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ABSTRACT

This paper addresses the critical challenge of unlearning in Vertical Federated
Learning (VFL), a setting that has received far less attention than its horizontal
counterpart. Specifically, we propose the first method tailored to label unlearn-
ing in VFL, where labels play a dual role as both essential inputs and sensitive
information. To this end, we repurpose manifold mixup traditionally used as an
augmentation technique into a privacy-preserving transformation that disguises
label information in the shared embeddings. These augmented embeddings are then
subjected to gradient-based label forgetting, effectively removing the associated
label information from the model. To recover performance on the retained data,
we introduce a recovery-phase optimization step that refines the remaining embed-
dings. This design achieves effective label unlearning while preserving privacy and
maintaining computational efficiency. We validate our method through extensive
experiments on diverse datasets, including MNIST, CIFAR-10, CIFAR-100, Model-
Net, Brain Tumor MRI, COVID-19 Radiography, and Yahoo Answers demonstrate
strong efficacy and scalability. Overall, this work establishes a new direction for
unlearning in VFL, showing that re-imagining mixup as a privacy mechanism can
unlock practical, privacy-preserving, and utility-preserving unlearning. Our code
will be released publicly.

1 INTRODUCTION

Vertical Federated Learning (VFL) (Yang et al., 2019) enables multiple organizations to collabora-
tively utilize their private datasets in a privacy-preserving manner, even when they share some sample
IDs but differ significantly in terms of features. In VFL, there are typically two types of parties: (i)
the passive party, which holds the features, and (i) the active party, which possesses the labels. VFL
has seen the widespread application, especially in sensitive domains like banking and healthcare,
where organizations benefit from joint modeling without exposing their raw data (Li et al., [2020).

>

A fundamental requirement in VFL is the necessity for unlearning, driven by the “right fo be forgotten’
as mandated by regulations such as GDP and CCP While unlearning has been explored in
Horizontal Federated Learning (HFL), there has been limited attention to its application in vertical
settings. Existing studies on vertical federated unlearning (Li et al., |2024; Wang et al., 2024; Han
et al., |2025) primarily address the removal of features when an entire passive client withdraws. In
contrast, this paper focuses on label unlearning, which is particularly critical in scenarios where
labels encode highly sensitive information. For example, in medical diagnostics, one may wish
to erase the label indicating whether a patient is HIV-positive, as it reveals private health status.
Similarly, in credit risk assessment systems, revoking the label associated with a loan approval
decision helps safeguard against fairness and regulatory concerns.

However, our empirical results (see Sect.[3.2)) show that directly applying current popular unlearning
methods, such as retraining (Bourtoule et al., 2021} |Foster et al., [2024a)) or Boundary unlearning
(Chen et al.| |2023)), poses a critical privacy risk. In VFL, the active party holds the labels, while the
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passive party only holds features. Under the threat model, the passive party may act as an adversary
and must not learn either the labels or which labels are being unlearned. Yet retraining requires the
active party to explicitly identify to the passive party all samples tied to the deleted label (e.g., all
“cat” samples) so that they can be excluded from training. This disclosure directly links the passive
party’s features to the deleted label identities, leading to complete leakage of sensitive information.

To overcome this challenge, we introduce a novel few-shot unlearning framework for VFL that
removes labels from both active and passive models while relying only on a small public dataset.
To achieve this, we repurpose manifold mixup (Verma et al.,|2019) that is traditionally used as an
augmentation technique into a privacy-preserving transformation that disguises label information in
the shared embeddings. On these transformed embeddings, the active party performs gradient-based
forgetting, while inverse gradients allow the passive party to unlearn the corresponding representations
locally without accessing raw labels. A final recovery phase restores accuracy on the retained data.
Our framework shows that by re-purposing mixup as a vehicle for label concealment, it opens a new
direction for achieving efficient and privacy-preserving label unlearning in VFL.

Our proposed unlearning solution offers three key advantages: (i) Privacy-Preserving Unlearning:
It requires only a small subset of labeled public data, significantly minimizing the risk of label privacy
leakage; (ii) Enhanced Unlearning Effectiveness: By leveraging the manifold mixup technique, it
achieves effective unlearning with minimal data; and (iii) Computational Efficiency: The proposed
unlearning process is highly efficient, completing within seconds. The primary contributions of this
work are as follows:

1. To the best knowledge, this is the first work to address the unlearning of labels in VFL.
We first systematically elucidate the label privacy leakage that may occur when directly
applying traditional machine unlearning methods for label unlearning in VFL (see Sect.[3.2).

2. We propose a novel few-shot label unlearning method that effectively removes labels from
both the active and passive models in VFL using only a limited amount of public data. With
this, our approach not only minimizes the risk of label privacy leakage by using a small
number of data samples, but also enhances unlearning effectiveness through manifold mixup,
ensuring a more robust and efficient unlearning process (see Sect. ).

3. We conduct extensive experiments on diverse benchmark datasets, including MNIST (image),
CIFAR-10 (image), CIFAR-100 (image), ModelNet (image), Brain Tumor MRI (image),
COVID-19 Radiography (image) and Yahoo Answers (text). The results demonstrate that
our approach rapidly and effectively unlearns target labels, outperforming existing machine
unlearning techniques in both efficiency and effectiveness.

2 RELATED WORKS

This section reviews the related works in two aspects: machine unlearning & federated unlearning and
vertical federated learning & privacy attacks in VFL. Please refer to Appendix [A.8]for the comparison
of our method with existing studies on Federated Unlearning.

2.1 MACHINE UNLEARNING (MU) & FEDERATED UNLEARNING

Machine unlearning (MU) refers to the process of selectively removing the influences of specific
data points from a machine learning (ML) model after it has been trained. This process ensures that
the model “forgets” the contributions of specific data, as though the data had never been part of the
training process.

MU was first proposed by (Cao & Yang, [2015)) to remove specific data from a model without full
retraining (Garg et al.,2020; Chen et al.| 2021). It includes exact and approximate unlearning. Exact
methods like SISA (Bourtoule et al., 2021) and ARCANE (Yan et al., 2022) partition data, train
sub-models per partition, and retrain only the affected sections during unlearning. Approximate
unlearning includes methods like fine-tuning (Golatkar et al.l 2020a} Jia et al.| |2023)), random label
updates (Graves et al., 2021} |Chen et al., 2023)), noise injection (Tarun et al., 2024} [Huang et al.,
2021)), gradient ascent (Goel et al., 2022 |Cho1i & Na} 2023}, |Abbasi et al., 2023} |[Hoang et al., 2024),
knowledge distillation (Chundawat et al., [2023b; Zhang et al., [2023b; Kurmanji et al., [2023)), and
weight scrubbing (Golatkar et al., [2020azb; [2021}; |Guo et al., 2020; Foster et al., 2024a). While
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these rely on data during unlearning, Chundawat et al. (Chundawat et al.,[2023a) propose zero-shot
unlearning, and Yoon et al. (Yoon et al., 2022) introduce a few-shot approach using model inversion.

In federated unlearning, most of the existing works are focusing in the horizontal environment (Wu
et al., [2022; |Gu et al., [2024a; [Zhao et al.| 2023 Romandini et al., [2024; |Liu et al., [2024c; [Zhang
et al., [2023a;|Su & L1l 2023} |Ye et al., 2024 |Gao et al., 2024;|Cao et al., [2023b}; | Yuan et al., 2023;
Alam et al., 2024; |Li et al.| 2023 [Halimi et al.| 2022; Xia et al., 2023; Wang et al.,[2023aj; |Dhasade
et al.,[2023} |Liu et al.} 2022; Zhao et al., [2024; |Wang et al., 2022} |Gu et al., 2024b; [Liu et al., 2021}
Cao et al.,|2023a). The research on horizontal federated unlearning (HFU) mainly focuses on label
(Wang et al.| 2022} |Zhao et al.||2024)), client (Liu et al., | 2021; |Yuan et al.,|2023} |[Zhang et al., 2023a;
Gao et al., |2024; |Ye et al., [2024; [Su & Li, 2023 |Cao et al, 2023a; [Wu et al., 2022) and sample
unlearning (Liu et al., [2022; |[Dhasade et al., [2023). While HFU has been widely studied, vertical
federated unlearning (VFU) remains underexplored. Existing works mainly focus on passive party
unlearning, such as logistic regression (Deng et al.| 2023)), gradient boosting (Li et al., [2024])), and
deep learning models with fast retraining (Wang et al., 2024} or backdoor defence (Han et al., 2025)).
However, little attention has been given to active-party-initiated unlearning with all parties actively
engaged in VFL.

2.2  VERTICAL FEDERATED LEARNING & PRIVACY ATTACK IN VFL

Vertical Federated Learning is a collaborative machine learning framework that enables multiple
parties or organizations, each possessing different attributes of the same set of users or entities,
to train a shared model without exchanging their raw data (Yang et al.l 2019;|Liu et al., [2024b). In
VFL, privacy is of utmost importance because the participants are typically companies that handle
valuable and sensitive user information. Hence, numerous studies have been conducted on privacy-
preservation(Yang et al., 2024c; Xie et al., [2024} [Wang et al.,|2023b), privacy leakage attack (He
et al.,[2024} [Liu et al., [2025} [2024a)) and privacy leakage defend (Qiu et al., [2024} [Wu et al.| [2025)).

