LAYER-PARALLEL TRAINING FOR TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a new training methodology for transformers using a multilevel
layer-parallel approach. Through a neural ODE formulation of transformers,
our application of a multilevel parallel-in-time algorithm for the forward
and backpropagation phases of training achieves parallel acceleration over
the layer dimension. This dramatically enhances parallel scalability as the
network depth increases, particularly useful in large foundational models.
However, achieving this introduces errors that cause systematic bias in the
gradients, which in turn reduces convergence when closer to the minima. We
develop algorithms to detect this critical transition and either switch to serial
training, or systematically increase the accuracy of layer-parallel training.
Results, including BERT, GPT, ViT, and machine translation architectures,
demonstrate parallel-acceleration as well as accuracy commensurate with
serial pre-training while fine-tuning is unaffected.

1 INTRODUCTION

The transformer (Vaswani et al., [2017)) is an attention-based, sequence-to-sequence model,
variations of which have achieved cutting-edge results in many areas, including natural
language processing, computer vision, audio processing, and multi-modality; it serves as the
backbone for foundation models (Bodnar et al.,|2024; |Zhou et al., [2024]). Its performance
surpasses RNNs due to parallelization across the sequence dimension, as well as access to all
prior positions inside its context window. The network depth is limited by computational
cost and memory footprint, however, increasing depth is one strategy for enhancing accuracy
in language processing (Wang et al., [2024).

The challenge when parallelizing over depth is that transformers are based on a sequence
of residual layers whose forward and backward propagations are inherently serial. This
serialization is also endemic to neural ODE models that treat depth (layers) as the time-
dimension. However, the scientific computing community has proposed a solution to serial
ODE simulations by developing parallel-in-time methods (Gander} [2015; |Ong and Schroder,
2020), including multigrid-reduction-in-time (MGRIT) (Falgout et al [2014)), which is used
here. These techniques decompose the time domain of the discretized ODE, and develop
iterative strategies to simultaneously solve over all layers.

To this end, we develop an MGRIT-based strategy for transformer training that exposes
parallelism over the layer dimension, resulting in greater potential speedup as the depth
increases. We use a neural ODE transformer formulation, which enables the application of
parallel-in-time forward and backward propagation schemes. Our novel contributions are:

e Layer-parallel training (Gunther et al., 2020) is applied to transformers with increasing
depth yielding speedups and reduced per-device memory overhead on multiple GPUs.

e Layer-parallel training creates inexact gradients with bias. Methodologies for detecting
when the bias becomes too large, and remedying through reversion to a serial algorithm
are shown. The overall process preserves significant parallel speedup.

e Detailed studies are shown for different parameter choices in the layer-parallel training
algorithm in terms of pre-training performance and overall training accuracy, as well as
fine-tuning on language model data sets.

e To the best of our knowledge, this is the first work to develop a neural ODE formulation
for an encoder—decoder transformer architecture and to demonstrate its application.

2 BACKGROUND

Transformers. Transformers have revolutionized natural language processing (NLP) since
their introduction in 2017 (Vaswani et al., [2017)). They leverage self-attention, which computes
the relevance of each token in the input sequence to every other token. This facilitates
the capture of long-range dependencies and contextual information, thereby enhancing the
model’s ability to understand and generate human language. This architecture mitigates
the vanishing gradient problem, and reduces training time by enabling efficient utilization of
modern hardware accelerators. However, transformers have trended towards increasingly
deeper architectures. While early models like BERT (Devlin et al.| 2018)) and GPT (Radford
et al., [2018)) featured a modest number of layers, typically around 6 to 24, recent advancements
have seen a dramatic increase in depth. For instance, GPT-3 employs 96 layers, while deeper
architectures have been explored in TH and Switch Transformer models (Xue et al., |2020;
Fedus et al., 2022 Wang et al., 2024)). Increasing the number of layers has been instrumental
in achieving state-of-the-art performance across a range of NLP tasks, including machine
translation, text summarization, and question answering. Thus, the transformer scalability
is critical with large and deep models taking longer to train.

Parallelization Techniques. Parallelization in machine learning has been well-studied (Ben-
Nun and Hoefler| |2019; [Narayanan et al., |2021; Danieli et al.| 2023]). The most common
approach is data parallelism (Valiant, [1990), with robust implementations in existing libraries
(Dean et al., |2012; |Abadi et al.l [2016; Paszke et al., |2019). Data parallelism replicates the
model across multiple GPUs and distributes the training data, allowing each to process
a subset of the data simultaneously. This parallelization mitigates the cost of large data
sets and batch-sizes. However, larger models demand additional parallelism due to memory
requirements and gradient storage. This is addressed by model parallelism that splits the
model across multiple GPUs. This enables training models whose memory requirements
exceeds that of a single GPU. Implementations, often referred to as tensor parallelism, that
mitigate computational costs with increased network width can be found in (Bradbury et al.|
2018; Rasley et al. 2020). Combining model and data parallelism yields further speedups.

A final form is pipeline parallelism tries to mitigate growth in network depth by distributing
layers across processors (Huang et al.l [2019; Rasley et al.l 2020). Here, batches are further
subdivided into minibatches and then streamed through the layers in a pipeline fashion. By
carefully rearranging work in an asynchronous way, parallel speedups can be obtained and
the memory overhead is naturally distributed across multiple GPUs. For instance [Li et al.
(2021b) applies pipeline parallelism along the sequence length of decoder-only transformers
and proposes an algorithm that dynamically finds the optimal sequence partitions to equally
share the computational load among devices. In |Zhuang et al.| (2023)), the authors study the
optimal combination of inter-op parallelism (pipeline parallelism) and intra-op parallelism
(tensor parallelism). While Korthikanti et al.| (2023)) uses tensor and sequence parallelism to
store activations, thus avoiding their recomputation.

The layer-parallel approach has the same goal as pipelining, to mitigate the computational
cost of growing network depth, while avoiding some of the its drawbacks. Pipelining works
by over-decomposing the data and relying on the distribution of layers to achieve parallelism.
This risks giving up some data parallelism (Narayanan et al.l [2019), which typically has
excellent scalability. Moreover, pipeline acceleration is reduced if the number of layers is
much greater than the length of the pipeline due to computational latency, or the bubble
phenomenon. The layer-parallel algorithm, on the other hand, introduces controllable errors
i forward and backward propagation in exchange for additional parallelism. This yields an
iterative algorithm that is fully compatible with data and model parallelism.

