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ABSTRACT

Modular and composable transfer learning is an emerging direction in the field
of Parameter Efficient Fine-Tuning, as it enables neural networks to better orga-
nize various aspects of knowledge, leading to improved cross-task generalization.
In this paper, we introduce a novel approach Customized Polytropon (C-Poly)
that combines task-common skills and task-specific skills, while the skill param-
eters being highly parameterized using low-rank techniques. Each task is associ-
ated with a customizable number of exclusive specialized skills and also benefits
from skills shared with peer tasks. A skill assignment matrix is jointly learned.
To evaluate our approach, we conducted extensive experiments on the Super-
NaturalInstructions and the SuperGLUE benchmarks. Our findings demonstrate
that C-Poly outperforms fully-shared, task-specific, and skill-indistinguishable
baselines, significantly enhancing the sample efficiency in multi-task learning sce-
narios.

1 INTRODUCTION

As the number of parameters in Large Language Models (LLMs) continues to grow, training these
models efficiently with limited computational resources has become a challenge. In recent years,
there has been a shift towards employing Parameter Effective Fine-Tuning (PEFT) methods to ad-
dress this issue. Examples of such methods include LoRA (Hu et al., 2022), AdaLoRA (Zhang
et al., 2023a), and (IA)3 (Liu et al., 2022a). These methods focus on fine-tuning the adapter while
freezing the pre-trained model, effectively reducing the computational cost. By selectively updating
only a portion of the model parameters, PEFT methods enable efficient training and utilization of
large foundation models. This line of approaches allows for more effective use of resources while
maintaining the performance of the pre-trained model on downstream tasks (Hu et al., 2022). How-
ever, despite the popularity and widely adoption of PEFT methods, the learning effectiveness of
such methods, especially in multi-task scenarios, is under explored.

LLMs are famous for their extraordinary capabilities on solving multiple tasks in zero-shot or few-
shot manners (Brown et al., 2020). Basic PEFT methods mentioned earlier don’t take the multitask
essence of real-world data into account and rely heavily on the base foundation model’s capacities
on the multitask generalization. Building upon the basic PEFT methods, various training approaches
designed for Multi-Task Learning (MTL) have been proposed (Pfeiffer et al., 2020; Vu et al., 2021;
Asai et al., 2022; Chronopoulou et al., 2023; Zadouri et al., 2023). One simple solution is to perform
multitask training by training a large model on a combination of multiple tasks. This involves
training the model on the union of training tasks and subsequently evaluating its performance on
different testing tasks (Ye et al., 2021; Liu et al., 2022a). However, this approach overlooks the
relationships between the tasks and is vulnerable to negative transfer, where the gradients associated
with different tasks are misaligned (Wang et al., 2020). This misalignment of gradients can lead to
sub-optimal performance and hinder the effective utilization of learned knowledge across tasks.
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To enhance sample efficiency, MoLoRA (Zadouri et al., 2023) has been introduced. MoLoRA
successfully applies the Mixture-of-Expert (MoE) architecture to PEFT methods and improves the
model’s generalization capacity across various tasks by jointly learning multiple LoRA instances.
MoLoRA views each LoRA as a lightweight expert, following MoE framework, and thus allows
for more specialized adaptation to different tasks from shared knowledge learnt through parallel
instances.

In a recent work, Ponti et al. (2022) developed Polytropon (Poly) to tackle the challenges associ-
ated with multitask learning. The central idea of Poly is to consider each task-specific adapter as a
composition of reusable skillset of basic adapters or modules. Specifically, Poly jointly learns an
inventory of adapters (for example, LoRA) and a simple routing vector that selects and combines a
variable-size subset of adapters for each individual task. This approach significantly improves the
efficiency of sample sharing and utilization between multiple tasks. Although not mentioned explic-
itly in the original work (Ponti et al., 2022), we argue that each adapter in Poly can be viewed as
a lightweight expert and then the whole structure follows the same pattern as Multi-gate Mixture-
of-Experts (MMoE) (Ma et al., 2018), a well-known MTL framework. To be noted, in Ponti et al.
(2022) also introduced a structure called MoE-LoRA, which is a simplified version of MoLoRA
where the routing is controlled by a function of hidden states instead.

Based on Poly, a subsequent research titled Multi-Head Routing (MHR) (Caccia et al., 2022) was
proposed. MHR extends the concept of parallel thinking to low-rank decomposition and introduces
further improvements to the basic unit of the adapter. By leveraging low-rank decomposition, MHR
enhances the model’s ability to generalize across different tasks. The parallel improvements in the
adapter’s basic units allow for more efficient adaptation to different tasks while still benefiting from
shared knowledge.

