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ABSTRACT

We present a fine-grained theoretical analysis of the performance gap between
reinforcement learning from human feedback (RLHF) and direct preference opti-
mization (DPO) under a representation gap. Our study decomposes this gap into
two sources: an explicit representation gap under exact optimization and an im-
plicit representation gap under finite samples. In the exact optimization setting,
we characterize how the relative capacities of the reward and policy model classes
influence the final policy qualities. We show that RLHF, DPO, or online DPO can
outperform one another depending on type of model mis-specifications. Notably,
online DPO can outperform both RLHF and standard DPO when the reward and
policy model classes are isomorphic and both mis-specified. In the approximate
optimization setting, we provide a concrete construction where the ground-truth
reward is implicitly sparse and show that RLHF requires significantly fewer sam-
ples than DPO to recover an effective reward model—highlighting a statistical
advantage of two-stage learning. Together, these results provide a comprehensive
understanding of the performance gap between RLHF and DPO under various
settings, and offer practical insights into when each method is preferred.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF, Christiano et al. (2017); Ziegler et al. (2019))
is an important paradigm improving the natural language understanding and generation capabilities
of large language models (LLMs). The core idea of RLHF is to utilize pair-wise comparison between
responses from human annotators, as directly collecting absolute reward signals is hard. There are
two stages in RLHF: the reward modeling stage and the policy optimization stage. The reward mod-
eling stage assumes human preferences follow the Bradley-Terry (BT) model (Bradley and Terry,
1952), allowing a prompt-response pair to be assigned a scalar reward. Thus, a reward model rϕ
could be trained using negative log-likelihood loss function from human preferences. In the policy
optimization stage, the base LM is “online” fine-tuned with RL algorithms such as proximal policy
optimization (PPO, Schulman et al. (2017)), based on rϕ under a Kullback-Leibler (KL) divergence-
regularized bandit setting. And the key assumption behind this two-stage pipeline is the realizability
of the ground-truth reward.

The above RLHF paradigm falls inside a broader problem, preference-based policy learning (Wirth
et al., 2017). Another popular algorithm in this area is direct preference optimization (DPO, Rafailov
et al. (2023)), which utilizes the closed-form solution (assuming realizability as well) for the pol-
icy optimization stage to bypass the reward modeling stage and directly fine-tune the base LM as a
policy model πθ using the preference dataset. Due to its inherent supervised learning (offline and
RL-free) nature, DPO training is more stable than RLHF. And its iterative online version (Guo et al.,
2024; Dong et al., 2024) has been shown to have better convergence rates (Shi et al., 2025), and
milder coverage conditions (Song et al., 2024; Xiong et al., 2024), than vanilla DPO. The key as-
sumption behind DPO’s design is the realizability of the closed-form solution of the optimal policy.

Notably, in the foundational work of preference learning (Zhu et al., 2023), the ground-truth reward
is assumed to lie in a linear model class; and in Rafailov et al. (2023), both the reward class and
policy class are tabular parameterized, making their optimal solutions realizable. The realizability
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condition is commonly assumed in theoretical studies of preference learning (Xiong et al., 2024; Shi
et al., 2025; Feng et al., 2025; Yao et al., 2025; Swamy et al., 2025), or DPO-style algorithm designs
to derive the loss functions for neural policy classes (Azar et al., 2023; Zhou et al., 2024; Liu et al.,
2024b; Xu et al., 2024a). Importantly, under the realizability assumption, it is straightforward to
derive the equivalence between the ideal performances of RLHF and DPO (Swamy et al., 2025).

However, the assumptions of tabular parameterization and realizability often do not hold in prac-
tice, particularly when the reward model is significantly smaller than the policy model (e.g., 6B vs.
175B in Ouyang et al. (2022), indicating a clear disparity in representational capacity), when the
policy model class is heavily restricted due to limited computational resources, or when the reward
model is sub-optimal owing to limited preference data. These situations are examples of model mis-
specification, a common issue in practice due to limitations in model capacity or data. Consequently,
one should not expect DPO to perform identically to RLHF under model mis-specifications. This
motivates the central question of our investigation:

Under what conditions is DPO equivalent, superior, or inferior to RLHF in performance?

To quantify the problem, we choose the performance metric as the expected value of the original
regularized bandit problem using the ground-truth reward r‹ (x is a prompt, and y is a response):
V π
r‹ :“ Ex„ρ

“

Ey„πp¨|xqrr‹px, yqs ´ βKL pπp¨|xq}πrefp¨|xqq
‰

, where ρ is a pre-fixed distribution
over prompts, π is a distribution over responses given prompts, and πref is a fixed reference policy.
Let π‹ :“ argmaxπ V

π
r‹ be the ideal optimal policy.

Our contributions. We study the performance differences between two-stage RLHF and DPO
under a representation gap, from an optimization perspective. Our contributions are listed as follows:

Sec. 3.1

V πRLHF
r‹ “ V

πDPO
r‹ “ V π‹

r‹

Lonline
DPO pπp¨|xqq approximates ´V

πp¨|xq

r‹

Sec. 3.3
V πRLHF
r‹ ď V

πDPO
r‹

Sec. 3.2
V πRLHF
r‹ ě V

πDPO
r‹

V πRLHF
r‹ ě V

πonline
DPO

r‹
Sec. 3.4

It depends on
the qualities of
rRLHF and r̂DPO.

Sec. 3.4
V πRLHF
r‹ “ V

πDPO
r‹

V πRLHF
r‹ ď V

πonline
DPO

r‹

No Model Mis-specification

Policy Model Mis-specification

Reward Model Mis-specification

Isomorphic Model Mis-specification

Figure 1: Main results on performance gap induced by model mis-specification scenarios.

‚ When assuming exact optimization, i.e., optimization with infinite data, we study the fine-grained
representation gap under different settings of reward and policy class mis-specifications in Sec-
tion 3. Main results are visualized in Figure 1.

➀ No model mis-specification: We show that the RLHF and DPO policies both achieve the perfor-
mance of π‹, and online DPO can further close the gap between optimization paths.

➁ Policy model mis-specification: We show that the RLHF policy is still optimal under the model
class, while the DPO policy can be sub-optimal, and online DPO cannot bridge the gap.

➂ Reward model mis-specification: We show that the DPO policy is still optimal, while the RLHF
policy can be sub-optimal due to learning based on a sub-optimal reward model.

➃ Double model mis-specification: When policy and reward model classes are isomorphic, then they
should have identical performance, while online DPO can outperform both of them. Otherwise, there
is no consistent performance gap, and the comparison result depends on the qualities of (surrogate)
reward models. We also give a preliminary guide for reward learning under mis-specifications.
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‚ For approximate optimization, i.e., the finite-sample regime, we study the implicit representation
gap incurred by statistical efficiencies in Section 4. We construct a simple task where the ground-
truth reward to is a dual-token linear function with feature dimension d and implicit sparsity k,
and the total number of samples is n. Even without mis-specifications, we can reveal a separation
between RLHF and DPO under this setting: the estimation error of DPO is Ωpd{nq, while reward
learning in RLHF can effectively leverage sparsity, decreasing the error to Õp

a

k log d{nq. This
result indicates that DPO is less data-efficient than RLHF, leading to inferior performance.

Finally, we conduct numerical experiments to corroborate these theoretical findings in Section 5.

2 PRELIMINARIES

Notation. Let σ : R Ñ R be the sigmoid function, where σpxq “ 1{p1` expp´xqq. For any set X ,
∆pX q represents the set of probability distributions over X . sg pq is the stopping-gradient operator,
where ∇θrsg pfpθqqs “ 0. Let ek be a one-hot vector with 1 on its kth entry and 0 on other entries.
For any vector x, let xk be its kth entry. We use fpθq

∇
“gpθq to indicate ∇θfpθq “ ∇θgpθq.

Bandits and Policies. A bandit is defined by a state space X , an action space Y , and a reward
function r : X ˆY Ñ R. A policy π : X Ñ ∆pYq represents a probability distribution over actions
given a state. Note that, we sometimes omit the prompt x for simplicity, so that π P ∆pYq.

Model class and value function. Let F “ trϕ : ϕ P RdRu denote the reward model class, and
Π “ tπθ : θ P RdP u denote the policy model class, where dR, dP P N. For a reward function r and
policy π, we define the regularized value function as:

V πp¨|xq
r :“

„

E
y„πp¨|xq

rrpx, yqs ´ β KL pπp¨|xq}πrefp¨|xqq

ȷ

, V π
r :“ E

x„ρ
V πp¨|xq
r ,

where β ą 0 is the regularization coefficient, ρ P ∆pX q is a pre-fixed distribution over prompts,
and πref is a fixed reference policy. Let r‹ denote the ground-truth reward function, and π‹ de-
note the optimal policy for V π

r‹ . A well-known fact (Rafailov et al., 2023) is that π‹py|xq “

πrefpy|xq exppr‹px, yq{βq{Zpxq, where Zpxq :“
ř

yPY πrefpy|xq exppr‹px, yq{βq is the partition
function. The goal of preference-based policy learning is to find a policy πθ P Π that maximizes
V πθ
r‹ . We define the oracle value as V Π

r‹ :“ maxπPΠ V
π
r‹ .

Bradley-Terry (BT) model. Given an implicit reward oracle r : X ˆ Y Ñ R, Bradley and Terry
(1952) assume that human preference distribution p‹ : X ˆ Y ˆ Y Ñ ∆pt0, 1uq satisfies:

p‹py1 ą y2|xq “ σ pr‹px, y1q ´ r‹px, y2qq .

This means response y1 is favored over y2 with probability p‹py1 ą y2|xq by human annotators.

Human preference dataset. In practice, people first collect a pair dataset D: “ txpiq, y
piq
1 , y

piq
2 uni“1,

and then ask human annotators to label these pairs to get a human preference dataset D “

txpiq, y
piq
w , y

piq
l uni“1. Following BT model, ypiq

1 is preferred over ypiq
2 given prompt xpiq, (i.e. yw “ y1

and yl “ y2), w.p. p‹py
piq
1 ą y

piq
2 |xpiqq.

Two-stage approach of RLHF. RLHF proceeds in two stages. First, the reward learning stage finds
a reward model rRLHF P F by maximizing the population MLE objective:

rRLHF “ argmax
rϕPF

E
x„ρ;y,y1„πrefp¨|xq

ÿ

ty1,y2u“ty,y1u

p‹py1 ą y2|xq log σprϕpx, y1q ´ rϕpx, y2qq .

And for approximate optimization, rRLHF is estimated from a finite human preference dataset. Then
using the reward model rRLHF, the policy learning stage returns πRLHF “ argmaxπPΠ V π

rRLHF
.

Direct approach of DPO. By leveraging the surrogate reward r̂θpx, yq :“ β log πθpx,yq

πrefpx,yq
, DPO

bypasses reward learning and directly learns the policy from preference data:

πDPO “ argmax
πθPΠ

E
x„ρ;y,y1„πrefp¨|xq

ÿ

ty1,y2u“ty,y1u

p‹py1 ą y2|xq log σ pr̂θpx, y1q ´ r̂θpx, y2qq .
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For approximate optimization, πDPO is estimated from a finite human preference dataset. We also
consider an online variant of DPO (Xiong et al., 2024), where the pairwise data are sampled from a
distribution πs which could depend on the current policy. It then minimizes the modified loss:

Lonline
DPO pπθp¨|xqq “ ´ E

y,y1„sgpπsp¨|xqq

ÿ

ty1,y2u“ty,y1u

p‹py1 ą y2|xq log σ pr̂θpx, y1q ´ r̂θpx, y2qq .

3 EXACT OPTIMIZATION: FINE-GRAINED PERFORMANCE GAP INDUCED BY
MODEL MIS-SPECIFICATION

We analyze the behavior of RLHF and DPO in the idealized setting of exact optimization, where
both methods have access to infinite preference data and can optimize their respective objectives
without statistical or computational error. Recall that rRLHF P F is the solution computed by exact
optimization of reward learning, πRLHF P Π is the solution computed by exact optimization of policy
learning given rRLHF, and πDPO P Π is the solution computed by exact optimization of DPO. We can
bound the sub-optimality of each algorithm using the mis-specification error (see calculations in
Appendix C.11), but in this section our focus is on the performance gap induced by model mis-
specification, that is, the difference between the best policy each method can produce, as determined
by the expressiveness of the reward and policy model classes.

3.1 NO MODEL MIS-SPECIFICATION

We begin with the fully realizable setting, where both the ground-truth reward function and the
optimal policy lie within their respective model classes. While this assumption is often unrealis-
tic in practice, it serves as a clean baseline and has been the main focus of most prior theoretical
analyses (Xiong et al., 2024; Shi et al., 2025; Feng et al., 2025; Swamy et al., 2025).
Condition 1 (Strong Reward Model, Strong Policy Model). r‹ P F , π‹ P Π.

