
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Layer-Parallel Training for Transformers

Anonymous authors
Paper under double-blind review

Abstract

We present a new training methodology for transformers using a multilevel
layer-parallel approach. Through a neural ODE formulation of transformers,
our application of a multilevel parallel-in-time algorithm for the forward
and backpropagation phases of training achieves parallel acceleration over
the layer dimension. This dramatically enhances parallel scalability as the
network depth increases, particularly useful in large foundational models.
However, achieving this introduces errors that cause systematic bias in the
gradients, which in turn reduces convergence when closer to the minima. We
develop algorithms to detect this critical transition and either switch to serial
training, or systematically increase the accuracy of layer-parallel training.
Results, including BERT, GPT, ViT, and machine translation architectures,
demonstrate parallel-acceleration as well as accuracy commensurate with
serial pre-training while fine-tuning is unaffected.

1 Introduction

The transformer (Vaswani et al., 2017) is an attention-based, sequence-to-sequence model,
variations of which have achieved cutting-edge results in many areas, including natural
language processing, computer vision, audio processing, and multi-modality; it serves as the
backbone for foundation models (Bodnar et al., 2024; Zhou et al., 2024). Its performance
surpasses RNNs due to parallelization across the sequence dimension, as well as access to all
prior positions inside its context window. The network depth is limited by computational
cost and memory footprint, however, increasing depth is one strategy for enhancing accuracy
in language processing (Wang et al., 2024).

The challenge when parallelizing over depth is that transformers are based on a sequence
of residual layers whose forward and backward propagations are inherently serial. This
serialization is also endemic to neural ODE models that treat depth (layers) as the time-
dimension. However, the scientific computing community has proposed a solution to serial
ODE simulations by developing parallel-in-time methods (Gander, 2015; Ong and Schroder,
2020), including multigrid-reduction-in-time (MGRIT) (Falgout et al., 2014), which is used
here. These techniques decompose the time domain of the discretized ODE, and develop
iterative strategies to simultaneously solve over all layers.

To this end, we develop an MGRIT-based strategy for transformer training that exposes
parallelism over the layer dimension, resulting in greater potential speedup as the depth
increases. We use a neural ODE transformer formulation, which enables the application of
parallel-in-time forward and backward propagation schemes. Our novel contributions are:

• Layer-parallel training (Gunther et al., 2020) is applied to transformers with increasing
depth yielding speedups and reduced per-device memory overhead on multiple GPUs.

• Layer-parallel training creates inexact gradients with bias. Methodologies for detecting
when the bias becomes too large, and remedying through reversion to a serial algorithm
are shown. The overall process preserves significant parallel speedup.

• Detailed studies are shown for different parameter choices in the layer-parallel training
algorithm in terms of pre-training performance and overall training accuracy, as well as
fine-tuning on language model data sets.

• To the best of our knowledge, this is the first work to develop a neural ODE formulation
for an encoder–decoder transformer architecture and to demonstrate its application.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2 Background

Transformers. Transformers have revolutionized natural language processing (NLP) since
their introduction in 2017 (Vaswani et al., 2017). They leverage self-attention, which computes
the relevance of each token in the input sequence to every other token. This facilitates
the capture of long-range dependencies and contextual information, thereby enhancing the
model’s ability to understand and generate human language. This architecture mitigates
the vanishing gradient problem, and reduces training time by enabling efficient utilization of
modern hardware accelerators. However, transformers have trended towards increasingly
deeper architectures. While early models like BERT (Devlin et al., 2018) and GPT (Radford
et al., 2018) featured a modest number of layers, typically around 6 to 24, recent advancements
have seen a dramatic increase in depth. For instance, GPT-3 employs 96 layers, while deeper
architectures have been explored in T5 and Switch Transformer models (Xue et al., 2020;
Fedus et al., 2022; Wang et al., 2024). Increasing the number of layers has been instrumental
in achieving state-of-the-art performance across a range of NLP tasks, including machine
translation, text summarization, and question answering. Thus, the transformer scalability
is critical with large and deep models taking longer to train.

Parallelization Techniques. Parallelization in machine learning has been well-studied (Ben-
Nun and Hoefler, 2019; Narayanan et al., 2021; Danieli et al., 2023). The most common
approach is data parallelism (Valiant, 1990), with robust implementations in existing libraries
(Dean et al., 2012; Abadi et al., 2016; Paszke et al., 2019). Data parallelism replicates the
model across multiple GPUs and distributes the training data, allowing each to process
a subset of the data simultaneously. This parallelization mitigates the cost of large data
sets and batch-sizes. However, larger models demand additional parallelism due to memory
requirements and gradient storage. This is addressed by model parallelism that splits the
model across multiple GPUs. This enables training models whose memory requirements
exceeds that of a single GPU. Implementations, often referred to as tensor parallelism, that
mitigate computational costs with increased network width can be found in (Bradbury et al.,
2018; Rasley et al., 2020). Combining model and data parallelism yields further speedups.

A final form is pipeline parallelism tries to mitigate growth in network depth by distributing
layers across processors (Huang et al., 2019; Rasley et al., 2020). Here, batches are further
subdivided into minibatches and then streamed through the layers in a pipeline fashion. By
carefully rearranging work in an asynchronous way, parallel speedups can be obtained and
the memory overhead is naturally distributed across multiple GPUs. For instance Li et al.
(2021b) applies pipeline parallelism along the sequence length of decoder-only transformers
and proposes an algorithm that dynamically finds the optimal sequence partitions to equally
share the computational load among devices. In Zhuang et al. (2023), the authors study the
optimal combination of inter-op parallelism (pipeline parallelism) and intra-op parallelism
(tensor parallelism). While Korthikanti et al. (2023) uses tensor and sequence parallelism to
store activations, thus avoiding their recomputation.