Figure 1: Overview of Customized Polytropon (C-Poly) framework

Inspired by Customized Sharing Control (CGC) and Progressive Layered Extraction (PLE) (Tang
et al., 2020), our research has made additional improvements over Poly. We assume that in MTL,
many tasks do share transferable knowledge, while each of them requires discriminative abilities.
Based on this assumption, we explicitly divide modular skills into task-common skill modules and
task-specific skill modules. We propose Customized Polytropon (C-Poly), where for each task,
two components are learnt jointly, a task-specific skill module and a task-common skill module.
This allows each task to be characterized by not only a shared task-common module as in Poly and
MHR, but also a unique subset of skills, mitigating the effect of negative transferring and leading to
improved multi-task performance. Furthermore, C-Poly promotes interpretability by learning an
explicit hierarchy of tasks based on the skills they select, which provides insights into the relation-
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ship between tasks and the important skills needed for each task. Overall, our approach enhances
the efficiency and effectiveness of modular skill multi-task learning, enabling better performance,
interpretability, and resource utilization.

In Section 3, we conducted extensive experiments on multiple datasets and model architectures.
The results of these experiments have consistently demonstrated our method C-Poly has surpassed
the performance of the conventional PEFT methods and achieved state-of-the-art (SOTA) results in
different multitasking scenarios.

2 METHODOLOGY

The proposed unified MTL framework C-Poly is shown in Figure 1, which aims to enhance sample
efficiency for each task by leveraging strengths from all other tasks while keeping task-specific
abilities. Suppose there are T tasks and for each task, task-specific data input xt, t ∈ {1, 2, . . . , T}.
The MoE-like structure consists of adapter modules (or experts), Φ = {ϕ1, ϕ2, . . . , ϕ|Φ|} and each
adapter ϕi can be regarded as a function of the input data xt. The major improvement of C-Poly
is to explicitly categorize adapter modules Φ into two separate parts:

• A task-common skillset: ΦA = {ϕ1, ϕ2, . . . , ϕA} having A adapters.
• A task-specific skillset: Φt

B = {ϕt
1, ϕ

t
2, . . . , ϕ

t
B} having B adapters for each task t.

In total, there are |ΦA| + T × |Φt
B | = A + T × B adapters. For a simplified yet generalizable

discussion, we would set B = 1 to keep only one task-specific adapter in the following experiments.

The combined output of the C-Poly adapter modules for each task input xt can be expressed in
Equation 1 with wi representing the learnable weight of each adapter’s output.

A∑
i=1

wt
iϕi(x

t)︸ ︷︷ ︸
Task-Common

+

B∑
j=1

wt
jϕ

t
j(x

t)︸ ︷︷ ︸
Task-Specific

=

A∑
i=1

wt
iϕi(x

t) + wtϕt(xt) (1)

In the task-common part, the set of adapters ϕi are shared across all tasks, while the weights wt
i are

exclusive to each task t. In contrast, both the weights wt
i and adapters ϕt

i are customized for each
individual task t in the task-specific part.

Following the notation above, various MoE-like PEFT structures can be mathematically formulated
together in Table 1. Both the MoE and MMoE models only consist of the task-common part of
Equation 1: in the conventional MoE approach, tasks are not differentiated, leading to shared pa-
rameters across all tasks; the MMoE framework assigns task-specific weights for each individual
task, while still maintaining a shared pool of experts or adapters.

Table 1: Comparison between different MoE-like PEFT methods

MoE Structures PEFT Methods Task Output

Conventional MoE MoLoRA (Zadouri et al., 2023),
MoE-LoRA (Ponti et al., 2022)

A∑
i=1

wiϕi(x
t)

MMoE (Ma et al., 2018) Poly (Ponti et al., 2022),
MHR (Caccia et al., 2022)

A∑
i=1

wt
iϕi(x

t)

CGC (Tang et al., 2020),
PLE (Tang et al., 2020) Our Method C-Poly

A∑
i=1

wt
iϕi(x

t) + wtϕt(xt)

In C-Poly, the weights associated with each adapter can be represented together as one allocation
matrix W ∈ RT×(A+T ) when B = 1. This matrix can be further decomposed into two distinct
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components: WA ∈ RT×A and WB ∈ RT×T :

W = [ WA WB ] (2)

=


w1

1 w1
2 · · · w1

A w1 0 0 0
w2

1 w2
2 · · · w2

A 0 w2 · · · 0
...

. . .
...

...
. . .

...
wT

1 wT
2 · · · wT

A 0 0 · · · wT

 (3)

To optimize the learning process in skill acquisition, we have employed different learning methods
for each component of the allocation matrix. Additionally, we have incorporated low-rank approxi-
mations to further enhance the parameter efficiency.

2.1 TASK-COMMON SKILLS LEARNING

Task-common skills are universally applicable skills that all tasks can leverage. Previous research
has focused on identifying the effectiveness of general skills modules for specific tasks by employing
modular concepts at the structured input level inspired by cognitive mechanisms (Bengio, 2017;
Ponti et al., 2022; Caccia et al., 2022; Zadouri et al., 2023). This concept has been translated into
Softmax for cross-module or top-k selection in practical implementation.