There are mainly two types of privacy attacks in VFL: i) label inference attacks, and ii) feature
inference attacks. Label inference attacks (Fu et al.l|2022a} |[Li et al.|2021) are initiated by the passive
party and aim to infer the label possessed by the active party. Feature inference attacks (He et al.,
2019; Jin et al., 2021} |Luo et al., [2021; Yang et al.,[2024b)), on the other hand, are initiated by the
active party and aim to discover the features of the passive party.

3 LABEL LEAKAGE DURING VERTICAL FEDERATED
UNLEARNING

This section introduces the general setup and discusses the risk of label leakage during the label
unlearning process.

3.1 GENERAL SETUP

VFL training. Vertical Federated Learning allows parties with different user attributes to collab-
oratively train a model without sharing raw data (Yang et al.| 2019; [Liu et al.,|2024b). The active
party holds the labels and active model, while passive parties provide features and passive models,
enabling performance gains with privacy preservation. We assume that a VFL setting consists of
one active party Py and K passive parties { Py, - - - , Pk } who collaboratively train a VFL model
© = (61, ,0k,w) to optimize:

N
o ;é(Fw o (Go, (r1,i), G, (x2,4), - s Gox (Tk.,i))s Yi),s (nH

w,01,-,

in which passive party P, owns features z; = ($k,1, .-+, Tk ) and the passive model Gy, , the
active party owns the labels y = {41, - ,ym } and active model F,,. Before training, parties use
Private Set Intersection (PSI) to align data records by same ID. During training, each passive party
k computes a forward embedding H}, from its features and sends it to the active party. The active

party concatenates embeddings { Hy } &, into H, generates outputs, computes the loss, and updates

its model using g—i. It then sends (f—ék to passive parties, which compute aaTi = a%k . 8(,)1;1 L to update

their models. Please refer to Appendix for table of notations.
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Label unlearning in VFL. When the active party requests to unlearn some sensitive labels y*, where
the corresponding unlearn feature is {z¢ }H< | = {{z¥ }7* }X . The active party aims to remove

the influence of y* on both the active model F,, and K passive models {Gg, }H<_|.

Label unlearning in VFL refers to the process of efficiently and securely removing label information
from a VFL system. Specifically, the unlearned passive model of passive party k, denoted as 6}, and
the unlearned active model, denoted as w", are obtained through the application of an unlearning
mechanism U, as follows:

0? :Z/[(Qk,yu), w* :u(w,yu)7

where 6}, and w represent the passive model of passive party & and active model before unlearning,
respectively, and g* are the gradients associated with the unlearned label y*.

Building on (Bourtoule et al.,|2021), label unlearning in VFL should meet three goals: i) Privacy-
Preserving Unlearning: remove the impact of specific labels without affecting other data; ii)
Enhanced Unlearning Effectiveness: achieve this with minimal data; and iii) Computational
Efficiency: avoid full model retraining.

Threat Model. We assume all participating parties are semi-honest and do not collude with each
other. An adversary (i.e., the passive party) faithfully executes the training protocol but may launch
privacy attacks to infer the private labels of the active party.

Assumption. We assume that the passive party possesses corresponding labels for a limited number
of features, defined as DP = {(x},y?)}i—; = {{(z};,¥:)};71 iy, wWhere n, << n,. This
assumption is widely employed in prior works (Fu et al., 2022b; (Gu et al., 2023} [Zou et al., |2022).
Moreover, DP is consisted of the data with the unlearned label DP°* and data with other labels DP",
ie., DP = DPv  DP:",

3.2 LABEL LEAKAGE DURING UNLEARNING

Unlearning the influence of passive models {Gg, }&_;

poses the ri§k of le;akipg labels y* = {y}"', ... 7%2“} to Datasets | Membership Leakage Rate (%)
passive parties. This arises because the active party must Standard Retraining  Ours
transmit information (e.g., gradients g* = g,...,g, )  CIFARIO 100 14.38
during the unlearning process, which may enable label _CIFARI00 100 4.04

inference. Specifically, when unlearning a single label .

y¥, we consider two methods: (i) retraining (Foster et al, Table 1: The averaged membership leak-
2024a)) and (ii) boundary unlearning (Chen et al}, 2023). ag¢ rate evaluat.ed across all class for
In retraining, the active party must indicate which features CIFAR10/100 with ResNet18 (lower bet-
to exclude, revealing the label. In boundary unlearning, ter)- We set k = 5000 for CIFAR10 and

gradients linked to ¥ may also expose the label. k = 500 for CIFAR100, where F is the
total number of samples in each class.
As shown in Tab. [I] retraining inherently reveals the full

set of deleted labels to the passive party, resulting in 100% leakage of sensitive information. Moreover,
when unlearning multiple labels (m,,), label leakage worsens as the passive party can infer on the
transferred gradient by the active party (please refer to Appendix[A.3|for detailed experimental results).
In contrast, our method which will be detailed next departs from this by (a) Restricting information
exchange to embeddings and gradient updates of a small public subset, which provably (Appendix
[A.1] Bernstein inequality) bounds the residual influence of unlearned data, and (b) Demonstrating
empirically that membership/feature linkage leakage is reduced from 100% (retraining) to as low
as 14.38%. This demonstrates that the passive party could not reconstruct the full feature—label
correspondence of deleted data.

4 THE PROPOSED FEW-SHOT LABEL UNLEARNING METHOD

This section outlines the proposed few-shot label unlearning method, as shown in Fig. [Tjand Algorithm
The approach involves three steps: (1) augmenting the forward embedding with manifold mixup to
address limited labeled data (Sect. 4.1)); (2) using gradient ascent on the augmented embedding to
guide label removal in both passive and active models (Sect. [4.2)); and (3) improving model accuracy
on the retained labels (Sect. [4.3).
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Figure 1: Overview of our proposed few-shot unlearning framework in VFL setting.

4.1 VERTICAL MANIFOLD MIXUP

Due to the label privacy leakage issue (Sect. [3.2), directly applying traditional machine unlearning
methods will pose some challenges. We assume that the active party discloses a limited number of
labels to the passive party to facilitate the unlearning of a specific label. However, this small labeled
dataset with unlearned label, denoted as DP* = {(«'{', yf™), - -, (2}, y™) } 21", is insufficient
for an effective unlearning (see Fig[5). Consequently, this scenario can be framed as a few-shot
unlearning problem, wherein a minimal set of labels is employed to unlearn all associated labels.
Please refer to Appendix[A.4]for an explanation of why a small number of samples (up to 40 per label,
as shown in Tab. [§|and[J) is sufficient to achieve performance comparable to using the full dataset.

Drawing inspiration from the few-shot learning principles, we re-purpose the manifold mixup
mechanism (Verma et al., 2019) by interpolating hidden embeddings rather than directly mixing
the features. We propose a manifold mixup framework for VFL by optimizing the following loss
function:

Np,u
max > U(F, o (MixA(Go, (2471, Go, (2471)),
w,01, 0K Np,u = ’ ’

<o, Mixy (Goy (m’}é‘l), Go, (w%ﬁé)% Mix,\(yf’“, yf’“)%
where
Mixy(a,b) =A-a+ (1 —X)-b. 2)
The mixed coefficient A ranges from O to 1. The advantage of the manifold mixup approach lies in its

ability to flatten the state distributions (Verma et al.,[2019). Once each passive party k generates its
local embeddings {H;™" = Gy(z}'")}, these embeddings are transmitted to the active party. The

active party then constructs a set of synthesized embeddings H + by performing manifold mixup
among embeddings originating from the same passive party, ensuring consistency in the A value while
avoiding any coordination among passive parties. Similarly, for the small data with the remaining

label DP", we also implement the manifold mixup to obtain the H & and corresponding label §" for
the remaining accuracy recovery step.

4.2 VERTICAL GRADIENT-BASED LABEL UNLEARNING

Once the augmented embeddings {I;T Tyee- ,ﬁ}‘(} are generated, a straightforward yet effective
strategy is to implement gradient ascent for both the active and passive models using these augmented

embeddings. Specifically, the active party concatenates all embeddings {ﬁ M3 into a single tensor
H* = [ﬁ ey H %1, and optimizes it according to the following formulation:

IIBHE(Fw(ﬁu),gM) :g(Fw([ﬁ1,7ﬁ?(])7gm)a (3)
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where ¢ represents the mixture of the representative unlearned labels and 7 is the learning rate.

Unlearning for active model F,. On one hand, the ac- Algorithm 1 Our proposed unlearning
tive model undergoes unlearning for active model F,, via
gradient ascent as follows:

1: Input: Bottom models parameters

0 of K passive parties, top model
w = w4 gV, l(F,(H"), 7). 4) parameters w , unlearn data DP-*,
remain data DP'", learning rate 7,

Unlearning for passive model G, . Subsequently, the ac- unlearn epoch IV, batch size b.

