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ABSTRACT

When a person identifies objects, he or she can think by associating objects to many
classes and conclude by taking inter-class relations into account. This cognitive
system can make a more reliable prediction. Inspired by these observations, we
propose a new network training strategy to consider inter-class relations, namely
LogitMix. Specifically, we use recent data augmentation techniques (e.g., Mixup,
Manifold Mixup, or CutMix) as baselines for generating mixed samples. Then,
LogitMix suggests using the mixed logit (i.e. the mixture of two logits) as an
auxiliary training objective. Because using logit before softmax activation preserves
rich class relationships, it can serve as a weak-supervision signal concerning inter-
class relations. Our experimental results demonstrate that LogitMix achieves
state-of-the-art performance among recent data augmentation techniques in terms
of both calibration error and prediction accuracy. The source code is attached as
the supplementary material.

1 INTRODUCTION

Humans improve the object recognition by associating with its surrounding information– instead
of focusing only on the target object (Farhadi et al., 2009; Gkioxari et al., 2018; Gould et al., 2009;
Salakhutdinov et al., 2011; Torralba et al., 2004). The association with surroundings can be useful
when handling more challenging and unusual decision tasks. For example, suppose that we observe
an obscure, black object next to the keyboard on a desk. Considering the co-occurrence with the desk
and the keyboard, we can correctly estimate that the object is probable to be a mouse.

Unlike humans, conventional deep neural networks (DNN) are poor at understanding the association
with surrounding information. Specifically, DNN learn to de-correlate the relationship between the
target class and all other classes. Because the one-hot labels induce zero probability for non-target
class labels, it implies no inter-class relationship explicitly (Hou et al., 2017; Li & Maki, 2018).
When the model overfits to estimate the target class label, its prediction tends to be overconfident
(Guo et al., 2017). The over-confidence causes huge costs for a high-risk system such as medical
diagnosis systems and autonomous driving systems. Therefore, prediction confidence can be a critical
factor in determining whether or not the model is used in the target application.

Inspired by human cognitive mechanism, we propose a new training strategy considering the asso-
ciations (i.e. class relationships) for holistic recognition. Our goal is to develop a well-calibrated
and highly accurate model by considering the class relationships. To this end, we devise 1) the
representation to preserve the associations, and 2) the training strategy of accounting the associations
in the prediction model. Specifically, we exploit logits for designing the new learning signal, where
it is combined with the mixing-based data preprocessing for developing our training strategy. The
logits were utilized in existing knowledge distillation techniques as the estimates for inter-class
correlations; a noisy estimate of associations (Hinton et al., 2015). Notably, we emphasize a clear
distinction between the logit and the label distribution (i.e. a signal that passed softmax). That is, the
label distribution only represents a positive relationship and loses much precision for hidden links.
Instead, the logit contains richer information because of revealing both positive and negative (hidden)
relationships among classes and encoding such relationships with effectively higher dynamic range.

As the new training tactic for considering the associations, the proposed method utilizes the data
augmentation trick in (Tokozume et al., 2018; Verma et al., 2019; Yun et al., 2019; Zhang et al., 2018)
for explicitly considering the class relationships in training. Specifically, we randomly select two
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(a) Vanilla (b) Mixup (c) Manifold Mixup (d) Ours

Figure 1: Visualizing the probability distribution on networks trained on the 2D spiral dataset.
Compared with other representative methods mixing samples, our method shows well-calibrated
prediction and smooth transition between two classes. Please refer section 4.1 for details.

training examples, generate the mixed data by the linear combination of the two examples and the
mixed logit using two logits (i.e. the logit of each example) separately by the same linear combination.
Then, we train the model to map from the mixed data to the mixed logit. At the same time, the model
should predict the label from original training data. We name it as LogitMix, which utilizes the mixed
logit as weak supervision for associations. LogitMix can effectively mitigate over-fitting to the target
class label (one-hot label) since it should match the mixed logit as an explicit constraint in training.
The key idea of LogitMix is to utilize the mixed logits as auxiliary supervision, where this idea alone
is effective in improving the model. LogitMix can create more synergy when combined with other
mixing-based methods using the mixed labels.

Summarizing, LogitMix is a simple yet effective training strategy for reflecting the association (i.e.
inter-class relationships) into decision process of DNN, mimicking human recognition system. By
virtue of our simple and powerful training strategy, the proposed method improves generalization
performance by preventing both over-fitting and under-fitting. We emphasize that existing techniques
focus on resolving over-fitting for training a complex model, thus introducing the penalty for
predicting the label. However, such techniques are not always useful for a compact model (e.g.
MobileNetV2) because it can lead to under-fitting. Meanwhile, LogitMix utilizes mixed logit as
side information in training instead. This explains why our method is effective both over-fitting and
under-fitting.