Multigrid in time. Multigrid methods are iterative solvers for large, sparse (non)linear
systems (Trottenberg et al.l |2001; Brandt and Livne, 2011; [Hackbusch, 2013). The most
well-known are geometric multigrid methods applied to elliptic partial differential equations
(PDEs) in space. These methods utilize a hierarchy of grids and restriction/prolongation
operators to efficiently reduce high-frequency errors on finer grids with relaxation (e.g.,
Jacobi or Gauss-Seidel) and low-frequency errors on coarser grids. The effectiveness and near
optimal algorithmic complexity has been demonstrated across various physical domains.

Open layer _[Encoder ParallelNet]_ ,_[Decoder ParallelNet]_ Close layer

Source R
sequence X _Z Y
9 Context DH—@ i + —+ e + -+ M Softmax
embedding [PR - [PR - head
—_— L q -
@ 0 h ch ch Tenc 0 h ch cth Toec
Target
sequence Currsn(tj—dstate alY © : Stack
embedding [~ ® : Positional di
&5 ([Xn, Ya]) ®E ([Xns Yal) : Positional encoding
Xn —ENEE Xnt1 _Xn — Xn+1 @FF: Forward-Euler scheme

d
Yn+1_Yn 2,{3"‘”1 c¢ : Coarsening factor

: Self-attention
h— h444;£ SA

CA : Cross-attention

F | Fpec
Enc . -
N b '|5A0LN= D MLP : Multi-layer perceptron

LN : Layer normalization
CASLN S
MLPOLN
MLPOLN

Figure 1: Layer-parallel transformer. The ParallelNet contains a time grid hierarchy with
the coarsening rate denoted by cy. Experiments use a fine level time-step of h = 1.

Multigrid is extended to the time dimension by the MGRIT algorithm (Falgout et al., 2014;
Dobrev et al.,|2017). By recasting serial time stepping as a single, global space-time operator,
temporal multigrid methods employ a similar hierarchical approach to address errors. This
approach accelerates time-dependent simulations, particularly for problems involving long
time horizons or in systems where other parallelization dimensions are saturated.

The layer-parallel algorithm, proposed in |Gunther et al.| (2020), uses MGRIT to exploit the
time dependent nature of neural ODE models. Layer-parallel applies an iterative MGRIT
method to the forward and backward propagation phases to compute an inezact gradient.
Through a partition of the layer dimension, this form of model-parallelism distributes the
model across many devices, allowing arbitrarily large models, provided enough GPUs are
available. Layer-parallel training can be used in conjunction with data and other forms
of model parallelism. While layer-parallel has been used in other architectures (Cyr et al.|
2019; [Sun et al.l 2021; Moon and Cyr, 2022)), this is the first time it has been applied to
transformers.

3 LAYER-PARALLEL TRANSFORMERS

3.1 ODE FORMULATION OF TRANSFORMERS

In this work, we consider transformer architectures (e.g., BERT (Devlin et all 2018)),
MarianNMT (Junczys-Dowmunt et al.l |2018])) with pre-layer normalization (Xiong et al.,
2020). Forward propagation through the encoder, with N, layers, is given as

Xn—i—l =X, +h (4101 (Xru On,l) + @2 (Xn + 1 (Xn7 gn,l)a 0n,2))a

::FEm: (tn ;Xn)

(1)

where X, is the n-th layer input, X, 1 is the n-th layer output, and h is typically A = 1. The
symbol 8,, ; denotes the parameters of the n-th layer’s j-th sublayer, which is parametrized
by evaluating F'gy. at t,,. The functions ¢; and @9 are defined as ¢; := SAoLN, and
o := MLPoLN, where SA, LN, and MLP denote self-attention, layer norm, and MLP
respectively. Decoder-only architectures (e.g., GPT (Radford et al., 2018)) are similar, with
the addition of a causal mask in the attention.

In case of encoder-decoder architectures, the decoder, with Npe. layers, has the form:
Yn+1 - Yn + h (‘pl(Yn; On,l) + P3 (Yn + Wl(Yna 0”,1)7 }(NE"C) 0n,3) + P2 (?na 0n,2))7 (2)

=Fpec(tn,Yn,XnNgp,.)

Two-level MGRIT:
1. Parallel FCF-relaxation with So
2. Restrict rg = Gg — AgWy

Layer 4 |

Layer 1 | Layer 2 | Layer 3 | Layer 5

Layer 6 |

Layer 7 | Layer 8 |

to coarse-level, yielding r;

3. Solve for coarse-level error e; i i I I
serially with Aie; =r; [| I

4. Correct fine-level solution .F-relaxation.C-relaxation Residualrestriction.Correctioninterpolation Coarse solve
with e;

Figure 2: 2-level MGRIT pseudocode (left), MGRIT with ¢y = 2, L = 2 on 2 devices (right).

where Y,, = Y, 401 (Y0, 001) +03(Yn+01(Yn, 00.1), XNppe On.3). The symbol 6, denotes
the parameters of n-th decoder layer, Y, denotes the n-th decoder-layer input, and Xny,.
denotes the encoder output. The function @3 is @3 := CA o LN, where CA is cross-attention.

To facilitate application of parallel-in-time, we associate the transformer architecture with a
neural ODE. The idea of viewing the forward propagation as ODE discretizations was first
introduced for ResNets by [E| (2017)), establishing a continuous-depth perspective on deep
networks. The stability and well-posedness of the forward propagation was then studied in
Haber and Ruthotto| (2017)); |Lu et al.| (2018); [Chen et al.| (2018), where the authors apply
several numerical schemes to train deep neural networks. This ODE-based formulation was
later expanded to encoder-only transformers in |Queiruga et al.| (2021) and |Li et al.| (2021a)).
In this work, we further extend the formulation to encoder-decoder transformer architectures.

To this aim, consider a mapping € defined on [0,7] which interpolates 0,, at t,, where
T := Tene + Toec, TEnc := hNEne, and Tpec := hNpe.. For encoder-decoder transformers,
we stack the encoder states X and the (shifted) decoder states Y, such that the forward
propagation through the transformer is defined as

Zn+1 = [Xn+17Yn+17NEnC] = Zn + hF(tna Zn)» (3)
where X,, := Xpng,.., V7 > NEpne, and Y, := Y, Vn < Ngye. The function F is given as

[FEnc(ta X)7 0]7 if ¢t < TEnC7

F“?[X’Y“:_{[0, Fou(t.Y.X)], ift> T

For encoder-only transformers, T := Tgye, Z := X, and F := Fgy..