. . LY ) 2: Output: Unlearned bottom models
tive party computes the gradients oy in accordance with parameters %, unlearned top model

equation [3|and transmits these gradients to the correspond- parameters w"
ing passive party k. Finally, the passive party k updates  3: for nin N do

the passive model Gy, using the following expression: 4: fork=1to K do
. . 5: Each passive party k generates
Or = 0k + Vg l(F,(H"),y") - Ve, Hy. (5 local embeddings and send it

. . to Active party.
Theorem 1. Suppose that both the trained passive model  ¢.  and for

0 and the active model w achieve a training loss bounded > Manifold Mixup
by a small value €. Then, when unlearning a single label, 8:  Active party generate ﬁ}j and ﬁ;?

the following holds: according to Eq. equation[2]
> Gradient-based Label Unlearn-
ing

~

—

E( “uygu)vwf(w; Hu, gm) . E(Hu,yu)vwg(w; Hu7 yu) > O7

bl

(Hv,

E ym)veg(g; ﬁu7 ) - E(Hu,yu)VM(@; H", ") >0, 10: Active party.updates w according
(6) to Eg. equation 4] o
11: Active party transfers -2 to all
where (ﬁ U ") denotes the manifold mixup embeddings passive parties. ’
and labels of the public data DP'" associated with the 12: for k =1to K do
unlearned label, (H",y") denotes the embeddings and 13: Each Passive party k& update 0
labels of the complete unlearned dataset D*., and { is the as Eq. equation[5]
main task loss of VFL. 14:  end for

15: > Remained Accuracy Recovery
Theorem [I]indicates that the gradient update direction for 16:  Active party updates w according
label unlearning, when applied to the augmented embed- to Eq. equation
dings of the public unlearned data, is positively aligned 17:  Active party transfers
with the gpdate direction derived from the embeddings passive parties.
of the entire unlearned dataset. This result suggests that . _

. . . 4 . 18: fork=1to K do
gradient-based label unlearning using only public data is 19:
effective and approximates the behavior of unlearning with '
access to all unlearned data. See proof in Appendix [A.T] 20:

oL

Diiy to all

Each Passive party k update 0,
as Eq. equation[7]

end for
21: end for
4.3 REMAINED ACCURACY RECOVERY 22: Return unlearned passive model
) . 0x = 0% and unlearned active model
The preceding step focuses solely on unlearning the target WA U

labels and does not explicitly account for the model’s
accuracy on the retained data. As a result, the predictive
performance on the remaining dataset may degrade. To address this issue, we introduce a Remained
Accuracy Recovery step aimed at enhancing model accuracy on the retained samples. Specifically,
using the small dataset with retained labels, denoted as DP>", we jointly optimize the passive and
active models with respect to the main task loss, formulated as follows:

w=w— VL l(F,(H",7), -
O = O — 0V g L(FL(H"), ") - Vo, Hy.
5 EXPERIMENTAL RESULTS

This section presents the empirical analysis of the proposed method in terms of utility, unlearning
effectiveness, time efficiency and some ablation studies.
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Model Datasets Metrics Accuracy (%)
Baseline Retrain FT Fisher Amnesiac Unsir BU SSD Ours
D’ 99.29 9933 +0.03 9899005 12.16+046 98.16+092 8492+ 1.13 98.72£0.02 96.50£0.19 99.05 = 0.01
MNIST y* 99.39  0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00=+000 5883179 0.00=000 0.00 £ 0.00
ASR 90.61  1.03+024 292+1.08 0.11+0.07 0.00£0.00 29.07+£7.95 047001 000000 035+ 0.01
2l 90.61  91.26+0.12 88.16+0.15 544+1077 86.37+020 7502+ 1.65 72.65+055 87.17+0.76 89.29+0.19
CIFARI0 y" 93.10  0.00£0.00 11.00£0.10 0.00£0.00 0.00£0.00 000000 325=0.15 0.00=000 0.00 = 0.00
ASR 83.84 25984127 15854233 506741251 1.62+0.54 7678 +044 3490+ 1.16 2574+278 17.23 +1.00
D 7143 71.03£0.12 66.86+0.73 61.04+£8.61 60.05+0.03 5932+0.14 5530081 6725091 69.96 L 0.12
CIFAR100 y" 83.00  0.00£0.00 12254225 0.00£0.00 000000 0.00+0.00 350+0.50 0.00=£0.00 0.00 = 0.00
ResNetl§ ASR 8840  2553+£336 29.30+£270 2810£4.10 260+130 73.70+170 6.00+0.60 6.80+0.01 5.02:+1.01
D" 9426 9390 £0.11 66.64+1.53 28.10+0.69 73.91+1.83 13.51£005 24.07+£027 81.89:+£098 87.69+0.21
ModelNet y* 100.00  0.00+0.00 0.00£0.00  0.00+£0.00 0.00£0.00 000000 000000 479102 2.00+0.00
ASR 9840  0.65+0.05 079+0.16 2348+077 1.11+016 4920+125 21.16+£023 077003  0.11+0.03
2l 9746 98.81+£0.34 81.89+0.82 3026+021 7829+0.09 7329+009 64.19+091 85934009 93.79+0.17
Brain MRI y" 97.29  0.00£0.00 433+£049  0.00£0.00 0.00£0.00 0.00+£000 367014 1.00£092 0.56+0.18
ASR 8232 48374131 2407+0.16 51.77+0.83 24294091 27.32+3.04 5836+092 5235+076 d5.71+0.99
D’ 92.82  9385+0.12 73.84+073 4098 +4.89 8176077 7230£037 66.13+£0.69 81.11+£0.15 92.35+0.77
COVID-19 Radiography Y 7333 0.00£0.00 0.00+0.00  0.00+0.00 0.00+000 1083+148 6.11+£1.92 0.00+0.00 0.00 + 0.00
ASR 88.97  46.67£2.74 20.51+228 4927099 1316392 37.52+532 18.12+2.63 36.17+0.02 39.21+0.11
D’ 89.50 9027 £0.19 88.69 £0.08 1593482 84.67+022 7474+072 826901 87.19+039 88.97+0.18
CIFAR10 Y 91.10  0.00+0.00 425+1.05  0.00+£0.00 0.00+000 000000 285+005 0.00+000 0.13+0.04
Vegl6 ASR 81.66  33.10£ 1.86 21.84+£2.66 42.25+623 236086 21.75+241 34531065 29.19+0.01 31.33+0.36
b2l 6548 65324032 59924056 35424195 5583+0.3 5578+£0.59 52214000 64.11+0.73 64.24+0.09
CIFAR100 y* 7700 0.00£0.00 250+£025  0.00£0.00 0.00+0.00 0.00+000 3.00+£000 1.19£0.03  1.00=+0.00
ASR 8720  42.13£273 34504430 4070 £3.50 310+0.15 4270+070 1820+ 0.11 39.11+0.91 20.28 + 0.67

Table 2: Accuracy of D", y* and ASR for each unlearning method across ResNet18 and Vggl6
models in single-label unlearning.

5.1 EXPERIMENT SETUP

Datasets & Models. We conduct experiments on seven datasets: MNIST (Lecun et al., [1998)),
CIFAR10, CIFAR100 (Krizhevsky et al.l [2009), ModelNet (Wu et al., 2015), Brain Tumor MRI
(Wang et al., 2024), COVID-19 Radiography (Rahman, 2022) and Yahoo Answers dataset (Fu
et al.,|2022a). We adopt ResNet18 (He et al., 2016) on the datasets MNIST, CIFAR10, CIFAR100,
ModelNet, Brain Tumor MRI and COVID-19 Radiography. We adopt MixText (Chen et al.l 2020) on
the Yahoo Answers dataset. We do extend our experiments with Vgg16 (Simonyan & Zisserman,
20135)) on the dataset CIFAR10 and CIFAR100. Experiments are repeated over five random trials, and
results are reported as mean and standard deviation. We conduct experiments on a single NVIDIA
A100 GPU.

VFL Setting & Unlearning Scenarios. We simulate a VFL setting with one active model owner
and 1-8 passive model owners. In single-label unlearning, one label is removed from all datasets; in
two-label unlearning, two labels are removed from CIFAR10/100; and in multi-label unlearning, four
labels are removed from CIFAR100. Appendix [A.9]summarizes model names, VFL configurations,
datasets, unlearned labels and hyper-parameters used for unlearning.

Evaluations Metrics. We evaluate the utility of unlearning by measuring the accuracy of remaining
data, D" before and after unlearning. The higher accuracy on D" indicates stronger utility. Stronger
utility indicates that more information of D" is being preserved.

To assess unlearning effectiveness, we use a basic Membership Inference Attack (MIA) from (Shokri
et al.,[2017) to measure the Attack Success Rate (ASR) and the prediction accuracy on the unlearned
label y“ before and after unlearning. MIA determines whether a data point was part of the model’s
training. Lower accuracy on y“ suggests more effective unlearning. A 0% ASR may indicate the
Streisand effect (Golatkar et al., [2020a), where the model consistently mispredicts all y* samples
as a single incorrect label. Ideally, the ASR should be slightly lower than that of a retrained model,
signaling successful unlearning without revealing extra information.