The layer-parallel approach has the same goal as pipelining, to mitigate the computational
cost of growing network depth, while avoiding some of the its drawbacks. Pipelining works
by over-decomposing the data and relying on the distribution of layers to achieve parallelism.
This risks giving up some data parallelism (Narayanan et al., 2019), which typically has
excellent scalability. Moreover, pipeline acceleration is reduced if the number of layers is
much greater than the length of the pipeline due to computational latency, or the bubble
phenomenon. The layer-parallel algorithm, on the other hand, introduces controllable errors
in forward and backward propagation in exchange for additional parallelism. This yields an
iterative algorithm that is fully compatible with data and model parallelism.

Multigrid in time. Multigrid methods are iterative solvers for large, sparse (non)linear
systems (Trottenberg et al., 2001; Brandt and Livne, 2011; Hackbusch, 2013). The most
well-known are geometric multigrid methods applied to elliptic partial differential equations
(PDEs) in space. These methods utilize a hierarchy of grids and restriction/prolongation
operators to efficiently reduce high-frequency errors on finer grids with relaxation (e.g.,
Jacobi or Gauss-Seidel) and low-frequency errors on coarser grids. The effectiveness and near
optimal algorithmic complexity has been demonstrated across various physical domains.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Layer-parallel transformer. The ParallelNet contains a time grid hierarchy with
the coarsening rate denoted by cf . Experiments use a fine level time-step of h = 1.

Multigrid is extended to the time dimension by the MGRIT algorithm (Falgout et al., 2014;
Dobrev et al., 2017). By recasting serial time stepping as a single, global space-time operator,
temporal multigrid methods employ a similar hierarchical approach to address errors. This
approach accelerates time-dependent simulations, particularly for problems involving long
time horizons or in systems where other parallelization dimensions are saturated.

The layer-parallel algorithm, proposed in Gunther et al. (2020), uses MGRIT to exploit the
time dependent nature of neural ODE models. Layer-parallel applies an iterative MGRIT
method to the forward and backward propagation phases to compute an inexact gradient.
Through a partition of the layer dimension, this form of model-parallelism distributes the
model across many devices, allowing arbitrarily large models, provided enough GPUs are
available. Layer-parallel training can be used in conjunction with data and other forms
of model parallelism. While layer-parallel has been used in other architectures (Cyr et al.,
2019; Sun et al., 2021; Moon and Cyr, 2022), this is the first time it has been applied to
transformers.

3 Layer-Parallel Transformers

3.1 ODE formulation of Transformers

In this work, we consider transformer architectures (e.g., BERT (Devlin et al., 2018),
MarianNMT (Junczys-Dowmunt et al., 2018)) with pre-layer normalization (Xiong et al.,
2020). Forward propagation through the encoder, with NEnc layers, is given as

Xn+1 = Xn + h (φ1 (Xn,θn,1) + φ2 (Xn + φ1 (Xn,θn,1),θn,2))︸ ︷︷ ︸
:=FEnc(tn,Xn)

,
(1)

where Xn is the n-th layer input, Xn+1 is the n-th layer output, and h is typically h = 1. The
symbol θn,j denotes the parameters of the n-th layer’s j-th sublayer, which is parametrized
by evaluating FEnc at tn. The functions φ1 and φ2 are defined as φ1 := SA ◦LN, and
φ2 := MLP ◦LN, where SA, LN, and MLP denote self-attention, layer norm, and MLP
respectively. Decoder-only architectures (e.g., GPT (Radford et al., 2018)) are similar, with
the addition of a causal mask in the attention.

In case of encoder-decoder architectures, the decoder, with NDec layers, has the form:

Yn+1 = Yn + h (φ1(Yn,θn,1) + φ3(Yn + φ1(Yn,θn,1),XNEnc ,θn,3) + φ2(Yn,θn,2))︸ ︷︷ ︸
:=FDec(tn,Yn,XNEnc)

, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Two-level MGRIT:
1. Parallel FCF-relaxation with S0

2. Restrict r0 = G0 −A0W0

to coarse-level, yielding r1
3. Solve for coarse-level error e1

serially with A1e1 = r1
4. Correct fine-level solution

with e1

Figure 2: 2-level MGRIT pseudocode (left), MGRIT with cf = 2, L = 2 on 2 devices (right).

where Yn = Yn+φ1(Yn,θn,1)+φ3(Yn+φ1(Yn,θn,1),XNEnc ,θn,3). The symbol θn denotes
the parameters of n-th decoder layer, Yn denotes the n-th decoder-layer input, and XNEnc

denotes the encoder output. The function φ3 is φ3 := CA ◦LN, where CA is cross-attention.

To facilitate application of parallel-in-time, we associate the transformer architecture with a
neural ODE. The idea of viewing the forward propagation as ODE discretizations was first
introduced for ResNets by E (2017), establishing a continuous-depth perspective on deep
networks. The stability and well-posedness of the forward propagation was then studied in
Haber and Ruthotto (2017); Lu et al. (2018); Chen et al. (2018), where the authors apply
several numerical schemes to train deep neural networks. This ODE-based formulation was
later expanded to encoder-only transformers in Queiruga et al. (2021) and Li et al. (2021a).
In this work, we further extend the formulation to encoder-decoder transformer architectures.

To this aim, consider a mapping θ defined on [0, T] which interpolates θn at tn, where
T := TEnc + TDec, TEnc := hNEnc, and TDec := hNDec. For encoder-decoder transformers,
we stack the encoder states X and the (shifted) decoder states Y, such that the forward
propagation through the transformer is defined as

Zn+1 := [Xn+1,Yn+1−NEnc] = Zn + hF(tn,Zn), (3)

where Xn := XNEnc , ∀n > NEnc, and Yn := Y0, ∀n < NEnc. The function F is given as

F(t, [X,Y],) :=

{
[FEnc(t,X), 0], if t < TEnc,

[0 , FDec(t,Y,X)], if t ≥ TEnc.

For encoder-only transformers, T := TEnc, Z := X, and F := FEnc.