Thus, we can interpret the transformer forward propagation as a forward Euler discretiza-
tion with time step A = 1 of the initial value problem (IVP) in eq. (left). Here, for a given
time ¢t € [0,T], F depends on the states Z(t) and parameters 6(¢). The initial value Zg is
defined analogously on Xy and Yy, which denote the positionally-encoded source and target
embeddings, respectively. Next, the gradients required for training can be then obtained by
solving the adjoint equation in eq. (right) backward in time. Here, . is the loss and
A(ty) is the backpropagated gradients at the n-th layer.

@:F(Z 9) oA _ \TIE
L) dt ’ R %
forward: {Z(O) 7, backward: Alty) = % 4)

3.2 MGRIT: INEXACT FORWARD AND BACKWARD PROPAGATION

MGRIT constructs a hierarchy of discretizations of the IVP (4) (left). Starting with a
fine time-step size h on level 0, progressively coarser discretizations are constructed with a
coarsening factor ¢y (e.g., the first coarse-level has step size csh, the second coarse-level c?h,
and so on). The coarser levels correct the fine-grid solution, accelerating convergence to the
serial solution. The fine-grid is evaluated only locally, in a highly parallel manner.

3.2.1 INEXACT MGRIT FORWARD PROPAGATION

For the MGRIT hierarchy, let I =0... L —1 for L total levels, then define A;W; = G; where

Il Z1 (I+ClJchF0)ZO
(=1 —chFy) T Z, 0
A=)) T Wi=| . |, G =
(-1 — céchFNl_l) I Zn, 0

and number of time-steps N; = N/ clf. For [= 0 this is the iterative evolution Eq. |3| written
as a system. The variable ¢; is a user-defined integer coarsening factor (often 2 or 4).
The initial condition is implicitly included in the first entry of G;. The application of the
nonlinear operator A; written in matrix notation is understood as component-wise nonlinear
composition (e.g. FrZ, = Fi(Zy)).

Remark: The exact solution to the system when [= 0 yields the same state vector Wy as
would be obtained from forward propagation of the neural ODE transformer. Further, the
solution to the system [+ 1 is an O(h) approximation of the system at [.

Figure [2] outlines the algorithmic approach used by a 2-level MGRIT method (L = 2) to
exploit this hierarchy to solve AgWy = Gg. The first step of this algorithm, see Fig. 2]
(left), applies a smoothing operator S; ~ Afl on the fine grid. This smoother is selected to
reduce high frequency errors in a parallel way (Dobrev et al., 2017)). A form of block Jacobi,
FCF-relaxation (fine-coarse-fine), is the approach taken in layer-parallel and is described
in detail in Appendix [A|l and |(Gunther et al.|(2020). For level [, the application of FCF has
N;/ cgc way parallelism. Figure (right) indicates this parallel relaxation phase with the red
and blue arrows. The red arrows execute concurrently, followed by concurrent execution
of the the blue arrows. After relaxation the error has been reduced locally over subsets of
layers, yet no end to end communication has occurred.

Step 2 in Fig. [2| computes the residual rp = Gy — AgWj on the fine grid and then “restricts"
the residual with injection to the coarse level (orange arrows), yielding ry. In the third step,
the “coarse solve” step (yellow arrows) computes the error on the coarse-level implied by the
residual by solving Aje; = r; exactly. This communicates end-to-end across the domain in
serial, albeit at a factor of ¢; cheaper than the fine grid (the number of time steps is No/cy
on level 1). In Step 4, this error correction is “interpolated” back up to the fine grid (green
arrows). The algorithm repeats as required until a stopping criteria is met.

One iteration of this algorithm is referred to as a V-cycle. To create a hierarchy with more
levels, the serial coarse solve can be replaced with another two-level solve and the whole
process proceeds recursively. The serial coarsest-level solve will then be CJLc ~1 times cheaper
than the fine grid, with additional parallel relaxation work done on intermediate levels.
Critical for layer-parallel performance is that only a handful of V-cycle iterations are needed
for sufficient accuracy, which results in approximate forward or backward propagation.

To initialize MGRIT for the system A, we distribute the layers across multiple GPUs. In Fig-
ure [2| (right), an example is shown, where an 8 layer network is split over 2 GPUs/processors;
a coarsening factor of ¢y = 2 is shown. The example shows the second GPU stores F4 through
F~, and an initial guess for X4. GPU-aware MPI is used for inter-device communication. See
Cyr et al.| (2025]) for more implementation details. Similar to model parallelism, layer-parallel
distributes the network across multiple GPUs, reducing the per device memory requirement.

3.2.2 INEXACT MGRIT BACKWARD PROPAGATION

To evaluate the gradients in parallel, the same MGRIT algorithm can be applied to solve
the discretized adjoint problem (right) backward in time; see (Gunther et al. 2020; (Cyr
et all 2025) for details. Notably, in many cases, a single MGRIT iteration for the adjoint
problem is enough to approximate the gradient with sufficient accuracy, enabling significant
speedups. This behavior is consistent with findings in the literature, which indicate that
optimizer convergence is significantly more sensitive to noise in the loss function evaluations
than in gradient evaluations (Bellavia et al., [2023; [Lou et al [2025). As a result, the MGRIT

forward solve typically requires more iterations than backward. In the results section, forward
iterations will refer to the number of MGRIT iterations used for forward propgation, and
backward iterations for backward propagation, which will typically be smaller.

3.2.3 ADAPTIVE CONTROL OF THE INEXACTNESS

Statistically biased error from inexact gradient evaluations is known to change the convergence
properties of stochastic gradient descent algorithms. However, theory indicates that this
can be mitigated if the error can be controlled as the minima is approached (Lin, [2022;
Demidovich et al.; |2023). Thus, detecting when the error is too large relative to the gradient
is crucial for the application of corrective measures such as increasing the number of iterations
or switching to exact solves. Due to the dynamics of transformers, MGRIT may require too
many iterations to obtain a sufficient speedup relative to serial. To address this, we monitor
the effectiveness of MGRIT iterations during training by evaluating the “convergence factor”,

defined as the ratio of consecutive fine-level residuals for iteration k, Hr(()kﬂ) Il/ ||rék) I A small
convergence factor implies rapid convergence. To ensure robustness, we periodically, every
few (e.g. 500) batches, double the number of MGRIT iterations to monitor the convergence
factor of the final iteration. A convergence factor above 1 indicates that the iteration count
is no longer effective. The mitigation either improves the accuracy by increasing iteration
count, or switching to serial training. Our results confirm, as suggested by the biased SGD
theory (Demidovich et al.l 2023)), that despite the initial phase using inexact gradients
improving accuracy in later stages leads to a network with comparable performance.