As a result, LogitMix is effective for training a well-calibrated and highly accurate model. Based on
extensive experiments on CIFAR100 (100 classes), Tiny-imagenet (200 classes), ILSVRC2015 (1000
classes) datasets, LogitMix outperforms two different kinds of the state-of-the-art regularization
techniques using data mixing augmentation (i.e. Mixup (Zhang et al., 2018) for whole image-based
augmentation, and CutMix (Yun et al., 2019) for patch-based augmentation), both in terms of
prediction accuracy and calibration error.

2 RELATED WORK

Mixing-based augmentation. Mixup (Tokozume et al., 2018; Zhang et al., 2018) trains networks
using the convex combination of two pairs of examples and labels to make the function of networks
to be linear among training examples. Notably, this simple learning procedure results in robustness
toward adversarial examples (Zhang et al., 2018) and improving calibration (Thulasidasan et al.,
2019). AdaMixUp (Guo et al., 2019) diagnoses manifold intrusion in Mixup, where the mixed
example collides with another example in data manifold which may induce under-fitting. This risk
is regularized with a loss term penalizing the intrusion by an intrusion discriminator. Manifold
Mixup (Verma et al., 2019) uses two intermediate representations at layer k as examples. When
k = 0 implying the input layer, it reduces to vanilla Mixup (Zhang et al., 2018). While, for better
performance in spatial examples, CutMix (Summers & Dinneen, 2019; Takahashi et al., 2019; Yun
et al., 2019) exploits region-based augmentation strategy using a binary mask for selecting a mixing
region. Notice that our method is correlated with these methods but has significant difference as we
do not use mixture of supervision of true labels.

2



Under review as a conference paper at ICLR 2021

Logit regularization. Szegedy et al. (2016) propose label smoothing that modifies an one-hot label
to a mixture of the one-hot label and uniform distribution with dividing the certain weight factor.
Pereyra et al. (2017a) point out the limitation of label smoothing that allocates the same probability
across all classes regardless of their relation. Then, they propose a confidence penalty regularizer
by penalizing low entropy predictions. Xie et al. (2016) include the softening label by randomly
replacing a part of labels like adding noise to the label. A pioneering work (Hinton et al., 2014; Ba &
Caruana, 2014) on knowledge distillation (KD) gives us an insight on that inference outputs have
useful information on the model and data distribution. From the observation that logits preserve more
relations between classes, the proposed method also utilizes the logit, not the prediction distribution.

Confidence calibration. Naeini et al. (2015) diagnose the problem of the confidence calibration of
modern networks and proposed the expected calibration error (ECE) as a measurement of calibration.
Guo et al. (2017) address that the modern network are poorly calibrated and suggest a simple post
processing calibration method which softening the prediction with temperature scaling. Various
Bayesian approaches (MacKay, 1992; Neal, 1995) are commonly used for estimating the uncertainty
of prediction. Nevertheless, these methods are computationally expensive as they require some
modifications of training procedure. Some approaches approximate Bayesian method by using the
ensemble of networks (Lakshminarayanan et al., 2017) or stochastic methods using dropout (Gal
& Ghahramani, 2016). Seo et al. (2019) proposed a method for well-calibrated prediction without
multiple stochastic inferences. This method is related to a label smoothing (Szegedy et al., 2016;
Müller et al., 2019) and a confidence penalty (Pereyra et al., 2017b) as it makes the networks output
smooth prediction. Recently, Thulasidasan et al. (2019) have empirically shown the network trained
with Mixup gives better-calibrated results.

3 PROPOSED MODEL

3.1 MOTIVATION

DNN are overly confident in predicting the target class (Hou et al., 2017; Li & Maki, 2018) because
they over-fit the target class to correctly predict one-hot encoded labels. In practice, over-fitting to the
one-hot label is largely accepted as it provides highly accurate predictions. This accuracy gain is the
result of sacrificing the accuracy in the uncertainty estimation.

Unlike computational models, humans can achieve high accuracy in both prediction and uncertainty
estimation. We conjecture that the human can recognize the objects better because of considering
contextual information, such as the relationship between object and object (or object and background).
Decisions considering relationships can improve not only the prediction accuracy but also the
uncertainty estimation as more evidence (i.e. relationships) is involved in the process. Learning from
the human, we focus on utilizing inter-class correlations for achieving two goals: 1) to achieve high
prediction accuracy and 2) to reduce calibration errors (i.e. gap between the accuracy and confidence)
at the same time. It is because establishing both the task objective and its reliability are equally
important.