Both RLHF and DPO are capable of recovering the true optimal policy under ideal conditions. In this
regime, RLHF directly optimizes V πθ

r‹ in the policy learning stage. Proof deferred to Appendix C.1.

Proposition 1. Under Condition 1, V πRLHF
r‹ “ V πDPO

r‹ “ V Π
r‹ .

Although RLHF and DPO share a same solution, they differ in optimization trajectories and conver-
gence rates. Shi et al. (2025) propose a sampling strategy to accelerate convergence in online DPO,
and Feng et al. (2025) further refine this approach, showing its connection to the RLHF objective
from a gradient-based perspective. Below, we show a result which is analogous to Theorem 4.1 in
(Feng et al., 2025), but from the objective perspective rather than the gradient perspective.
Definition 1 (PILAF Sampler (Shi et al., 2025; Feng et al., 2025)). PILAF Sampler is a probabilistic
mixture of two sampler pairs:

➀

"

πs1py|xq “ πθpy|xq ,
πs2py|xq “ πθpy|xq ,

➁

"

πs1py|xq9π1`β
θ py|xqπ´β

ref py|xq ,

πs2py|xq9π1´β
θ py|xqπβ

refpy|xq ,

with a ratio α1 “ 1 and α2 “ E
y,y1„πθ

exppr̂θpx, yq ´ r̂θpx, y1qq .

Remark 1. Given a prompt x, we first randomly choose a sampler pair: select sampler ➀ w.p.
α1{pα1 ` α2q and sampler ➁ otherwise. Then sample y1 „ πs1p¨ | xq and y2 „ πs2p¨ | xq.
Theorem 2. Given Rmax, δ P R`, x P X , s.t. 0 ď r‹px, yq ď Rmax, @y P Y , and |pr‹px, yq ´

r‹px, y1qq ´ pr̂θpx, yq ´ r̂θpx, y1qq| ď δ, y, y1 P Y , then with πs defined in Definition 1, we have:

Lonline
DPO pπθp¨|xqq

∇
“

2β

sg pZθpxqq

#

´

„

E
y„πθp¨|xq

rrpx, yqs ´ βKL pπθp¨|xq}πrefp¨|xqq

ȷ

`
1

4β
E

y,y1„sgpπθp¨|xqq

”

ϵy,y1 ¨
“`

r‹px, yq ´ r‹px, y1q
˘

´
`

r̂θpx, yq ´ r̂θpx, y1q
˘‰2

ı

+

,

where ϵy,y1 P R are noises s.t. |ϵy,y1 | ď δ
6

?
3σ1pRmax`δq

and Zθpxq :“ E
y,y1„πθp¨|xq

1{σ1pr̂θpx, yq ´

r̂θpx, y1qq can be viewed as adaptive step sizes for different prompts.
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Remark 2. This result indicates that, with an appropriate sampler, the objective of online DPO can
approximate the true value function in prompt level. However, the second-order deviation can be-
come substantial when Rmax is large, or the ground-truth reward is poorly fitted. In such scenarios,
the objective of online DPO may significantly deviate from the value function, leading to degraded
convergence or even divergence. Proof deferred to Appendix C.2.

3.2 POLICY MODEL MIS-SPECIFICATION

We now examine the setting where the ground-truth reward function is realizable (r‹ P F), but the
optimal policy is non-realizable by the policy class (π‹ R Π). This case can be referred to Nika et al.
(2024), who point out that the optimal policy could be more complicated than the optimal reward,
and Swamy et al. (2025), who attribute this scenario to generation-verification gaps in fine-tuning.

Condition 2 (Strong Reward Model, Weak Policy Model). r‹ P F , π‹ R Π.

In this case, RLHF has a structural advantage: it can recover the exact reward and then compute
the best possible policy within Π. In contrast, DPO bypasses reward modeling and directly learns
a policy from preferences, which may lead to sub-optimal behavior due to mismatches between
preference-based objectives and reward-based value functions. The following proposition provides
a concrete example where DPO fails to recover the best achievable policy, even under exact opti-
mization. Proof deferred to Appendix C.3.

Proposition 3. Under Condition 2, V Π
r‹ “ V πRLHF

r‹ ě V πDPO
r‹ , and there exists an environment s.t.

V πRLHF
r‹ ą V πDPO

r‹ .

Furthermore, we show that online DPO cannot close this gap, even when equipped with PILAF
sampler. A numerical proof is deferred to Appendix C.8.

Proposition 4. Under Condition 2, V πRLHF
r‹ ě V

πonline
DPO

r‹ , and there exists an environment s.t. V πRLHF
r‹ ą

V
πonline

DPO
r‹ “ V πDPO

r‹ where the online sampler is PILAF sampler (Definition 1).

Remark 3. Our key insight is that a strict performance gap between RLHF and DPO can exist under
policy model mis-specification, and importantly, even sophisticated samplers like PILAF may fail
to close the gap, an important nuance that, to our knowledge, has been overlooked in prior studies.

3.3 REWARD MODEL MIS-SPECIFICATION

We now consider the setting where the ground-truth reward function r‹ is not realizable by the
reward model class F , while the optimal policy π‹ lies within the policy class Π. As discussed in
Swamy et al. (2024), two-stage RLHF can only lose information during reward learning, which will
be highlighted under reward model mis-specification.

Condition 3 (Weak Reward Model, Strong Policy Model). r‹ R F , π‹ P Π.

In this setting, RLHF is vulnerable to reward mis-specification: the learned mis-specified reward
model rRLHF could significantly deviate from the ground-truth reward r‹, causing the subsequent
policy optimization to yield a sub-optimal solution even though π‹ P Π. Conversely, DPO has
a clear advantage: it can directly fit a policy to the observed preference data and thus recover π‹

without incurring reward modeling error. Proof deferred to Appendix C.4.

Proposition 5. Under Condition 3, V πRLHF
r‹ ď V πDPO

r‹ “ V Π
r‹ , and there exists an environment s.t.

V πRLHF
r‹ ă V πDPO

r‹ .

Observation under token-level parameterization. To assess the practicality of Condition 3 for
auto-regressive language models, we specialize our general bandit model to the token-level param-
eterization. In this setting, the optimal policy admits the closed-form characterization of Rafailov
et al. (2024), which we restate with an explicit separation between πref and the q‹ function (see
Appendix C.11 for details):

π‹pyt|x, y0...t´1q9πrefpyt|x, y0...t´1q exp

ˆ

q‹pyt|x, y0...t´1q

β

˙

, (1)

5
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where the q‹ function is determined in a recursive way:

q‹pyt|x, y0...t´1q “

"

β log
ř

sPV πrefps|x, y0...tq exppq‹ps|x, y0...tq{βq yt is not the terminal token;
r‹px, y0...tq yt is the terminal token,

V is the vocabulary, and s P V is the token. This observation shows that while the reward model
in RLHF only needs to approximate r‹, the policy model in DPO must capture the token-level q‹

function, which recursively entangles the reward signal with the base model πref . As a result, the
policy model faces a substantially more demanding learning objective, making it more prone to mis-
specification than the reward model of the same scale. and suggesting that the “weak reward, strong
policy model” regime may be less common in practice.

3.4 DOUBLE MODEL MIS-SPECIFICATION

We now consider the most challenging setting, where neither the ground-truth reward function nor
the optimal policy is realizable by their respective model classes.

Condition 4 (Weak Reward Model, Weak Policy Model). r‹ R F , π‹ R Π.

To enable a fine-grained comparison between RLHF and DPO under this double mis-specified
regime, we introduce the surrogate reward model class induced by the policy class as FΠ “ tr̂θ :

θ P RdP , r̂θpx, yq “ β log πθpy|xq

πrefpy|xq
,@x P X , y P Yu. Pairwise preferences depend only on reward

differences, so reward functions are equivalent if they differ by a constant. We compare the expres-
siveness of the original reward model class F and the surrogate class FΠ, modulo constant shifts,
and analyze three representative regimes characterizing their relative capacities:

Condition 5 (Isomorphism). r‹ R F , π‹ R Π. F “ FΠ.

Condition 6 (Policy Model Class Is Relatively Stronger). r‹ R F , π‹ R Π. F Ă FΠ.

Condition 7 (Reward Model Class Is Relatively Stronger). r‹ R F , π‹ R Π. F Ą FΠ.

Remark 4. Note that certain cases involve partially overlapping model classes. However, we do not
consider these intermediate regimes for the sake of a principled analysis.

Analysis of the isomorphic case. Condition 5 indicates the scenario when the reward model class
and policy model class are isomorphic—meaning there exists a shared parameterization or a deter-
ministic mapping between rewards and policies. This structure allows us to directly compare RLHF
and DPO when both operate under the same representational constraints, and to investigate whether
bypassing reward modeling, as in DPO, provides any advantage. In RLHF, reward learning is decou-
pled from the current policy, and thus lacks access to its distributional information; while DPO can
mitigate this limitation through online sampling. Therefore, RLHF under Condition 5 is comparable
to offline DPO, but could underperform online DPO. Proofs deferred to Appendices C.5 and C.9.

Proposition 6. Under Condition 5, V πRLHF
r‹ “ V πDPO

r‹ .

Proposition 7. Under Condition 5, there exists an environment where online DPO can produce a

solution πonline
DPO , s.t. V πRLHF

r‹ ă V
πonline

DPO
r‹ .

On the other hand, under Conditions 6 and 7, either method may outperform the other depending on
the environment. Proofs deferred to Appendices C.6 and C.7.

Proposition 8. Under Condition 6, there exists an environment s.t. V πRLHF
r‹ ă V πDPO

r‹ , and another
environment s.t. V πRLHF

r‹ ą V πDPO
r‹ .

Proposition 9. Under Condition 7, there exists an environment s.t. V πRLHF
r‹ ą V πDPO

r‹ , and another
environment s.t. V πRLHF

r‹ ă V πDPO
r‹ .

Though there is no consistent performance gap between RLHF and DPO in certain settings, revisit-
ing the framework can reveal a structural parallel: RLHF can yield the best policy given the learned
reward model rRLHF, and the DPO policy is directly the optimal one given the surrogate reward
model r̂DPO. And online DPO serves to enhance the quality of r̂DPO (Xiong et al., 2024). Formally,

πRLHF “ argmax
πPΠ

V π
rRLHF

, πDPO “ argmax
πPΠ

V π
r̂DPO

. (2)
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This result implies a general principle: the performance gap is reflected in the quality gap between
the (surrogate) reward models: rRLHF and r̂DPO. Better reward learning yields higher expected value.

As revealed in Appendix C of Ouyang et al. (2022) and Section 3.3 of Swamy et al. (2025), it is
uncommon to deploy a reward model with a larger scale than the policy model. And thus to ensure
practical relevance, we focus on the regime F Ď FΠ, and pose the following relevant question:

What key property enables a (surrogate) reward model to subsequently help learn good policies?

As an answer to this question, we note that in the context of preference learning, the reward model
quality can be measured using an ℓ2 distance of pairwise difference, derived by simple calculations:

V
πθ‹prϕq

rϕ can be measured by ´ E
y,y1„sg

´

πθ‹prϕq

¯

“

pr‹pyq ´ r‹py1qq ´ prϕpyq ´ rϕpy1qq
‰2

, (3)

where πθ‹prϕq :“ argmaxπPΠ V π
rϕ

and we omit prompts for simplicity. Detailed calculations and
further discussions deferred to Appendix B. Using this metric, we can further establish a separation.

Concluding remarks. Although we adopt relatively simple techniques, these results can provide
valuable insights for the fundamental differences between RLHF and DPO. In the next section, we
demonstrate that these insights extend naturally to more practical and realistic scenarios.

4 APPROXIMATE OPTIMIZATION: PERFORMANCE GAP INDUCED BY
STATISTICAL EFFICIENCY DIFFERENCES IN REWARD LEARNING

With limited preference data, we are not able to directly compute exact solutions, and thus obtain
weaker reward models and policy models due to estimation error. This scenario can be viewed as in-
ducing an implicit model mis-specification, whose effects have been widely discussed in Section 3.4.
And since we can only lose information in reward learning (Swamy et al., 2025), Equation (2) still
holds asymptotically with on-policy sampling. Thus by assuming F Ď FΠ, we only need to com-
pare the reward model quality measure shown in Equation (3). We adopt an empirical proxy for
this notion, data-induced semi-norm (details in Definition 2 in Appendix C.10, see also Zhu et al.

(2023)): 1
n

řn
i“1

”

pr‹py
piq
w q ´ r‹py

piq
l qq ´ prϕpy

piq
w q ´ rϕpy

piq
l qq

ı2

, where D “ tpy
piq
w , y

piq
l quni“1 is

an empirical preference dataset and we omit prompts from now on.