4 NUMERICAL RESULTS

To evaluate the efficacy of layer-parallel training and inference, we consider the following
networks and applications, with additional details provided in the appendix.

1. BERT pre-training is the classical language modeling training problem for a pure
encoder only network. The training objectives are the next sentence prediction (NSP)
and masked-language modeling (MLM), however we only utilize MLM learning (Liu
et al.l |2019)). For the pre-training data, we utilize the C4 dataset (Raffel et al., |2020)).

2. Morphological classification (MC) is associated with classifying a word to its
morphological class (noun, adjective, adverb, etc). We use the GUM corpus (Zeldes,
2017) dataset from Universal Dependencies (Nivre et al.l [2017) and employ the neural
ODE encoder-only transformer architecture, specified in |Queiruga et al.| (2021)).

3. Vision transformer (ViT) is an encoder-only image transformer that is applied to
tokens constructed from sub-partitions of an image (Dosovitskiy et al., 2020)). We apply
a classical ViT modified to be a neural ODE to the ImageNet dataset (Deng et al., 2009).

4. Machine translation (MT) consists of translating German sentences into English using
the OPUS data set (Tiedemann and Thottingal, |2020), the pre-trained MarianTokenizer
(Tiedemann and Thottingall [2020)), and an encoder-decoder transformer inspired by
Junczys-Dowmunt et al.| (2018) with the neural ODE modifications from above.

5. GPT?2 pre-training is the decoder-only language model developed by OpenAl (Radford
et al., |2018)). We use the nanoGPT implementation (Karpathy, 2022)) trained on
OpenWebText (Gokaslan and Cohenl 2019)) with minor modifications to the time stepping
detailed in appendix [B]

For each task, we demonstrate that layer-parallel forward and backward propagation, with
adaptive control of inexactness, achieves the same accuracy as serial computations. We
further show the strong scalability properties with respect to a varying number of trans-
former blocks N, the MGRIT coarsening factor c¢, and the number of MGRIT levels L.
Hyperparameter configurations for all benchmark problems are provided in the appendix.

4.1 CONVERGENCE OF MGRIT

In this section, we demonstrate the impact of the layer-parallel approach on training accuracy.

0.3
GPUs = GPUs
3] =1 = =1
< — 0.25 f
. = 2 M [2
§ — 4 —= — 2—>1
[8 > 0.2 1| = 2->1

Figure 3: The long term training behavior using sequential and using layer-parallel with
multiple GPUs. On the left, the validation accuracy for the MC example with 64 transformer
layers, L = 2, and ¢y = 2. On the right, the validation BLEU for the MT example with 6-6
transformer layers, L = 2, and ¢y = 3. The plot corresponding to “2->1" label illustrates
a switch from parallel training with 2 GPUs to serial training with 1 GPU. Note that two
depicted “2—>1" runs switch off from a parallel run at different points during the training.

MC Training Figure|3|(left) compares the behavior of sequential and layer-parallel training
with increasing number of GPUs. The inexactness in the gradients does not negatively
impact the validation accuracy: layer-parallel achieves the same accuracy as serial training.
MT Training Figure 3| (right) illustrates how the error accumulated due to inexact loss
and gradient evaluations can lead to a slight deterioration in validation BLEU compared
to the serial baseline. However, switching to sequential training after an efficient, parallel
phase, allows the optimizer to quickly recover the validation BLEU score achieved in serial.
BERT/GPT/ViT Pretraining In Figure {4 (left), we show the loss value of pretraining
a 128 layer BERT model (Wang et al., [2024)) using serial (blue), pure layer-parallel (red)
and switching from parallel to serial (green, with multiple seeds shaded in grey). The
layer-parallel configuration is 2 levels for both forward and backward solve, and ¢y = 4 on 4
GPUs. We use this large model as an exemplar for the loss dynamics. During pretraining,
layer-parallel converges past the loss plateau typical of BERT (Nagatsuka et al., 2021} [Fu
et al., 2023)), but diverges and then stagnates. The divergence is expected as near local
minima, smaller gradients can be overwhelmed by inexact gradient error.

We can use the indicator as described in Section [3.2.3] to demarcate the need to switch
to using serial (exact) gradient computations. Figure [4] (left, green) shows after switching
training dynamics closely match the serial case. In Table [I] performance differences are
displayed for a few GLUE benchmarks comparing serial trained models, to those trained with
the switching training schemes. The differences between the fine-tuned models demonstrate
layer-parallel yields parallel speedups and commensurate accuracy.

The loss results for GPT and ViT follows an extremely similarly trajectory, as shown in
Figure [4] (middle/right). While GPT is a decoder-only network, and ViT operates on image
data, we see that inexact gradients (red) causes a divergence in training dynamics compared
to exact dynamics (blue). However, by using the indicator, we are able to recover the
dynamics by switching from serial to parallel where the indicator Figure 5| dictates. We use
a 32 layer ViT with the neural ODE modification with the serial forward, and one level
parallel backwards for MGRIT using 2 GPUs. The GPT network consists of 20 layers with
the neural ODE modification on only the middle 16 layers with serial forward and one level
parallel backwards; for more detail, please see Appendix

Table 1: Absolute differences in loss and accuracy of subset of GLUE task performance
comparison between serial and parallel followed by serial (adaptive switching)

Task Name Diff. in Loss Diff. in Accuracy
CoLA (Corpus of Linguistic Acceptability) 3.99¢-4 0%
MRPC (Microsoft Research Paraphrase Corpus) 1.10e-2 0%
QNLI (Question Natural Language Inference) 3.38e-4 1.2%

! ! ! |
0o 2 4 6 8 10

Batches (x1000) Batches (x1000) Batches (x1000)

Figure 4: Plots of the loss for serial (blue), pure parallel (red) and switching to serial from
parallel (green) for the BERT (left), GPT (middle) and ViT (right). In all the experiments,
we see that purely layer parallel runs will diverge from serial training after a certain point.
However, one can recover the original dynamics by switching from parallel to serial at an
appropriate time given by the indicator. The gray color in the BERT subplot indicates the
min/max over three different seeds.