The idea of utilizing inter-class correlation has proven to be successful in two independent research
groups. Ba & Caruana (2014) and Hinton et al. (2015) also showed that the inter-class correlations
are useful information for improving the prediction accuracy. Interestingly, various studies (Guo
et al., 2017; Li & Maki, 2018) commonly observe that increasing the inter-class correlations helps
to reduce the calibration errors as well. Hinton et al. (2015) stated that, although logits are noisy,
they are generally useful supervisions for model training because they provide rich information about
inter-class relationships. Based on these observations, we argue that inter-class correlations are useful
for improving both prediction and calibration accuracy. That is, instead of simply discriminating the
target class samples from all others, the model can perform more accurately and reliably if they learn
and understand the positive or negative relationships among classes.

To utilize or learn the relation between classes, recent studies suggest two approaches. The former
concatenates multiple samples such as mini-batch and extracts or associates the relational information
among samples (Lin et al., 2018). The later combines two or more samples in a pre-determined manner
(Zhang et al., 2018; Tokozume et al., 2018; Verma et al., 2019; Yun et al., 2019) to simultaneously
learn each sample as well as its relationships, which we refer as the mixing-based augmentation
methods. Among them, we select the framework of the mixing-based augmentation approach, because
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the concatenation based approach requires the modification of model architecture, including the size
of input layer.

In the following section, we first introduce mixing based techniques and explains why it leads to the
improvements in both accuracy and calibration. Then, we introduce LogitMix as an effective training
strategy to utilize the relation information. Our LogitMix can be combined with the existing mixed
based data techniques and further maximize the performance gain, both accuracy and calibration.

3.2 MIXING-BASED AUGMENTATION TECHNIQUES

Recently, the mixing based augmentation techniques (Tokozume et al., 2018; Verma et al., 2019;
Yun et al., 2019; Zhang et al., 2018) achieve highly accurate prediction performance. They generate
the input data by a linear combination of two, randomly selected, training data. Likewise, their
corresponding labels are also generated by the same linear combination of the two labels. By doing so,
they effectively improve prediction accuracy and prevent undesirable behaviors such as memorization
and sensitivity to adversarial examples at the same time. Furthermore, Thulasidasan et al. (2019)
reports that Mixup training encourages that the output of DNN, the estimated label distributions,
serves as a better indicator of the actual likelihood of a correction prediction. Specifically, for
generating an augmented sample, the algorithm of Mixup training is as follows:

xmix =

{
λx1 + (1− λ)x2,
M� x1 + (1−M)� x2,

, ymix = λy1 + (1− λ)y2, λ ∼ Beta(α, α), (1)

where x and y denote a training sample and its label. M ∈ {0, 1}W×H denotes a binary mask
indicating where to drop out and fill in from two images, and � is an element-wise multiplication.
Beta(·, ·) implies a Beta distribution, and α ∈ (0,∞) is the parameter to control the shape of the
Beta distribution. Using the mixed input and the mixed label, the model minimizes the following
equation.

Lmix = λH(ỹmix, y1) + (1− λ)H(ỹmix, y2), (2)

where ỹ (= σ(f(x))) indicates the predicted label distribution from the model, f is the model, σ is
an activation function which is usually the softmax function, σsm(z) = exp(z)/

∑N
i=1 exp(zi), and

H is the cross entropy function formulated byH(p, q) = −
∫
x
p(x) log q(x).

Whereas the original label y is encoded as an one-hot vector, the mixed label ymix allows multiple
factional values in the label distribution, thereby empirically yields the label smoothing effect. Lately,
Thulasidasan et al. (2019) empirically show that the label smoothing effect is a key factor for achieving
the accurate predictive uncertainty. Regarding mixing-based techniques as a strong data augmentation
scheme, Thulasidasan et al. (2019) show that the data augmentation alone without mixed labels can
substantially improve the prediction accuracy, but not the predictive uncertainty.