Therefore, following Ponti et al. (2022) and Caccia et al. (2022), we utilize a task-common allocation
matrix WA ∈ {0, 1}T×A with a uniform initialization. This matrix is employed to achieve the soft
partitioning of general skills. Each element wt

i in WA is a binary value that indicates whether a
particular task t activates the adapter module ϕi. However, since discrete binary matrices like WA

are non-differentiable, learning cannot be accomplished through gradient descent. To overcome this
limitation, we adopt the Gumbel-sigmoid approach (Maddison et al., 2016; Jang et al., 2016), which
allows us to obtain a set of continuously relaxed Bernoulli distributions. This approach guarantees
both randomness and the ability to perform differentiable sampling:

ŵt
i = σ

[
log

σ(wt
i)u

(1− σ(wt
i))(1− u)

]
, u ∼ U(0, 1) (4)

2.2 TASK-SPECIFIC SKILLS LEARNING

Specialized skills refer to modular skills that acquire the distinctive attributes of each task. In com-
plex and interconnected multitasking scenarios, a seesaw phenomenon commonly arises. In multi-
tasking learning mode, there is often a trade-off between enhancing specific tasks’ effectiveness and
compromising others’ effectiveness (Wang et al., 2020). To address this, we explicitly differenti-
ate between shared and exclusive skill modules. This separation allows us to amplify the inherent
characteristics of individual tasks.

We initialize the task-specific skill allocation WB ∈ RT×T as a unit diagonal matrix. Notably,
during the actual training process, although only the diagonal of WB are weights we concerned,
entries off the diagonal are also subject to potential updates. These side-effects indicate that while
solving the current task, the exclusive specialized skills of other tasks can be leveraged without
influencing the parameter values of specialized skills for those tasks.

2.3 PARAMETER EFFICIENCY

We accomplished an efficient parameterization of skill modules by employing low-rank techniques.
Every adapter in our C-Poly experiments is Low-Rank Adapter (LoRA) (Hu et al., 2022). LoRA is
a straightforward yet effective structure specifically tailored for Transformer-based models (Vaswani
et al., 2017). The idea behind LoRA is relatively straightforward. LoRA decomposes each weight
matrix of the linear transformation in Transformers into the multiplication of two low-rank matrices.
In other words, the linear projection f : Rd → Rd can be represented as follows, disregarding the
bias part:

hl+1 = hl [Wl +∆W ] = hl [Wl +WdownWup] (5)

4



Published as a conference paper at ICLR 2024

Instead of ∆W ∈ Rd×d, two much smaller matrices Wdown ∈ Rd×r and Wup ∈ Rr×d, with r ≪
d, are obtained through gradient descend optimization. Through the adoption of LoRA, updating
each linear layer in the model only requires 2 × r × d parameters in the calculation, as opposed
to the original d × d parameters. This results in a notable enhancement in parameter efficiency,
enabling faster training even with limited computing resources.

As examined in Hu et al. (2022), LoRA can be applied to various components of Transformers, such
as query, key, value, and feed-forward layers, while the choice of rank r does not hold significant
importance. This suggests that LoRA exhibits versatility in its applicability. In our experiments, we
patched all query, key, and value layers with C-Poly, a combination of multiple LoRAs.

3 EMPIRICAL EXPERIMENTS

3.1 EXPERIMENTAL SETUP

In order to evaluate the efficacy of our proposed unified MTL framework C-Poly, which incorpo-
rates both task-common and task-specific skills, we conducted experiments on two publicly available
multitasking benchmarks: SuperGLUE (Wang et al., 2019) and Super Natural-Instructions (Super
NI) (Wang et al., 2022). The SuperGLUE benchmark is a widely acceptable benchmark for evaluat-
ing general-purpose language understanding. In our experiments, 7 distinct tasks were selected from
the benchmark that can be effectively evaluated using the accuracy metric. The Super NI dataset,
as a meta-dataset (Triantafillou et al., 2019), covers a wide range of 76 distinct task types within
the field of natural language processing and comprises over 1,600 diverse NLP tasks. During the
experiments, 100 tasks were randomly selected, and for each task, 1000 samples were randomly
selected for training and another 100 were selected for evaluation purpose. To ensure comparability,
our sampling method follows the identical approach as described in Ponti et al. (2022). To evaluate
the effectiveness of the trained model, we employed various metrics for all selected tasks, including
Exact Match (EM) and Rouge metrics (Lin, 2004), including Rouge-1, Rouge-L, and Rouge-LSum.

To verify the universal effectiveness of our multitasking learning approach C-Poly, we chose T5
Version 1.1 - LM Adapted (T5) (Raffel et al., 2020), FLAN-T5 (Chung et al., 2022) and GLM (Du
et al., 2021) as the base models.

In our study, we thoroughly compared our proposed approach, C-Poly, and several existing MoE-
like PEFT methods. The methods we compared against include LoRA, MoE-LoRA, Poly and
MHR. The comparison allowed us to analyze and evaluate the performance and effectiveness of our
framework relative to these established PEFT methods.

3.2 TRAINING DETAILS

In our experiments, we applied PEFT methods to all query, key, value matrices within every attention
layer in the base models. In the case of vanilla LoRA, we set the rank of the low-rank approximation,
r = 8. For all MoE-like tuning methods, we utilized in total 4 parallel LoRAs (experts) with r = 2.
In C-Poly, we set A = 3 LoRA for task-common skills and B = 1 LoRA for task-specific skills.
This decision was made to ensure a comparable number of training parameters across all methods.