Difference in token-level linear parameterization. In this section, to rigorously establish a sep-
aration, we focus on a specific token-level linear parameterization, which is a special case of the
general bandit model; therefore, previous results continue to hold. The common reward model
shares the same architecture with LM but replaces the last layer with a linear head, i.e., it takes the
whole prompt-response pair as the input and predicts one value. Therefore, if we view the last-layer
hidden state as the feature vector, it is natural to assume the reward model to be parameterized as
a linear MDP model1: rθr pyq “ β

ř|y|´1
t“0 θJ

r,tψpy0...tq, where θr,t, ψpy0...tq P Rd. While for the
policy model, one needs to go through the softmax results of all tokens and multiply them2:

πθppyq “

|y|´1
ź

t“0

πθp,tpyt|y0...t´1q “

|y|´1
ź

t“0

πrefpyt|y0...t´1q exppθJ
p,tψpy0...tqq

ř

sPV πrefps|y0...t´1q exppθJ
p,tψpy0...t´1, sqq

,

where θp,t P Rd, and the surrogate reward model is r̂θppyq “ β
ř|y|´1

t“0 log πθp,tpyt|y0...t´1q. Let the
ground truth reward be r‹pyq “ β

ř|y|´1
t“0 pθ‹

t qJψpy0...tq, then the optimal solution for the reward
model is θ‹

r,t “ θ‹
t . And recall Equation (1), the optimal solution for the policy model is:

πθ‹
p,t

pyt|y0...t´1q9πrefpyt|y0...t´1q exp

ˆ

q‹pyt|y0...t´1q

β

˙

.

1It is also common to assume the reward model to be a linear bandit model (Zhu et al., 2023), while the
stronger linear MDP model assumption here is for fair comparison with the following policy model.

2Our parameterization assumption on the token-level policy model is different from Razin et al. (2025a),
which utilizes a form of token matrix, since we intend to ensure that dP “ dR.
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Benefiting from the token-level q‹ function, models trained in this way can simulate a process reward
model to provide fine-grained information (Yuan et al., 2024; Cui et al., 2025; Shi et al., 2024; Xu
et al., 2025). However, simultaneously, learning the q‹ function sacrifices statistical efficiency due
to the need to model the complicated structure. Next, we will present a concrete example to illustrate
the statistical gap between pure reward learning and surrogate reward learning.

Dual-token sparse prediction (DTSP) task. Let V be the vocabulary, and Y “ V2. The
policy model is required to sequentially output two tokens a, b, and the ground-truth reward is:

r‹pa, bq “ βrJ
sparseψpaq ` βeJ

1 ψpa, bq ,

where a, b P V , ψpaq, ψpa, bq P Rd, rsparse P Rd, }rsparse}0 “ k, and k ! d.

We let θ‹
r denote the optimal solution for pure reward learning, and θ‹

p the optimal solution for
surrogate reward learning. Note that for the second token, θ‹

r and θ‹
p share the same optimal solution:

pθ‹
r,1qJψpa, bq “ eJ

1 ψpa, bq ` C1 , pθ‹
p,1qJψpa, bq “ eJ

1 ψpa, bq ` C2 ,

where C1, C2 P R are offsets. And for the first token a, there is a distinction:

pθ‹
r,0qJψpaq “ rJ

sparseψpaq ` C3 ,

pθ‹
p,0qJψpaq “ log E

w„πrefp¨|aq
exppr‹pa, bq{βq ` C4

“ rJ
sparseψpaq ` log E

w„πrefp¨|aq
exppψpa, bq1q ` C4 ,

where rsparse gets entangled with πref in θ‹
p,0. Note that if logEw„πrefp¨|aq exppψpa, bq1q can be

mapped to certain non-linear function of ψpaq, then the policy model is mis-specified while the
reward model is not, as in Condition 2. And even without explicit model mis-specification, we can
establish a separation in (surrogate) reward model qualities due to statistical efficiency differences.

Theorem 10 (Informal). Under token-level linear parameterization and mild assumptions, there
exists an environment for DTSP task, s.t. by estimating from a preference dataset D with n sam-
ples under θ1 “ e1 constraint, the estimation error of the reward model θ̂r can be reduced to
Õp

a

k log d{nq using a (computationally efficient) ℓ1-regularized estimator, i.e., w.p. 1 ´ δ,

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ prθ̂r pypiq

w q ´ rθ̂r py
piq
l qq

ı2

“ O

˜

c

k logpdq ` k logp1{δq

n

¸

,

while the estimation error of the DPO model θ̂p is lower bounded by Ωpd{nq:

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ pr̂θ̂ppypiq

w q ´ r̂θ̂ppy
piq
l qq

ı2

“ Ω

ˆ

d

n

˙

.

Remark 5. By fixing the optimal θ1, which is relatively easier to estimate, we can reduce the dual-
token prediction problem to a single-token prediction problem, where θ‹

r,0 is sparse while θ‹
p,0 is

dense. Leveraging the results of Yao et al. (2025) then yields the separation. Formal statement and
detailed proof deferred to Appendix C.10.

Theorem 11 (informal). Based on Theorem 10, there exists an environment for DTSP task, s.t. we
have a separation on the sub-optimality of RLHF and DPO:

V π‹

r‹ ´ V πRLHF
r‹ “ Õ

˜

4

c

k log d

n
¨
a

Λ1

¸

,

V π‹

r‹ ´ V πDPO
r‹ “ Ω

ˆ

d

n
¨ Λ2

˙

,

where πRLHF “ argmax
πPΠ

V π
rθ̂r

, πDPO “ πθ̂p , and Λ1,Λ2 are geometric quantities of data. Formal

statement and detailed proof deferred to Appendix C.10.5.
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Concluding remarks. This section shows that the estimation error can also induce an implicit model
mis-specification. From the perspective of sparse recovery, we can see that the DPO could suffer
from severe statistical inefficiency compared with pure reward learning, even with the same model
scale. Although our task construction is specific, it reveals a general phenomenon: DPO can distort
the intrinsic structure of the true reward function. For general policy model class beyond log-linear
model class, Equation (1) still holds. This observation shows that the policy model must learn the q‹

function, while the reward model only needs to learn the reward. Because q‹ mixes both r‹ and πref ,
the policy model faces a more complex target, making it more vulnerable to model mis-specification
and sample inefficiency. And to prevent policy model mis-specification, dP is often required to be
larger than dR, which further leads to increased sample complexity. Given the insight that real-world
rewards are often sparse and simple (Yao et al., 2025), we can infer that the reward model’s quality
typically surpasses that of the surrogate reward model. This further explains why two-stage RLHF
is empirically observed to outperform DPO (Ivison et al., 2024; Xu et al., 2024b).

5 EXPERIMENTAL VERIFICATIONS

Experiment setup. We now verify our analysis in practical settings. We consider one common
dataset, PKU-SafeRLHF (Ji et al., 2023). We first fine-tune a GPT-2-LARGE-774M model (Rad-
ford et al., 2019) on 5k samples of PKU-SafeRLHF-QA, and obtain the SFT model. We adopt
the GPT2-LARGE-HARMLESS model (Yang et al., 2024) as the ground-truth reward oracle. All
experiments are repeated for 3 seeds. Please see Appendix D for more details.

Implementation details. For exact optimization, we compute the exact BT loss using the ground-
truth reward oracle for each pair in the DPO training dataset. For approximate optimization, we
instead compute the empirical BT loss. We adopt a pairwise regression surrogate instead of PPO to
improve training stability: LRLpθq “ Ey1,y2„sgpπθq rprpy1q ´ rpy2qq ´ pr̂θpy1q ´ r̂θpy2qqs

2. Dur-
ing deployment, the reward score will be scaled by a coefficient rmargin. Besides, since PILAF
sampler (see Definition 1) is very close to purely online sampler when β “ 0.1, we directly sample
y1, y2 „ πθ in the implementation of online DPO.

Verifications of Section 3. We train online DPO and RLHF on PKU-SafeRLHF-Prompt, fol-
lowing the practice of Dong et al. (2024); Shi et al. (2025). For the strong reward condition, we
directly adopt the GPT2-LARGE-HARMLESS model as a perfectly-learned reward model. For the
weak reward condition, we train the SFT model on PKU-SafeRLHF-safer by replacing the
projection matrix with a linear head, freezing all layers except the linear head and the last block. For
the strong policy condition, we fully train the SFT model, while for the weak policy condition, we
freeze the first half of the blocks of the SFT model. Results are shown in Figures 2 and 3. The
empirical findings align closely with our theoretical predictions:

• Figure 2 (Condition 1) aligns with Proposition 1 and theorem 2: increasing the reward scale
amplifies the second-order deviation in online DPO’s objective, causing larger deviation
from the RLHF optimum, as our theory predicts.

• Figure 3 (left, Condition 2) confirms Propositions 3 and 4: with a realizable reward model
but restricted policy class, RLHF outperforms DPO.

• Figure 3 (middle, Condition 3) confirms Proposition 5: with a mis-specified reward model
but realizable policy class, DPO outperforms RLHF.

• Figure 3 (right, Condition 4) exhibits behavior consistent with our double-mis-specification
analysis: relative performance can depend on the comparative expressive power of F versus
FΠ. In our setup, the reward model is less expressive, leading RLHF to underperform.

Verifications of Section 4. We train DPO and reward learning on PKU-SafeRLHF, following the
practice of Zhou et al. (2024). We train on two types of preference: “better” and “safer”, and down-
sample the corresponding training datasets to 1k-9k samples. For DPO training, we directly train
the SFT model using DPO; while for pure reward learning, we replace the projection matrix of the
SFT model with a linear head. The models are trained under the same setting, and all achieve at
least 85% training accuracy. Results are shown in Figure 4, demonstrating that as the number of
samples decreases, reward learning outperforms surrogate reward learning across two tasks. This
corroborates our theoretical separation result in Theorem 10: pure reward learning is statistically
more sample-efficient than the surrogate reward learning performed by DPO.
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Figure 2: Experimental Results for Condition 1. Experiments with different reward scales
t0.4, 1, 4u align with Theorem 2: as the reward scale increases, the second-order deviation in the
online DPO objective grows, giving RLHF a clear advantage.
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Figure 3: Experimental Results for Conditions 2 to 4. The first two plots (Conditions 2 and 3) are
consistent with Propositions 3 and 5. The gap in the last plot can be attributed to the mis-specified
reward model being too weak.
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Figure 4: Experimental Results on Statistical Efficiency. We experiment on two preference types.
Pure reward learning is shown to be more data-efficient than surrogate reward learning.

6 RELATED WORK

Due to page limit, a comprehensive review of related work is deferred to Appendix A. Here, we
focus on comparing with the most relevant prior study, Nika et al. (2024). First, unlike Nika et al.
(2024) which chooses the un-regularized value function as the performance metric, we adopt the
regularized version for two reasons: 1) it is the shared original optimization goal of RLHF and
DPO, so our choice is to ensure fairness; 2) it can help circumvent the unavoidable upper bound
of policy bias in the unregularized version. Second, we provide a fine-grained analysis of dif-
ferent model mis-specifications under exact optimization, i.e., more detailed comparative analysis
on reward approximation error and OpKL pπθDPO }π‹qq when n Ñ `8, and our results are not
limited to linear reward and log-linear policy model classes. Third, we improve the statistical
analysis of Nika et al. (2024) on DPO (ΘpdP {nq) and RLHF (Θp

a

dR{nq), and show that even
when dP “ dR “ d and under realizability assumption, there can still be a large gap between
DPO (Ωpd{nq) and RLHF (Õp

a

k log d{nq) where k ! d is the parameter sparsity.

7 CONCLUSION

This paper provides a fine-grained analysis of the performance gap between two-stage and direct
approaches to preference-based policy learning. We theoretically demonstrate a dichotomy of RLHF
and DPO under different mis-specification scenarios, and further reveal an implicit representation
gap induced by statistical efficiency. Our claims are supported by empirical experiments on LMs.

It is also important to acknowledge our limitations. 1) While we identify a limitation of training
reward models based on BT model, we do not provide a theoretically grounded and practically
effective alternative. 2) Due to computational constraints, our experiments are limited to small-scale
models. We hope our insights can motivate the community to further investigate these directions.
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A SUPPLEMENTARY RELATED WORKS

Reinforcement learning from human feedback (RLHF). Seminal contributions that showcased
RLHF’s applicability to LLMs include foundational work by Christiano et al. (2017), and subse-
quent research focusing on tasks such as summarization (Stiennon et al., 2020), instruction following
(Ouyang et al., 2022), question answering using web-retrieved information (Nakano et al., 2021),
and broader AI alignment objectives (Bai et al., 2022). Theoretical studies of RLHF include pes-
simism in policy learning (Zhu et al., 2023), overoptimization (Zhu et al., 2024; Liu et al., 2024c),
online RLHF (Xiong et al., 2024; Song et al., 2024), robustness (Mandal et al., 2025), and reward
models (Wang et al., 2024; Razin et al., 2025b; Huang et al., 2025; Yao et al., 2025).