3.3 LOGITMIX

Utilizing in-between class relationships, LogitMix aims to achieve high prediction accuracy with
the reliable prediction confidence. Specifically, we devise the mixed data augmentation trick like
(Tokozume et al., 2018; Verma et al., 2019; Yun et al., 2019; Zhang et al., 2018) for explicitly
considering the inter-class relationships. However, unlike existing techniques, LogitMix enforces not
only label matching, but also mixed logit matching. Specifically, we suggest two loss terms: 1) the
estimated label distribution should match the one-hot label, and 2) the estimated mixed logit should
match the target mixed logit. For that, we assign the weak supervision for the logit of mixed data as
the mixture of two logits. We call it as the weak supervision because the mixed logit is not an oracle
supervision. Then, the objective of LogitMix is formulated as follows:

Ltotal = Lcls + Lsim, Lsim = ‖(λf(x1) + (1− λ)f(x2))− f(xmix)‖2. (3)

As shown in Eq. 3, we linearly combine two logits for generating the target mixed logit. It is
motivated by previous studies (Mikolov et al., 2013; Radford et al., 2015) that the linear interpolations
are an effective way of combining factors. Also, we often observe that the linear interpolations
between the hidden representations result in the meaningful regions of embedding (Radford et al.,
2015; Verma et al., 2019). Thus, we utilize a simple linear mixture of two logits as weak supervision
for logit training.
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Why LogitMix? The first term Lcls is the classification loss with true labels and the second term
Lsim is the Euclidean distance between the estimated mixed logit and the target mixed logit, namely
the similarity loss. Here, Lsim assigns the constraint for the logit, a signal before softmax activation
and is rewritten as follows:
Lsim = ‖(λ

∑
i,j

∑
k

wk l
x1

k (i, j) + (1− λ)
∑
i,j

∑
k

wk l
x2

k (i, j))−
∑
i,j

∑
k

wk l
xmix

k (i, j)‖2

= ‖(λS(x1) + (1− λ)S(x2))− S(xmix)‖2
(4)

where lxk(i, j) represent the activation of unit k in the last convolutional layer at spatial location (i, j)
and wk is a vector of {w1

k, ..., w
c
k..., w

C
k } when wc

k is the weight of the fully connected (fc) layer
that maps the k-th features to c-th class. From Eq. 4, the summation over the spatial location (i, j)
is equivalent to global average pooling (GAP). If the predicted label distribution before softmax
activation (i.e. logit) is the one-hot vector, Eq 4 becomes a matching constraint on class activation
mapping (CAM) (Zhou et al., 2016); the mixture of two CAMs should equal to CAM of mixed
data. In practice, logit is far from the one-hot representation and exhibits inter-class relations
including negative relationships. Therefore, Lsim can be interpreted as a matching constraint on
CAM aggregated over all classes; the mixture of two aggregated CAMs should equal to the aggregated
CAM of mixed data.

4 PROOF-OF-CONCEPT STUDY

4.1 TOY EXAMPLE

Here, we conduct a two-dimensional classification task with on the two-class spiral dataset (Verma
et al., 2019) to reveal an impact of LogitMix comparing with the other mixing augmentation methods.
To show the decision boundary and hidden representation of each method, we visualize the different
predictions in different colors; two-class samples are noted either red or blue color-coded points.
Since this visualization cannot conduct for region-based methods (a point does not have spatial
information), we compare our approach with vanilla, Mixup (Zhang et al., 2018), and Manifold
Mixup (Verma et al., 2019), as shown in Fig. 1.

First, vanilla training results in irregular boundaries, and the predictions for the inputs off-the-data
manifold are over-confident; the predictions for the out-of-distribution samples exhibit as high
confidence as in-distribution samples. Also, the sharp transition around decision boundaries indicates
the vulnerability of adversarial attacks (Goodfellow et al., 2015). In the case of Mixup, we observe
a gradual transition in the inter-class area having an intensity of 0.3 to 0.7 around the decision
boundaries; however, a part of those observations originates from lower-confidence on samples.

In our experiment, Manifold Mixup has more precise decision boundaries comparing with the two
previous cases, especially on the transition. However, overall confidence is biased to be lower than
the others. One possible explanation for this is under-fitting since its complicate training prevents
sufficient convergence for the conventional learning procedure (Thulasidasan et al., 2019). Last, our
method, LogitMix, leads to improve hidden representation by having high-confidence on samples as
well as gradual transition over inter-class regions as a supportive clue of a well-calibrated model of
confidence estimation.

4.2 COMBINATION OF LOSSES

To provide weak supervision for the logit of mixed data with a mixture of two logits from separate
inferences, the supervision for samples from data distribution is needed. Although we exploit the
widely-used classification loss (i.e.cross-entropy loss) for the basic LogitMix method, the term can
be replaced with other supervision loss like Lmix. To confirm the feasibility of loss combination, we
measure the classification accuracy with ResNet50 on CIFAR100 dataset, which consists of 50,000
images with 100 classes. The more details for training is in Section 5. To guarantee the reliability of
the experiment, we performed training five times for the same condition, and report the average of
the results.