Time efficiency is measured by the runtime of each method: the shorter, the better. An effective
unlearning method should: a) preserve D" accuracy; b) reduce y* accuracy to near 0%; c) achieve an
ASR slightly below that of a retrained model; and d) run quickly.

Baselines. We compare our method with the following baselines: Retrain, Fine-Tuning (Golatkar
et al., 2020a; Jia et al., |2023), Fisher Forgetting (Golatkar et al., [2020a), Amnesiac Unlearning
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(Graves et al.,[2021)), UNSIR (Tarun et al.,|2024), Boundary Unlearning (Chen et al.,|2023)) and SSD
(Foster et al., 2024b)). The implementation details of each baseline are in Appendix

5.2 EXPERIMENTAL RESULTS

5.2.1 UTILITY GUARANTEE

To assess the utility of our proposed method, we evaluate accuracy on D" before and after unlearning
(Tab. 2). An effective unlearning method should retain as much information as possible from D".

From Tab. |2} we observe: i) Fine-tuning preserves D" well but has low unlearning effectiveness (see
Sect. [5.2.2); ii) Fisher forgetting severely degrades D" accuracy; iii) Amnesiac’s random mislabeling
shifts decision boundaries, hurting D", especially in label-rich datasets like CIFAR100 and ModelNet;
iv) UNSIR’s repair step fails to fully retain D", causing some degradation; v) Boundary unlearning
yields inconsistent results across datasets and models; vi) While SSD preserves D" reasonably well, it
underperforms slightly compared to our approach; vii) In contrast, our method consistently achieves
strong unlearning and retention performance.

5.2.2 UNLEARNING EFFECTIVENESS

For unlearning effectiveness, we run MIA to evaluate if the unlearned model leaks any information
about the y* and measure the accuracy of y" before and after unlearning.

From Tab. [2| we observe: 1) Fine-tuning performs poorly on CIFAR10/100; ii) Fisher forgetting, Am-
nesiac, and UNSIR effectively reduce y* accuracy to 0.00%; iii) Boundary unlearning is inconsistent
across datasets and models, with mixed results; iv) SSD shows strong unlearning effectiveness across
all settings; v) In contrast, our method consistently achieves effective unlearning across all settings.

From Tab. 2] we further observe: i) Fine-tuning yields consistent ASR; ii) Fisher forgetting often
shows high ASR; iii) Amnesiac consistently has low ASR; iv) UNSIR shows high ASR in most cases;
v) Boundary unlearning has relatively stable ASR; vi) SSD achieves strong ASR performance across
most datasets, with the exception of ModelNet and Brain MRI; and vii) our method consistently
achieves strong ASR across all settings.

5.2.3 TIME EFFICIENCY
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Figure 3: Accuracy of D", y* and ASR for each unlearning method across ResNet18 model in
single-label unlearning on different number of passive parties.
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Table 3] shows the effectiveness of our method in preserving the accuracy of the retained data (D")
while substantially reducing the accuracy of the unlearned data (y*). For example, the accuracy of
the unlearned data drops sharply from 41.63% to 1.41%, whereas the accuracy of the retained data
decreases by less than 2%. Other baseline methods are excluded from direct comparison as they are
designed primarily for image datasets and do not generalize well to text-based tasks.

5.3 ABLATION STUDY

In this section, we conduct an ablation study on the effectiveness of different sizes of DP“, our
method across varying numbers of passive parties and different privacy-preserving VFL mechanisms.

Module-Omission Experiments: We conduct module-omission experiments to quantify the con-
tribution of individual components to overall performance. We evaluate four experimental variants:
(i) standard gradient ascent using all data samples, (ii) few-shot gradient ascent under the same data
samples as our method, (iii) few-shot gradient ascent with mixup, and (iv) our proposed approach.
Please refer to Appendix [A.5]for complete results.

Evaluation for different numbers of passive parties: The robustness of our approach is unaffected
by the number of passive parties. Experiments with varying participant counts (see Fig. [3) show
consistent performance across all settings, demonstrating that scalability is preserved.

Evaluation for different privacy preserving VFL methods: Our method remains effective when
applied to privacy-preserving VFL models. To validate this, we evaluate performance under Differen-
tial Privacy and Gradient Compression, two mechanisms that are widely adopted in VFL training
2022b). The results confirm that our approach maintains robustness, underscoring its
practicality for real-world deployments. Please refer to Appendix [A.6|for a complete result.

Multi-label Unlearning: Similarly, our method remains highly effective and maintains strong utility
even under more challenging conditions (i.e. unlearning multiple labels), underscoring its reliability
across diverse scenarios. Please refer to Appendix [A.7]for complete results.

6 CONCLUSION

This paper presents a pioneering approach to label unlearning within the VFL domain, addressing a
critical gap in the existing literature. By introducing a few-shot unlearning method that leverages
manifold mixup, we effectively mitigate the risk of label privacy leakage while ensuring efficient
unlearning from both active and passive models. Our systematic exploration of potential label
privacy risks and extensive experimental validation on benchmark datasets underscore the proposed
method’s efficacy and rapid performance. Ultimately, this work not only advances the understanding
of unlearning in VFL but also sets the stage for further innovations in privacy-preserving collaborative
machine learning practices.
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A APPENDIX

This appendix provides additional theoretical insights, extended experimental results and further
implementation details to support the main submission. We begin with a theoretical analysis of
unlearning effectiveness in Sect. [A.1] followed by a table of notations in Sect. [A.2]for reference. Sect.
[A.3|provides an explanation of label leakage during the unlearning process in VFL, while Sect. [A.4]
discusses why our method can achieve strong results with only a small number of data samples. Sect.
[A3] highlights the importance of each component in our framework through a module ablation study.
In addition, Sect. [A.6|presents ablation experiments on applying our method to privacy-preserved
VFL models. Sect. presents the experimental results for two-label and multi-label unlearning
scenarios, showcasing the effectiveness of our solution in handling more complex unlearning tasks.
This section also includes a detailed performance analysis of each baseline across three key metrics:
(i) accuracy on D", (ii) accuracy on y* and (iii) ASR score. Sect. [A.8]presents a comparative table
of our method against existing Federated Unlearning approaches, highlighting the capability of our
method to preserve label privacy during the unlearning process. Finally, in Sect. [A.9] we provide
detailed information about the experiment setup, including model architectures, unlearning scenarios,
baseline methods, datasets, and the data distribution among parties.

A.1 THEORETICAL ANALYSIS FOR UNLEARNING EFFECTIVENESS

Theorem 2. Suppose that the trained passive model 0 and active model w achieve near-zero training
loss. Then, when unlearning a single label, the following holds:

E(ﬁugu)vwé(w;H“,gj“) “Egu gy Vol(w; HY, y") > 0,

. (3)
E(ﬁugu)Veﬁ(@; H", :Ij") . E(Hu’yu)VQE(e; Hu, y“) > 0,

where (ﬁ U ") denotes the manifold mixup embeddings and labels of the public data DP** associated
with the unlearned label, (H",y") denotes the embeddings and labels of the complete unlearned
dataset D*., and ! is the main task loss of VFL.

Proof. In simplified analysis, we set the loss based on the small-size public data D*'P, the manifold
mixup of D*P, and the original unlearned data D* are {1, £,,;, and {5 respectively. We consider a
two-layer linear neural network: f(x) = w(6x). The loss function is the Mean Squared Error (MSE):

= 5157 Siep 1/ (@) — will®.

For a public unlearned sample (z},y"), let H* = Oz} be the hidden representation, z; = wH}" be
the output, e; = z; — y;* be the error. The gradients are:

Voli = eH!', Voli=w ezl )

Averaging the gradients over the any dataset D*-P are:

1 1
VWE = ﬁ ZengT7 ng = ﬁ ZWTei.T?T (10)

Given two samples (z', y;'), (¢}, y;'), and a mixup coefficient A € [0, 1], we have:

Hpix = /\Hlu + (1 - )\)H;L’ Ymix = /\y? + (1 - )\)y;L,

11
Zmix = WHmix = )\Zz + (]- - )\)Z;'Lemix = Zmix — Ymix = )\ei + (]- - )\)ej ( )

Then we have the gradients on w for manifold mixup:
Vilmix = emixHIIix
= (Ae; + (1= N)ej)(AH! + (1 — N H! )
= NeH!T + A1 = N (eHP ' +e;HE )+ (1— A)2e; Hi '
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The gradients on 6§ for manifold mixup:

vOémix = Vhémix . vOI{mix
=w emx(Az} T+ (1= M)y ")

=Nwlezt T + A1 — /\)(wTeiz}LT + wTejx?T) +(1- )\)2wTejx;*T

Since
Eleh'] = Vut1, Elw'ex'] = Vol

We have:

E[Vulmix) = 2EN?]V,l1 + 2(E[N — EN2))E[e]E[R] T

E[Volmid] = 2E[N2] Vol + 2(E[N] — E[N])w  Ele]E[z] T
Due to the near-zero training loss, E[e] tends to be zero, we obtain the averaged gradients of w and
on the public dataset D“P

E[Velmix] ~ 2EN2]Vily, E[Volmi] ~ 2E[N]Vely (12)

Since the DP* is the subset of the total unlearned dataset D*, we can leverage the Chebyshev’s
Inequality to obtain Vgly - Vgly > 0 and V01 - V.l > 0 with the probability 1 — O(—1—), where
Np,u is the data size of DP>*. Combining Eq.equation [I2} we can obtain '

E[Volmis] - EN ]Vl >0, E[Vglmi] - E[N*]Vgly > 0, (13)
which completes the proof. O
Theorem [2] indicates that the gradient update direction for label unlearning, when applied to the
augmented embeddings of the public unlearned data, is positively aligned with the update direction
derived from the embeddings of the entire unlearned dataset. This result suggests that gradient-based

label unlearning using only public data is effective and approximates the behavior of unlearning with
access to all unlearned data.