Indicator

! !
0 0.5 1

Batches (x1000) Batches (x1000) Batches (x1000)

Figure 5: The indicator values for BERT (forward in red, backward in blue), ViT and GPT
(backward in blue) using MGRIT. We see that at the 70000th batch, 1000th, and 6000th
batch respectively, the indicators exceed 1, meaning that one should switch to exact gradient
computation then.

4.2 SCALING STUDIES

In this section, we investigate the parallel scaling properties of the layer-parallel approach.
Figure |§| shows the speedup achieved for encodere-only transforms on the: (left) the BERT
task with ¢; = 4, (middle) the MC task with ¢y = 2, and (right) the ViT model with
¢y = 4. All tasks use L = 2 levels. The obtained results indicate that the numerical
and communication overhead introduced by MGRIT may occasionally lead to increased
execution time when using two GPUs for small problems. However, as more computational
resources are are employed for deeper models, the layer-parallelism enabled by MGRIT yields
a substantial reduction in the overall execution time.

NEnc
— 32
— 64
— 128
— 256

Figure 6: Speedup of layer-parallel for encoder-only transformers using L = 2. Left: BERT,
on Singra, 1 forward, and 1 backward iteration, with cy = 4. Middle: MC, on Jean-Zay, 2
forward, 1 backward iterations, with cy = 2. Right: ViT, on Singra, serial forward, and 1
backward iteration, with ¢y = 4. See appendix |g for system details.

NEnc - NDec
% —— 40-140
9 — 80—-80
2, —— 160 — 160
N --- Ideal

Figure 7: Strong scaling on Jean-Zay with respect to increasing number of layers Ngpnc + Npec
for MT task. MGRIT uses ¢y = 4, L = 2, 1 backward, and 2 forward iterations.

Cf NEnc
— 2 — 256
— 4 —— 512
— 8 — 768
—16 —— 1024

Figure 8: The impact of MGRIT parameters on scaling properties. The experiment is
performed using 2 forward and 1 backward iteration for the MC task on Jean-Zay. Left:
¢y = 2 and Ngpe = 1024. Middle: L = 2 and Ng,. = 1024. Right: L = 3 and ¢y = 4. The
blank line depicts ideal scaling.

A similar conclusion is drawn from Figure[7] The strong scaling properties for the encoder-
decoder architecture used in the MT task are illustrated. The model size ranges from 80 layers,
to 320 layers. While the are apparent speedups, additional improvements can be obtained
using alternative algorithmic parameters for layer-parallel. We provide practical guidance for
parameter selection by analyzing the impact of the number of levels (L), coarsening factor
(cs), and transformer depth (V) on the parallel scaling. To this end, we consider the MC
example with layer-parallel configured to perform two forward and one backward iteration.
Figure [8 shows that the scalability improves with an increasing number of levels (left image)
and larger coarsening factors (middle). However, taking a large coarsening factor can have
an impact on the convergence rate (Falgout et all 2014; Dobrev et all |[2017)). The last panel
(right) show the benefits of layer-parallel training improve with network depth.

5 CONCLUSION

We demonstrated training of neural ODE based transformer models using a layer-parallel
approach based on MGRIT. This algorithm uses inexact computations of the gradients
for training in order to expose additional parallelism over the layer dimension. This form
of layer-parallelism is compatible with other approaches, like data or tensor parallelism.
Scalability, parallel speedups using multiple GPUs, and training accuracy are demonstrated
for three natural language processing benchmarks when compared to standard serial training.
Additionally, the approach naturally distributes large memory loads across multiple GPUs
allowing for training of very deep transformer models.

We also explored the impact of inexact gradients resulting in a statistically biased gradient.
Layer-parallel training matched serial training in early stages of pre-training. However for
some problems, inexact gradients eventually led to diverging or stagnant training dynamics.
We corrected this by developing indicators to detect the divergence or stagnation and then
transition to a serial gradient computation. We anticipate this to motivate the development of
new inexact approaches exposing greater parallelism for training large transformers. Future
work will focus on improving MGRIT convergence and the implementation details to include
more vectorization while reducing overheads.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265-283, 2016.

Stefania Bellavia, Gianmarco Gurioli, Benedetta Morini, and Philippe Louis Toint. The
impact of noise on evaluation complexity: the deterministic trust-region case. Journal of
Optimization Theory and Applications, 196(2):700-729, 2023.

Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1-43, 2019.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter,
Patrick Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al.
Aurora: A foundation model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Achi Brandt and Oren E Livne. Multigrid Techniques: 1984 Guide with Applications to
Fluid Dynamics, Revised Edition. STAM, 2011.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems, 31,
2018.

Eric C Cyr, Stefanie Giinther, and Jacob B Schroder. Multilevel initialization for layer-parallel
deep neural network training. arXiv preprint arXiv:1912.08974, 2019.

Eric C. Cyr, Jens Hahne, Nicholas S. Moore, Jacob B. Schroder, Ben S. Southworth,
and David A. Vargas. Torchbraid: High-performance layer-parallel training of deep
neural networks with mpi and gpu acceleration. ACM Trans. Math. Softw., August 2025.
ISSN 0098-3500. doi: 10.1145/3759244. URL https://doi.org/10.1145/3759244. Just
Accepted.

Federico Danieli, Miguel Sarabia, Xavier Suau Cuadros, Pau Rodriguez, and Luca Zappella.
Deeppcr: Parallelizing sequential operations in neural networks. Advances in Neural
Information Processing Systems, 36:47598-47625, 2023.

Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V Le, Mark Z
Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, et al. Large scale distributed
deep networks. Advances in neural information processing systems, 25:1223-1231, 2012.

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtarik. A guide through
the zoo of biased sgd. Advances in Neural Information Processing Systems, 36:23158-23171,
2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. leee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

VA Dobrev, Tz Kolev, N Anders Petersson, and Jacob B Schroder. Two-level convergence

theory for multigrid reduction in time (mgrit). SIAM Journal on Scientific Computing, 39
(5):S501-S527, 2017.

10

http://github.com/jax-ml/jax
https://doi.org/10.1145/3759244

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiw:2010.11929, 2020.

Weinan E. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1-11, 2017. doi: 10.1007/s40304-017-0103-z. URL
https://doi.org/10.1007/s40304-017-0103-z.

R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder. Parallel
time integration with multigrid. SIAM Journal on Scientific Computing, 36(6):C635-C661,
2014. doi: 10.1137/130944230.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1-39, 2022.