Thus, we can interpret the transformer forward propagation (3) as a forward Euler discretiza-
tion with time step h = 1 of the initial value problem (IVP) in eq. (4) (left). Here, for a given
time t ∈ [0, T], F depends on the states Z(t) and parameters θ(t). The initial value Z0 is
defined analogously on X0 and Y0, which denote the positionally-encoded source and target
embeddings, respectively. Next, the gradients required for training can be then obtained by
solving the adjoint equation in eq. (4) (right) backward in time. Here, L is the loss and
λ(tn) is the backpropagated gradients at the n-th layer.

forward:
{

dZ
dt = F (Z,θ)

Z(0) = Z0
backward:

{
∂λ
∂t = λT ∂F

∂Z

λ(tN) = ∂L
∂Z(tN)

(4)

3.2 MGRIT: inexact forward and backward propagation

MGRIT constructs a hierarchy of discretizations of the IVP (4) (left). Starting with a
fine time-step size h on level 0, progressively coarser discretizations are constructed with a
coarsening factor cf (e.g., the first coarse-level has step size cfh, the second coarse-level c2fh,
and so on). The coarser levels correct the fine-grid solution, accelerating convergence to the
serial solution. The fine-grid is evaluated only locally, in a highly parallel manner.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.2.1 Inexact MGRIT forward propagation

For the MGRIT hierarchy, let l = 0 . . . L− 1 for L total levels, then define AlWl = Gl where

Al =


I

(−I − clfhF1) I
.

(−I − clfhFNl−1) I

 , Wl =


Z1

Z2

...
ZNl

 , Gl =


(I + clfhF0)Z0

0
...
0

 ,

and number of time-steps Nl = N/clf . For l = 0 this is the iterative evolution Eq. 3 written
as a system. The variable cf is a user-defined integer coarsening factor (often 2 or 4).
The initial condition is implicitly included in the first entry of Gl. The application of the
nonlinear operator Al written in matrix notation is understood as component-wise nonlinear
composition (e.g. FkZk = Fk(Zk)).

Remark: The exact solution to the system when l = 0 yields the same state vector W0 as
would be obtained from forward propagation of the neural ODE transformer. Further, the
solution to the system l + 1 is an O(h) approximation of the system at l.

Figure 2 outlines the algorithmic approach used by a 2-level MGRIT method (L = 2) to
exploit this hierarchy to solve A0W0 = G0. The first step of this algorithm, see Fig. 2
(left), applies a smoothing operator Sl ≈ A−1

l on the fine grid. This smoother is selected to
reduce high frequency errors in a parallel way (Dobrev et al., 2017). A form of block Jacobi,
FCF-relaxation (fine-coarse-fine), is the approach taken in layer-parallel and is described
in detail in Appendix A and Gunther et al. (2020). For level l, the application of FCF has
Nl/c

l
f way parallelism. Figure 2 (right) indicates this parallel relaxation phase with the red

and blue arrows. The red arrows execute concurrently, followed by concurrent execution
of the the blue arrows. After relaxation the error has been reduced locally over subsets of
layers, yet no end to end communication has occurred.

Step 2 in Fig. 2 computes the residual r0 = G0 −A0W0 on the fine grid and then “restricts"
the residual with injection to the coarse level (orange arrows), yielding r1. In the third step,
the “coarse solve” step (yellow arrows) computes the error on the coarse-level implied by the
residual by solving A1e1 = r1 exactly. This communicates end-to-end across the domain in
serial, albeit at a factor of cf cheaper than the fine grid (the number of time steps is N0/cf
on level 1). In Step 4, this error correction is “interpolated” back up to the fine grid (green
arrows). The algorithm repeats as required until a stopping criteria is met.

One iteration of this algorithm is referred to as a V-cycle. To create a hierarchy with more
levels, the serial coarse solve can be replaced with another two-level solve and the whole
process proceeds recursively. The serial coarsest-level solve will then be cL−1

f times cheaper
than the fine grid, with additional parallel relaxation work done on intermediate levels.
Critical for layer-parallel performance is that only a handful of V-cycle iterations are needed
for sufficient accuracy, which results in approximate forward or backward propagation.

To initialize MGRIT for the system A0, we distribute the layers across multiple GPUs. In Fig-
ure 2 (right), an example is shown, where an 8 layer network is split over 2 GPUs/processors;
a coarsening factor of cf = 2 is shown. The example shows the second GPU stores F4 through
F7, and an initial guess for X4. GPU-aware MPI is used for inter-device communication. See
Cyr et al. (2025) for more implementation details. Similar to model parallelism, layer-parallel
distributes the network across multiple GPUs, reducing the per device memory requirement.

3.2.2 Inexact MGRIT backward propagation

To evaluate the gradients in parallel, the same MGRIT algorithm can be applied to solve
the discretized adjoint problem (4) (right) backward in time; see (Gunther et al., 2020; Cyr
et al., 2025) for details. Notably, in many cases, a single MGRIT iteration for the adjoint
problem is enough to approximate the gradient with sufficient accuracy, enabling significant
speedups. This behavior is consistent with findings in the literature, which indicate that
optimizer convergence is significantly more sensitive to noise in the loss function evaluations
than in gradient evaluations (Bellavia et al., 2023; Lou et al., 2025). As a result, the MGRIT

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

forward solve typically requires more iterations than backward. In the results section, forward
iterations will refer to the number of MGRIT iterations used for forward propgation, and
backward iterations for backward propagation, which will typically be smaller.

3.2.3 Adaptive control of the inexactness

Statistically biased error from inexact gradient evaluations is known to change the convergence
properties of stochastic gradient descent algorithms. However, theory indicates that this
can be mitigated if the error can be controlled as the minima is approached (Lin, 2022;
Demidovich et al., 2023). Thus, detecting when the error is too large relative to the gradient
is crucial for the application of corrective measures such as increasing the number of iterations
or switching to exact solves. Due to the dynamics of transformers, MGRIT may require too
many iterations to obtain a sufficient speedup relative to serial. To address this, we monitor
the effectiveness of MGRIT iterations during training by evaluating the “convergence factor”,
defined as the ratio of consecutive fine-level residuals for iteration k, ∥r(k+1)

0 ∥/∥r(k)0 ∥. A small
convergence factor implies rapid convergence. To ensure robustness, we periodically, every
few (e.g. 500) batches, double the number of MGRIT iterations to monitor the convergence
factor of the final iteration. A convergence factor above 1 indicates that the iteration count
is no longer effective. The mitigation either improves the accuracy by increasing iteration
count, or switching to serial training. Our results confirm, as suggested by the biased SGD
theory (Demidovich et al., 2023), that despite the initial phase using inexact gradients
improving accuracy in later stages leads to a network with comparable performance.