A.2 TABLE OF NOTATION

Table ] summarises all notations used throughout the paper for clarity.

Notation | Meaning

F,,,Gp, | Active model and £y, passive model
w", 0 Unlearned active model and unlearned k;;, passive model
K The number of passive party
A Mixed coefficient
i Learning rate
N Unlearning epochs
Xk Private features own by k;j passive party
Y Private label owned by active party
w The unlearn labels
{x} The unlearned feature for client k corresponding to the y*
Ty, The known features for client k corresponding to the y*
Hy Forward embedding of passive party k

H i H + | Augmented forward embedding of passive party k of unlearn data and remain data.
Ik Gradient on the embedding Hj,.

Table 4: Table of Notations
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Figure 4: Illustration of label leakage (%) with Boundary unlearning in VFL using ResNet18 model
on different number of labels and datasets.

A.3 LABEL LEAKAGE DURING UNLEARNING

Figure [ shows the label leakage (in %) of Boundary Unlearning in VFL settings for varying numbers
of unlearning labels. Single label unlearning shows 100% label leakage since passive parties can
immediately infer that all samples involved belong to the same label. Moreover, when unlearning
multiple labels (m,,), label leakage worsens as the passive party can infer on the transferred gradient
by the active party. Increasing the number of labels, therefore, results in a larger portion of data
being exposed during the unlearning process. For instance, with four labels from CIFAR-100, a total
of 62.45% of label leakage is exposed. In boundary unlearning, the passive party can infer label
information from the gradients g* sent by the active party. Specifically, the passive party employs
clustering on g to derive m,, clusters by optimizing the following objective function:

My
min 32 3 lot — gyl (14)

9:€Cj j=1

where C; denotes the set of points assigned to cluster j, and g;' represents the centroid of cluster j.
Consequently, the passive party can deduce the labels of the features in X'.

A.4 WHY TINY PUBLIC SET SUFFICES

Our goal is unlearning, not full re-training. Thus, we only need a small parameter shift to cancel the
target label’s influence. Below, we quantify three reasons why a much smaller public set D"-? can
achieve this.

1. Variance reduction via manifold mixup. Manifold mixup augments each public example
into an infinite family of virtual points, reducing the gradient-estimator variance proportion-
ally to the number of synthetic mixtures. Recent few-shot studies show that manifold-mixup
greatly reduces sample requirements. For example, (Mangla et al.},[2020) achieves a higher
accuracy than prior baselines on four vision benchmarks using only 5 to 20 samples per
class. Similarly, SimpliMix (Yang et al., 2024d) achieves strong gains in few-shot 3-D
point-cloud classification.

2. Tiny update magnitude. The pre-unlearning model already fits the data (loss ~ 0). As

shown by 2019), when the source and target domains are similar, even simple
few-shot methods can perform well with minimal fine-tuning. Hence, once the gradient
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direction is reliable, only a small update is needed. In other words, because unlearning starts
from a model that already fits the data, only the label-specific contribution must be removed,
making the required parameter displacement is tiny. In the quadratic loss setting analysed in
our theoretical analysis (Appendix [A.T)), the required step length scales with the gradient
norm. Once the direction is correct, even a single mini-batch update can eliminate the label.

3. Exponential concentration of the gradient direction. Extending Eq. equation[I2]in our
Appendix [A.T| with the vector Bernstein inequality (see Section 2.8 of (Vershyninl, [2018))

gives
Pr[cos Z(Vilmix,is Vol) <1 — 5] < exp(fc|D“’p 52),

where ¢ depends on E[A\?]. Thus, the chance that the mixed-sample gradient deviates
substantially from the full-data gradient vanishes exponentially with the number of public
samples; a few dozen already give high-probability alignment.

Specifically, the underlying tail bound for the sum of augmented embeddings follows
precisely the Bernstein inequality (Vershynin, 2018)):

P Xl >t} < 2expl—emin{t?/37, | X3, , t/max; [| Xly, },

where X; = cos Z(V,mix,i; V) and £y ; represents i,;, mixture gradients.

Intuition. Each augmented sample acts like an arrow pointing toward the true unlearning direction.
Applying manifold mixup to only a small number of data samples generates thousands of synthetic
gradient directions. Averaging these directions cancels out random variance, as guaranteed by the
Bernstein inequality. Because our model already starts near the solution, a short step along this
accurately aligned direction suffices to complete unlearning.

A.5 MODULE-OMISSION EXPERIMENTS

This set of experiments was conducted using the ResNet18 architecture on the CIFAR-10 dataset
under a single-label unlearning scenario. In Fig. [5] GA-A (Gradient Ascent-All) refers to the use of
all 5000 samples from y* to perform gradient ascent. GA-S (Gradient Ascent-Small) uses only 40
data samples from y*, matching our method’s setting, but without the Manifold Mixup and Remained
Accuracy Recovery modules. GA-S + Manifold Mixup, which corresponds to our method without
the Remained Accuracy Recovery component. “Ours” refers to our full method, which also uses 40
data samples but incorporates all modules.

As shown in the Fig. 5}

1. GA-A effectively unlearns y* but significantly degrades the performance on D".
2. GA-S preserves D" well but fails to effectively unlearn y*.

3. GA-S + Manifold Mixup demonstrates improved unlearning performance but still results in
moderate degradation on D".

4. Our full method achieves both successful unlearning of y* and strong preservation of
performance on D", validating the contribution of the Remained Accuracy Recovery module.

A.6 EVALUATION FOR DIFFERENT PRIVACY PRESERVING VFL METHODS

We evaluate our unlearning method under two privacy preserving VFL methods: (i) Differential
Privacy (Fu et al.l [2022b) and (ii) Gradient Compression (Fu et al.l |2022b). Fig. E] presents the
effectiveness of our solution on both methods across different levels of variance Gaussian noise and
compression ratio. Higher Gaussian noise levels and greater gradient compression ratios enhance
privacy protection in VFL but lead to increased performance degradation. It shows that even for a
large compression ratio and noise level, our proposed method can still unlearn effectively, while the
utility of the vertical training decreases significantly.

A.7 TWO-LABEL AND MULTI-LABEL UNLEARNING

Tables[5]and [6] present the experimental results obtained from the two-label and multi-label unlearning
scenarios, respectively.
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Figure 5: Comparison of the utility and unlearning effectiveness on different sizes of DP-".

Accuracy (%)

Model Datasets | Metrics
Baseline Retrain FT Fisher Amnesiac Unsir BU SSD Ours
D" 9148  91.74+£0.01 90.63 +0.57 31.25+223 86.16+0.82 7448+0.06 81.64+0.56 88.17+0.81 88.75+0.36
CIFARIO y 88.40 0.00+0.00 41.15+1.55 49.55+040 0.00 +0.00 0.00 +0.00 1990+0.85 455+031 043£0.11
ResNet18 ASR 79.61  21.66 £0.64 13.22+0.37 2560+0.08 1.84+£0.13 41.79+£135 3540+ 1.54 3560+0.17 24214104
D" 7156 7121 £0.13  66.04 +0.58 53.56 +2.54 59.524+0.03 58.02+0.37 56.37+0.39 66.12+298 67.93 + 0.26

CIFAR100 y 71.00 0.00+0.00 38.00+0.01 2520+5.75 0.00+£0.00 0.00+0.00 13.00+0.01 0.00+0.00 1.17+0.29
ASR 88.60  21.60+0.85 1920+ 120 4890£0.54 6.50+0.40 54.83+044 13.70+090 8.03+0.54 6.10 & 0.66

D" 89.80  91.134+0.03 88.09+0.35 47.53+238 86.16+£0.19 71.50+0.07 88.67+022 86.99+0.99 88.82+0.39

CIFARIO y 89.10 0.00£0.00 2855+033 13.10£0.28 0.00+0.00 0.00+0.00 19084053 325+1.09 0.00+0.00

Vegl6 ASR 82.64 28314123 17.75+2.22 6843+ 1.14 1.67+0.01 4621+072 11.72+0.07 527+0.01 2827+ 1.51
Dr 65.75 6559 £0.17 60.79 £0.37 3524+221 5786081 56.04£044 50.02+£0.18 5897+0.05 63.40+0.13

CIFAR100 y 58.50 0.00£0.00 11.75£1.25 11.00£4.85 0.00=0.00 0.00=£0.00 325+£025 0.00=0.00 0.00 % 0.00

ASR 73.60  30.55+0.05 2275+1.05 32.60+1.17 345+0.65 5240+0.80 27.90+120 830+0.09 30.47+3.11

Table 5: Accuracy of D", y* and ASR for each unlearning method across ResNet18 and Vggl6
models in two-labels unlearning

Table 5] provides a detailed breakdown of the performance metrics and outcomes observed during
the two-label unlearning process across various datasets and architectures. It highlights the accuracy
scores of D", y* and ASR when unlearning was applied to labels “0” and “2”, demonstrating the
utility guarantees and the effectiveness of the baseline unlearning methods.