Jingwen Fu, Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Breaking through the
learning plateaus of in-context learning in transformer. arXiv preprint arXiv:2309.06054,
2023.

Martin J Gander. 50 years of time parallel time integration. In Multiple Shooting and Time
Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013, pages 69-113.
Springer, 2015.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus) 2019.

Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R Gauger.
Layer-parallel training of deep residual neural networks. SIAM Journal on Mathematics
of Data Science, 2(1):1-23, 2020.

FEldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
problems, 34(1):014004, 2017.

Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer Science &
Business Media, 2013.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training
of giant neural networks using pipeline parallelism. Advances in neural information
processing systems, 32, 2019.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth
Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay
Bogoychev, André F. T. Martins, and Alexandra Birch. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System Demonstrations, pages 116—
121, Melbourne, Australia, July 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P18-4020.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large
transformer models. Proceedings of Machine Learning and Systems, 5, 2023.

Bei Li, Quan Du, Tao Zhou, Shuhan Zhou, Xin Zeng, Tong Xiao, and Jingbo Zhu. ODE trans-
former: An ordinary differential equation-inspired model for neural machine translation.
arXiv preprint arXiv:2104.02308, 2021a.

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion
Stoica. Terapipe: Token-level pipeline parallelism for training large-scale language models.
In International Conference on Machine Learning, pages 6543-6552. PMLR, 2021b.

11

https://doi.org/10.1007/s40304-017-0103-z
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://www.aclweb.org/anthology/P18-4020
https://github.com/karpathy/nanoGPT

Shengchao Lin. Multilevel-in-time methods for optimal control of PDEs and training of
Recurrent Neural Networks. PhD thesis, Rice University, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Yuchen Lou, Shigeng Sun, and Jorge Nocedal. Design guidelines for noise-tolerant optimiza-
tion with applications in robust design. SIAM Journal on Scientific Computing, 47(3):
A1335-A1357, 2025.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations. In International
Conference on Machine Learning, pages 3276-3285. PMLR, 2018.

Gordon Euhyun Moon and Eric C Cyr. Parallel training of gru networks with a multi-grid
solver for long sequences. arXiv preprint arXiv:2208.04738, 2022.

Koichi Nagatsuka, Clifford Broni-Bediako, and Masayasu Atsumi. Pre-training a bert
with curriculum learning by increasing block-size of input text. In Proceedings of the
International Conference on Recent Advances in Natural Language Processing (RANLP
2021), pages 989-996, 2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized
pipeline parallelism for dnn training. In Proceedings of the 27th ACM symposium on
operating systems principles, pages 1-15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catan-
zaro, et al. Efficient large-scale language model training on gpu clusters using megatron-lm.
In Proceedings of the international conference for high performance computing, networking,
storage and analysis, pages 1-15, 2021.

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis Tyers. Universal Dependencies.
In Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Tutorial Abstracts, Valencia, Spain, April 2017. Association
for Computational Linguistics. URL https://aclanthology.org/E17-5001.

Benjamin W Ong and Jacob B Schroder. Applications of time parallelization. Computing
and Visualization in Science, 23:1-15, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style,
high-performance deep learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Remigijus Paulavi¢ius and Julius Zilinskas. Analysis of different norms and corresponding
lipschitz constants for global optimization. Technological and Economic Development of
Economy, 12(4):301-306, 2006.

Alejandro Queiruga, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney.
Stateful ODE-nets using basis function expansions. Advances in Neural Information
Processing Systems, 34:21770-21781, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of machine learning research, 21(140):1-67, 2020.

12

https://aclanthology.org/E17-5001

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 20, page 3505-3506, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

Qi Sun, Hexin Dong, Zewei Chen, Weizhen Dian, Jiacheng Sun, Yitong Sun, Zhenguo Li,
and Bin Dong. Layer-parallel training of residual networks with auxiliary variables. In
The Symbiosis of Deep Learning and Differential Equations, 2021.

Jorg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services
for the World. In Proceedings of the 22nd Annual Conferenec of the European Association
for Machine Translation (EAMT), Lisbon, Portugal, 2020.

Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid methods. Academic
press, 2001.

Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103-111, 1990.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer
architecture. In International Conference on Machine Learning, pages 10524-10533. PMLR,
2020.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text
transformer. arXiv preprint arXiv:2010.1193/4, 2020.

Amir Zeldes. The GUM corpus: Creating multilayer resources in the classroom. Lan-
guage Resources and Fvaluation, 51(3):581-612, 2017. doi: http://dx.doi.org/10.1007/
$10579-016-9343-x.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji,
Qiben Yan, Lifang He, et al. A comprehensive survey on pretrained foundation models: A
history from bert to chatgpt. International Journal of Machine Learning and Cybernetics,
pages 1-65, 2024.

Yonghao Zhuang, Hexu Zhao, Lianmin Zheng, Zhuohan Li, Eric Xing, Qirong Ho, Joseph
Gonzalez, Ion Stoica, and Hao Zhang. On optimizing the communication of model
parallelism. Proceedings of Machine Learning and Systems, 5, 2023.

13

https://doi.org/10.1145/3394486.3406703

A MGRIT - FCF RELAXATION

As discussed in Section [3:2.1] the MGRIT algorithm exposes additional parallelism that
allows distribution of layers across multiple compute devices (e.g. GPUs). Figure [2| presents
the structure of a two level scheme. However for a full picture of MGRIT, we now pro-
vide details about the relaxation operator Sy, which is needed for MGRIT efficiency and
scalability. To this end, we focus on the finest level of a neural ODE based transformer
architecture. Following the notation used in Section [3.2.1] our network has N; time-steps,
coarsened at a rate of cg. The value ¢y implicitly defines “coarse point” layers, i.e., the
layers [0, ¢y, 2¢cy, 3¢y, . . .|, which go on to form the first coarse grid. All other points are “fine
points.”

Forward propagation is denoted as
Zn+1 :(D(Zn) fOI"ﬂ:O...N()* 1, (5)

where ® is a discrete forward propagator implementing encoder-decoder (Eq. or
encoder/decoder-only (Eq.[l)) architectures. This section explicitly discusses only forward
propagation. Backward propagation is similar, but uses an adjoint operator in the propagation
step to move backward through the time domain.