Direct preference optimization (DPO). There is a rich literature studying offline (Rafailov et al.,
2024; Feng et al., 2024), iterative (Dong et al., 2024; Liu et al., 2024a), and online (Guo et al., 2024;
Tajwar et al., 2024; Ding et al., 2024; Shi et al., 2025; Chen et al., 2025; Feng et al., 2025) DPO.
There are other DPO-style algorithms to directly optimize the policy model from preference signals,
such as Ψ-PO (Azar et al., 2023), RSO (Liu et al., 2024b), RS-DPO (Khaki et al., 2024), CPO (Xu
et al., 2024a), SimPO (Meng et al., 2024), XPO (Xie et al., 2024), VPO (Cen et al., 2024), and OAIF
(Guo et al., 2024).

Performance gap between RLHF and DPO. Recently, there have been works investigating the
performance gap between RLHF and DPO policies. Xu et al. (2024b) found that DPO might find
biased solutions that exploit out-of-distribution responses, and iterative DPO might be a better ap-
proach; meanwhile, PPO with advantage normalization, large batch-size, and exponential moving
update of the reference model can consistently outperform DPO on benchmarks.

Swamy et al. (2025) first showed that when the reward class and policy class are isomorphic, RLHF
and DPO output policies with equal performances. Then, they proposed a hypothesis that when
the ground-truth reward is simpler than the soft optimal policies, and the reward class reduces the
sample complexity to learn such a reward, then reward modeling essentially reduces the policy
search space. This hypothesis is supported by their experiments. In our work, we comprehensively
extend upon their first class isomorphic result by studying model mis-specification (Section 3), and
we construct concrete examples to further support the existence of the “simpler ground-truth reward”
and “reduced sample complexity” (Section 4).

Nika et al. (2024) provided sub-optimality upper bounds for RLHF and DPO when assuming lin-
ear reward class and log-linear policy class, with the un-regularized value as performance metric.
Three cases were studied: 1) realizable ground-truth reward and exact optimization, 2) realizable
ground-truth reward but approximate optimization, as well as 3) non-realizable reward and exact
optimization. Let n be the size of the fixed dataset and d be the feature dimension. For case 1,
both algorithms have a policy bias due to the un-regularized metric, while RLHF has an additional
Θp

a

d{nq statistical error and that for DPO is Θpd{pβnqq. For case 2, RLHF and DPO both obey
a linear convergence to statistical errors and policy biases when using projected gradient descent.
For case 3, aside from statistical errors and policy biases, RLHF has an extra approximation error
between the ground-truth reward and best achievable reward, while DPO has an extra bias between
the optimal regularized policy and the ideal optimal regularized policy.
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B BONUS: HOW CAN WE BETTER MODEL REWARD FROM PREFERENCE
SIGNALS?

As motivated by Equation (2), a reward model rϕ can be mapped to a policy via:
πθ‹prϕq :“ argmax

πPΠ
V π
rϕ

“ argmax
πPΠ

E
y„π

rrϕpyqs ´ β KL pπ}πrefq .

If F Ď FΠ, this solution further admits the closed form πθ‹prϕqpyq “ πrefpyq exp prϕpyq{βq {Zpϕq,
where Zpϕq :“

ř

yPY πrefpyq exp prϕpyq{βq is the partition function. If the goal is to output a policy
that performs well under the ground-truth reward r‹, then reward learning should aim to find a model
rϕ such that the resulting policy πθ‹prϕq maximizes the underlying “real” objective:

rϕ‹ “ argmax
rϕPF

V
πθ‹prϕq

r‹ “ argmin
rϕPF

´β logZpϕq ´ E
y„πθ‹prϕq

rr‹pyq ´ rϕpyqs

loooooooooooooooooooooooomoooooooooooooooooooooooon

“:Lnewpϕq

.

Following the policy gradient theorem (Sutton et al., 1999), the gradient of this new objective is (see
detailed calculations in Appendix C.11):

∇ϕLnewpϕq “ ´
1

2
E

y,y1„πθ‹prϕq

“

∇ϕrϕpyq ´ ∇ϕrϕpy1
q
‰ “

pr‹
pyq ´ r‹

py1
qq ´ prϕpyq ´ rϕpy1

qq
‰

, (4)

which corresponds to the gradient of an ℓ2 distance of pairwise difference:

Lnewpϕq
∇
“
1

4
E

y,y1„sg
´

πθ‹prϕq

¯

“

pr‹pyq ´ r‹py1qq ´ prϕpyq ´ rϕpy1qq
‰2

. (5)

Comparison with MLE. The reward model rϕ are typically learned via MLE from preference data,
which does not consider the fact that the learned reward will ultimately be used to induce a policy.
Let the distribution of the preference data be µ (by default µ is πref , but can be any distribution here).
Now revisit the MLE objective:
LMLEpϕq “ ´ E

y,y1„µ

“

σpr‹
pyq ´ r‹

py1
qq log σprϕpyq ´ rϕpy1

qq ` σpr‹
py1

q ´ r‹
pyqq log σprϕpy1

q ´ rϕpyqq
‰

,

whose gradient is (see detailed calculations in Appendix C.11):
∇ϕLMLEpϕq “ ´ E

y,y1„µ

“

∇ϕrϕpyq ´ ∇ϕrϕpy1q
‰ “

σpr‹pyq ´ r‹py1qq ´ σprϕpyq ´ rϕpy1qq
‰

. (6)

Following Equation (6), we can see that the gradient of DPO is
∇θLDPOpθq9 ´ Ey,y1„µrσpr‹pyq ´ r‹py1qq ´ σpr̂θpyq ´ r̂θpy1qqsr∇pr̂θpyq ´ r̂θpy1qqs ,

and the gradient of reward modeling is
∇ϕLRMpϕq9 ´ Ey,y1„µrσpr‹pyq ´ r‹py1qq ´ σprϕpyq ´ rϕpy1qqsr∇prϕpyq ´ rϕpy1qqs .

Comparing Equation (4) with Equation (6), a natural idea is to apply Taylor’s expansion to extract
the σp¨q in Equation (6) to further align it with Equation (4). And this will induce an additional
coefficient σ1prϕpyq ´ rϕpy1qq on the data distribution µpy, y1q. And this by-product explains why
is PILAF sampler (a variant of online sampler, see Definition 1) introduced to align the distorted
distribution µ̃py, y1q 9 µpy, y1q ¨σ1prϕpyq ´ rϕpy1qq with πθ‹prϕq. If the reward model is a surrogate
reward model, then we can directly deploy PILAF sampler or online sampler; while if it is a pure
reward model, then we can implement PILAF sampler or online sampler through logit mixing (Shi
et al., 2024; Xu et al., 2025) only when it can provide token-level reward information. However,
it is worth noting that model mis-specification can lead the second-order Taylor remainder to be
extremely large, as shown in Theorem 2. Therefore, when faced with a representation gap, it could
be beneficial to train the (surrogate) reward model on a distribution close to PILAF sampler but is
still limited.

To alleviate this issue, we could learn the preference with alternative modeling approaches to cir-
cumvent the BT model setting, which has already shown success in Sun et al. (2025); Calandriello
et al. (2024). For example, we can look into the training objective of online IPO (Calandriello et al.,
2024; Zhou et al., 2025) (see detailed calculations in Appendix C.11):

Lonline
IPO pθq

∇
“ E

py1,y2q„sgpρθq

„

pr̂θpy1q ´ r̂θpy2qq ´
p‹

py1 ą y2q ´ p‹
py2 ą y1q

2

ȷ2

,

where ρpθq is an online sampling distribution, and it thus can optimize an ℓ2 distance in an on-
line way. The classification model deployed in Sun et al. (2025) is also promising. We leave this
interesting direction for future exploration.
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C OMITTED PROOFS

Note that in this section, we omit all prompts without loss of generality. For the constructive proof,
we can set the number of states to 1; for the other proofs, we can simply sum over different prompts
to extend them to the general case.

C.1 PROOF OF PROPOSITION 1

Since r‹ P F , RLHF exactly recovers r‹ during reward learning. The policy optimization stage then
solves πRLHF “ argmax

πPΠ
V π
r‹ , so by definition, V πRLHF

r‹ “ V Π
r‹ .

On the other hand, DPO is trained on preferences induced by r‹. When π‹ P Π, the preference
structure is realizable, and the DPO loss is minimized by π‹. Hence, πDPO “ π‹, which achieves
the maximum of V π

r‹ over Π.

C.2 PROOF OF THEOREM 2

By Taylor’s expansion, we have that:

∇θLonline
DPO pπθq

“ ´β E
y,y1„πs

“

∇θ log πθpyq ´ ∇θ log πθpy1q
‰

¨ σ1pr̂θpyq ´ r̂θpy1qq ¨
“

pr‹pyq ´ r‹py1qq ´ pr̂θpyq ´ r̂θpy1qq
‰

´ β E
y,y1„πs

“

∇θ log πθpyq ´ ∇θ log πθpy1q
‰

¨ σ2pξy,y1 q ¨
“

pr‹pyq ´ r‹py1qq ´ pr̂θpyq ´ r̂θpy1qq
‰2

,

where ξy,y1 is an intermediate value between r‹pyq ´ r‹py1q and r̂θpyq ´ r̂θpy1q.

Therefore, if we have:

• 0 ď rpyq ď Rmax, @y P Y;
• |pr‹pyq ´ r‹py1qq ´ pr̂θpyq ´ r̂θpy1qq| ď δ, @y, y1 P Y;
• πspy, y1q 9 πθpyqπθpy1q{σ1pr̂θpyq ´ r̂θpy1qq, i.e., πs is PILAF sampler,

then the formula can be rewritten as:

Lonline
DPO pπθq

∇
“

1

2sg pZθq
E

y,y1„πθ

p1 ` ϵy,y1 q ¨
“`

r‹pyq ´ r‹py1q
˘

´
`

r̂θpyq ´ r̂θpy1q
˘‰2

,

where

|ϵy,y1 | “

ˇ

ˇ

ˇ

ˇ

σ2pξy,y1 q

σ1pr̂θpyq ´ r̂θpy1qq

ˇ

ˇ

ˇ

ˇ

¨ |pr‹pyq ´ r‹py1qq ´ pr̂θpyq ´ r̂θpy1qq| ď
δ

6
?
3σ1pRmax ` δq

,

and

Zθ :“
ÿ

y,y1PY
πθpyqπθpy1q{σ1pr̂θpyq ´ r̂θpy1qq .

Note that:

∇θ

„

E
y„πθ

rr‹px, yqs ´ βKL pπθ}πrefq

ȷ

(7)

“ ∇θ E
y„πθ

rr‹pyq ´ r̂θpyqs

“ E
y„πθ

∇θ log πθpyqrr‹pyq ´ r̂θpyqs (policy gradient theorem)

“ E
y,y1„πθ

∇θ log πθpyqrpr‹pyq ´ r‹py1qq ´ pr̂θpyq ´ r̂θpy1qs (policy gradient theorem)

“
1

2
E

y,y1„πθ

“

∇θ log πθpyq ´ ∇θ log πθpy1q
‰

rpr‹pyq ´ r‹py1qq ´ pr̂θpyq ´ r̂θpy1qs , (symmetry)

thus

E
y„πθ

rr‹px, yqs ´ βKL pπθ}πrefq
∇
“ ´

1

4β
E

y,y1„πθ

“`

r‹pyq ´ r‹py1q
˘

´
`

r̂θpyq ´ r̂θpy1q
˘‰2

.
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Therefore we have:

Lonline
DPO pπθq

∇
“

2β

sg pZθq

#

´

„

E
y„πθ

rr‹px, yqs ´ βKL pπθ}πrefq

ȷ

`
1

4β
E

y,y1„sgpπθq

”

ϵy,y1 ¨
“`

r‹pyq ´ r‹py1q
˘

´
`

r̂θpyq ´ r̂θpy1q
˘‰2

ı

+

.

C.3 PROOF OF PROPOSITION 3

Since r‹ P F , RLHF recovers r‹ exactly and then solves πRLHF “ argmaxπPΠ V π
r‹ , by definition

achieving V πRLHF
r‹ “ V Π

r‹ . DPO, instead, minimizes a proxy loss defined over pairwise preferences.
Since πDPO P Π, we have V πDPO

r‹ ď maxπPΠ V
π
r‹ “ V Π

r‹ “ V πRLHF
r‹ , which proves the first claim.

For the strict gap, we consider a multi-armed bandit setting with the action space Y “ ta1, a2, a3u.
Let the ground-truth reward function satisfy:

r “ r‹pa1q “ r‹pa2q ě r‹pa3q “ 0 .

Assume the linear feature mapping ψ : Y Ñ Rd satisfies:

ψpa1q ‰ ψpa2q , ψpa3q “ 1
2ψpa1q ` 1

2ψpa2q .