We trained our model with cross entropy loss for only 1 epoch, and set batch size of 4 on both Super
NI and SuperGLUE datasets during training. The AdamW optimizer (Loshchilov & Hutter, 2017)
was used, with a learning rate of 5e−5. We also employed the linear decay strategy (Loshchilov &
Hutter, 2016) as the learning rate scheduler with a weight decay of 0.01 and a warmup ratio of 0.06.
All experiments were conducted on a single NVIDIA Tesla A100 graphics card.

3.3 MAIN RESULTS AND DISCUSSION

3.3.1 ANALYSIS OF BALANCED MULTITASK LEARNING

In Figure 2, we present a comparative analysis of various fine-tuning methods across multiple tasks
within the SuperGLUE benchmark. When tuning with full parameters (FT), the overall average
accuracy is the lowest among all approaches because of relatively poor performance in the MultiRC
sub-task. This phenomenon, known as the seesaw effect, a manifestation of the negative transfer
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Figure 2: FLAN-T5-Large with different PEFT methods on SuperGLUE benchmark, compared with
Full Fine-tuning (FT). We reported overall averaged (AVERAGE) and task-specific accuracy for all
sub-tasks.

problem when tackling multiple tasks concurrently, holds significant importance in the domain of
multi-task learning (Pan & Yang, 2010; Sun et al., 2017; Tang et al., 2020). Our method C-Poly,
on the other hand, demonstrates constant improvement over all sub-tasks thanks to the task-specific
skill learning module. The results reveal that C-Poly can effectively mitigate the negative transfer
and seesaw effect issues. As shown in Appendix A.4, we conducted experiments on FLAN-T5-XL
(2B) and found that the base model with larger amount of parameters has a stronger fitting ability
for multiple tasks. Consequently, the experimental results showed that our method can bring stable
improvements in reducing negative migration.

Table 2: FLAN-T5-Large and GLM-10B with different adaptation methods on the SuperGLUE
benchmark. We report the overall (matched and mismatched) accuracy for BoolQ, CB, COPA,
MultiRC, RTE, WiC and WSC. Higher is better for all metrics.

Base Model PEFT Method AVG BoolQ CB COPA MultiRC RTE WiC WSC

FLAN-T5-Large

LoRA 81.85 81.85 85.71 90.00 82.78 85.92 59.56 64.42

MOE-LoRA 82.31 85.14 87.50 91.00 83.46 86.64 57.99 66.35

Poly 82.09 85.11 87.50 90.00 82.53 86.28 60.66 76.92
MHR 82.31 85.02 87.50 90.00 82.96 86.28 61.13 75.96

Our Method 83.21 85.69 85.71 90.00 83.35 88.81 67.08 75.00

GLM-10B

LoRA 52.05 60.98 46.38 65.70 62.43 57.37 39.15 32.32

MoE-LoRA 53.86 63.31 45.02 63.41 64.01 61.22 40.35 39.66

Poly 56.99 64.65 52.17 65.54 65.66 62.15 41.71 47.08

MHR 56.92 64.85 50.79 66.36 65.79 62.75 42.35 45.58

Our Method 62.26 67.31 60.38 70.04 67.90 68.01 48.71 53.42
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3.3.2 EVALUATION ON MORE MODELS AND MORE TASKS

The effectiveness of different PEFT methods are evaluated on two architectures: T5 and GLM.
Table 2 presents the performance of these methods on a dataset consisting of 7 tasks from the Su-
perGLUE. We display the evaluation results for the 7 sub-tasks individually, as well as their average
performance. Table 3 compares the performance of different PEFT methods on the SuperNI. The
indicators in the table represent the average performance evaluation over 100 tasks.

Table 3: FLAN-T5-Large, T5-Large and GLM-10B with different adaptation methods on the 100
randomly selected tasks from SuperNI dataset. We report the average Rouge-1, Rouge-L, and
Rouge-LSum for all tasks. Higher is better for all metrics.

Base Model PEFT Method Rouge-1 Rouge-L Rouge-LSum

FLAN-T5-Large

LoRA 68.26 67.42 67.42
MoE-LoRA 68.59 67.76 67.75

Poly 68.45 67.60 67.58
MHR 68.84 67.77 67.78

Our Method 68.69 67.80 67.82

T5-Large

LoRA 34.16 33.64 33.65
MoE-LoRA 36.82 36.13 36.15

Poly 43.04 42.05 42.09
MHR 44.24 43.32 43.34

Our Method 49.34 48.50 48.51

GLM-10B

LoRA 43.16 42.04 42.09
MoE-LoRA 45.97 44.79 44.89

Poly 47.96 46.80 46.80
MHR 48.53 47.34 47.33

Our Method 49.53 48.45 48.45

The results are two-folded. Firstly, it highlights that MoE-LoRA consistently demonstrates improve-
ment over LoRA, attributed to the enhanced parameter flexibility from the MoE structure. We com-
pared FLAN-T5-Large, T5-Large, and GLM-10B, and the results showed that it can significantly
alleviate the phenomenon of negative migration in both architectures and improve the flexibility of
adaptive parameters compared to LoRA and Poly. In the comparison of FLAN-T5-Large, although
it has undergone a large number of pre-training with similar instruction samples, our method can
still bring some improvement. Moreover, in Appendix A.2 we conducted the ablation experiments
on a broader range of models including T5-Large (0.78B), T5-XL (3B), and stronger one T5-XXL
(11B), as well as their FLAN-T5 counterparts, and the results showed that our methods remained
robust and significant as model parameters increased.