4 Numerical Results

To evaluate the efficacy of layer-parallel training and inference, we consider the following
networks and applications, with additional details provided in the appendix.

1. BERT pre-training is the classical language modeling training problem for a pure
encoder only network. The training objectives are the next sentence prediction (NSP)
and masked-language modeling (MLM), however we only utilize MLM learning (Liu
et al., 2019). For the pre-training data, we utilize the C4 dataset (Raffel et al., 2020).

2. Morphological classification (MC) is associated with classifying a word to its
morphological class (noun, adjective, adverb, etc). We use the GUM corpus (Zeldes,
2017) dataset from Universal Dependencies (Nivre et al., 2017) and employ the neural
ODE encoder-only transformer architecture, specified in Queiruga et al. (2021).

3. Vision transformer (ViT) is an encoder-only image transformer that is applied to
tokens constructed from sub-partitions of an image (Dosovitskiy et al., 2020). We apply
a classical ViT modified to be a neural ODE to the ImageNet dataset (Deng et al., 2009).

4. Machine translation (MT) consists of translating German sentences into English using
the OPUS data set (Tiedemann and Thottingal, 2020), the pre-trained MarianTokenizer
(Tiedemann and Thottingal, 2020), and an encoder-decoder transformer inspired by
Junczys-Dowmunt et al. (2018) with the neural ODE modifications from above.

5. GPT2 pre-training is the decoder-only language model developed by OpenAI (Radford
et al., 2018). We use the nanoGPT implementation (Karpathy, 2022) trained on
OpenWebText (Gokaslan and Cohen, 2019) with minor modifications to the time stepping
detailed in appendix B.

For each task, we demonstrate that layer-parallel forward and backward propagation, with
adaptive control of inexactness, achieves the same accuracy as serial computations. We
further show the strong scalability properties with respect to a varying number of trans-
former blocks N , the MGRIT coarsening factor cf , and the number of MGRIT levels L.
Hyperparameter configurations for all benchmark problems are provided in the appendix.

4.1 Convergence of MGRIT

In this section, we demonstrate the impact of the layer-parallel approach on training accuracy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 20 40

75

80

Epochs

V
al

.
ac

c

20 40 60

0.2

0.25

0.3

Epochs

V
al

.
B

LE
UGPUs

1
2
4
8

GPUs
1
2
2–>1
2–>1

Figure 3: The long term training behavior using sequential and using layer-parallel with
multiple GPUs. On the left, the validation accuracy for the MC example with 64 transformer
layers, L = 2, and cf = 2. On the right, the validation BLEU for the MT example with 6-6
transformer layers, L = 2, and cf = 3. The plot corresponding to “2–>1” label illustrates
a switch from parallel training with 2 GPUs to serial training with 1 GPU. Note that two
depicted “2–>1” runs switch off from a parallel run at different points during the training.

MC Training Figure 3 (left) compares the behavior of sequential and layer-parallel training
with increasing number of GPUs. The inexactness in the gradients does not negatively
impact the validation accuracy: layer-parallel achieves the same accuracy as serial training.
MT Training Figure 3 (right) illustrates how the error accumulated due to inexact loss
and gradient evaluations can lead to a slight deterioration in validation BLEU compared
to the serial baseline. However, switching to sequential training after an efficient, parallel
phase, allows the optimizer to quickly recover the validation BLEU score achieved in serial.
BERT/GPT/ViT Pretraining In Figure 4 (left), we show the loss value of pretraining
a 128 layer BERT model (Wang et al., 2024) using serial (blue), pure layer-parallel (red)
and switching from parallel to serial (green, with multiple seeds shaded in grey). The
layer-parallel configuration is 2 levels for both forward and backward solve, and cf = 4 on 4
GPUs. We use this large model as an exemplar for the loss dynamics. During pretraining,
layer-parallel converges past the loss plateau typical of BERT (Nagatsuka et al., 2021; Fu
et al., 2023), but diverges and then stagnates. The divergence is expected as near local
minima, smaller gradients can be overwhelmed by inexact gradient error.

We can use the indicator as described in Section 3.2.3 to demarcate the need to switch
to using serial (exact) gradient computations. Figure 4 (left, green) shows after switching
training dynamics closely match the serial case. In Table 1, performance differences are
displayed for a few GLUE benchmarks comparing serial trained models, to those trained with
the switching training schemes. The differences between the fine-tuned models demonstrate
layer-parallel yields parallel speedups and commensurate accuracy.

The loss results for GPT and ViT follows an extremely similarly trajectory, as shown in
Figure 4 (middle/right). While GPT is a decoder-only network, and ViT operates on image
data, we see that inexact gradients (red) causes a divergence in training dynamics compared
to exact dynamics (blue). However, by using the indicator, we are able to recover the
dynamics by switching from serial to parallel where the indicator Figure 5 dictates. We use
a 32 layer ViT with the neural ODE modification with the serial forward, and one level
parallel backwards for MGRIT using 2 GPUs. The GPT network consists of 20 layers with
the neural ODE modification on only the middle 16 layers with serial forward and one level
parallel backwards; for more detail, please see Appendix B.

Table 1: Absolute differences in loss and accuracy of subset of GLUE task performance
comparison between serial and parallel followed by serial (adaptive switching)
Task Name Diff. in Loss Diff. in Accuracy

CoLA (Corpus of Linguistic Acceptability) 3.99e-4 0%
MRPC (Microsoft Research Paraphrase Corpus) 1.10e-2 0%
QNLI (Question Natural Language Inference) 3.38e-4 1.2%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

10 15 20
4

5

6

7

Batches (x1000)

L
os

s

0 1 2 3
3.5

4

4.5

5

5.5

Batches (x1000)
0 2 4 6 8 10

5

6

7

Batches (x1000)

Figure 4: Plots of the loss for serial (blue), pure parallel (red) and switching to serial from
parallel (green) for the BERT (left), GPT (middle) and ViT (right). In all the experiments,
we see that purely layer parallel runs will diverge from serial training after a certain point.
However, one can recover the original dynamics by switching from parallel to serial at an
appropriate time given by the indicator. The gray color in the BERT subplot indicates the
min/max over three different seeds.