Define the log-linear policy class Π “ tπθ : θ P Rdu by πθpaq 9 πrefpaq exppθJψpaqq, where
πref “ UnifpYq. Since r‹ is realizable, RLHF exactly recovers it and solves:

πRLHF “ argmax
πθPΠ

V πθ
r‹ “ argmax

πθPΠ

ÿ

aPY
πθpaqr‹paq ´ β KL pπθ}πrefq .

For a fixed r ą 0, as the regularization parameter β Ñ 0, the optimal policy under RLHF places
vanishing probability on a3: πRLHFpa3q Ñ 0. In contrast, as β Ñ 8, the regularization dominates
and the optimal policy converges to the uniform reference policy: πRLHF Ñ πref .

Now consider the DPO objective, which relies on pairwise preference probabilities and directly
optimizes over the policy class:

LDPOpπθq “ ´
ÿ

a‰a1

“

σpr‹paq ´ r‹pa1qq log σ
`

β θJpψpaq ´ ψpa1q
˘‰

“ ´ 1
2 log σpβ∆Jθq ´ 1

2 log σp´β∆Jθq ´ log σp 1
2β∆

Jθq ´ log σp´ 1
2β∆

Jθq ,

where ∆ :“ ψpa1q ´ ψpa2q. This expression is always minimized when ∆Jθ “ 0, which corre-
sponds to a uniform distribution.

Thus, unlike RLHF, the DPO solution remains fixed at uniform distribution, independent of the
reward magnitude r and the regularization parameter β, and fails to suppress the sub-optimal action
a3 even when β is sufficiently small.

C.4 PROOF OF PROPOSITION 5

Since r‹ R F , RLHF recovers an approximation r̂ P F via reward learning. It then computes
a policy πRLHF that maximizes V π

r̂ over Π. In general, this policy is sub-optimal under r‹ (see
Proposition 3), and thus V πRLHF

r‹ ď maxπPΠ V
π
r‹ “ V Π

r‹ .

DPO directly optimizes a preference-based loss over Π. Since π‹ P Π and DPO is given access to
exact preference data consistent with r‹, it can recover π‹, and hence V πDPO

r‹ “ V π‹

r‹ “ V Π
r‹ .

For the strict gap, consider a multi-armed bandit setting analogous to Appendix C.3: first, define the
action space Y “ ta1, a2, a3u. Let the ground-truth reward function satisfy:

r “ r‹pa1q “ r‹pa2q ě r‹pa3q “ 0 .

Assume the linear feature mapping ψ : Y Ñ Rd satisfies:

ψpa1q ‰ ψpa2q , ψpa3q “ 1
2ψpa1q ` 1

2ψpa2q .
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The key difference from the earlier construction lies in the choice of model classes. We define: the
linear reward class F “ trϕ : ϕ P Rdu by rϕpaq :“ ϕJψpaq, and the policy class Π “ ∆pYq with
reference policy πref “ UnifpYq. This setup satisfies Condition 3 because r‹ R F : for any ϕ, the
constraint on ψ implies rϕpa3q “ 1

2 prϕpa1q ` rϕpa2qq so rϕpa3q “ r whenever rϕpa1q “ rϕpa2q “

r, contradicting the ground-truth reward r‹pa3q “ 0.

In RLHF, the reward model is learned by solving the population MLE objective:

rRLHF “ argmax
rϕPF

ÿ

a‰a1

“

σpr‹paq ´ r‹pa1qq log σpβϕJpψpaq ´ ψpa1qqq
‰

“ argmax
rϕPF

´ 1
2 log σpβ∆Jϕq ´ 1

2 log σp´β∆Jϕq ´ log σp 1
2β∆

Jϕq ´ log σp´ 1
2β∆

Jϕq ,

where ∆ :“ ψpa1q ´ ψpa2q. This expression is minimized maximized at ∆Jϕ “ 0, which implies
rϕpa1q “ rϕpa2q and rϕpa3q “ rϕpa1q, i.e., the learned reward is constant: rRLHFpaq “ C for all
a P Y .

The policy learning stage then solves:

πRLHF “ argmax
πP∆pYq

E
a„π

rCs ´ β KL pπ}πrefqq ,

whose solution is simply πRLHF “ πref , independent of r and β.

In contrast, DPO directly optimizes the policy using preference comparisons. Since Π “ ∆pYq

and the preferences are consistent with the ground-truth reward r‹, DPO can recover the optimal
policy π‹9 exppr‹{βq, which is not uniform. Therefore, DPO achieves the optimal regularized
value V ‹

Π “ V π‹

r‹ , while RLHF only returns the uniform policy. This yields a strict gap:

V πRLHF
r‹ ă V πDPO

r‹ “ V Π
r‹ .

C.5 PROOF OF PROPOSITION 6

By definition, the reward learned by RLHF and the surrogate reward learned by DPO are obtained
by solving the following population objectives:

rRLHF “ argmax
rϕPF

E
y,y1„πref

“

p‹py ą y1q log σprϕpyq ´ rϕpy1qq ` p‹py1 ą yq log σprϕpy1q ´ rϕpyqq
‰

,

r̂DPO “ argmax
r̂θPFΠ

E
y,y1„πref

“

p‹py ą y1q log σpr̂θpyq ´ r̂θpy1qq ` p‹py1 ą yq log σpr̂θpy1q ´ r̂θpyqq
‰

,

Under Condition 5, we have F “ FΠ , so both objectives are optimized over the same function
class. Hence, it follows that: rRLHF “ r̂DPO.

Recalling from Equation (2):

πRLHF “ argmax
πPΠ

V π
rRLHF

, πDPO “ argmax
πPΠ

V π
r̂DPO

.

and substituting rRLHF “ r̂DPO, we can conclude that

πRLHF “ πDPO and hence V πRLHF
r‹ “ V πDPO

r‹ .

C.6 PROOF OF PROPOSITION 8

Construction 1: V πRLHF
r‹ ă V πDPO

r‹ . We first construct an environment satisfying Condition 6 such
that V πRLHF

r‹ ă V πDPO
r‹ . Consider the same setup as in Appendix C.4, but define the policy class as

Π “ ∆pYqztπ‹u, where π‹ is the optimal policy under r‹. This ensures that π‹ R Π, while F Ă FΠ,
satisfying Condition 6.

As shown in Appendix C.4, RLHF learns a constant reward model and returns the uniform policy
πRLHF “ πref , independent of r and β. In contrast, DPO directly optimizes policy parameters from
preference data and can converge to a policy arbitrarily close to π‹, which lies on the boundary of
Π. This yields a strict sub-optimality gap:

V πRLHF
r‹ ă V πDPO

r‹ .
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Construction 2: V πRLHF
r‹ ą V πDPO

r‹ . Next, we construct an environment satisfying Condition 6 such
that V πRLHF

r‹ ą V πDPO
r‹ . Consider a multi-armed bandit with action space Y “ ta1, a2, a3u and

ground-truth reward:
r‹pa1q “ r‹pa2q “ 1 , r‹pa3q “ 0 .

Let the linear feature mapping ψ : Y Ñ R2 be:

ψpa1q “

„

1
0

ȷ

, ψpa2q “

„

0
1

ȷ

, ψpa3q “

„

1{2
1{2

ȷ

.

Define the log-linear policy class Π “ tπθ : θ P R2u with

πθpaq 9 πrefpaq exppθJψpaqq , πref “ UnifpYq.

The corresponding surrogate reward class is FΠ “ tr̂θ : r̂θpaq “ βθJψpaq, θ P R2u. We now
define a strictly smaller reward model class F “ tr̂θRu where

θR “

„

1
´1

ȷ

.

We set the regularization parameter to β “ 0.1. Then, F Ă FΠ and Condition 6 holds.

Under this setup, RLHF learns the fixed reward r̂θR and optimizes:

πRLHF “ πθR , where πθRpaq 9 exppθJ
Rψpaqq .

Concretely:

πθRpa1q “
expp1q

Z
, πθRpa2q “

expp´1q

Z
, πθRpa3q “

1

Z
, Z “ expp1q ` expp´1q ` 1 .

The value of this policy under r‹ is:

V πRLHF
r‹ “ πθRpa1q ` πθRpa2q ´ βKLpπθR}πrefq « 0.729 .

In contrast, DPO learns the uniform policy πDPO “ πref , as shown in Appendix C.3. Its value is:

V πDPO
r‹ “

2

3
.

This results in a strict sub-optimality gap in the opposite direction:

V πRLHF
r‹ ą V πDPO

r‹ .

C.7 PROOF OF PROPOSITION 9

Construction 1: V πRLHF
r‹ ą V πDPO

r‹ . We construct an environment satisfying Condition 7 such that
V πRLHF
r‹ ą V πDPO

r‹ . Consider a multi-armed bandit with action space Y “ ta1, a2, a3u and ground-
truth reward function:

r‹pa1q “ r‹pa2q “ 1 , r‹pa3q “ 0 .

Let the linear feature mapping ψ : Y Ñ R2 be:

ψpa1q “

„

1
0

ȷ

, ψpa2q “

„

0
1

ȷ

, ψpa3q “

„

1{2
1{2

ȷ

.

Define the log-linear policy class Π “ tπθ : θ P R2u with:

πθpaq 9 πrefpaq exppθJψpaqq , πref “ UnifpYq .

The corresponding surrogate reward class is FΠ “ tr̂θ : r̂θpaq “ βθJψpaq, θ P R2u. Now define a
strictly larger reward model class:

F “ FΠ Y tr̄u , where r̄pa1q “ r̄pa2q “ 2, r̄pa3q “ 0 .

Then FΠ Ă F , and thus Condition 7 holds.
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From Appendix C.3, we know that DPO learns a constant reward model under this feature structure
and returns the uniform policy πDPO “ πref , independent of r and β.

RLHF, on the other hand, optimizes the MLE objective over the larger class F and selects r̄, which
achieves a higher likelihood than any function in FΠ. Then, the learned policy is:

πRLHF “ argmax
πθPΠ

V πθ
r̄ .

As β Ñ 0, the optimal policy πRLHF places vanishing mass on a3, since r̄pa3q “ 0 while r̄pa1q “

r̄pa2q “ 2. Hence, πRLHFpa3q Ñ 0.

This leads to a strictly better policy under r‹ than the uniform policy returned by DPO. Thus:
V πRLHF
r‹ ą V πDPO

r‹ .

Construction 2: V πRLHF
r‹ ă V πDPO

r‹ . We now construct an environment satisfying Condition 7 such
that V πRLHF

r‹ ă V πDPO
r‹ . Consider a multi-armed bandit with action space Y “ ta1, a2, a3u and

ground-truth reward function:
r‹pa1q “ r‹pa2q “ 1 , r‹pa3q “ 0 .

Let the linear feature mapping ψ : Y Ñ R2 be:

ψpa1q “

„

1
0

ȷ

, ψpa2q “

„

0
1

ȷ

, ψpa3q “

„

1{2
1{2

ȷ

.

We define a constrained log-linear policy class:

Π “

"

πθ : θ P R2, θJ

„

1
´1

ȷ

ě 20

*

, πθpaq 9 πrefpaq exppθJψpaqq ,

where πref “ UnifpYq. The corresponding surrogate reward class is:

FΠ “

"

r̂θ : r̂θpaq “ βθJψpaq , θJ

„

1
´1

ȷ

ě 20

*

.

Now define a strictly larger reward model class:
F “ FΠ Y tr̄u , where r̄pa1q “ r̄pa2q “ 2 , r̄pa3q “ 0 .

We set the regularization parameter to β “ 0.1. Since r̄ R FΠ, we have FΠ Ă F , and thus
Condition 7 holds.

Under this setup, RLHF first learns the reward model by optimizing the MLE objective over the
larger class F and selects r̄, which achieves strictly higher likelihood than any element in FΠ. In
the policy learning stage, RLHF computes the policy πRLHF “ πθRLHF by solving:

πθRLHF “ argmax
πθPΠ

V πθ
r̄ “ argmax

πθPΠ

␣

2
`

πθpa1q ` πθpa2q
˘

´ β KL pπθ}πrefq
(

.

In contrast, DPO directly optimizes the reward via MLE:
r̂DPO “ argmax

r̂θPFΠ

E
y,y1„πref

“

p‹py ą y1q log σpr̂θpyq ´ r̂θpy1qq ` p‹py1 ą yq log σpr̂θpy1q ´ r̂θpyqq
‰

,

whose optimal solution corresponds to θ satisfying θJ

„

1
´1

ȷ

“ 20. Therefore, the learned policy is

πDPO “ πθDPO with θJ
DPO

„

1
´1

ȷ

“ 20.