As our method is independent with the classification loss in Eq.3, we can freely choose Lcls. To
analyse the effect of combinations of classification loss, we examined the experiment with CIFAR-
100. We simply changed the combinations of losses retaining other configurations the same. Table 1
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Name Loss Accuracy(%) Name Loss Accuracy(%)
Vanila Lcls 78.32 ± 0.07 LogitMixc Lcls + Lsim 80.11 ± 0.09
Mixup Lmix 79.82 ± 0.08 LogitMixm Lmix + Lsim 80.51 ± 0.08

LogitMixcm Lcls + Lmix + Lsim 80.96 ± 0.08

Table 1: Accuracy of CIFAR-100 under various combinations of losses. We achieved consistently
better accuracy by adding the proposed loss Lsim on existing classification losses. The combination
of all three losses (the last row) record the best accuracy.

shows results. Firstly, we combined our method with conventional cross entropy loss (Lcls, Eq. 3)
and denoted as LogitMixc. By adding our similarity loss, the accuracy is increased largely. The
accuracy of this combination is better than that of using Mixup loss Zhang et al. (2018) (Lmix, Eq. 5).
It is also possible to use Mixup loss with our method as our method is not depend on a classification
loss.

Lcls = H(x̃, y), Lmix = λH(ỹmix, y1) + (1− λ)H(ỹmix, y2), (5)

If our method is combined with Mixup (LogitMixm), its accuracy is also increased and this result
shows that our method is a general method for boosting the accuracy of the network regardless of
the classification loss. When alpha is bigger than 1 (i.e. uniform distribution), the probability of
seeing the original sample is very low. Since Lcls could give feedbacks the original sample, Lmix

with Lcls scores 80.08 ± 0.49 that is higher than Lmix only. However, we confirm that the training
with a combination of two supervision losses is less stable (i.e. high variance) than the combination
of the supervision (i.e. Lcls or Lmix) and weak supervision losses (i.e. Lsim). The final combination
is to use all of these losses (i.e. Lcls + Lmix + Lsim, LogitMixcm). As these three losses operate
differently, the highest accuracy could be achieved than any other combination. Compared to the
Mixup, it was possible to achieve high performance with a healthy margin. As using these three
losses the most effective combination of using our method, we used this combination (LogitMixcm)
as a default configuration of our method for the rest of the paper.

5 EXPERIMENTS

In this section, we evaluate LogitMix in various tasks and comparing with the competitors. We
stress that LogitMix can be combined with any mixing-based data augmentation techniques (Verma
et al., 2019; Yun et al., 2019; Zhang et al., 2018) and enjoy their performance gains. It is simply
done by incorporating our similarity loss term in their objective. First experiments assess the ability
to improve prediction accuracy and confidence calibration. The performance gain in both aspects
implies that the trained model better predicts the true posterior distribution; thus it better reveals the
inter-class correlations of the data distribution. Due to the page limit, several experimental results
are moved to Appendix B and C. For example, we examine the robustness of the model trained with
LogitMix (Appendix B). This result can quantify how LogitMix is successful in learning the vicinity
of boundaries. We also conduct an ablation study by changing α for an empirical understanding of
LogitMix (Appendix C).

Model architecture. We select five CNN architectures as backbone networks: three of them are
conventional CNNs (i.e., VGGNet (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), and
ResNeXt (Xie et al., 2017)), and the others are light-weight CNNs (i.e., MobileNetV2 (Sandler et al.,
2018) and ShuffleNet (Ma et al., 2018)).

Datasets. we validate the effectiveness of LogitMix on three benchmark datasets, ranging from
small to large-scale: CIFAR100 (Krizhevsky & Hinton (2009), 32×32 RGB images in 100 classes),
TinyImageNet (CS231N (2017), 64×64 RGB images in 100 classes) and ILSVRC2015 (Russakovsky
et al. (2015), 256×256 RGB images in 1000 classes).

Evaluation protocol. All networks are trained by a stochastic gradient decent optimization with the
momentum of 0.9. All methods for our comparison follow the same training schedule along with the
dataset. For CIFAR100, we set an initial learning rate to 0.1 and decay the learning rate by 0.2 at
every 60, 120, 160, and 200 epoch. In TinyImageNet and ILSVRC2015, we set the initial learning
rate to 0.1 and decay by 0.1 at 75, 150, and 225 epoch. Because light-weight models have a different
ideal training scheme, we follow the procedure described in their papers. In order to regularize the
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Dataset Network Metric Vanila Mixup LogitMixcm Cutmix LogitMixcc

CIFAR100

VGG16
Acc 74.30 75.02 76.22 (+1.20) 75.34 76.10 (+0.76)

ECE 0.176 0.060 0.035 (-0.025) 0.051 0.062 (+0.011)