0 2 4 6
0.5

1

1.5

2

Batches (x1000)

In
di

ca
to

r

0 0.5 1

0.5

1

Batches (x1000)
0 2 4 6

0

0.5

1

Batches (x1000)

Figure 5: The indicator values for BERT (forward in red, backward in blue), ViT and GPT
(backward in blue) using MGRIT. We see that at the 70000th batch, 1000th, and 6000th
batch respectively, the indicators exceed 1, meaning that one should switch to exact gradient
computation then.

4.2 Scaling studies

In this section, we investigate the parallel scaling properties of the layer-parallel approach.
Figure 6 shows the speedup achieved for encodere-only transforms on the: (left) the BERT
task with cf = 4, (middle) the MC task with cf = 2, and (right) the ViT model with
cf = 4. All tasks use L = 2 levels. The obtained results indicate that the numerical
and communication overhead introduced by MGRIT may occasionally lead to increased
execution time when using two GPUs for small problems. However, as more computational
resources are are employed for deeper models, the layer-parallelism enabled by MGRIT yields
a substantial reduction in the overall execution time.

1 2 4 8
0

1

2

3

GPUs

Sp
ee

du
p

1 2 4 8

GPUs
1 2 4 8

GPUs

NEnc

32

64

128

256

Figure 6: Speedup of layer-parallel for encoder-only transformers using L = 2. Left: BERT,
on Singra, 1 forward, and 1 backward iteration, with cf = 4. Middle: MC, on Jean-Zay, 2
forward, 1 backward iterations, with cf = 2. Right: ViT, on Singra, serial forward, and 1
backward iteration, with cf = 4. See appendix C for system details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

2 4 8
1

2

3

4

GPUs

Sp
ee

du
p

2 4 8
GPUs

2 4 8
GPUs

NEnc −NDec

40− 40

80− 80

160− 160

Ideal

Figure 7: Strong scaling on Jean-Zay with respect to increasing number of layers NEnc+NDec
for MT task. MGRIT uses cf = 4, L = 2, 1 backward, and 2 forward iterations.

2 4 8
1

2

3

4

GPUs

Sp
ee

du
p

2 4 8
GPUs

2 4 8
GPUs

1,
2,

3,
4

L

2

3

4

5

cf
2

4

8

16

NEnc

256

512

768

1024

Figure 8: The impact of MGRIT parameters on scaling properties. The experiment is
performed using 2 forward and 1 backward iteration for the MC task on Jean-Zay. Left:
cf = 2 and NEnc = 1024. Middle: L = 2 and NEnc = 1024. Right: L = 3 and cf = 4. The
blank line depicts ideal scaling.

A similar conclusion is drawn from Figure 7. The strong scaling properties for the encoder-
decoder architecture used in the MT task are illustrated. The model size ranges from 80 layers,
to 320 layers. While the are apparent speedups, additional improvements can be obtained
using alternative algorithmic parameters for layer-parallel. We provide practical guidance for
parameter selection by analyzing the impact of the number of levels (L), coarsening factor
(cf), and transformer depth (N) on the parallel scaling. To this end, we consider the MC
example with layer-parallel configured to perform two forward and one backward iteration.
Figure 8 shows that the scalability improves with an increasing number of levels (left image)
and larger coarsening factors (middle). However, taking a large coarsening factor can have
an impact on the convergence rate (Falgout et al., 2014; Dobrev et al., 2017). The last panel
(right) show the benefits of layer-parallel training improve with network depth.

5 Conclusion

We demonstrated training of neural ODE based transformer models using a layer-parallel
approach based on MGRIT. This algorithm uses inexact computations of the gradients
for training in order to expose additional parallelism over the layer dimension. This form
of layer-parallelism is compatible with other approaches, like data or tensor parallelism.
Scalability, parallel speedups using multiple GPUs, and training accuracy are demonstrated
for three natural language processing benchmarks when compared to standard serial training.
Additionally, the approach naturally distributes large memory loads across multiple GPUs
allowing for training of very deep transformer models.

We also explored the impact of inexact gradients resulting in a statistically biased gradient.
Layer-parallel training matched serial training in early stages of pre-training. However for
some problems, inexact gradients eventually led to diverging or stagnant training dynamics.
We corrected this by developing indicators to detect the divergence or stagnation and then
transition to a serial gradient computation. We anticipate this to motivate the development of
new inexact approaches exposing greater parallelism for training large transformers. Future
work will focus on improving MGRIT convergence and the implementation details to include
more vectorization while reducing overheads.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–283, 2016.

Stefania Bellavia, Gianmarco Gurioli, Benedetta Morini, and Philippe Louis Toint. The
impact of noise on evaluation complexity: the deterministic trust-region case. Journal of
Optimization Theory and Applications, 196(2):700–729, 2023.

Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter,
Patrick Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al.
Aurora: A foundation model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Achi Brandt and Oren E Livne. Multigrid Techniques: 1984 Guide with Applications to
Fluid Dynamics, Revised Edition. SIAM, 2011.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems, 31,
2018.

Eric C Cyr, Stefanie Günther, and Jacob B Schroder. Multilevel initialization for layer-parallel
deep neural network training. arXiv preprint arXiv:1912.08974, 2019.

Eric C. Cyr, Jens Hahne, Nicholas S. Moore, Jacob B. Schroder, Ben S. Southworth,
and David A. Vargas. Torchbraid: High-performance layer-parallel training of deep
neural networks with mpi and gpu acceleration. ACM Trans. Math. Softw., August 2025.
ISSN 0098-3500. doi: 10.1145/3759244. URL https://doi.org/10.1145/3759244. Just
Accepted.

Federico Danieli, Miguel Sarabia, Xavier Suau Cuadros, Pau Rodriguez, and Luca Zappella.
Deeppcr: Parallelizing sequential operations in neural networks. Advances in Neural
Information Processing Systems, 36:47598–47625, 2023.

Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V Le, Mark Z
Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, et al. Large scale distributed
deep networks. Advances in neural information processing systems, 25:1223–1231, 2012.

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through
the zoo of biased sgd. Advances in Neural Information Processing Systems, 36:23158–23171,
2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

VA Dobrev, Tz Kolev, N Anders Petersson, and Jacob B Schroder. Two-level convergence
theory for multigrid reduction in time (mgrit). SIAM Journal on Scientific Computing, 39
(5):S501–S527, 2017.

10

http://github.com/jax-ml/jax
https://doi.org/10.1145/3759244

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Weinan E. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017. doi: 10.1007/s40304-017-0103-z. URL
https://doi.org/10.1007/s40304-017-0103-z.

R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder. Parallel
time integration with multigrid. SIAM Journal on Scientific Computing, 36(6):C635–C661,
2014. doi: 10.1137/130944230.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Jingwen Fu, Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Breaking through the
learning plateaus of in-context learning in transformer. arXiv preprint arXiv:2309.06054,
2023.

Martin J Gander. 50 years of time parallel time integration. In Multiple Shooting and Time
Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013, pages 69–113.
Springer, 2015.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R Gauger.
Layer-parallel training of deep residual neural networks. SIAM Journal on Mathematics
of Data Science, 2(1):1–23, 2020.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
problems, 34(1):014004, 2017.

Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer Science &
Business Media, 2013.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training
of giant neural networks using pipeline parallelism. Advances in neural information
processing systems, 32, 2019.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth
Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay
Bogoychev, André F. T. Martins, and Alexandra Birch. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia, July 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P18-4020.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large
transformer models. Proceedings of Machine Learning and Systems, 5, 2023.

Bei Li, Quan Du, Tao Zhou, Shuhan Zhou, Xin Zeng, Tong Xiao, and Jingbo Zhu. ODE trans-
former: An ordinary differential equation-inspired model for neural machine translation.
arXiv preprint arXiv:2104.02308, 2021a.

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion
Stoica. Terapipe: Token-level pipeline parallelism for training large-scale language models.
In International Conference on Machine Learning, pages 6543–6552. PMLR, 2021b.

11

https://doi.org/10.1007/s40304-017-0103-z
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://www.aclweb.org/anthology/P18-4020
https://github.com/karpathy/nanoGPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Shengchao Lin. Multilevel-in-time methods for optimal control of PDEs and training of
Recurrent Neural Networks. PhD thesis, Rice University, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Yuchen Lou, Shigeng Sun, and Jorge Nocedal. Design guidelines for noise-tolerant optimiza-
tion with applications in robust design. SIAM Journal on Scientific Computing, 47(3):
A1335–A1357, 2025.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations. In International
Conference on Machine Learning, pages 3276–3285. PMLR, 2018.

Gordon Euhyun Moon and Eric C Cyr. Parallel training of gru networks with a multi-grid
solver for long sequences. arXiv preprint arXiv:2203.04738, 2022.

Koichi Nagatsuka, Clifford Broni-Bediako, and Masayasu Atsumi. Pre-training a bert
with curriculum learning by increasing block-size of input text. In Proceedings of the
International Conference on Recent Advances in Natural Language Processing (RANLP
2021), pages 989–996, 2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized
pipeline parallelism for dnn training. In Proceedings of the 27th ACM symposium on
operating systems principles, pages 1–15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catan-
zaro, et al. Efficient large-scale language model training on gpu clusters using megatron-lm.
In Proceedings of the international conference for high performance computing, networking,
storage and analysis, pages 1–15, 2021.

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis Tyers. Universal Dependencies.
In Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Tutorial Abstracts, Valencia, Spain, April 2017. Association
for Computational Linguistics. URL https://aclanthology.org/E17-5001.

Benjamin W Ong and Jacob B Schroder. Applications of time parallelization. Computing
and Visualization in Science, 23:1–15, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style,
high-performance deep learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Remigijus Paulavičius and Julius Žilinskas. Analysis of different norms and corresponding
lipschitz constants for global optimization. Technological and Economic Development of
Economy, 12(4):301–306, 2006.

Alejandro Queiruga, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney.
Stateful ODE-nets using basis function expansions. Advances in Neural Information
Processing Systems, 34:21770–21781, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

12

https://aclanthology.org/E17-5001

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 3505–3506, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

Qi Sun, Hexin Dong, Zewei Chen, Weizhen Dian, Jiacheng Sun, Yitong Sun, Zhenguo Li,
and Bin Dong. Layer-parallel training of residual networks with auxiliary variables. In
The Symbiosis of Deep Learning and Differential Equations, 2021.

Jörg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services
for the World. In Proceedings of the 22nd Annual Conferenec of the European Association
for Machine Translation (EAMT), Lisbon, Portugal, 2020.

Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid methods. Academic
press, 2001.

Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer
architecture. In International Conference on Machine Learning, pages 10524–10533. PMLR,
2020.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text
transformer. arXiv preprint arXiv:2010.11934, 2020.

Amir Zeldes. The GUM corpus: Creating multilayer resources in the classroom. Lan-
guage Resources and Evaluation, 51(3):581–612, 2017. doi: http://dx.doi.org/10.1007/
s10579-016-9343-x.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji,
Qiben Yan, Lifang He, et al. A comprehensive survey on pretrained foundation models: A
history from bert to chatgpt. International Journal of Machine Learning and Cybernetics,
pages 1–65, 2024.

Yonghao Zhuang, Hexu Zhao, Lianmin Zheng, Zhuohan Li, Eric Xing, Qirong Ho, Joseph
Gonzalez, Ion Stoica, and Hao Zhang. On optimizing the communication of model
parallelism. Proceedings of Machine Learning and Systems, 5, 2023.

