dimα,K(Fh) + 8C(1 + χ)pβk

√√√√ H∑
h′=h

dimα,K(Fh′)

√√√√ K∑
k=1

H∑
h′=h

(σ2
k,h′ + α2)

+
√
2HK log(H/δ)

≤ 4CH(1 + χ)(1 + pβkγ
2) dimα,K(Fh) + 8C(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+
√
2HK log(H/δ), (E.33)

where the first inequality holds due to (E.32), the second inequality holds due to event E2, the third
inequality holds due to Lemma D.13, the fourth inequality holds due to Cauchy-Schwartz inequality
and the last inequality holds due to

∑H
h′=h dimα,K(Fh′) ≤

∑H
h′=1 dimα,K(Fh′) = H dimα,K(F).

Furthermore, taking a summation of (E.33), we have

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)

=

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

)
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+

K∑
k=1

H∑
h=1

([
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

))
≤

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− qVk,h+1(s

k
h+1)

)
+
√
2HK log(H/δ)

≤ 2CH2(1 + χ)(1 + pβkγ
2) dimα,K(Fh) + 4CH(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ 3
√
2H3K log(H/δ),

where the first inequality holds due to event E2 and the last inequality holds due to (E.33). Thus, we
complete the proof of Lemma D.15.

E.4.5 PROOF OF LEMMA D.16
Proof of Lemma D.16. According to the definition of estimated variance σk,h, the summation of
variance can be decomposed as following:
K∑

k=1

H∑
h=1

σ2
k,h =

K∑
k=1

H∑
h=1

[V̄k,hVk,h+1](s
k
h, a

k
h) + Ek,h + Fk,h

=

K∑
k=1

H∑
h=1

(
[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
)

︸ ︷︷ ︸
I1

+

K∑
k=1

H∑
h=1

Ek,h︸ ︷︷ ︸
I2

+

K∑
k=1

H∑
h=1

Fk,h︸ ︷︷ ︸
I3

+

K∑
k=1

H∑
h=1

(
[VhVk,h+1](s

k
h, a

k
h)− [VhV

πk

h+1](s
k
h, a

k
h)
)

︸ ︷︷ ︸
I4

+

K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h)︸ ︷︷ ︸

I5

.

(E.34)

For the term I1, it can be upper bounded by

I1 =

K∑
k=1

H∑
h=1

(
[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
)
≤

K∑
k=1

H∑
h=1

Ek,h, (E.35)

where the inequality holds due to Lemma D.9.
For the second term I2 =

∑K
k=1

∑H
h=1Ek,h, we have

K∑
k=1

H∑
h=1

Ek,h =

K∑
k=1

H∑
h=1

(2Lβk + β̃k)min
(
1, DFh

(z; z[k−1],h, σ̄[k−1],h)
)

≤
H∑

h=1

(2Lβk + β̃k)× (1 + γ2) dimα,K(Fh)

+

H∑
h=1

(2Lβk + β̃k)× 2
√
dimα,K(Fh)

√√√√ K∑
k=1

(σ2
k,h + α2)

≤ (2Lβk + β̃k)H × (1 + γ2) dimα,K(F)

+ (2Lβk + β̃k)× 2

√√√√ H∑
h=1

dimα,K(Fh)

√√√√ K∑
k=1

H∑
h=1

(σ2
k,h + α2)

= (2Lβk + β̃k)H × (1 + γ2) dimα,K(F)

+ (2Lβk + β̃k)× 2
√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2), (E.36)
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where the inequality holds due to Lemma D.13 and the second inequality holds due to Cauchy-
Schwartz inequality.
For the term I3, we have

I3 =

K∑
k=1

H∑
h=1

Fk,h

= (logNF (ϵ) + logNϵ(K))

×
K∑

k=1

H∑
h=1

min
(
1, 2 pfk,h(s

k
h, a

k
h)− 2 qfk,h(s

k
h, a

k
h) + 4βkDFh

(z; z[k−1],h, σ̄[k−1],h)
)

≤ (logNF (ϵ) + logNϵ(K))

×
K∑

k=1

H∑
h=1

min
(
1, 2ThVk,h+1(s

k
h, a

k
h)− 2Th qVk,h+1(s

k
h, a

k
h)(s

k
h, a

k
h) + 8βkDFh

(z; z[k−1],h, σ̄[k−1],h)
)

≤ (logNF (ϵ) + logNϵ(K))×
K∑

k=1

H∑
h=1

[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)

+ (logNF (ϵ) + logNϵ(K))×
K∑

k=1

H∑
h=1

min
(
1, 8βkDFh

(z; z[k−1],h, σ̄[k−1],h)
)