The relaxation which forms the action of Sy consists of two phases. The first one is fine-
relaxation (F-relaxation), whereby [Equation 5|is used to propagate Z,, starting from each
coarse point until, but not including, the following coarse point. Mathematically this is

expressed as
Zpiey 1 =20Po0...0007Z, (6)
N—_————

cy—1 times
where n is a coarse point (an integer multiple of ¢;). By construction, F-relaxation can be

applied with Ny/cy way parallelism. The second phase is the coarse-relaxation (C-relaxation).
This takes the final step
Zn+0f = (I)(Zn+Cf—1) (7)

for each of the Ny/cy coarse points. Here again, the available parallelism is No/cy.

Combining these two phases by first applying F-relaxation, then C-relaxation, and finally
F-relaxation again, yields FCF-relaxation. Again, this can be computed with Ny/c; way
parallelism. In [Falgout et al. (2014), the authors show experimentally that the use of
FCF-relaxation is needed for multilevel scalability, yielding a similar result to multigrid
reduction in space. In Dobrev et al.| (2017)), the need for FCF-relaxation is further developed
theoretically for linear model problems, where FCF-relaxation is shown to damp error over
large parts of the spectrum effectively (i.e., eigenvalues of the spatial discretization with
magnitude away from 1, often corresponding to oscillatory error). FCF-relaxation is presented
formally in Algorithm [I} At the start of the algorithm Z,, contains a guess for the features,
while at the conclusion, the features are updated with an improved approximation with
reduced high frequency errors (in time). The operator Sy is then defined as mapping from
the initial guess for each Z,, to the updated, improved features. The parallel-for blocks
indicate where the relaxation scheme exposes parallelism.

B BUFFER LAYERS

The convergence of MGRIT in the linear case is determined by the stability function of
the time-stepping scheme and the eigenvalues of the time-stepping matrix (Dobrev et al.|
2017). In the case of MGRIT’s application to neural network pretraining, one is therefore
interested in the stability constraints arising from the Euler time-stepping scheme due to the
feed-forward structure of modern neural networks. To investigate this further, we propose
examining the Lipschitz constants arising from pretraining, which can be easily estimated
even for transformers.

As motivation, suppose we are solving

WO _ i),

Algorithm 1 FCF-Relaxation

1: procedure FCF-RELAXATION(Z)

2: parallel-for k£ + 0 to No/cy — 1 do > Begin first F-relaxation
3: n < crk

4: for i <~ 0tocy —2do > Do ¢y — 1 propagation steps
5: Zn+¢+1 < (I)(Zn+l)

6: end for

7 end parallel-for

8: parallel-for k <— 1 to No/cy do > Begin first C-relaxation
9: n < crk
10: Z, =P(Zn-1)

11: end parallel-for
12: parallel-for k < 0 to No/cy — 1 do > Begin second F-relaxation
13: n < crk
14: for i <~ 0tocy —2do

15: Zn+i+1 < (I’(Zn+z)
16: end for

17: end parallel-for
18: end procedure

for some given initial condition (a simplification of Equation) An Euler iteration would
be y" ! =y + Atf(y™), and let the error be e = y(t,) — y". Recalling the usual Taylor’s
theorem, along with it’s assumptions of smoothness, y(t;+1) = y(t;) + Atf(y(t;)) + O(At?),
one can write the error relation as

et =e + At(f(y(t:)) — f(y")) + O(AL?)
= + At(f(y*)e') + O(AL) = (1 + At/ (y*))e' + O(AL?),

where we used the mean value theorem to produce y*. Thus, by the recursive nature, if
(1+ Atf’(y*)) > 1, then any initial error would amplify and cause massive issues for MGRIT
when using Euler’s method.

Based on this heuristic, we propose examining the largest eigenvalue of the Jacobian of the
individual layers, which can indicate which layers are causing divergence when applying
MGRIT. Calculating the Jacobian itself for a self-attention or MLP layer is computationally
intractable given the large sequence length and hidden dimension. This leads us to empirically
estimate the Lipschitz constant via a Monte Carlo approach, which is tightly correlated with
the intended value (Paulavicius and Zilinskas, [2006]).

In Figure [} we show the estimated Lipschitz constants during the training of a GPT2
decoder network in the usual serial fashion. Remarkably, as the network trains and becomes
more expressive, the rate of change of the Lipschitz constant at each layer is not uniform.
It appears that the last few layers change significantly first, followed by the initial layers,
while the middle layers remain stagnant for longer. It is known that the gradient updates
are greater in magnitude (Wang et al., |2024) for the deeper layers, but we cannot explain
the rise in the Lipschitz constant for the early layers. We note that the change in the

Lipschitz constant is unrelated to the change in the magnitude of the weights themselves,
lw—wol|
ol

in Figure

where w is the weights at a specific iteration while wq the initial weights, as shown

Regardless of the mechanics driving the change in the Lipschitz constant, the prescription
for MGRIT is clear: create “buffer” layers where the first and last layers are computed
serially, targeting exact computation of the layers with large estimated Lipschitz constants.
MGRIT will perform layer-parallel computations on the middle portion, where the estimated
Lipschitz constants are more modest. In other words, a few transformer layers are moved to
the open/close layers in Figure [1| from the ParallelNet. Besides moving the layers, we also
tweaked the At (e.g. h from Equation) for the open/close layers: we simply give them
At =1 for the open/close layers, while the transformer layers in the ParallelNet will have
the typical At = % where L is the number of layers in the ParallelNet. This method results
in greatly increased alignment between the serial and parallel runs in decoder-only networks,
as shown in the Figure

15

4.5

Batch 0

Batch 250

Batch 500

4.0
3.5 1
3.0 1
2.5
2.0
1.5
1.0
0.5

leeeoceogoeo0ERRRQOREROE

leeccoescosclocecscen

loosscsclotocesaon??

4.5

Batch 750

Batch 1000

Batch 1250

4.0
3.5 1
3.0 4
2.5
2.01
154

Lipschitz Constants

1.0

!

eﬁgeeeo!ee@ee!g

:eeee%e!eegge!g

i

leosceeely,

259?; ;g§?

0.5

4.5

Batch 1500

Batch 1750

Batch 2000

4.0 q
3.5
3.0 q
2.59
2.01
1.5+

0.5

(o]

Figure 9: Plots illustrating the Lipschitz constants of each layer as one trains a GPT2-
decoder network. Note that the last few layers are the first to change, followed by the initial

trans

former layer.