Secondly, the results demonstrate that our method C-Poly has achieved optimal performance in
both architectures and on the SuperGLUE and SuperNI datasets. The ablation experiments in Ap-
pendix A.1 on the number of tasks (10-50-100) conducted on GLM-10B and FLAN-T5-Large indi-
cate that our method is still significantly effective when the number of tasks increases. The explicit
separation of task-specific skills and task-common skills in our design enables the skill modules to
capture task-specific differences while sharing abstracted general skill modules effectively. Due to
the explicit separation, the negative transfer phenomenon has been significantly reduced as in Tang
et al. (2020), which can be verified on both datasets and becomes more pronounced as the number
of learning tasks increases.

3.3.3 PARAMETER EFFICIENCY ANALYSIS

In Figure 3, we assessed PEFT methodologies across varying parameter magnitudes, gauging their
efficacy on the SuperGLUE benchmark with FLAN-T5-Large as the base model. Furthermore,
we compared their performance against that derived from full parameter fine-tuning. It is evident
that our approach attains better performance among all PEFT methodologies with identical scales
of parameters and training epochs. Notably, C-Poly even outperforms other methods with more
parameters. Our methods explicitly segregate shared and proprietary skills and effectively ensure
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parameter efficiency in multi-task learning under equivalent training settings. This trend is also
observed in the SuperNI dataset evaluation. As a result, we argue that adopting both task-common
skills learning and task-specific skills learning as a paradigm constitutes a robust strategy for achiev-
ing parameter efficiency in adapting multiple tasks.

Figure 3: Accuracy of PEFT methods and Full Fine-tuning on SuperGLUE benchmark when using
T5-Large as the base model. The X-axis shows the number of trainable parameters.

3.3.4 DEEPER INSIGHTS INTO C-POLY

As outlined in Section 3.3.2, our dual-skill framework, C-Poly, consistently delivers robust en-
hancements across various architectures, task scales, and model sizes. Here, we try to explore the
intrinsic attributes of C-Poly that drive these performance gains.

Explicit skill separation enhances knowledge sharing Task-specific skills enable the task-
common component to focus on task similarities, while they manage the distinct elements of each
task. In Appendix A.5, we conducted a deep analysis on the task-common allocation matrix WA.
Figures 5, 6, and 7 demonstrate WA of C-Poly in certain layers of GLM-10B for SuperNI-10,
SuperNI-50, and SuperNI-100 respectively. After proper normalization, these matrices show clear
differences in skill allocation for different tasks. Additionally, we performed task clustering based
on the skill allocations learned in all layers of the GLM-10B model trained on SuperNI-100, with
and without the task-specific component (i.e., comparing C-Poly and Poly). The clustering out-
comes are shown as dendrograms in Figures8 and 9, which suggest the enhanced performance of
C-Poly is due to a more balanced task hierarchy, facilitating more effective knowledge transfer
among similar tasks and improved distinction of unrelated ones.

Equilibrium in skill allocation is crucial The introduction of C-Poly prompts the need to balance
task-common and task-specific parameter allocation.We must establish the optimal A and B values.
In Appendix A.3, we explore various (A,B) pairings, maintaining a fixed total parameter count and
confirm that task-specific skills significantly boost model performance. However, allocating enough
parameters to task-common skills is crucial for shared knowledge acquisition. Excessive focus
on task-specific parameters can impede the learning process, potentially causing overfitting and
hindering the model’s ability to recognize similarities across tasks, which may lead to suboptimal
performance. A balanced parameter distribution promotes clear task distinction and helps prevent
overfitting, preserving the model’s generalization capabilities. Identifying the ideal parameter ratio
and configuration is a critical aspect for C-Poly and may vary depending on the nature of the tasks
and datasets involved.
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4 RELATED WORKS

4.1 PARAMETER-EFFICIENT FINE-TUNING

Numerous researchers have proposed incorporating adapters within neural networks, strategically
placed between existing layers, and enforcing weight constraints on these adapters. LoRA (Hu
et al., 2022), for instance, advocates for fine-tuning the model by learning low-rank matrix weights
and aligning them with sovereignty. Building upon LoRA, (IA)3 (Liu et al., 2022a) offers further
enhancements by introducing a relatively modest number of novel parameters. In the context of
model adjustment, Prefix Tuning (Li & Liang, 2021), along with Prompt Tuning (Lester et al., 2021)
and P-Tuning (Liu et al., 2022b), emerges as a technique that exclusively optimizes a small segment
of continuous task-specific vectors, thereby strengthening downstream task optimization.