To compare the values V πRLHF
r‹ and V πDPO

r‹ , we rewrite the value function for any πθ as:
V πθ
r‹ “ πθpa1q ` πθpa2q ´ β KL pπθ}πrefq

“
ex{2 ` e´x{2

Zpxq
´ β

„

ex{2

Zpxq
log

ˆ

ex{2

Zpxq

˙

`
e´x{2

Zpxq
log

ˆ

e´x{2

Zpxq

˙

`
1

Zpxq
log

ˆ

1

Zpxq

˙ȷ

` (constant) ,

where x :“ θJ

„

1
´1

ȷ

and Zpxq :“ ex{2 ` e´x{2 ` 1.

It can be verified that V πθ
r‹ is strictly decreasing in x for x ě 20. Since RLHF learns xRLHF « 40

and DPO learns xDPO “ 20, we conclude that
V πRLHF
r‹ ă V πDPO

r‹ ,

demonstrating that a more expressive reward model class may lead RLHF to overfitting in the pres-
ence of a constrained policy class, resulting in inferior performance compared to DPO.
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C.8 NUMERICAL PROOF OF PROPOSITION 4

Since the exact solution for online DPO is hard to compute, we didn’t find elegant proofs for these
two propositions. They are examined correct numerically.

By Proposition 3, we have V πRLHF
r‹ “ V Π

r‹ “ maxπPΠ V
π
r‹ ě V

πonline
DPO

r‹ . Now we construct an environ-
ment under Condition 2, such that online DPO cannot outperform DPO, even with PILAF sampler.
Consider a multi-armed bandit with action space Y “ ta1, a2, a3u and ground-truth reward:

r‹pa1q “ 12 , r‹pa2q “ 12 , r‹pa3q “ 0 .

Let the linear feature mapping ψ : Y Ñ Rd satisfies:

ψpa1q ‰ ψpa2q , ψpa3q “
1

2
ψpa1q `

1

2
ϕpa2q .

Taking β “ 1, let xpθq denote log πθpa1q

πrefpa1q
´ log πθpa2q

πrefpa2q
. Define the bounded log-linear policy class

Π “ tπθ : θ P Rd , |xpθq| ď 4u with

πθpaq 9 πrefpaq exppθJψpaqq , πref “ UnifpYq .

Note that we can use xpθq to represent the whole distribution thanks to the feature mapping. Now we
numerically compute the gradients of the loss functions of RL, DPO, and online DPO with PILAF
sampler, in the interval xpθq P r´4, 4s. And the curves along with respective solutions are shown in
the left panel of Figure 5, where the gradient values are rescaled for clarity of presentation. We find
that both DPO and online DPO will converge to the same sub-optimal solution, while RL can obtain
an optimal solution.

C.9 NUMERICAL PROOF OF PROPOSITION 7

By Proposition 6, we have πRLHF “ πDPO. Now we only need to construct an environment under
Condition 5, such that online DPO can outperform offline DPO. We can borrow the whole setting in
Appendix C.8, while resetting the ground-truth reward as:

r‹pa1q “ 24 , r‹pa2q “ 12 , r‹pa3q “ 0 .

Now we numerically compute the gradients of the loss functions of DPO and online DPO with a
pure online sampler, in the interval xpθq P r´4, 4s. And the curves along with respective solutions
are shown in the right panel of Figure 5, where the gradient values are rescaled for clarity of pre-
sentation. We find that online DPO can help obtain better solution than DPO, which indicates that

under Condition 5, online DPO can produce a solution πonline
DPO , such that V πRLHF

r‹ ă V
πonline

DPO
r‹ .
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Figure 5: Numerically Computed Curves of Gradient Functions and Value Functions.

C.10 FORMAL STATEMENT OF THEOREMS 10 AND 11 AND PROOFS

C.10.1 PRELIMINARIES OF SINGLE-TOKEN PREDICTION

Before proceeding, we first prepare some ingredients for the single-token prediction task.
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Basic setting. Recall that to train a (surrogate) reward model, people first collect a dataset D: “

ty
piq
1 , y

piq
2 uni“1, and then ask human annotators to label these pairs to get a human preference dataset

D “ ty
piq
w , y

piq
l uni“1. Following BT model, y1 is preferred over y2, (i.e. yw “ y1 and yl “ y2), w.p.

σpr‹py1q ´ r‹py2qq, where r‹pyq “ pθ‹qJψpyq, θ‹ P R` is the ground-truth reward vector, ψpyq is
the feature vector satisfying }ψpyq}2 ď L, and L P R`. The MLE estimator is defined as:

θ̂MLE P argmin
θPΘB

´
1

n

n
ÿ

i“1

log σpθJpψpypiq
w q ´ ψpy

piq
l qqq , (8)

where ΘB “ tθ P Rd : }θ}2 ď Bu, B P R`. And we assume θ‹ P ΘB . The empirical performance
measure is the data-induced semi-norm (see, e.g., (Zhu et al., 2023)), defined as:
Definition 2 (Data-induced semi-norm). The empirical error of an estimate θ̂ is defined as:

}θ̂ ´ θ‹}2ΣD
:“

1

n

n
ÿ

i“1

”

prθ̂pypiq
w q ´ rθ̂py

piq
l qq ´ pr‹pypiq

w q ´ r‹py
piq
l qq

ı2

,

where ΣD is the Gram matrix:

ΣD :“
1

n

n
ÿ

i“1

pψpypiq
w q ´ ψpy

piq
i qqpψpypiq

w q ´ ψpy
piq
i qqJ .

And we assume ΣD to be non-singular.

Note that the lemmas below only work for the single-token scenario, and we will adopt them in the
dual-token prediction task later. The results quoted below from (Yao et al., 2025) follow directly
from a long line of work on compressed sensing and sparse recovery based on restricted isometry
(or restricted eigenvalue) properties (Candes et al., 2006), recast for the preference learning setting.
Lemma 1 (Theorem 1.a of Shah et al. (2015)). For a sample size n ě c1tr(Σ´1

D ), any estimator θ̂
based on n samples has a lower bound as:

sup
θ‹PΘB

E
”

}θ̂ ´ θ‹}2ΣD

ı

“ Ω

ˆ

d

n

˙

.

Remark 6. Here c1 is a constant independent of data. This lemma is to establish an information-
theoretical lower bound for single-token reward learning.
Lemma 2 (Lemma 3.1 of Zhu et al. (2023); see also Shah et al. (2015)). W.p. at least 1 ´ δ, the
estimation error of the MLE estimator θ̂MLE has an upper bound:

}θ̂MLE ´ θ‹}2ΣD
“ O

ˆ

d` logp1{δq

n

˙

.

Definition 3 (ℓ1-regularized estimator).
θ̂ℓ1 P argmin

θPΘB

LMLEpθq ` γ}θ}1 .

Lemma 3 (Theorem 3.3 of Yao et al. (2025)). Consider }θ‹}0 “ k, then w.p. at least 1 ´ δ, the

ℓ1-regularized estimator θ̂ℓ1 with an appropriate γ “ Θ

ˆ

b

logpdq`logp1{δq

n

˙

has an upper bound:

}θ̂ℓ1 ´ θ‹}2ΣD
“ O

˜

c

k logpdq ` k logp1{δq

n

¸

.

Definition 4 (Relative ℓ1-regularized estimator). Given τ P ΘB , the relative ℓ1-regularized estima-
tor is defined as:

θ̂relℓ1 P argmin
θPΘB

LMLEpθq ` γ}θ ´ τ}1 .

Lemma 4 (Generalized version of Lemma 3). Consider τ P ΘB , }θ‹ ´ τ}0 “ k, then w.p. at least

1 ´ δ, the relative ℓ1-regularized estimator θ̂relℓ1 with an appropriate γ “ Θ
´

logpdq`logp1{δq

n

¯

has
an upper bound:

}θ̂relℓ1 ´ θ‹}2ΣD
“ O

˜

c

k logpdq ` k logp1{δq

n

¸

.

Proof of this lemma is given in Appendix C.10.4.
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C.10.2 FORMAL STATEMENT OF THEOREM 10

Assumption 12 (Task configuration). Recall that in DTSP task, we have r‹pa, bq “ βrJ
sparseψpaq `

βeJ
1 ψpa, bq, where a, b P V , ψpaq, ψpa, bq, rsparse P Rd, and }rsparse}0 “ k, k ! d. We further assume

B,L P R`, ΘB :“ tθ P Rd : }θ}2 ď Bu, rdense, rsparse, e1 ` rdense ` rsparse P ΘB , }ψpaq}2 ď L, and
ψpa, bq “ ψpbq ` prJ

denseψpaqqe1.
Assumption 13 (Preference data collection). For DTSP task, we first collect a single-token dataset
D: “ ta

piq
1 , a

piq
2 uni“1, and then duplicate it as D; “ ta

piq
1 a

piq
1 , a

piq
2 a

piq
2 uni“1, and ask human annota-

tors to label these pairs. Now we have collected a dual-token preference dataset D “ ty
piq
w , y

piq
l uni“1,

where ypiq
w “ a

piq
1 a

piq
1 and ypiq

l “ a
piq
2 a

piq
2 w.p. σpr‹pa

piq
1 , a

piq
1 q ´ r‹pa

piq
2 , a

piq
2 qq. And we further as-

sume that the Gram matrix ΣD :“ 1
n

řn
i“1pψpa

piq
w q ´ψpa

piq
l qqpψpa

piq
w q ´ψpa

piq
l qqJ is non-singular,

trpΣ´1
D q “ Opdq, and n ě c1trpΣ´1

D q, where c1 is the constant in Lemma 1.
Theorem 14 (Formal separation theorem). Under token-level linear parameterization and Assump-
tions 12 and 13, there exists an environment for DTSP task, s.t. by estimating from a preference
dataset D with n samples under θ1 “ e1 constraint, the estimation error of the reward model θ̂r can
be reduced to Õp

a

k log d{nq using a (computationally efficient) ℓ1-regularized estimator:

θ̂r,relℓ1 P argmin
θ0`e1`rdensePΘB ,θ1“e1

´
1

n

n
ÿ

i“1

log σprθpypiq
w q ´ rθpy

piq
l qq ` γ}θ0}1 ,

i.e., w.p. 1 ´ δ,

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ prθ̂r,relℓ1

pypiq
w q ´ rθ̂r,relℓ1

py
piq
l qq

ı2

“ O

˜

c

k logpdq ` k logp1{δq

n

¸

,

while the estimation error of any estimator for the DPO model θ̂p is lower bounded by Ωpd{nq:

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ prθ̂ppypiq

w q ´ rθ̂ppy
piq
l qq

ı2

“ Ω

ˆ

d

n

˙

.

C.10.3 PROOF OF THEOREM 14

Let πrefp¨|aq be identical for all a, then we have

log E
ω„πrefp¨|aq

exppψpa, bq1q “ rJ
denseψpaq ` C5 ,

for @a P V , where C5 P R is an offset.

Recall that:

pθ‹
r,0qJψpaq “ rJ

sparseψpaq ` C3 ,

pθ‹
p,0qJψpaq “ log E

ω„πrefp¨|aq
exppr‹pa, bq{βq ` C4 “ rJ

sparseψpaq ` log E
ω„πrefp¨|aq

exppψpa, bq1q ` C4 ,

we thus have θ‹
r,0 “ rsparse and θ‹

p,0 “ rsparse ` rdense, due to the non-singularity of the Gram matrix.

We can have a ℓ1-regularized estimator for the reward model:

θ̂r,relℓ1 P argmin
θ0`τ1PΘB ,θ1“e1

´
1

n

n
ÿ

i“1

log σprθpapiq
w apiq

w q ´ rθpa
piq
l a

piq
l qq ` γ}θ0}1 ,

ùñ θ̂r,relℓ1,0 P argmin
θ0`τ1PΘB

´
1

n

n
ÿ

i“1

log σpβpθ0 ` τ1qJpψpapiq
w q ´ ψpa

piq
l qq ` γ}θ0 ` τ1 ´ τ1}1 ,

where τ1 :“ e1 ` rdense. Then Lemma 4 implies there exists appropriate γ, such that w.p. 1 ´ δ,

1

n

n
ÿ

i“1

”

pθ̂r,relℓ1,0 ´ rsparseqJpψpapiq
w q ´ ψpa

piq
l qq

ı2

“ O

˜

c

k logpdq ` k logp1{δq

n

¸

,
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and thus w.p. 1 ´ δ,

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ prθ̂r,relℓ1

pypiq
w q ´ rθ̂r,relℓ1

py
piq
l qq

ı2

“
β2

n

n
ÿ

i“1

”

prsparse ` rdense ` e1qJpψpapiq
w q ´ ψpa

piq
l qq ´ pθ̂r,relℓ1,0 ` rdense ` e1qJpψpapiq

w q ´ ψpa
piq
l qq

ı2

“
β2

n

n
ÿ

i“1

”

prsparse ´ θ̂r,relℓ1,0qJpψpapiq
w q ´ ψpa

piq
l qq

ı2

“ O

˜

c

k logpdq ` k logp1{δq

n

¸

.