OE 0.154 0.035 0.025 (-0.010) 0.022 0.008 (-0.014)

ResNet50
Acc 78.32 79.82 80.96 (+1.14) 80.57 81.02 (+0.45)

ECE 0.087 0.040 0.014 (-0.026) 0.078 0.073 (-0.005)

OE 0.073 0.028 0.003 (-0.025) 0.064 0.060 (-0.004)

ResNeXt50
Acc 79.18 81.10 81.63 (+0.53) 81.16 81.46 (+0.30)

ECE 0.069 0.042 0.021 (-0.021) 0.059 0.032 (-0.027)

OE 0.057 0.001 0.000 (-0.001) 0.047 0.023 (-0.024)

MobileNetV2
Acc 69.69 69.98 73.90 (+3.92) 68.82 69.91 (+1.09)

ECE 0.061 0.091 0.048 (-0.043) 0.050 0.049 (-0.001)

OE 0.042 0.000 0.000 (0.000) 0.000 0.000 (0.000)

ShuffleNetV2
Acc 72.17 74.17 75.53 (+1.36) 73.60 73.73 (+0.13)

ECE 0.079 0.060 0.042 (-0.018) 0.016 0.023 (+0.007)

OE 0.060 0.000 0.000 (-0.000) 0.002 0.000 (-0.002)

TinyImagenet

ResNet50
Acc 66.6 68.34 70.71 (+2.37) 69.08 69.87 (+0.79)

ECE 0.098 0.032 0.030 (-0.002) 0.029 0.034 (+0.005)

OE 0.076 0.022 0.010 (-0.012) 0.015 0.005 (-0.010)

MobileNetV2
Acc 57.62 59.55 62.12 (+2.57) 53.54 57.66 (+4.12)

ECE 0.073 0.091 0.032 (-0.059) 0.094 0.082 (-0.012)

OE 0.045 0.019 0.000 (-0.019) 0.000 0.000 (0.000)

ILSVRC2015 ResNet50
Acc 76.13 77.37 78.38 (+1.01) 78.43 78.51 (+0.08)

ECE 0.370 0.041 0.028 (-0.013) 0.028 0.020 (-0.008)

OE 0.030 0.003 0.001 (-0.002) 0.029 0.029 (0.000)

Table 2: Comparison ACC, ECE, OE on Cifar, TinyImagenet. LogitMixcm and LogitMixcc represents
the combination of Lcls, Lsim losses with Mixup and Cutmix respectively. The blue (or red color)
text represents the increase (or decrease) in value.

model, we exploit weight decaying with 4e−5 for CIFAR100 and 1e−4 for the others. Each model is
trained with the batch size of 128, 200, and 256 for CIFAR100, TinyImageNet, and ILSVRC datasets.

5.1 CLASSIFICATION ACCURACY WITH EXPECTED CALIBRATION ERROR

We showed that our method improves classification accuracy (i.e. high confidence on training samples)
and helps to learn the gradual transition of probability between two classes (i.e. appropriate confidence
on samples from off-the-data distribution) with a toy example (see Section 4.1), which is a supportive
indication of well-calibration. In this section, we conduct experiments with a more realistic scenario.
For the quantitative analysis of the confidence calibration, we used two popular metrics, the expected
calibration error (ECE, Naeini et al. (2015)) and the overconfidence error (OE, Thulasidasan et al.
(2019)). Please refer Appendix A for the computational model for each metric.

The ECE represents an average difference between true confidence and predicted confidence. If ECE
is zero, it means the network is correctly calibrated. The OE is similar to ECE, but it only measures
the confidence difference when it indicates over-confident. The over-confidence is particularly a
critical factor in high-risk systems; thereby this metric is a good indicator to assess system reliability
for high-risk applications. These two measures are calculated on validation sets.

Table 2 shows the experimental results using various networks and datasets. We consistently achieved
better accuracy and confidence calibration after combining our method. Especially, our gain in
prediction accuracy is substantial where the gap between the baseline and the baseline combining
with LogitMix is as much as the gap between the vanilla and the other competitors. As a result, our
method surpasses the performance of existing methods in most experimental conditions.

One crucial remark can be made via the experiment with a compact model such as MobileNetV2.
Generally speaking, Mixup-like approaches act as an augmentation method, which populates training
examples to prevent over-fitting. However, if it injects examples far from the training distribution, such
an augmentation can induce under-fitting. Under-fitting normally does not degrade the performance
of high-capacity networks, but it can hurt the performance of the low-capacity network. As the
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Method VWCI Seo et al. (2019) Mixup LogitMixcm (Ours)
Acc 73.87 (+0.09) 75.02 (+0.72) 76.22 (+1.92)
ECE 0.098 (-0.089) 0.057 (-0.116) 0.035 (-0.141)

Table 3: Comparison with other confidence calibration methods. The blue (or red color) text represents
the increase (or decrease) in value.