13

https://doi.org/10.1145/3394486.3406703

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A MGRIT - FCF Relaxation

As discussed in Section 3.2.1, the MGRIT algorithm exposes additional parallelism that
allows distribution of layers across multiple compute devices (e.g. GPUs). Figure 2 presents
the structure of a two level scheme. However for a full picture of MGRIT, we now pro-
vide details about the relaxation operator S0, which is needed for MGRIT efficiency and
scalability. To this end, we focus on the finest level of a neural ODE based transformer
architecture. Following the notation used in Section 3.2.1, our network has N0 time-steps,
coarsened at a rate of cf . The value cf implicitly defines “coarse point” layers, i.e., the
layers [0, cf , 2cf , 3cf , . . .], which go on to form the first coarse grid. All other points are “fine
points.”

Forward propagation is denoted as
Zn+1 = Φ(Zn) for n = 0 . . . N0 − 1, (5)

where Φ is a discrete forward propagator implementing encoder-decoder (Eq. 3) or
encoder/decoder-only (Eq. 1) architectures. This section explicitly discusses only forward
propagation. Backward propagation is similar, but uses an adjoint operator in the propagation
step to move backward through the time domain.

The relaxation which forms the action of S0 consists of two phases. The first one is fine-
relaxation (F-relaxation), whereby Equation 5 is used to propagate Zn starting from each
coarse point until, but not including, the following coarse point. Mathematically this is
expressed as

Zn+cf−1 = Φ ◦ Φ ◦ . . . ◦ Φ︸ ︷︷ ︸
cf−1 times

◦Zn (6)

where n is a coarse point (an integer multiple of cf). By construction, F-relaxation can be
applied with N0/cf way parallelism. The second phase is the coarse-relaxation (C-relaxation).
This takes the final step

Zn+cf = Φ(Zn+cf−1) (7)
for each of the N0/cf coarse points. Here again, the available parallelism is N0/cf .

Combining these two phases by first applying F-relaxation, then C-relaxation, and finally
F-relaxation again, yields FCF-relaxation. Again, this can be computed with N0/cf way
parallelism. In Falgout et al. (2014), the authors show experimentally that the use of
FCF-relaxation is needed for multilevel scalability, yielding a similar result to multigrid
reduction in space. In Dobrev et al. (2017), the need for FCF-relaxation is further developed
theoretically for linear model problems, where FCF-relaxation is shown to damp error over
large parts of the spectrum effectively (i.e., eigenvalues of the spatial discretization with
magnitude away from 1, often corresponding to oscillatory error). FCF-relaxation is presented
formally in Algorithm 1. At the start of the algorithm Zn contains a guess for the features,
while at the conclusion, the features are updated with an improved approximation with
reduced high frequency errors (in time). The operator S0 is then defined as mapping from
the initial guess for each Zn, to the updated, improved features. The parallel-for blocks
indicate where the relaxation scheme exposes parallelism.

B Buffer layers

The convergence of MGRIT in the linear case is determined by the stability function of
the time-stepping scheme and the eigenvalues of the time-stepping matrix (Dobrev et al.,
2017). In the case of MGRIT’s application to neural network pretraining, one is therefore
interested in the stability constraints arising from the Euler time-stepping scheme due to the
feed-forward structure of modern neural networks. To investigate this further, we propose
examining the Lipschitz constants arising from pretraining, which can be easily estimated
even for transformers.

As motivation, suppose we are solving
dy(t)

dt
= f(y(t)),

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Algorithm 1 FCF-Relaxation
1: procedure FCF-Relaxation(Z)
2: parallel-for k ← 0 to N0/cf − 1 do ▷ Begin first F-relaxation
3: n← cfk
4: for i← 0 to cf − 2 do ▷ Do cf − 1 propagation steps
5: Zn+i+1 ← Φ(Zn+i)
6: end for
7: end parallel-for
8: parallel-for k ← 1 to N0/cf do ▷ Begin first C-relaxation
9: n← cfk

10: Zn = Φ(Zn−1)
11: end parallel-for
12: parallel-for k ← 0 to N0/cf − 1 do ▷ Begin second F-relaxation
13: n← cfk
14: for i← 0 to cf − 2 do
15: Zn+i+1 ← Φ(Zn+i)
16: end for
17: end parallel-for
18: end procedure

for some given initial condition (a simplification of Equation (4)). An Euler iteration would
be yn+1 = yn +∆tf(yn), and let the error be en = y(tn)− yn. Recalling the usual Taylor’s
theorem, along with it’s assumptions of smoothness, y(ti+1) = y(ti) + ∆tf(y(ti)) +O(∆t2),
one can write the error relation as

ei+1 = ei +∆t(f(y(ti))− f(yi)) +O(∆t2)

= ei +∆t(f ′(y∗)ei) +O(∆t2) = (1 + ∆tf ′(y∗))ei +O(∆t2),

where we used the mean value theorem to produce y∗. Thus, by the recursive nature, if
(1 + ∆tf ′(y∗)) ≫ 1, then any initial error would amplify and cause massive issues for MGRIT
when using Euler’s method.

Based on this heuristic, we propose examining the largest eigenvalue of the Jacobian of the
individual layers, which can indicate which layers are causing divergence when applying
MGRIT. Calculating the Jacobian itself for a self-attention or MLP layer is computationally
intractable given the large sequence length and hidden dimension. This leads us to empirically
estimate the Lipschitz constant via a Monte Carlo approach, which is tightly correlated with
the intended value (Paulavičius and Žilinskas, 2006).

In Figure 9, we show the estimated Lipschitz constants during the training of a GPT2
decoder network in the usual serial fashion. Remarkably, as the network trains and becomes
more expressive, the rate of change of the Lipschitz constant at each layer is not uniform.
It appears that the last few layers change significantly first, followed by the initial layers,
while the middle layers remain stagnant for longer. It is known that the gradient updates
are greater in magnitude (Wang et al., 2024) for the deeper layers, but we cannot explain
the rise in the Lipschitz constant for the early layers. We note that the change in the
Lipschitz constant is unrelated to the change in the magnitude of the weights themselves,
∥w−w0∥
∥w0∥ where w is the weights at a specific iteration while w0 the initial weights, as shown

in Figure 10.