≤ (logNF (ϵ) + logNϵ(K))×
K∑

k=1

H∑
h=1

[
Ph(Vk,h+1 − qVk,h+1)

]
(skh, a

k
h)

+ (logNF (ϵ) + logNϵ(K))× (1 + 8βkγ
2)H dimα,K(F)

+ ((logNF (ϵ) + logNϵ(K))× 16βk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

≤ (logNF (ϵ) + logNϵ(K))×
(
4CH2(1 + χ)(1 + pβkγ

2) dimα,K(Fh) + 2
√
2H3K log(H/δ)

)
+ (logNF (ϵ) + logNϵ(K))× (1 + 8βkγ

2)H dimα,K(F)

+ ((logNF (ϵ) + logNϵ(K))× 16βk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2), (E.37)

where the first inequality holds due to Lemma D.8, the second inequality holds due to Vk,h+1(·) ≥
V ∗
h+1(·) ≥ qVk,h+1(·), the third inequality holds due to Lemma D.13 with Cauchy-Schwartz inequality

and the last inequality holds due to D.15.
For the term I4, we have

I4 =

K∑
k=1

H∑
h=1

(
[VhVk,h+1](s

k
h, a

k
h)− [VhV

πk

h+1](s
k
h, a

k
h)
)

=

K∑
k=1

H∑
h=1

(
[PhV

2
k,h+1](s

k
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k
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k
h, a

k
h)
)2 − [Ph(V

πk
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2](skh, a

k
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(
[PhV

πk

h+1](s
k
h, a

k
h)
)2)

≤
K∑

k=1

H∑
h=1

(
[PhV

2
k,h+1](s

k
h, a

k
h)− [Ph(V

πk

h+1)
2](skh, a

k
h)
)

≤ 2

K∑
k=1

H∑
h=1

(
[PhVk,h+1](s

k
h, a

k
h)− [PhV

πk

h+1](s
k
h, a

k
h)
)

≤ 8CH2(1 + χ)(1 + pβkγ
2) dimα,K(F) + 16CH(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1
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h=1

(σ2
k,h + α2)
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+ 4
√
2H3K log(H/δ), (E.38)

where the first inequality holds due to Vk,h+1(·) ≥ V ∗
h+1(·) ≥ V πk

h+1(·), the second inequality holds
due to 0 ≤ V ∗

h+1(·), V πk

h+1(·) ≤ 1 and the last iniequality holds due to Lemma D.14.
For the term I5, according to the definition of event E3, we have

I5 =

K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h) ≤ 3K + 3H log(1/δ). (E.39)

Substituting the results in (E.35), (E.36), (E.37), (E.38) and (E.39) into (E.34), we have

K∑
k=1

H∑
h=1

σ2
k,h

= I1 + I2 + I3 + I4 + I5

≤ (4Lβk + 2β̃k)H × (1 + γ2) dimα,K(F)

+ (4Lβk + 2β̃k)× 2
√

dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ 8CH2(1 + χ)(1 + pβkγ
2) dimα,K(F) + 16CH(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ 4
√

2H3K log(H/δ) + 3K + 3H log(1/δ)

+ (logNF (ϵ) + logNϵ(K))×
(
4CH2(1 + χ)(1 + pβkγ

2) dimα,K(Fh) + 2
√
2H3K log(H/δ)

)
+ (logNF (ϵ) + logNϵ(K))× 8CH(1 + χ)pβk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

+ (logNF (ϵ) + logNϵ(K))× (1 + 8βkγ
2)H dimα,K(F)

+ (logNF (ϵ) + logNϵ(K))× 16βk

√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)

≤ 3K + 3H log(1/δ) + (logNF (ϵ) + logNϵ(K))×O
(
(1 + γ2)(βk +H pβk + β̃k)H dimα,K(F)

)
+ (logNF (ϵ) + logNϵ(K))×O

(βk +H pβk + β̃k)
√
dimα,K(F)

√√√√H

K∑
k=1

H∑
h=1

(σ2
k,h + α2)


+ (logNF (ϵ) + logNϵ(K))

2 ×O
(
H3 log(H/δ)

)
+O(K),

where the last inequality holds due to 2ab ≤ a2 + b2. Notice that for each variable x, x ≤ a
√
x+ b

implies x ≤ a2 + 2b. With this fact, we have

K∑
k=1

H∑
h=1

σ2
k,h ≤ (logNF (ϵ) + logNϵ(K))×O

(
(1 + γ2)(βk +H pβk + β̃k)H dimα,K(F)

)
+ (logNF (ϵ) + logNϵ(K))

2 ×O
(
(βk +H pβk + β̃k)

2H dimα,K(F)
)

+O(K +KHα2).