MobileNetV2 is the low-capacity model, it requires less regularization compared to large models,
and it might be sufficient to apply weak regularization (i.e. a small weight decay). When CutMix is
used for training MobileNetV2 on TinyImageNet, we observe severe performance degradation, and
we speculate that the accuracy is decreased because strong regularization induces under-fitting.

In contrast, when LogitMix is combined with CutMix, this effect of under-fitting is substantially
reduced, filling the degradation gap introduced by CutMix. From this result, we argue that our method
does not penalize the vanilla training to prevent over-fitting. Instead, LogitMix helps the model
to understand the hidden relationships by weak supervision. Because the hidden relationships can
provide a reasonable interpretation for understanding the examples far from training distribution,
LogitMix can prevent under-fitting as well. This observation is coherent with our motivation that the
inter-class correlation helps to improve both the prediction accuracy and the estimate of predictive
confidence.

5.2 COMPARISON WITH CONFIDENCE CALIBRATION METHODS

In previous experiments, we showed our method can improve both prediction accuracy and confidence
calibration simultaneously. As our method calibrates the prediction with a single inference, we did
not compare with Bayesian approaches (MacKay, 1992; Neal, 1995) or stochastic approaches with
multiple inferences (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017). The works that
are most relevant to our method are Mixup (Thulasidasan et al., 2019; Zhang et al., 2018) and
variance-weighted confidence-integrated Loss (VWCI, Seo et al. (2019)). In order to match the same
recipe in the results reported by VWCI, we compared the methods for CIFAR-100 using VGG16
(Table 3). The result of VWCI is from the original paper, and the delta values are also shown in
parentheses with the absolute values of accuracy and ECE as the reported baseline performance from
VWCI is slightly different from our results. Compared with the other methods, our method achieved
the highest accuracy and lowest calibration error; comparing with delta values, our results were the
best of the three.

6 CONCLUSION

The idea of LogitMix is motivated by the human cognition that heavily relies on the relational
information for making a decision. Based on this analogy, we proposed LogitMix, a novel training
strategy that takes into account the inter-class relationships in model training by utilizing the mixed
logit as weak supervision.

Based on extensive evaluations using various network architectures on four datasets (three popular
benchmark datasets and one synthetic dataset), empirical analysis and ablation study, we have demon-
strated various useful properties of LogitMix. 1) The hidden representations and decision boundary
are improved by adopting our method while keeping the confidence of training examples. 2) LogitMix
can improve the prediction accuracy and the estimate of predictive uncertainty simultaneously. We
highlight that the accuracy gain by LogitMix is significant; our improvements over the competitors
are as large as the gap between the vanila and competitor. Moreover, our method is effective in
both high-capacity and low-capacity models although the competitor (CutMix) is not. This is an
evidence that LogitMix improves generalization by preventing both the over-fitting and under-fitting.
3) LogitMix can be combined with any supervision losses (i.e., cross entropy, Mixup or CutMix) and
enjoy their performance gains.
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APPENDIX

A METRIC FOR CALIBRATION ERROR

As denoted in Section 5.1, for the quantitative analysis of the confidence calibration, we used two
popular metrics, the expected calibration error (ECE) and the overconfidence error (OE). When Bm
indicates the set of samples whose prediction scores (the winning softmax score) fall into bin Bm,
the accuracy and confidence of Bm are:

acc(Bm) =
1

|Bm|
∑

i∈Bm

1 (max(ỹi) = yi), conf(Bm) =
1

|Bm|
∑

i∈Bm

ỹi.

The expected calibration error computes as the weighted average of the absolute difference between
acc(Bm) and conf(Bm):

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (6)

where n is the total number of samples across all bins. The ideally well-calibrated model is achieved
when ECE = 0 (i.e.acc(Bm) = conf(Bm) for all bins).

OE =

M∑
m=1

|Bm|
n

[
conf(Bm) ·max

(
conf(Bm)− acc(Bm), 0

)]
,

where max denotes the class index which has the maximum value among the all classes in the
predicted distribution.

B ROBUSTNESS

Recently, many studies address that DNN is vulnerable to adversarial examples. Although imper-
ceptible noise is added to the sample, the model fails to predict the perturbed sample even with high
confidence. To improve the robustness from adversarial attacks, some of the approaches utilize the
augmented samples by adversarial training, adding noise, or erasing the subregion of the sample.
Since the mixing-based augmentation techniques also generate the sample which is in between
samples, the model could learn the near boundary samples when the ratio between the sample is a half.
Hence, the models trained with mixed samples are expected to achieve improvement in robustness.