Regardless of the mechanics driving the change in the Lipschitz constant, the prescription
for MGRIT is clear: create “buffer” layers where the first and last layers are computed
serially, targeting exact computation of the layers with large estimated Lipschitz constants.
MGRIT will perform layer-parallel computations on the middle portion, where the estimated
Lipschitz constants are more modest. In other words, a few transformer layers are moved to
the open/close layers in Figure 1 from the ParallelNet. Besides moving the layers, we also
tweaked the ∆t (e.g. h from Equation (3)) for the open/close layers: we simply give them
∆t = 1 for the open/close layers, while the transformer layers in the ParallelNet will have
the typical ∆t = 1

L where L is the number of layers in the ParallelNet. This method results
in greatly increased alignment between the serial and parallel runs in decoder-only networks,
as shown in the Figure 11.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 9: Plots illustrating the Lipschitz constants of each layer as one trains a GPT2-
decoder network. Note that the last few layers are the first to change, followed by the initial
transformer layer.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 10: Plots illustrating the changes in relative weight values during the training of a
GPT decoder-only network, with transformer weights broken down into attention and MLP
components. While all layers clearly change, the impact on the Lipschitz constant is not
direct.

0 1 2 3 4 5
3

3.5

4

4.5

5

Batches (x1000)

Lo
ss

Serial (buffer)
Serial (no buffer)

0 1 2 3 4 5

0

0.2

0.4

0.6

Batches (x1000)A
bs

.
V

al
.

of
D

iff
er

en
ce

in
Lo

ss

Buffer
No buffer

Figure 11: (Left) Loss plots of training GPT-2 decoders in serial for two different configura-
tions. The buffer indicates four of the twenty layers are in the open/close layer (two each)
with the remaining sixteen in the middle with ∆t = 1/16. The no buffer indicates all the
layers are in the middle with ∆t = 1/20. There is no significant difference in loss between
the serial versions of the two configurations. (Right) The absolute difference between the
two serial runs against their corresponding layer parallel runs. While the serial dynamics are
similar, note that having the buffer layers significantly improves the layer parallel dynamics.

C Hyperparameter and experimental setup

The implementation uses the layer-parallel software TorchBraid (Cyr et al., 2025) built on
PyTorch. Experiments and scaling studies are conducted on the HPC systems: Jean-Zay
GPU nodes, each equipped with eights V100 and 720 GB of memory and Singra GPU

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Parameter / Example BERT MC ViT MT GPT
Batch-size B 32 8 4 8 256

Dim. feed-forward 3072 128 3072 2048 3072
Dropout 0.1 - - 0.1 -

Max. length L / Patch size (ViT) 224 2048 16 274 1024
Optimizer AdamW SGD Adam Adam AdamW

Model dimension d 768 128 768 512 768
Num. heads H 12 1 12 8 12

Num. encoder layers NEnc 128 4 32 6 -
Num. decoder layers NDec - - - 6 20

Table 2: Transformer hyperparameters used for all pretraining problems.

Parameter / Example BERT MC ViT MT GPT
Step size h 1 1 1 1 1

Num. levels 2 2 2 2 2
Num. forward iterations 1 2 - - -

Num. backward iterations 1 1 1 3 1
Coarsening factor 4 8 4 3 4

Pre-smoothing relaxation F F F F F

Table 3: The configuration details of the strong scaling experiments. A dash in the forward
iterations indicates serial in the forward solve.

compute nodes, consisting of dual AMD EPYC 7513 Processors and a single A100 80GB
GPU.

Table 2 specifies the hyperparameters for the transformers used to generate the results
presented in Section 4. For all except the BERT, the parameters of the transformer layers are
initialized using PyTorch’s default initialization. For the BERT initialization, we follow the
pre-LN initialization scaling detailed in (Wang et al., 2024) that provides enough stability for
us to train the extremely long BERT network without gradient collapse. In particular, the
MLP, value, and output projections of the transformers are scaled by

√
log 2L. The BERT

data is preprocessed using a masked-language modeling with 20%, which is higher than the
original BERT manuscript, but has been found to be useful in more recent implementations
(Liu et al., 2019).

Table 3 reports the MGRIT configuration used for the strong scaling experiments described
in Section 4. Additionally, Table 4 summarizes the hyperparameter values used for tuning
the MT task, obtained using Bayesian optimization. Table 5 shows the hyperparameters for
the GLUE finetuning; we remark that finetuning on the 128 layers BERT model proved to
be challenging, but we only seek to compare the serial versus the parallel-switching training
procedures.

Finally, we note that dropout is often used for regularization, however, the layer parallel
paradigm cannot simply adopt the Dropout classes in existing software. This is because the
layers corresponding to exactly cf (e.g. layers 1, 3, 5, 7 in Figure 2) must have the same
masks while doing the relaxation and the coarse solve to ensure the iterations will converge.
As such, we implemented a solution whereby the masks do not update unless explicitly
specified by the user.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Hyperparameter Values
Model dimension 512, 1024

Dropout 0.1, 0.3
Gradient accumulation 1, 4, 16

Parameter initialization Torch’s default, Xavier
Number of warming steps 2000, 4000, 8000

Tokenization Spacy, BPE, Unigram
Vocabulary size 8000, 32000

Table 4: The range of hyperparameters used during Bayesian optimization for the MT task.

Parameter / Example CoLA MRPC QNLI
Batch size 8 16 16

Weight decay 0.01 0.01 0.01
Learning rate 3e-5 2e-5 2e-5

Warm up steps 100 0 0

Table 5: Parameters for finetuning the subset of GLUE benchmarks for the large BERT model.
All optimization is performed using PyTorch implementation of AdamW. All computations
are done in FP16 precision. Note that we only seek to compare the performance of the pure
serial versus the parallel-switching model, and not the exact values.

19

	Introduction
	Background
	Layer-Parallel Transformers
	ODE formulation of Transformers
	MGRIT: inexact forward and backward propagation
	Inexact MGRIT forward propagation
	Inexact MGRIT backward propagation
	Adaptive control of the inexactness

	Numerical Results
	Convergence of MGRIT
	Scaling studies

	Conclusion
	MGRIT - FCF Relaxation
	Buffer layers
	Hyperparameter and experimental setup