Thus, we complete the proof of Lemma D.16.

F COVERING NUMBER ARGUMENT
F.1 RARE SWITCHING
Based on the policy-updating criterion, the following lemma provides a upper bound of the switching
cost.
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Lemma F.1. The number of episodes when the algorithm updates the value function is at most
O (dimα,K(F) ·H).

Proof. According to line 9, the policy is updated at episode k only when there exists a stage h ∈ [H]
such that ∑

i∈[klast,k−1]

1

σ̄2
i,h

D2
Fh

(zi,h; z[klast−1],h, σ̄[klast−1],h) ≥ χ/C.

and ∑
i∈[klast,k−2]

1

σ̄2
i,h

D2
F (zi,h; z[klast−1],h, σ̄[klast−1],h) < χ. (F.1)

Then the following inequality holds,

sup
f1,f2∈Fh

∑
i∈[1,k−2]

1
σ̄2
i,h

(f1(zi,h)− f2(zi,h))2 + λ∑
i∈[1,klast−1]

1
σ̄2
i,h

(f1(zi,h)− f2(zi,h))2 + λ
(F.2)

= 1 + sup
f1,f2∈Fh

∑
i∈[klast,k−2]

1
σ̄2
i,h

(f1(zi,h)− f2(zi,h))2∑
i∈[1,klast−1]

1
σ̄2
i,h

(f1(zi,h)− f2(zi,h))2 + λ

≤ 1 +
∑

i∈[klast,k−2]

1

σ̄2
i,h

D2
Fh

(zi,h; z[klast−1],h, σ̄[klast−1],h)

≤ 1 + χ, (F.3)

where the first inequality holds due to the definition of DFh
(Definition 2.4), the second inequality

follows from (F.1).
(F.3) further gives a lower bound for the summation∑

i∈[klast,k−1]

1

σ̄2
i,h

D2
F (zi,h; z[i−1],h, σ̄[i−1],h)

≥ 1

1 + χ

∑
i∈[klast,k−1]

1

σ̄2
i,h

D2
F (zi,h; z[klast−1],h, σ̄[klast−1],h)

≥ χ/C

1 + χ
.

Note that χ/C
1+χ ≤ 1, we also have

∑
i∈[klast,k−1]

min

{
1,

1

σ̄2
i,h

D2
F (zi,h; z[i−1],h, σ̄[i−1],h)

}
≥ χ/C

1 + χ
.

Then we have an upper bound and lower bound for the following summation:

lK ·
χ/C

1 + χ
≤

K∑
k=1

H∑
h=1

min

{
1,

1

σ̄2
k,h

D2
F (zk,h; z[k−1],h, σ̄[k−1],h)

}
≤ dimα,K(F) ·H

Therefore, the number of policy switching lK is of order O(dimα,K(F) ·H).

Lemma F.2 (Stability of uncertainty under rare switching strategy). If the policy is not updated at
episode k, the uncertainty of all state-action pair z = (s, a) ∈ S ×A and stage h ∈ [H] satisfies the
following stability property:

D2
Fh

(z; z[k−1],h, σ̄[k−1],h) ≥
1

1 + χ
D2

Fh
(z; z[klast−1],h, σ̄[klast−1],h).
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Proof. Due to the definition of klast in Algorithm 1, we have∑
i∈[klast,k−1]

1

σ̄2
i,h

D2
F (zi,h; z[klast−1],h, σ̄[klast−1],h) < χ.

As is shown in (F.3), here we also have

sup
f1,f2∈Fh

∑
i∈[1,k−1]

1
σ̄2
i,h

(f1(zi,h)− f2(zi,h))2 + λ∑
i∈[1,klast−1]

1
σ̄2
i,h

(f1(zi,h)− f2(zi,h))2 + λ
≤ 1 + χ.

From the definition of DFh
,

D2
Fh

(z; z[k−1],h, σ̄[k−1],h) ≥
1

1 + χ
D2

Fh
(z; z[klast−1],h, σ̄[klast−1],h).

The proof is then completed due to the arbitrariness of h.