Similarly, Tab. [6| summarizes the results of the multi-label unlearning experiments, where labels “0”,

“27,“5”,and “7” were unlearned for all datasets and architectures. This table captures critical metrics
such as the accuracy scores of D", y* and ASR reflecting the outcomes of the multi-label unlearning
process.

A.7.1 UTILITY GUARANTEE

From Tab. [3] the FT method shows performance consistent with the single-label unlearning scenario.
It preserves D" well on datasets with a small number of labels (e.g., CIFAR-10) but performs
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Figure 6: Comparison of remained accuracy D" and unlearned accuracy y* under Gaussian noise
variance (a, b) and gradient compression ratio (c, d). Subplots (a, ¢) represent the remained accuracy
DT, while (b, d) show the unlearned accuracy y“.

Model Datasets Metrics Aceuracy (%)
Baseline Retrain FT Fisher Amnesiac Unsir BU SSD Ours

D" 7153 7191 £0.12 67.16+0.13 5479 +1.04 59.09+0.54 59.05+0.38 4896+0.04 67.09+1.11 69.97+0.03
ResNet18 | CIFARI00 Y 72.00 0.00+0.00 33.87+0.88 4538+1.13 0.00£0.00 0.00+0.00 1500+025 0.11+0.07 0.33+0.14
ASR 86.65 16954+ 035 1823 +1.63 6278+3.93 6.05+1.19 68.63+183 3835+075 3.33+0.54 12.40+1.12
D" 6583  65.66 £0.08 60.92+0.08 36.55+1.07 57.26+0.18 56.86+0.26 47.04+0.32 61.01 £0.55 64.44+0.12
Vggl6 | CIFAR100 y 60.25 0.00£0.00 7.63+£0.13 2875+£1.25 0.00£0.00 0.00£0.00 7.13+£0.11 0.00+0.00 1.17+0.25
ASR 7580  2720+£0.75 24.38+3.13 55204375 4.80+0.05 32.83+0.58 29.70+0.03 10.98+0.59 27.93+0.29

Table 6: Accuracy of D", y* and ASR for each unlearning method across ResNet18 and Vggl6
models in multi-labels unlearning

poorly on datasets with many labels (e.g., CIFAR-100). The Fisher Forgetting method consistently
demonstrates poor preservation of D" across all datasets and model architectures. The Amnesiac
approach performs similarly to FT, achieving strong preservation of D" on datasets with fewer
labels (e.g., CIFAR-10) but showing reduced performance on datasets with a larger label space (e.g.,
CIFAR-100). The Unsir and BU methods also follow this trend, maintaining good preservation
on simpler datasets like CIFAR-10, but experiencing greater degradation in D" accuracy across all
datasets compared to FT and Amnesiac. SSD demonstrates strong preservation of D" across all
experiments, with the exception of the CIFAR100 dataset under the VGG16 architecture.

In contrast, our method consistently achieves strong unlearning utility while perfectly preserving D"
across all experimental settings.

From Tab. [6] the FT method shows similar behavior to the single-label and two-label unlearning
scenarios, with poor preservation of D" on datasets that have a large number of labels (e.g., CIFAR-
100). The Fisher Forgetting method consistently performs poorly in preserving D" across all datasets
and model architectures. The Amnesiac approach also mirrors the performance of FT, showing

21



Under review as a conference paper at ICLR 2026

reduced preservation on datasets with many labels. Similarly, the Unsir and BU methods exhibit
even greater degradation in D" performance across all datasets compared to FT and Amnesiac. SSD
yields comparable results in both single-label and two-label unlearning scenarios, showing strong
preservation of D", though its performance is slightly inferior to ours.

In contrast, our method demonstrates strong unlearning utility and achieves near-perfect preservation
of D" across all experimental settings, even in multi-label unlearning scenarios and for datasets with
a large number of labels.

In conclusion, our experimental results across single-label, two-label, and multi-label unlearning
tasks demonstrate that our method consistently delivers the best balance between utility and privacy
preservation. For example, unlike FT, which maintains D" accuracy only on datasets with few
labels (e.g., CIFAR-10) but suffers on CIFAR-100, our method achieves near-perfect preservation
of D" regardless of label complexity. Fisher Forgetting performs poorly across all datasets and
architectures, leading to significant drops in retained accuracy. Amnesiac Unlearning introduces
instability through random relabeling of D,,, causing accuracy degradation in high-label datasets,
while Unsir and BU show even greater declines, especially in multi-label settings. SSD shows
good preservation of D" across different settings but its performance is slightly inferior to ours. In
contrast, our method maintains high D" accuracy (often above 98%) while reducing unlearned data
accuracy close to random chance, consistently across all scenarios. These results provide strong
evidence that our approach offers superior robustness, effectiveness, and generalizability for practical,
privacy-preserving unlearning.

A.7.2 UNLEARNING EFFECTIVENESS

We evaluate unlearning effectiveness using two key metrics: the accuracy on y* and the Attack
Success Rate (ASR). A lower accuracy on y* indicates more effective unlearning. However, an ASR
of 0% may signal the presence of the Streisand effect (Golatkar et al., |2020a), where the model
consistently misclassifies all y* samples into the same incorrect label, which indicates potentially
leaking information about the unlearned label. Ideally, the ASR should be slightly lower than that of a
retrained model, reflecting successful unlearning without revealing leakage. If the model consistently
assigns all y* to a specific wrong label, it might expose that the model has treated y* uniquely. It
suggests the model has not truly “forgotten” the data but developed an unusual bias against it.

Analysis on y* : This paragraph provides a detailed analysis of each baseline method’s performance
with respect to the y* accuracy metric.

From Tab. [5] both FT and Fisher Forgetting methods exhibit poor unlearning effectiveness in
the two-label unlearning scenario. These methods perform effectively only in the single-label
unlearning context. In contrast, both the Amnesiac and Unsir methods consistently achieve perfect
unlearning effectiveness in the two-label unlearning scenario. The BU method shows a decline in
unlearning effectiveness compared to its performance in single-label unlearning, indicating challenges
in handling scenarios with two labels. SSD demonstrates strong unlearning effectiveness on the
CIFAR100 dataset but fails to reduce the accuracy of y* to 0.00% on CIFAR10 dataset. Meanwhile,
our method continues to demonstrate exceptional unlearning effectiveness, maintaining its outstanding
performance in the two-label unlearning scenarios, further solidifying its robustness and efficiency.

From Tab. [6] the FT and Fisher Forgetting methods exhibit similarly poor unlearning effectiveness
in the multi-label unlearning scenario, comparable to their performance in the two-label unlearning
context. These methods are effective only in the single-label unlearning scenario. In contrast, the
Amnesiac and Unsir methods consistently achieve perfect unlearning effectiveness in the multi-
label scenario, mirroring their performance in single-label and two-label contexts. The BU method
performs similarly to the two-label scenario in the multi-label context, showing limited unlearning
effectiveness. SSD shows good unlearning effectiveness on multi-label scenario. Meanwhile, our
method continues to demonstrate exceptional unlearning effectiveness, maintaining outstanding
performance in multi-label scenarios, further reinforcing its robustness and efficiency.

In conclusion, our method demonstrates superior performance across all unlearning scenarios. Specif-
ically, it consistently achieves near-perfect preservation of retained data D", often maintaining
accuracy drops below 2% while reducing the accuracy of unlearned labels to near-random levels
(e.g., from 41.63% to 1.41%). In contrast, FT and Fisher Forgetting fail to scale beyond simple
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settings: they perform adequately only in single-label scenarios but suffer substantial degradation in
D" accuracy when applied to two-label or multi-label tasks, especially on datasets like CIFAR-100.
Amnesiac and Unsir do achieve strong unlearning effectiveness across all scenarios, but at the cost of
destabilizing the decision boundaries, which leads to marked drops in D" accuracy for more complex
datasets. BU also shows deteriorating performance as task complexity increases. SSD performs well
in unlearning, but shows minor weakness on CIFAR10 under the two-label setting. Only our method
balances both objectives, that is effectively unlearning target labels while preserving the rest, across
all datasets, architectures, and label complexities. These concrete results affirm our approach as the
most robust, generalizable, and practically deployable solution for modern unlearning needs.

Analysis on ASR : This paragraph discusses how each baseline method performs in terms of ASR,
highlighting their strengths and weaknesses.