In order to evaluate the model robustness, we utilize the two kinds of adversarial example. One
generated with the Fast Gradient Sign Method (FGSM) Goodfellow et al. (2015), which takes the
sign of a gradient obtained from the trained model and then perturbs along the gradient direction. We
set the attack step size as 8/255 without target setting. The other is Natural Adversarial Example
(NAE) Zhao et al. (2018). NAE which is collected from the ILSVRC2015 is real-word sample, but
they significantly degrade the classification performance. Note that, to evaluate the model trained
on TinyImagenet dataset, we compose the tiny-NAE dataset by finding the intersection between
TinyImagenet and NAE, and then down-scale to match the size of TinyImagenet. Table S1 reports
top-1 and top-5 accuracy after attack on three benchmark datasets. In all cases, LogitMix+ improve
or at least preserve the robustness to the two different adversarial attacks compared to their baseline.

C THE EFFECT OF ALPHA (α)

In mixed-base approaches Tokozume et al. (2018); Verma et al. (2019); Yun et al. (2019); Zhang et al.
(2018), the mixing rate is controlled by α which changes the shape of probability distribution for
λ. As a result, This hyper-parameter has a high impact on performance. Especially, using a large α
value degrades the accuracy largely in Mixup Thulasidasan et al. (2019); Zhang et al. (2018). Using
large α means that the image is likely to be mixed in half and can be a severe augmentation while
training. Another disadvantage of using large α is that the network has little chance of seeing the
original sample. Then, it raises a natural question: is a large α also bad on LogitMix?

To analyze the effect of the α, we ablated the performance of the network in terms of accuracy and
ECE by change α using ResNet50 and CIFAR-100 dataset. Fig. S1(a) shows the effect of α on

12



Under review as a conference paper at ICLR 2021

(a) Accuracy (b) Expected calibration error

Figure S1: Ablation study on the effect of α.

accuracy. As expected, the accuracy starts to drop with high α in Mixup. However, the accuracy is
proportional to the α value in our method. This is not the effect of explicit supervision of the original
sample by using Lcls (Eq. 5). The tendency is similar even though not using Lcls (LogitMixm,
orange line). This means that LogitMix can give implicit supervision of the original samples with
almost-half-mixing samples, and our method transforms half-mixing into helpful augmentation, not
the severe one. Extreme α values are also harmful to LogitMix as they reduce the training a lot near
original samples. Following this experimental result, we choose three as a default value for α.

Regarding the confidence calibration, ECE is worsened as the α is increasing (Fig. S1(b)). We
observed OE is decreasing as α is increasing, this means that ECE is increasing due to the under-
confident, and it means that the network is overly regularized with severe augmentation. This result
is consistent with the tendency with accuracy. Unlike Mixup, our method achieved good calibration
result regardless of α.

Dataset Network Method Vanila Mixup LogitMixcm Cutmix LogitMixcc

CIFAR100

ResNet50 FGSM 18.37
38.34

19.76
40.66

22.51
42.24

13.89
33.76

15.37
35.19

ResNeXt50 FGSM 17.96
38.41

18.76
38.88

20.77
40.93

12.62
32.44

14.22
33.77

MobileNetV2 FGSM 15.23
35.10

17.43
38.18

17.44
38.87

12.64
30.88

12.25
30.65

ShuffleNetV2 FGSM 17.15
39.06

19.28
40.07

19.60
40.82

14.07
33.97

14.18
34.53

TinyImagenet

ResNet50
FGSM 11.79

28.22
15.39
31.08

18.10
36.12

12.25
28.51

13.96
30.47

NAE 1.67
7.48

1.54
7.66

2.01
9.07

2.12
9.00

2.65
10.70

MobileNetV2
FGSM 7.32

21.44
8.75

23.75
9.26

24.10
6.06

18.08
6.54
19.57

NAE 1.32
6.88

1.62
7.00

1.65
7.03

0.91
6.17

1.18
7.64

ILSVRC2015 ResNet50
FGSM 23.54

48.13
35.71
60.22

37.40
61.34

38.094
62.85

38.68
63.2

NAE 0.09
0.40

0.09
0.59

0.10
0.61

0.12
0.65

0.11
0.56

Table S1: Top-1 and Top-5 accuracy for the adversarial examples generated by FGSM and the natural
adversarial examples (NAE). The blue (or red color) text represents the increase (or decrease) in
value.
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