4.2 MODULAR MULTI-TASK LEARNING

Modular neural network architectures (Jacobs et al., 1991a) offer benefits like positive transfer,
compositionality, and parameter efficiency (Zhang et al., 2023b). They consist of modules (which
represent skills that can be combined and updated independently), a routing function (to select mod-
ules per task or example with variants like fixed, learned hard, or learned soft routing (Rosenbaum
et al., 2017; Jacobs et al., 1991b; Fernando et al., 2017)), and an aggregation function (to merge
outputs of active modules, often as a learnable network). Notably, within the realm of NLP, Fedus
et al. (2021)successfully extended the pre-training of large language models to trillions of parame-
ters by leveraging the MoE architecture. Previous studies (Rajendran et al., 2015; Ponti et al., 2022;
Kingetsu et al., 2021; Kudugunta et al., 2021) have explored approaches to enforce parameter reuse
and modularity in multitasking learning. Rajendran et al. (2015) trained individual modules for
each task and subsequently learned how to reuse these modules.

4.3 LANGUAGE MODELS

The Transformer architecture serves as a fundamental framework for sequence pair modeling.
Building upon this foundation, Radford & Narasimhan (2018) employed a stack of Transform-
ers to effectively model autoregressive languages through the deployment of encoders and decoders.
BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019) are classic text modeling methodolo-
gies, both relying on Transformer units pre-trained on vast amounts of textual data. The encoder-
only architecture model is particularly suited for comprehension-based tasks, whereas generative
tasks benefit from both encoder-decoder and decoder-only architecture models due to their auto-
regressive nature (Fu et al., 2023; Sarrouti et al., 2022).

5 CONCLUSION

In this article, we introduce a novel paradigm for PEFT called Customized Polytropon C-Poly. By
explicitly distinguishing between task-common and task-specific skills, our method enables efficient
multi-task fine-tuning on large language models, even with limited computational resources. Our
approach addresses the challenge of resource limitations and allows for efficient training. The sepa-
ration of exclusive and general skills effectively mitigates the seesaw problem and negative transfer
commonly encountered in multitasking learning, leading to superior overall performance, which also
offers compelling interpretability. Evaluations on various benchmark demonstrate the effectiveness
of the proposed method, which surpasses existing PEFT baselines and achieves state-of-the-art per-
formance. These results highlight the potential and significance of our unified multi-task learning
framework C-Poly in the field of parameter-efficient multi-task learning.
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fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

11

https://aclanthology.org/2021.findings-emnlp.304
https://aclanthology.org/2021.findings-emnlp.304
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2022.acl-short.8
https://doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3219819.3220007


Published as a conference paper at ICLR 2024

Edoardo M Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining modular skills
in multitask learning. arXiv preprint arXiv:2202.13914, 2022.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Janarthanan Rajendran, Aravind Srinivas, Mitesh M. Khapra, P Prasanna, and Balaraman Ravindran.
Attend, adapt and transfer: Attentive deep architecture for adaptive transfer from multiple sources
in the same domain, 2015.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning, 2017.

Mourad Sarrouti, Carson Tao, and Yoann Mamy Randriamihaja. Comparing encoder-only and
encoder-decoder transformers for relation extraction from biomedical texts: An empirical study
on ten benchmark datasets. In Proceedings of the 21st Workshop on Biomedical Language Pro-
cessing, pp. 376–382, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.bionlp-1.37. URL https://aclanthology.org/2022.bionlp-1.
37.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncertainty in
bayesian neural networks. In International Conference on Artificial Intelligence and Statistics,
2017.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction (ple): A
novel multi-task learning (mtl) model for personalized recommendations. In Proceedings of the
14th ACM Conference on Recommender Systems, RecSys ’20, pp. 269–278, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450375832. doi: 10.1145/3383313.
3412236. URL https://doi.org/10.1145/3383313.3412236.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Car-
les Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset: A
dataset of datasets for learning to learn from few examples. CoRR, abs/1903.03096, 2019. URL
http://arxiv.org/abs/1903.03096.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mi-
rali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang
Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Pa-
tro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 5085–5109, Abu Dhabi, United Arab Emirates, December

12

https://aclanthology.org/2022.bionlp-1.37
https://aclanthology.org/2022.bionlp-1.37
https://doi.org/10.1145/3383313.3412236
http://arxiv.org/abs/1903.03096


Published as a conference paper at ICLR 2024

2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL
https://aclanthology.org/2022.emnlp-main.340.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating
and improving multi-task optimization in massively multilingual models. arXiv preprint
arXiv:2010.05874, 2020.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. Crossfit: A few-shot learning challenge for cross-task
generalization in nlp. arXiv preprint arXiv:2104.08835, 2021.
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A ADDITIONAL RESULTS

A.1 ABLATION ON THE NUMBER OF TASKS

To understand how our approach scales with the number of tasks, we performed experiments with
varying task numbers - 10, 50, and 100 from SuperNI dataset. Table 4, Table 5 and Table 6 show the
performance of T5-Large, Flan-T5-Large, and GLM-10B models respectively. These results affirm
that our method C-Poly is highly effective and scalable across various task numbers. Our approach
shows not only superior performance in lower task settings but also maintains its competitive edge
as the number of tasks increases. It is worth mentioning that FLAN-T5-Large is trained on FLAN
dataset, and it may have some similarities or overlaps with the SuperNI dataset, which makes its
performance relatively high.