From Tab. [5|and[6] FT demonstrates excellent performance, achieving ASR scores that are consistently
lower but close to those of the retrain model across all datasets, with the exception of the multi-labels
scenario involving the ResNet18 architecture and the CIFAR100 dataset. In that case, the ASR score
is only slightly higher than that of the retrain model. In contrast, Fisher Forgetting performs poorly in
both the two-labels and multi-labels scenarios, exhibiting high ASR scores across all experiments,
which indicates its ineffectiveness in mitigating adversarial risks. The Amnesiac method shows a
consistent pattern of very low ASR scores across all experiments, potentially suggesting vulnerabilities
to the Streisand effect, as observed in previous analyses. The Unsir method performs similarly to
Fisher Forgetting, also achieving high ASR scores across all experiments, further highlighting its
ineffectiveness. Boundary Unlearning continues to exhibit inconsistent performance throughout
the experiments, failing to deliver reliable results. SSD continues to exhibit its good performance
throughout the experiments, with consistently achieving ASR scores lower than and close to those of
the retrain model. On the other hand, our method demonstrates outstanding performance on many
datasets, achieving ASR scores that are consistently lower than and close to those of the retrain
model. This highlights our method’s effectiveness and reliability in addressing adversarial risks while
maintaining robust unlearning outcomes.

In conclusion, the results clearly demonstrate the effectiveness and robustness of our method in
mitigating adversarial risks. Across various datasets, our approach consistently achieves ASR scores
that are not only low but often even lower than those of the retrained models, indicating strong
unlearning without compromising security. While FT and SSD perform reasonably well in most
scenarios, other methods such as Fisher Forgetting, Unsir, and Boundary Unlearning exhibit limited
effectiveness, with high ASR scores and inconsistent performance. Although the Amnesiac method
achieves very low ASR scores, it raises concerns about potential vulnerabilities, such as the Streisand
effect. In contrast, our method strikes the optimal balance between unlearning effectiveness and
adversarial robustness, establishing it as the most reliable and secure solution among all evaluated
approaches.

A.7.3 FURTHER ANALYSIS OF BASELINES

Fine-Tuning (FT): FT demonstrates adequate performance in utility preservation for datasets with
a smaller number of labels (e.g., CIFAR10), its effectiveness diminishes sharply as the dataset
complexity increases, failing to preserve D" effectively for datasets with a large number of labels
(e.g., CIFAR100). Additionally, its unlearning effectiveness is limited to single-label scenarios,
highlighting its inability to handle more complex unlearning contexts.

Fisher Forgetting: This method struggles across all dimensions, exhibiting poor preservation of D"
irrespective of the dataset or architecture. It also fails to achieve unlearning effectiveness in two-label
and multi-labels unlearning scenario, with high adversarial success rates (ASR) that compromise its
ability to address adversarial risks. This consistent underperformance underscores the method’s lack
of robustness in diverse scenarios.

Amnesiac Unlearning: While the Amnesiac method demonstrates strong unlearning effectiveness
across various scenarios, its utility preservation declines significantly when applied to datasets with
a large number of labels, such as CIFAR-100. This is primarily due to its approach of randomly
assigning incorrect labels to D,,, which introduces unpredictable shifts in decision boundaries and
undermines reliability in more complex settings. Additionally, the method consistently yields very
low ASR scores across all experiments. This implies that, although the low ASR scores indicate

23



Under review as a conference paper at ICLR 2026

Method [ Type of FL | Unlearning Types [ Unlearning Targets | Protection for Unlearned Data
FedEraser (Liu et al..7202 1) Exact Client X
FRU (Yuan et al.|[2023) Approximate Client X
FedRecovery (Zhang et al.|2023a) Approximate Client X
VeriFI (Gao et al.|[2024) Approximate Client X
HDUS (Ye et al.|2024) Approximate Client X
KNOT (Su & Li}[2023) Horizontal Approximate Client X
FedRecover (Cao et al.|[2023a) Approximate Client X
Knowledge Distillation (Wu et al.[[2022) Approximate Client X
Discriminative Pruning (Wang et al.|[2022) Approximate Class X
MoDe (Zhao et al.|[2024) Approximate Class X
Rapid Retraining (Liu et al.||2022) Exact Sample X
QuickDrop (Dhasade et al.|[2023) Approximate Sample X
FedAU (Gu et al.|[2024b) Approximate Class, Sample & Client X
Ferrari (Gu et al.|[2024a) Approximate Feature X
Fast Retraining (Wang et al.|[2024) Exact Passive Party X
SecureCut (Li et al.|[2024) . Approximate Instance & Passive Party X
Constraint Imposing (Deng et al.||2023) Vertical Approximate Passive Party X
Backdoor Certification (Han et al.|[2025) Approximate Passive Party X
Ours Approximate Label U4

Table 7: Comparison of our method with existing studies on Federated Unlearning. This table
demonstrates that our method is the only one that ensures privacy protection for D,, during the
unlearning process. To the best of our knowledge, it is also the first approach to tackle label
unlearning in VFL while safeguarding the unlearned label throughout the process.

strong unlearning, they may also point to a susceptibility to the Streisand effect, as observed in prior
analyses.

Unsir and BU Methods: Both methods show similar limitations, with significant degradation in utility
preservation as dataset complexity increases. Although these methods achieve moderate unlearning
effectiveness, they exhibit high ASR scores, indicating their vulnerability to adversarial risks. The
inconsistency of their performance across scenarios highlights their lack of generalizability and
robustness.

SSD: SSD demonstrates strong performance across all three evaluation metrics, namely accuracy on
D", accuracy on y* and ASR score, although it remains marginally worse than our method in each
case. Moreover, SSD incurs a higher computational cost, requiring longer runtime compared to our
approach (see Fig. [2]in Sect. [5.2.3), which further limits its practical efficiency.

Overall, the experimental results highlight the key limitations of existing methods, such as FT,
Fisher Forgetting, Amnesiac, Unsir, BU and SSD in striking a balance between utility preservation,
unlearning effectiveness, and low ASR scores. While some methods may perform well in one aspect,
they often fall short in others, especially when faced with complex or multi-label scenarios. In contrast,
our method consistently delivers strong unlearning performance, near-perfect utility preservation, and
robust ASR scores across all datasets and settings. This comprehensive and consistent performance
firmly establishes our approach as the most reliable, effective, and scalable solution for tackling
diverse and challenging unlearning tasks.

A.8 RELATED WORKS

Table[/|compares our method with existing studies on Federated Unlearning. Most methods target
Horizontal Federated Learning (HFL) and focus on Client unlearning. A smaller set of methods
addresses Vertical Federated Learning (VFL), which typically involves specific unlearning for passive
parties. Privacy protection for unlearned data is generally lacking, as shown by the prevalence of

X across methods. Notably, it uniquely offers protection for unlearned data, setting it apart from
previous approaches.
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Single-Tabel
ResnetT§-MNIST _ResnetI8-CIFARTO_ ResnetI8-CIFARTO0 _ ResnetT8-ModelNetResnetT8-Brain Tumor MRT_Resnet[8-COVID-T9 gl Vggl6-CIFART0 _ Vggl6-CIFART00 _MixText-Yahoo Answer
SGD SGD SGD SGD SGD SGD SGD SGD SGD
27 27 Se-7 Se-7 6e-6 27 27 le7 7e7
2e-7 2e-7 Se-7 Se-7 6e-6 2e-7 2e-7 le-7 Te-7
10 20 10 4 4 5 17 9 30
40 40 30 30 15 40 40 30 30
3 3 3 3 3 3 3 3 3

32 32 32 32 32 32 32 32 32
Se-d Se-d Se-d Se-4 Se-4 Se-d Se-d Se-4 Se-d
09 09 0.9 09 09 09 09 09 09

Table 8: Hyperparameters used for single-label unlearning in our proposed solution. In this single-
label unlearning scenario, all datasets are processed using the same optimization method, stochastic
gradient descent (SGD), with consistent parameters: a batch size of 32, a weight decay of 5e-4, and a
momentum of 0.9. The recovery rate, which is the learning rate during the recovery phase, matches
the unlearning rate for all datasets. Additionally, a minimal number of unlearning epochs (a maximum
of 30) and unlearning data samples (DP"*, capped at 40) are utilized. Across all experiments, the
number of recovery data samples (DP'") used in the recovery phase is uniformly set to 3.

A.9 EXPERIMENT SETUP

This section provides a detailed information on our experimental settings. Tables [§|and [0 summarize
the hyper-parameters for our unlearning method. Table summarizes the model name, VFL
framework settings, datasets and unlearn labels involved in each unlearning scenario.

Baselines: We implement the baselines with the following details.

Retrain: The dataset D" is being divided among K parties and the VFL model is retrained from
scratch using the same hyperparameters as the baseline.

Fine-Tuning (Golatkar et al.| [2020a; [Jia et al., [2023): The dataset D" is being divided among K
parties and the baseline VFL model is fine-tuned for 5 epochs with a learning rate of 0.01.

Fisher Forgetting (Golatkar et al.,2020a)): The dataset D" is being divided among K parties and the
fisher information matrix (FIM) is being used to inject Gaussian noise to perturb the VFL baseline
models towards exact unlearning. For every backward propagation, once the gradient is calculated,
each party inject Gaussian noise into their respective VFL baseline model to perturb the baseline
model toward exact unlearning.

Amnesiac (Graves et all 2021): The dataset is divided among K parties and the baseline VFL model
is retrained for 3 epochs, with the active party relabeling y* to an incorrect random label.