F.2 VALUE FUNCTION CLASS AND ITS COVERING NUMBER
The optimistic value functions at episode k and stage h ∈ [H] in our construction belong to the
following function class:

Vk,h =

{
V

∣∣∣∣max
a∈A

min
1≤i≤lk+1

min (1, fi(·, a) + β · b(·, a))
}
, (F.4)

where lk is the number of updated policies as defined in Algorithm 1, fi ∈ Fh and b ∈ B.
Similarly, we also define the following pessimistic value function classes for all k ≥ 1:

qVk,h =

{
V

∣∣∣∣max
a∈A

max
1≤i≤lk+1

max (0, fi(·, a)− β · b(·, a))
}
, (F.5)

Lemma F.3 (ϵ-covering number of optimistic value function classes). For optimistic value function
class Vk,h defined in (F.4), we define the distance between two value functions V1 and V2 as ∥V1 −
V2∥∞ := maxs∈S |V1(s)− V2(s)|. Then the ϵ-covering number with respect to the distance function
can be upper bounded by

Nϵ(k) := [NF (ϵ/2) · N (B, ϵ/2β)]lk+1 (F.6)

Proof. By the definition ofN (F , ϵ), there exists an ϵ/2-net of F , denoted by C(F , ϵ/2), such that for
any f ∈ F , we can find f ′ ∈ C(F , ϵ/2) such that ∥f − f ′∥∞ ≤ ϵ/2. Also, there exists an ϵ/2β-net
of B, C(B, ϵ/2β).
Then we consider the following subset of Vk,

Vc =

{
V

∣∣∣∣max
a∈A

min
1≤i≤lk+1

min (1, fi(·, a) + β · bi(·, a)) , fi ∈ C(Fh, ϵ/2), bi ∈ C(B, ϵ/2β)
}
.

Consider an arbitrary V ∈ V where V = maxa∈A min1≤i≤lk+1 min(1, fi(·, a) + β · bi(·, a)). For
each fi, there exists f ci ∈ C(F , ϵ/2) such that ∥fi − f ci ∥∞ ≤ ϵ/2. There also exists bc ∈ C(B, ϵ/2β)
such that ∥b− bc∥∞ ≤ ϵ/2β. Let V c = maxa∈A min1≤i≤lk+1 min(1, f ci (·, a) + β · bc(·, a)) ∈ Vc.
It is then straightforward to check that ∥V − V c∥∞ ≤ ϵ/2 + β · ϵ/2β = ϵ.
By direct calculation, we have |Vc| = [N (Fh, ϵ/2) · N (B, ϵ/2β)]lk+1.

Lemma F.4 (ϵ-covering number of pessimistic value function classes). For pessimistic value function
class qVk,h defined in (F.5), we define the distance between two value functions V1 and V2 as ∥V1 −
V2∥∞ := maxs∈S |V1(s)− V2(s)|. Then the ϵ-covering number of qVk with respect to the distance
function can be upper bounded by Nϵ(k) defined in (F.6).

Proof. The proof is nearly the same as that of Lemma F.3.
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G AUXILIARY LEMMAS
Lemma G.1 (Azuma–Hoeffding inequality). Let {xi}ni=1 be a martingale difference sequence
with respect to a filtration {Gi} satisfying |xi| ≤ M for some constant M , xi is Gi+1-measurable,
E[xi|Gi] = 0. Then for any 0 < δ < 1, with probability at least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

Lemma G.2. Let M > 0, V > v > 0 be constants, and {xi}i∈[t] be stochastic process adapted
to a filtration {Hi}i∈[t]. Suppose E[xi|Hi−1] = 0, |xi| ≤ M and

∑
i∈[t] E[x2i |Hi−1] ≤ V 2 almost

surely. Then for any δ, ϵ > 0, let ι =
√
log (2 log(V/v)+2)·(log(M/m)+2)

δ we have

P

∑
i∈[t]

xi > ι

√√√√√2

2
∑
i∈[t]

E[x2i |Hi−1] + v2

+
2

3
ι2
(
2max

i∈[t]
|xi|+m

) ≤ δ.
Lemma G.3 (Lemma 7, Russo & Van Roy 2014). Consider random variables (Zn|n ∈ N) adapted
to the filtration (Hn : n = 0, 1, ...). Assume E [exp {λZi}] is finite for all λ. Define the conditional
mean µi = E [Zi | Hi−1]. We define the conditional cumulant generating function of the centered
random variable [Zi − µi] by ψi (λ) = logE [exp (λ [Zi − µi]) | Hi−1]. For all x ≥ 0 and λ ≥ 0,

P

(
n∑
1

λZi ≤ x+

n∑
1

[λµi + ψi (λ)] ∀n ∈ N

)
≥ 1− e−x.

Lemma G.4 (Self-normalized bound for scalar-valued martingales). Consider random variables
(vn|n ∈ N) adapted to the filtration (Hn : n = 0, 1, ...). Let {ηi}∞i=1 be a sequence of real-valued
random variables which is Hi+1-measurable and is conditionally σ-sub-Gaussian. Then for an
arbitrarily chosen λ > 0, for any δ > 0, with probability at least 1− δ, it holds that

n∑
i=1

ϵivi ≤
λσ2

2
·

n∑
i=1

v2i + log(1/δ)/λ ∀n ∈ N.
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