Note that

log σpr̂θppapiq
w apiq

w q ´ r̂θppa
piq
l a

piq
l qq “ log σpβpθp,0 ` e1qJpψpapiq

w q ´ ψpa
piq
l qqq ,

then Lemma 1 implies that for any estimator θ̂p, we have

sup
e1`rdense`rsparsePΘB

1

n

n
ÿ

i“1

”

pθ̂p,0 ` e1 ´ rsparse ´ rdense ´ e1qJpψpapiq
w q ´ ψpa

piq
l qq

ı2

“ Ω

ˆ

d

n

˙

.

Now observe the data-induced semi-norm of surrogate reward learning:

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ pr̂θ̂ppypiq

w q ´ r̂θ̂ppy
piq
l qq

ı2

“
β2

n

n
ÿ

i“1

”

prsparse ` rdense ` e1qJpψpapiq
w q ´ ψpa

piq
l qq ´ pθ̂p ` e1qJpψpapiq

w q ´ ψpa
piq
l qq

ı2

“
β2

n

n
ÿ

i“1

”

pθ̂p,0 ` e1 ´ rsparse ´ rdense ´ e1qJpψpapiq
w q ´ ψpa

piq
l qq

ı2

.

And thus there exists an environment for DTSP, s.t.

1

n

n
ÿ

i“1

”

pr‹pypiq
w q ´ r‹py

piq
l qq ´ pr̂θ̂ppypiq

w q ´ r̂θ̂ppy
piq
l qq

ı2

“ Ω

ˆ

d

n

˙

.

C.10.4 PROOF OF LEMMA 4

Lemma 5 (Lemma D.4 of Yao et al. (2025)).

LMLEpθ‹ ` θ1q ´ LMLEpθ‹q ´ ∇LMLEpθ‹qJθ1 ě Θp}θ1}2ΣD
q ,

for @θ1 P Rd s.t. θ1 ` θ‹ P ΘB .

We take γ “ Θ

ˆ

b

logpdq`logp1{δq

n

˙

, where the specific value of γ is determined in Theorem 3.3 of

Yao et al. (2025). By the definition of the relative ℓ1-regularized estimator, we have:

LMLEpθ̂relℓ1q ` γ}θ̂relℓ1 ´ τ}1 ď LMLEpθ‹q ` γ}θ‹ ´ τ}1

ðñ γ}θ‹ ´ τ}1 ´ γ}θ̂relℓ1 ´ τ}1 ě LMLEpθ̂relℓ1q ´ LMLEpθ‹q .

By Lemma 5, we have:

LMLEpθ̂relℓ1q ´ LMLEpθ‹q ´ ∇LMLEpθ‹qJpθ̂relℓ1 ´ θ‹q ě Θp}θ̂relℓ1 ´ θ‹}2ΣD
q .

Thus

Θp}θ̂relℓ1 ´ θ‹}2ΣD
q ď γ}θ‹ ´ τ}1 ´ γ}θ̂relℓ1 ´ τ}1 ´ ∇LMLEpθ‹qJ

”

pθ̂relℓ1 ´ τq ´ pθ‹ ´ τq

ı
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ď γ}θ‹ ´ τ}1 ´ γ}θ̂relℓ1 ´ τ}1 ` }∇LMLEpθ‹q}8}θ̂relℓ1 ´ τ}1 ` `}∇LMLEpθ‹q}8}pθ‹ ´ τq}1 ,

where the second inequality is by Hölder’s inequality. Next, we upper bound }∇LMLEpθ‹q}8. As
shown in Appendix D.3 of Yao et al. (2025), w.p. 1 ´ δ, we have }∇LMLEpθ‹q}8 ď γ. Thus, w.p.
1 ´ δ, we have:

Θp}θ̂relℓ1 ´ θ‹}2ΣD
q ď p}∇LMLEpθ‹q}8 ` γq }θ‹ ´ τ}1 ` p}∇LMLEpθ‹q}8 ´ γq }θ̂relℓ1 ´ τ}1

ď 2γ}θ‹ ´ τ}1 ,

ùñ }θ̂relℓ1 ´ θ‹}2ΣD
“ Opγ}θ‹ ´ τ}1q .

Note that θ‹, τ P ΘB , thus }θ‹ ´ τ}2 “ Op1q. Then by Cauchy-Schwartz inequality and the fact
that }θ‹ ´ τ}0 “ k, we have }θ‹ ´ τ}1 “ Op

?
kq, and finally:

}θ̂relℓ1 ´ θ‹}2ΣD
“ O

˜

c

k logpdq ` k logp1{δq

n

¸

.

C.10.5 FORMAL STATEMENT OF THEOREM 11 AND PROOF

Lemma 6 (Lemma J.5 of Nika et al. (2024)). If the features ψpaq are sampled from a 0-mean
distribution and span Rd, then log

ř

a exppθJψpaqq is κ-strongly convex w.r.t. θ P ΘB , where κ is
an Op1q constant determined by β,B,L and |V|.
Theorem 15 (Formal sub-optimality separation theorem). Under the same setting as Theorem 14,
there exists an environment for DTSP task, s.t. the sub-optimality of the RLHF policy model πRLHF “

argmax
πPΠ

V π
rθ̂r

can be reduced to O
ˆ

4

b

k log d`k logp1{δq

n ¨

›

›

›
Σ

´1{2
D

›

›

›

2

˙

, i.e. w.p. 1 ´ δ,

V π‹

r‹ ´ V πRLHF
r‹ “ O

˜

4

c

k log d` k logp1{δq

n
¨

›

›

›
Σ

´1{2
D

›

›

›

2

¸

,

while the sub-optimality of the DPO policy model πDPO “ πθ̂p is lower bounded:

V π‹

r‹ ´ V πDPO
r‹ “ Ω

ˆ

d

n
¨

1

}ΣD}2

˙

.

Proof. The proof follows the ideas of Theorem 3.2 of Zhu et al. (2023) and Theorem 4.2 of Nika
et al. (2024), with appropriate adaptations to our setting.

V π‹

r‹ ´ V πRLHF
r‹ ď E

a1„π‹,b1„π‹
p¨|a1q,

a2„πRLHF,b2„πRLHFp¨|a2q

„

pr‹pa1, b1q ´ r‹pa2, b2qq ´

ˆ

β log
πRLHFpa1, b1q

πrefpa1, b1q
´ β log

πRLHFpa2, b2q

πrefpa2, b2q

˙ȷ

“ E
a1„π‹,b1„π‹

p¨|a1q,
a2„πRLHF,b2„πRLHFp¨|a2q

”

pr‹pa1, b1q ´ r‹pa2, b2qq ´

´

rθ̂r pa1, b1q ´ rθ̂r pa2, b2q

¯ı

“ E
a1„π‹,
a2„πRLHF

”

βprsparse ´ θ̂r,0qJpψpa1q ´ ψpa2qq

ı

“ βprsparse ´ θ̂r,0qJ E
a1„π‹,
a2„πRLHF

pψpa1q ´ ψpa2qq

ď β}Σ
1{2
D prsparse ´ θ̂r,0q}2}Σ

´1{2
D E

a1„π‹,
a2„πRLHF

pψpa1q ´ ψpa2qq}2

“ β}rsparse ´ θ̂r,0}ΣD ¨ O
´
›

›

›
Σ

´1{2
D

›

›

›

2

¯

“ O

˜

4

c

k log d` k logp1{δq

n
¨

›

›

›
Σ

´1{2
D

›

›

›

2

¸

.

The first inequality comes from performance difference lemma (see Appendix C.11); the second
equality comes from the observation that all rθr with θr,1 “ e1 can be fitted by the log-linear policy
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model; the third and fourth equalities come from simple calculations under our setting; the fifth
inequality comes from Cauchy-Schwarz inequality; the sixth equality comes from the fact that ψpaq

is bounded; and the last equation comes from Theorem 14.

Since the optimal policy satisfies π‹pa, bq “ πrefpa, bq expprpa, bq{βq{Z, we have:

V π‹

r‹ “ E
a„π‹,b„π‹p¨|aq

„

r‹pa, bq ´ β log
π‹pa, bq

πrefpa, bq

ȷ

“ β logZ

“ r‹pa1, b1q ´ β log
π‹pa1, b1q

πrefpa1, b1q
, @a1, b1 P V .

Then we have:

V π‹

r‹ ´ V πDPO
r‹ “ E

a„πDPO,b„πDPOp¨|aq

„

β log
πDPOpa, bq

πrefpa, bq
´ r‹pa, bq ` V π‹

r‹

ȷ

“ E
a„πDPO,b„πDPOp¨|aq

rβ log πDPOpa, bq ´ β log π‹pa, bqs

“ β E
a„πDPO

„

´

θ̂p,0 ´ rsparse ´ rdense

¯J

pψpaq ´ vq

ȷ

` β log
E

a„πref

exp
´

prsparse ` rdenseq
J

pψpaq ´ vq

¯

E
a„πref

exp
´

pθ̂p,0qJ pψpaq ´ vq

¯ ,

where v can be any vector in Rd. Recall that we require πrefp¨|aq to be identical for all a P V in the
proof of Theorem 14. Here we further construct πref to be uniform on the first token. Now observe

log
E

a„πref

exp
´

prsparse ` rdenseq
J

pψpaq ´ vq

¯

E
a„πref

exp
´

pθ̂p,0qJ pψpaq ´ vq

¯ “ log

ř

aPV exp
´

prsparse ` rdenseq
J

pψpaq ´ vq

¯

ř

aPV exp
´

pθ̂p,0qJ pψpaq ´ vq

¯ .

Set v to be 1
|V|

ř

aPV ψpaq, then we have
ř

aPV pψpaq ´ vq “ 0. Since ΣD is already non-singular,
we have that tψpaq ´ vuaPV can span Rd. So we can directly apply Lemma 6, and get

log
ÿ

aPV
exp

´

prsparse ` rdenseq
J

pψpaq ´ vq

¯

´ log
ÿ

aPV
exp

´

pθ̂p,0qJ pψpaq ´ vq

¯

ěxprsparse ` rdenseq ´ θ̂p,0,∇θ log
ÿ

aPV
exp

`

θJ pψpaq ´ vq
˘

|θ“θ̂p,0
y `

κ

2

›

›

›
prsparse ` rdenseq ´ θ̂p,0

›

›

›

2

2

“ ´ E
a„πDPO

„

´

θ̂p,0 ´ prsparse ` rdenseq

¯J

pψpaq ´ vq

ȷ

`
κ

2

›

›

›
prsparse ` rdenseq ´ θ̂p,0

›

›

›

2

2
.

Therefore, we have

V π‹

r‹ ´ V πDPO
r‹ ě

κ

2

›

›

›
prsparse ` rdenseq ´ θ̂p,0

›

›

›

2

2

“
κ

2

›

›

›
prsparse ` rdenseq ´ θ̂p,0

›

›

›

2

2
}ΣD}2 ¨

1

}ΣD}2

ě
κ

2

›

›

›
prsparse ` rdenseq ´ θ̂p,0

›

›

›

2

›

›

›
ΣD

´

prsparse ` rdenseq ´ θ̂p,0

¯›

›

›

2
¨

1

}ΣD}2

ě
κ

2
xprsparse ` rdenseq ´ θ̂p,0,ΣD

´

prsparse ` rdenseq ´ θ̂p,0

¯

y ¨
1

}ΣD}2

“
κ

2

›

›

›
prsparse ` rdenseq ´ θ̂p,0

›

›

›

2

ΣD
¨

1

}ΣD}2

“ Ω

ˆ

d

n
¨

1

}ΣD}2

˙

.

The first inequality comes from Lemma 6; the second equality comes from the non-singularity of
ΣD; the third inequality comes from a standard property of the spectral norm; the fourth inequality
comes from Cauchy-Schwartz inequality; the fifth equality is a simple algebraic equality; and the
last equation comes from Theorem 14.
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C.11 OMITTED CALCULATIONS

Calculation of the sub-optimality with respect to the mis-specification error.

First, note that for any π P ∆pYq, we have:

V π‹

r‹ ´ V π
r‹ “ E

y„π‹

„

r‹pyq ´ β log
π‹pyq

πrefpyq

ȷ

´ E
y„π

„

r‹pyq ´ β log
πpyq

πrefpyq

ȷ

,

“ E
y„π‹

„

r‹pyq ´ β log
π‹pyq

πpyq
´ β log

πpyq

πrefpyq

ȷ

´ E
y„π

„

r‹pyq ´ β log
πpyq

πrefpyq

ȷ

“ ´KL pπ‹}πq ` E
y„π‹,y1„π

„

`

r‹pyq ´ r‹py1q
˘

´

ˆ

β log
πpyq

πrefpyq
´ β log

πpy1q

πrefpy1q

˙ȷ

ď E
y„π‹,y1„π

„

`

r‹pyq ´ r‹py1q
˘

´

ˆ

β log
πpyq

πrefpyq
´ β log

πpy1q

πrefpy1q

˙ȷ

.