Table 4: Performance of T5-Large on different numbers of tasks from SuperNI dataset. We report
the average Rouge-1, Rouge-L, and Rouge-LSum for all tasks. Higher is better for all metrics.

# of Tasks PEFT Method Rouge-1 Rouge-L Rouge-LSum
LoRA 14.22 14.12 14.19

MoE-LoRA 16.75 16.71 16.76
Poly 17.34 17.31 17.38
MHR 17.17 17.11 17.16

10

Our Method 42.62 42.47 42.60
LoRA 32.58 31.64 31.59

MoE-LoRA 39.50 38.47 38.46
Poly 46.13 44.25 44.28
MHR 47.27 45.43 45.39

50

Our Method 53.39 51.68 51.63
LoRA 34.16 33.64 33.65

MoE-LoRA 36.82 36.13 36.15
Poly 43.04 42.05 42.09
MHR 44.24 43.32 43.34

100

Our Method 49.34 48.50 48.51

Table 5: Performance of FLAN-T5-Large on different numbers of tasks from SuperNI dataset. We
report the average Rouge-1, Rouge-L, and Rouge-LSum for all tasks. Higher is better for all metrics.

# of Tasks PEFT Method Rouge-1 Rouge-L Rouge-LSum
LoRA 67.82 67.01 67.03

MoE-LoRA 67.95 67.12 67.15
Poly 68.10 67.29 67.33
MHR 77.49 77.25 77.36

10

Our Method 77.73 77.58 77.61
LoRA 70.66 69.10 69.03

MoE-LoRA 70.81 69.25 69.21
Poly 70.76 69.23 69.15
MHR 70.92 69.39 69.33

50

Our Method 71.17 69.68 69.62
LoRA 68.26 67.42 67.42

MoE-LoRA 68.59 67.76 67.75
Poly 68.45 67.60 67.58
MHR 68.84 67.77 67.78

100

Our Method 68.69 67.80 67.82
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Table 6: Performance of GLM-10B on different numbers of tasks from SuperNI dataset. We report
the average Rouge-1, Rouge-L, and Rouge-LSum for all tasks. Higher is better for all metrics

# of Tasks PEFT Method Rouge-1 Rouge-L Rouge-LSum
LoRA 30.64 30.40 30.42

MoE-LoRA 33.92 33.79 33.77
Poly 34.53 34.41 34.31
MHR 33.63 33.47 33.47

10

Our Method 43.74 43.72 43.65
LoRA 34.16 33.00 32.98

MoE-LoRA 39.87 38.63 38.55
Poly 44.81 43.09 43.07
MHR 45.32 43.62 43.56

50

Our Method 53.17 51.27 51.32
LoRA 43.16 42.04 42.09

MoE-LoRA 45.97 44.79 44.89
Poly 47.96 46.80 46.80
MHR 48.53 47.34 47.33

100

Our Method 49.53 48.45 48.45

A.2 ABLATION ON THE MODEL SCALE

We conducted an ablation study across various scales of the T5 model, including T5-Large (0.78B),
T5-XL (3B), and T5-XXL (11B), as well as FLAN-T5 variants. Table 7 and Table 8 summarised
the experiments conducted on 100 tasks from SuperNI. The results demonstrate a clear trend: as
the model scale increases, there is a consistent improvement in performance for all methods, includ-
ing ours. Notably, our method C-Poly shows significant gains over other PEFT methods across
all scales of the T5 and FLAN-T5 models, suggesting that our approach effectively leverages the
increased model capacity. The performance improvement is more pronounced in larger models (T5-
XXL and FLAN-T5-XXL), indicating that while model capacity plays a role, our method might be
particularly effective at utilizing the additional capacity.

Table 7: Performance of T5 models on the 100 randomly selected tasks from SuperNI dataset. We
report the average Rouge-1, Rouge-L, and Rouge-LSum for all tasks. Higher is better for all metrics.