16

Layer 0 Layer 1 Layer 2 Layer 3

-=- Atten. change -=- Atten. change -=- Atten. change -=- Atten. change
MLP change MLP change MLP change MLP change
4
3
2 F = = - SE
1 _fa=2 SPEL =T =T
ol 5 5
Layer 9 Layer 10 Layer 11 Layer 12
5
--- Atten. change --- Atten. change -—- Atten. change --- Atten. change
MLP change MLP change MLP change MLP change
4
o
&
53
S -
e | T]
z - - -
Bof—— === - NI S -
ol JI— - _ j ==
& _ e Lo _ -
1 e e - =
ok 5
s Layer 16 Layer 17 Layer 18 Layer 19
--- Atten. change --- Atten. change --- Atten. change --- Atten. change
MLP change MLP change MLP change MLP change
4
3
, s Loer e Lt
. e e
e e 5

ok /
0 250 500 750 1000 1250 1500 1750 2000 O 250 500 750 1000 1250 1500 1750 2000 O 250 500 750 1000 1250 1500 1750 2000 O 250 500 750 1000 1250 1500 1750 2000
Batch

Figure 10: Plots illustrating the changes in relative weight values during the training of a
GPT decoder-only network, with transformer weights broken down into attention and MLP
components. While all layers clearly change, the impact on the Lipschitz constant is not
direct.

@
S
5 T I I I g
\ —— Serial (buffer) 5 06| A
45 Serial (no buffer) || &
5}
f—t
%) © 04
S 4f 1 %
= A
s 021
3.5] —— Buffer
3 No buffer ||
3 L - ‘ L > 0 | | T T

0 1 2 3 4 5
Batches (x1000)

0 1 2 3 4 5
Batches (x1000)

Abs

Figure 11: (Left) Loss plots of training GPT-2 decoders in serial for two different configura-
tions. The buffer indicates four of the twenty layers are in the open/close layer (two each)
with the remaining sixteen in the middle with At = 1/16. The no buffer indicates all the
layers are in the middle with A¢ = 1/20. There is no significant difference in loss between
the serial versions of the two configurations. (Right) The absolute difference between the
two serial runs against their corresponding layer parallel runs. While the serial dynamics are
similar, note that having the buffer layers significantly improves the layer parallel dynamics.

C HYPERPARAMETER AND EXPERIMENTAL SETUP

The implementation uses the layer-parallel software TorchBraid (Cyr et al., [2025) built on
PyTorch. Experiments and scaling studies are conducted on the HPC systems: Jean-Zay
GPU nodes, each equipped with eights V100 and 720 GB of memory and Singra GPU

17

Parameter / Example BERT | MC | ViT MT GPT
Batch-size B 32 8 4 8 256

Dim. feed-forward 3072 128 | 3072 | 2048 3072
Dropout 0.1 - . -

Max. length L / Patch size (ViT) 224 2048 16 274 1024
Optimizer | AdamW | SGD | Adam | Adam | AdamW

Model dimension d 768 128 768 512 768

Num. heads H 12 1 12 8 12

Num. encoder layers Ngpc 128 4 32 6 -
Num. decoder layers Npec - - - 6 20

Table 2: Transformer hyperparameters used for all pretraining problems.

Parameter / Example | BERT | MC | ViT | MT | GPT
Step size h 1 1 1 1 1
Num. levels 2 2 2 2 2
Num. forward iterations 1 2 - - -
Num. backward iterations 1 1 1 3 1
Coarsening factor 4 8 4 3 4
Pre-smoothing relaxation F F F F F

Table 3: The configuration details of the strong scaling experiments. A dash in the forward
iterations indicates serial in the forward solve.

compute nodes, consisting of dual AMD EPYC 7513 Processors and a single A100 80GB
GPU.

Table [2| specifies the hyperparameters for the transformers used to generate the results
presented in Section[d] For all except the BERT, the parameters of the transformer layers are
initialized using PyTorch’s default initialization. For the BERT initialization, we follow the
pre-LN initialization scaling detailed in (Wang et al., [2024)) that provides enough stability for
us to train the extremely long BERT network without gradient collapse. In particular, the
MLP, value, and output projections of the transformers are scaled by 1/log 2L. The BERT
data is preprocessed using a masked-language modeling with 20%, which is higher than the
original BERT manuscript, but has been found to be useful in more recent implementations
(Liu et al., [2019).

Table [3| reports the MGRIT configuration used for the strong scaling experiments described
in Section [4l Additionally, Table 4] summarizes the hyperparameter values used for tuning
the MT task, obtained using Bayesian optimization. Table [5| shows the hyperparameters for
the GLUE finetuning; we remark that finetuning on the 128 layers BERT model proved to
be challenging, but we only seek to compare the serial versus the parallel-switching training
procedures.

Finally, we note that dropout is often used for regularization, however, the layer parallel
paradigm cannot simply adopt the Dropout classes in existing software. This is because the
layers corresponding to exactly ¢; (e.g. layers 1, 3, 5, 7 in Figure [2) must have the same
masks while doing the relaxation and the coarse solve to ensure the iterations will converge.
As such, we implemented a solution whereby the masks do not update unless explicitly
specified by the user.

18

Hyperparameter Values
Model dimension 512,1024
Dropout 0.1,0.3
Gradient accumulation 1,4,16
Parameter initialization | Torch’s default, Xavier
Number of warming steps 2000, 4000, 8000
Tokenization | Spacy, BPE, Unigram
Vocabulary size 8000, 32000

Table 4: The range of hyperparameters used during Bayesian optimization for the MT task.

Parameter / Example | CoLA | MRPC | QNLI
Batch size 8 16 16
Weight decay 0.01 0.01 0.01
Learning rate 3e-5 2e-5 2e-5
Warm up steps 100 0 0

Table 5: Parameters for finetuning the subset of GLUE benchmarks for the large BERT model.
All optimization is performed using PyTorch implementation of AdamW. All computations
are done in FP16 precision. Note that we only seek to compare the performance of the pure
serial versus the parallel-switching model, and not the exact values.

19

	Introduction
	Background
	Layer-Parallel Transformers
	ODE formulation of Transformers
	MGRIT: inexact forward and backward propagation
	Inexact MGRIT forward propagation
	Inexact MGRIT backward propagation
	Adaptive control of the inexactness

	Numerical Results
	Convergence of MGRIT
	Scaling studies

	Conclusion
	MGRIT - FCF Relaxation
	Buffer layers
	Hyperparameter and experimental setup