Unsir (Tarun et al., 2024): The dataset is being divided among K parties. Each passive party
introduces a noise matrix to the D,, image features they own. The noise added image features are
used to impair each VFL baseline model, which is then repaired using the clean D".

Boundary Unlearning (Chen et al.,2023): The dataset D,, is being divided among K parties. Passive
parties create adversarial examples from the D,, image features they own, and the active party assigns
a new nearest incorrect adversarial label to shrink the D,, to the nearest incorrect decision boundary.

SSD (Foster et all,2024b): The dataset is divided among K parties and each parties modify their
local model weights with the gradients of full data and D,,.

Datasets: We conduct experiments on seven widely used datasets: MNIST, CIFAR10, CIFAR100,
ModelNet, Brain Tumor MRI, COVID-19 Radiography and Yahoo Answers. For the MNIST,
CIFAR10/100, Brain Tumor MRI and COVID-19 Radiography datasets. For all datasets, except
ModelNet and Yahoo Answer, each image is split into two equal feature segments, with each segment
assigned to a different passive party. For the ModelNet dataset, two 2D multi-view images are
rendered for each 3D mesh model by placing virtual cameras at evenly spaced positions around the
model’s centroid. Each passive party is then assigned one of these rendered view. For Yahoo Answers
dataset, each sample (i.e. a single paragraph of text) is splitted into two segments, with each passive
party receiving one segment, ensuring that no single party has access to the complete text.

Figures|[/|and [8|illustrate how image features of the dataset are being split among the passive party.
In this setup, we consider a scenario involving two passive parties. For all image datasets, except
ModelNet, each image’s features are evenly split into two halves, as illustrated in Fig. [/| As an
example in CIFAR10 (i.e., class = bird), each passive party is assigned one half of the image (bird)
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Hyper-parameters I Two-label i Multi-label
yper-p: | Resnet18-CIFARTO ResnetI8-CIFARTO0  Vggl6-CIFARTIO  Vggl6-CifarI00 || ResnetI8-CIFARI00  Vgg16-CIFART00
Optimization Method SGD SGD SGD SGD SGD SGD
Unlearning Rate le-6 9e-7 le-6 9e-7 3e-6 le-6
Recovery Rate le-6 9e-7 le-6 9e-7 3e-6 le-6
Unlearning Epochs 17 15 17 5 25 17
Number of DP»" Data Samples 40 20 40 20 15 15
Number of D" Data Samples 3 3 3 3 3 3
Batch Size 32 32 32 32 64 64
Weight Decay Se-4 Se-4 Se-4 Se-4 Se-4 Se-4
Momentum 0.9 0.9 0.9 0.9 0.9 0.9

Table 9: Hyperparameters used for two-label and multi-label unlearning in our proposed solution.In
these unlearning scenarios, all datasets are processed using the same optimization method, stochastic
gradient descent (SGD), with consistent parameters: a weight decay of 5e-4, and a momentum of
0.9. For the two-label unlearning scenario, a batch size of 32 is used, while a batch size of 64 is
employed for the multi-label unlearning scenario. The recovery rate, which is the learning rate during
the recovery phase, matches the unlearning rate for all datasets. Additionally, a minimal number of
unlearning epochs (a maximum of 25) and unlearning data samples (DP"*, capped at 40) are utilized.
Across all experiments, the number of recovery data samples (DP'") used in the recovery phase is
uniformly set to 3.

Scenarios [ Models || Model of Passive Party [ Model of Active Party || Datasets [[ Unlearn Labels

ResNetI8 20 Conv I FC MNIST, CIFAR10, CIFAR100, ModelNet, COVID-19 Radiography 0
Sinele-label Unlearning ResNet18 20 Conv 1 FC Brain Tumor MRI 2
ng ME | vegl6 13 Conv 3FC CIFARI10, CIFAR100 0
MixText 12 Brt 4FC Yahoo Answer 6

Two-label Unlearning ResNet18 20 Conv 1 FC CIFAR10, CIFAR100 0,2

s Vggl6 13 Conv 3 FC CIFAR10, CIFAR100 0,2

Multi-label Unlearnin ResNet18 20 Conv 1 FC CIFAR100 0,2,5,

© g || vggl6 13 Conv 3FC CIFAR100 0,2,5,

Table 10: Models and datasets involved in each unlearning scenarios. FC: Fully-connected layer.
Conv: Convolutional layer. Brt: Bert layer. In the single-label unlearning scenario, we perform un-
learning for label “0” on the MNIST, CIFAR10, CIFAR100, ModelNet, and COVID-19 Radiography
datasets using the ResNet18 architecture. Additionally, label “0” is unlearned on the CIFAR10 and
CIFAR100 datasets using the Vgg16 architecture. For the Brain Tumor MRI dataset, we unlearn
label “2” using the ResNet18 architecture. Similarly, on the Yahoo Answer dataset, label “6” is
unlearned using the MixText architecture. In the two-label unlearning scenario, labels “0” and “2”
are unlearned across all datasets and architectures. In the multi-label unlearning scenario, we extend
the unlearning process to include labels “0”, “2”, “5”, and “7” across all datasets and architectures.

features. This means that neither party has access to the full set of image features for any given data
point, ensuring that the data remains fragmented and partially hidden from each individual party.
This approach is specifically designed to enhance privacy and security by ensuring that no single
party has access to the full information of the original image. This partitioning allows collaborative
computation or machine learning tasks to be performed while upholding data confidentiality.

For the ModelNet dataset, a different approach is used to distribute data between the two passive
parties as illustrated in Fig.[8] Specifically, each 3D mesh model is rendered into two distinct 2D
images, each capturing a unique view of the object from different perspectives. Then, these two
generated 2D views are assigned to separate passive parties, with each party exclusively receiving one
view. As a result, no single party has access to both perspectives of the 3D mesh model, preserving
information separation. This strategy not only safeguards data privacy but also enables collaborative
analysis or training, ensuring that each party’s contribution remains independent and incomplete.

Figure O] illustrates how text features from the Yahoo Answers dataset are split between the passive
parties. In this process, each paragraph is divided into two separate segments, with each segment
representing a portion of the original text. Each passive party receives access to only one of these
segments, ensuring that no single party can view the entire paragraph. This approach helps preserve
the confidentiality of the dataset.

MNIST dataset contains images of handwritten digits. MNIST dataset comprises 60,000 training
examples and 10,000 test examples. Each example is represented as a single-channel image with
dimensions of 28 x 28 pixels, categorized into one of 10 labels.
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Passive Party A Passive Party B

Figure 7: Illustration of how features from the CIFAR-10 dataset are split between passive parties.
Passive Party A has access to one segment of the image, such as the left half of the original image’s
pixel data, while Passive Party B has access to the other segment, such as the right half. This division
ensures that no single party has access to the complete image.

Passive Party A Passive Party B

Figure 8: Illustration of how features from the ModelNet dataset are split between passive parties.
Passive Party A is assigned one view of the 3D model, rendered from a specific angle (e.g., an upper
back-facing perspective of the airplane model), while Passive Party B receives a different view of the
same model, rendered from another angle (e.g., an upper right-side perspective). This setup ensures
that no single party has full access to the complete 3D information.

CIFAR10/100 dataset contain 60,000 images (32 x 32 pixels, three color channels). CIFAR10 dataset
includes 10 labels, with 50,000 for training and 10,000 for testing. The CIFAR100 dataset is similar
but has 100 labels, each with 600 images, divided into 500 for training and 100 for testing.

ModelNet dataset is a widely-used 3D shape classification and retrieval benchmark, which contains
127,915 3D CAD models from 662 object categories.

Brain Tumor MRI is commonly used in healthcare scenarios. The Brain Tumor MRI dataset consists
of 7,023 human brain MRI images categorized into four labels: Glioma, Meningioma, No Tumor,
and Pituitary.

COVID-19 Radiography is a publicly available dataset on Kaggle, designed for research and
development in medical imaging, specifically for detecting COVID-19 through chest X-rays. This
dataset consists of chest X-ray images categorized into four classes, which are COVID, Normal, Viral
Pneumonia and Lung Opacity.

Yahoo Answers is a dataset designed for text classification tasks, comprising 10 labels (topics) such
as “Society & Culture”, “Science & Mathematics”, “Health”, “Education & Reference”, among
others. Each label contains 140,000 training samples and 6,000 testing samples. For simplicity, we
utilized 5,000 training samples and 2,000 testing samples from each label.
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Passive Party B

Figure 9: Illustration of how text from the Yahoo Answers dataset is split between passive parties.
Each passive party is assigned a different portion of the text, ensuring that no single party has access
to the complete content. For example, the full paragraph is: can a loan corporation garnish your
wages? yes they can read your contracts very carefully before signing also know your rights as a
consumer in your state go to your states website and search for the consumer rights section.” Passive
Party A receives the first segment (e.g., can a loan corporation garnish your wages? yes they can read
your contracts very carefully before signing also k), while Passive Party B receives the remaining
portion (e.g., “now your rights as a consumer in your state go to your states website and search for
the consumer rights section.”). This division maintains the confidentiality of the full paragraph.
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