Base Model PEFT Method Rouge-1 Rouge-L Rouge-LSum

T5-Large

LoRA 34.16 33.64 33.65
MoE-LoRA 36.82 36.13 36.15

Poly 43.04 42.05 42.09
MHR 44.24 43.32 43.34

Our Method 49.34 48.50 48.51

T5-XL

LoRA 34.93 34.34 34.40
MoE-LoRA 39.78 38.83 38.87

Poly 43.61 42.61 42.62
MHR 45.53 44.62 44.61

Our Method 50.57 49.74 49.76

T5-XXL

LoRA 49.97 48.89 48.93
MoE-LoRA 52.14 51.12 51.15

Poly 55.42 54.65 54.64
MHR 55.81 55.01 55.01

Our Method 62.23 61.44 61.47
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Table 8: Performance of FLAN-T5 models on the 100 randomly selected tasks from SuperNI dataset.
We report the average Rouge-1, Rouge-L, and Rouge-LSum for all tasks. Higher is better for all
metrics

Base Model PEFT Method Rouge-1 Rouge-L Rouge-LSum

FLAN-T5-Large

LoRA 68.26 67.42 67.42
MoE-LoRA 68.59 67.76 67.75

Poly 68.45 67.60 67.58
MHR 68.84 67.77 67.78

Our Method 68.69 67.80 67.82

FLAN-T5-XL

LoRA 71.01 70.21 70.24
MoE-LoRA 71.08 70.29 70.33

Poly 71.12 70.31 70.35
MHR 71.18 70.36 70.40

Our Method 71.57 70.72 70.74

FLAN-T5-XXL

LoRA 71.89 71.07 71.08
MoE-LoRA 72.05 71.25 71.26

Poly 72.55 71.76 71.78
MHR 72.40 71.61 71.63

Our Method 73.09 72.27 72.28

A.3 ABLATION ON THE SKILL ALLOCATION

We designed an experiment to investigate the impact of the relative size of common skill and task
specific skill on the results under the same parameter quantity, as shown in Table 9. The result
shows that the gain is most significant when the number of task specific skills is 1, indicating that
explicitly separating the general skills and proprietary skills of skills is the main factor that brings
improvement, which is consistent with the methods and viewpoints explained in our paper.

Table 9: Performance of T5-Large, FLAN-T5-Large and GLM-10B on the 100 randomly selected
tasks from SuperNI dataset. For each model, we apply C-Poly with different settings of skill
allocation. We report the average Rouge-1, Rouge-L, and Rouge-LSum for all tasks. Higher is
better for all metrics.

Base Model Common Skills Specific Skills Rouge-1 Rouge-L Rouge-LSum
4 0 43.04 42.05 42.09
3 1 49.34 48.50 48.51
2 2 48.79 47.94 47.94T5-Large

1 3 47.46 46.60 46.59

4 0 68.45 67.60 67.58
3 1 68.69 67.80 67.82
2 2 68.47 67.63 67.65FLAN-T5-Large

1 3 68.21 67.36 67.41

4 0 47.96 46.80 46.80
3 1 49.53 48.45 48.45
2 2 49.19 48.16 48.16GLM-10B

1 3 46.85 45.74 45.73

A.4 EXPERIMENTS OF FLAN-T5-XL ON SUPERGLUE

We conducted SuperGLUE experiment on FLAN-T5-XL and the result is summarized in Figure 4.
Experiments show that compared to FLAN-T5-Large (0.78B) in Figure 2, FLAN-T5-XL (2B) can
achieve a more stable improvement on the SuperGLUE benchmark. As the model gets larger, its gen-
eralization ability becomes stronger and it can adapt to more tasks, meanwhile because of C-Poly,
the phenomenon of negative transfer gets weakened.

16



Published as a conference paper at ICLR 2024

Figure 4: FLAN-T5-XL with different PEFT methods on SuperGLUE benchmark. We reported
overall averaged (AVERAGE) and task-specific accuracy for all sub-tasks.

A.5 ANALYSIS ON THE TASK-COMMON SKILL ALLOCATION

To further analyze our approach, we visualize the allocation weights for task-common skills, in
Figure 5, Figure 6, and Figure 7. We reuse the GLM-10B models trained on different number of
SuperNI tasks in Table 6, and select layer 0-10-20-30-40 for visualization. These figures show that
the learned task-common weights for different tasks are clearly separated and differentiated.

To compare C-Poly with original Poly, we clustered tasks based on the task-common skill allo-
cations learned in all layers of the GLM-10B model trained on SuperNI-100. The clustering results
are showed in Figure 8 and Figure 9. From the dendrograms, we can see that the C-Poly clusters
are more reasonable and balanced than those from Poly. It shows that our method C-Poly has
stronger discrimination on the differences and similarities among tasks.
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Figure 5: Visualization of the common skill allocation matrix WA of selected transformer layers in
GLM-10B after training on SuperNI-10.
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Figure 6: Visualization of the common skill allocation matrix WA of selected transformer layers in
GLM-10B after training on SuperNI-50.
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Figure 7: Visualization of the common skill allocation matrix WA of selected transformer layers in
GLM-10B after training on SuperNI-100.
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Figure 8: Task clustering dendrogram for common skill allocation matrix WA of C-Poly using
GLM-10B as the base model in SuperNI-100 experiment. Tasks are grouped into the same category
if they share a similar subset of skills.
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Figure 9: Task clustering dendrogram for common skill allocation matrix WA of Poly using GLM-
10B as the base model in SuperNI-100 experiment. Tasks are grouped into the same category if they
share a similar subset of skills.
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