We call it the performance difference lemma (Lemma 1 of Shi et al. (2025)).

For RLHF, we have:

V π‹

r‹ ´ V πRLHF
r‹ ď E

y„π‹,y1„πRLHF

„

`

r‹pyq ´ r‹py1q
˘

´

ˆ

β log
πRLHFpyq

πrefpyq
´ β log

πRLHFpy1q

πrefpy1q

˙ȷ

ď max
y,y1PY

„

`

r‹pyq ´ r‹py1q
˘

´

ˆ

β log
πRLHFpyq

πrefpyq
´ β log

πRLHFpy1q

πrefpy1q

˙ȷ

ď max
y,y1PY

“

pr‹pyq ´ r‹py1qq ´ prϕpyq ´ rϕpy1qq
‰

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

reward model mis-specification error

` max
y,y1PY

„

prϕpx, yq ´ rϕpx, y1qq ´

ˆ

β log
πRLHFpy|xq

πrefpy|xq
´ β log

πRLHFpy1|xq

πrefpy1|xq

˙ȷ

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

policy model mis-specification error

,

where the first inequality is by performance difference lemma, and the last two inequalities are by
symmetry and the properties of max. And if F Ď FΠ, by the definition of πRLHF, we have

V π‹

r‹ ´ V πRLHF
r‹ ď max

y,y1PY

“

pr‹pyq ´ r‹py1qq ´ prϕpyq ´ rϕpy1qq
‰

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

reward model mis-specification error

.

For DPO, by performance difference lemma, we have:

V π‹

r‹ ´ V πDPO
r‹ ď E

y„π‹,y1„πDPO

„

`

r‹pyq ´ r‹py1q
˘

´

ˆ

β log
πDPOpyq

πrefpyq
´ β log

πDPOpy1q

πrefpy1q

˙ȷ

ď max
y,y1PY

„

`

r‹pyq ´ r‹py1q
˘

´

ˆ

β log
πDPOpyq

πrefpyq
´ β log

πDPOpy1q

πrefpy1q

˙ȷ

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

policy model mis-specification error

“ max
y,y1PY

“

pr‹pyq ´ r‹py1qq ´ pr̂DPOpyq ´ r̂DPOpy1qq
‰

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

surrogate reward model mis-specification error

.

The first inequality is by performance difference lemma, the second inequality is by symmetry and
the property of max, and the last equality is just another interpretation.

Therefore, we can see that the sub-optimality of each algorithm can be upper bounded by the linear
model mis-specification error.

Calculation of token-level structure of the optimal solution for DPO. As motivated by Rafailov
et al. (2024), we show the token-level structure of the optimal solution for DPO as:

π‹pyt|y0...t´1q “ πrefpyt|y0...t´1q exp

ˆ

q‹pyt|y0...t´1q ´ q‹pyt´1|y0...t´2q

β

˙

,
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π‹py0q “ πrefpy0q exp

ˆ

q‹py0q ´ β logZ

β

˙

,

where Z :“
ř

y πrefpyq exppr‹pyq{βq, and the q‹ function is determined in a recursive way:

q‹pyt|y0...t´1q “

"

β log
ř

sPV πrefps|y0...tq exppq‹ps|y0...tq{βq yt is not the terminal token;
r‹py0...tq yt is the terminal token.

To prove this, we define a q1 function as:

q1py0q “ β logZ ` β log
π‹py0q

πrefpy0q
, q1pyt|y0...t´1q “ q1pyt´1|y0...t´2q ` β log

π‹pyt|y0...t´1q

πrefpyt|y0...t´1q
.

For the initial token, by definition we have:

π‹py0q “ πrefpy0q exp

ˆ

q1py0q ´ β logZ

β

˙

. (9)

And then for a y with yN as the terminal token, we have:

β log
π‹pyq

πrefpyq
“

N
ÿ

t“0

β log
π‹pyt|y0...t´1q

πrefpyt|y0...t´1q

“ q1py0q ´ β logZ `

N
ÿ

t“1

q1pyt|y0...t´1q ´ q1pyt´1|y0...t´2q

“ ´β logZ ` q1pyN |y0...N´1q .

Note that π‹pyq “ πrefpyq exppr‹pyq{βq{Z, we have:

β log
π‹pyq

πrefpyq
“ ´β logZ ` r‹pyq ,

thus

q1pyN |y0...N´1q “ r‹pyq . (10)

Then by definition:

q1pyt|y0...t´1q “ q1pyt´1|y0...t´2q ` β log
π‹pyt|y0...t´1q

πrefpyt|y0...t´1q
,

we have:

πrefpyt|y0...t´1q exp

ˆ

q1pyt|y0...t´1q ´ q1pyt´1|y0...t´2q

β

˙

“ π‹pyt|y0...t´1q , (11)

and thus
ÿ

s

πrefps|y0...t´1q exp

ˆ

q1ps|y0...t´1q ´ q1pyt´1|y0...t´2q

β

˙

“ 1 ,

which yields:

q1pyt´1|y0...t´2q “ β log
ÿ

sPV
πrefps|y0...t´1q exppq1ps|y0...t´1q{βq . (12)

Combining Equations (9) to (12), we show that q‹ exists and is equivalent to q1.

Calculation of the underlying “real” objective. When ground-truth reward is non-realizable for
the reward model, while the reward model is realizable for the policy model, for a given reward
model rϕ, the policy model outputs the policy πθ‹prϕq which satisfies:

πθ‹prϕq :“ argmax
πθPΠ

V πθ
rϕ

“ argmax
πθPΠ

E
y„πθ

rϕpyq ´ βKL pπθ}πrefq .
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The solution is given by:

πθ‹prϕqpyq “
1

Zpϕq
πrefpyq exp

ˆ

1

β
rϕpyq

˙

,

where Zpϕq :“
ř

yPY πrefpyq expprϕpyq{βq is the partition function.

The goal of preference-based policy learning is to find a policy πθ that maximizes V πθ
r‹ . Thus, the

reward learning should aim to find rϕ that maximizes:

V
πθ‹prϕq

r‹ “ E
y„πθ‹prϕq

„

r‹pyq ´ β log
πθ‹prϕqpyq

πrefpyq

ȷ

“ β logZpϕq ` E
y„πθ‹prϕq

rr‹pyq ´ rϕpyqs ,

which does not align with maximizing MLE.

Note that

∇ϕ

#

E
y„πθ‹prϕq

rr‹pyq ´ rϕpyqs

+

“ E
y„πθ‹prϕq

∇ϕ log πθ‹prϕqrr‹pyq ´ rϕpyqs

loooooooooooooooooooooooomoooooooooooooooooooooooon

term 1

´ E
y„πθ‹prϕq

∇rϕpyq

loooooooomoooooooon

term 2

.

And we have:

term 1
“ E

y„πθ‹prϕq

∇ϕ log πθ‹prϕqpyqrr‹pyq ´ rϕpyqs

“ E
y,y1„πθ‹prϕq

∇ϕ log πθ‹prϕqpyqrr‹pyq ´ r‹py1q ´ rϕpyq ` rϕpy1qs (policy gradient theorem)

“
1

2
E

y,y1„πθ‹prϕq

“

∇ϕ log πθ‹prϕqpyq ´ ∇ϕ log πθ‹prϕqpy1q
‰

rr‹pyq ´ r‹py1q ´ rϕpyq ` rϕpy1qs ,

and

term 2
“ E

y„πθ‹prϕq

∇rϕpyq

“ E
y„πθ‹prϕq

β∇ϕ rlog πrefpyq ` log expprϕpyq{βqs

“ E
y„πθ‹prϕq

β∇ϕ rlog πrefpyq ` log expprϕpyq{βq ´ logZpϕqs ` β∇ϕ logZpϕq

“ E
y„πθ‹prϕq

β∇ϕ log πθ‹prϕqpyq ` β∇ϕ logZpϕq

“ β∇ϕ logZpϕq . (policy gradient theorem)

By combining them, we obtain Equation (4) and Equation (5).

Note that

LMLEpϕq “ ´ E
y,y1„µ

“

σpr‹pyq ´ r‹py1qq log σprϕpyq ´ rϕpy1qq ` σpr‹py1q ´ r‹pyqq log σprϕpy1q ´ rϕpyqq
‰

,

and

∇q rσppq log σpqq ` σp´pq log σp´qqs “ σppqσp´qq ´ σp´pqσpqq

“ σppqp1 ´ σpqqq ´ p1 ´ σppqqσpqq

“ σppq ´ σpqq ,

we have:

∇ϕLMLEpϕq “ ´ E
y,y1„µ

“

∇ϕrϕpyq ´ ∇ϕrϕpy1q
‰ “

σpr‹pyq ´ r‹py1qq ´ σprϕpyq ´ rϕpy1qq
‰

,
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which is Equation (6).

To further align the MLE objective with the underlying “real” objective, we can have:

∇ϕLMLEpϕq « ´ E
y,y1„µ

“

∇ϕrϕpyq ´ ∇ϕrϕpy1q
‰

σ1prϕpyq ´ rϕpy1qq
“

pr‹pyq ´ r‹py1qq ´ prϕpyq ´ rϕpy1qq
‰

,

and we can assign the value of σ1prϕpyq ´ rϕpy1qq to the sampling probability µpy, y1q. Thus we
expect µpy, y1q 9 πθ‹prϕq{σ1prϕpyq´rϕpy1qq. And under the context of DPO, we have πθ‹prϕq “ πθ
and rϕ “ r̂θ, and thus µ 9 πθ‹prϕq{σ1pr̂θpyq ´ r̂θpy1qq, which is exactly PILAF sampler.

Calculation of online IPO. For online IPO, let’s observe its objective function:

Lonline
IPO pπθq “ E

py,y1q„sgpρθq
p‹py ą y1q

„

prθpyq ´ rθpy1qq ´
1

2

ȷ2

` p‹py1 ą yq

„

prθpy1q ´ rθpyqq ´
1

2

ȷ2

,

and its gradient is:

∇θLonline
IPO pπθq

“ 2 E
py,y1q„sgpρθq

"

p‹py ą y1q

„

prθpyq ´ rθpy1qq ´
1

2

ȷ

` p‹py1 ą yq

„

prθpyq ´ rθpy1qq `
1

2

ȷ*

∇θprθpyq ´ rθpy1qq

“ 2 E
py,y1q„sgpρθq

„

prθpyq ´ rθpy1qq ´
p‹py ą y1q ´ p‹py1 ą yq

2

ȷ

∇θprθpyq ´ rθpy1qq ,

thus we have:

Lonline
IPO pπθq

∇
“ E

py,y1q„sgpρθq

„

prθpyq ´ rθpy1qq ´
p‹py ą y1q ´ p‹py1 ą yq

2

ȷ2

.
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D IMPLEMENTATION DETAILS

Codebases. Our codebase is mainly based on MODPO (Zhou et al., 2024) (https://
github.com/ZHZisZZ/modpo), Online-RLHF (Dong et al., 2024; Xiong et al., 2024)
(https://github.com/RLHFlow/Online-RLHF), Samplers-in-Online-DPO (Shi et al.,
2025) (https://github.com/srzer/Samplers-in-Online-DPO). We are committed
to releasing the codes.

Datasets. We adopt one common training dataset, PKU-SafeRLHF (Ji et al., 2023) (https:
//huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF). SFT: We train
our initial model on 5k samples of PKU-SafeRLHF-QA (https://huggingface.co/
datasets/PKU-Alignment/PKU-SafeRLHF-QA). Online training: We use 10k samples of
PKU-SafeRLHF-Prompt (https://huggingface.co/datasets/PKU-Alignment/
PKU-SafeRLHF-prompt) for training, and 2k samples for evaluation. Offline training: We
adopt two preference datasets, PKU-SafeRLHF-safer and PKU-SafeRLHF-better, each
composed of 9k training samples and 2k evaluation samples, following the practice of Zhou et al.
(2024).

Models. Limited by computation resources, our base model is GPT-2-LARGE-774M (Rad-
ford et al., 2019) (https://huggingface.co/openai-community/gpt2-large).
Our reward model is GPT2-LARGE-HARMLESS model (Yang et al., 2024) (https://
huggingface.co/Ray2333/gpt2-large-harmless-reward_model).

Hyper-parameters. The maximum length is set as 256. The prompt template is “BEGINNING OF
CONVERSATION: USER: [prompt] ASSISTANT: [response]”. SFT: The hyper-parameter setting
is based on Dong et al. (2024). We use a batch size 32. Online training: The hyper-parameter
setting is based on Dong et al. (2024). We use a batch size 32, a learning rate 5e ´ 7, and a gradient
accumulation step 2. We train for 3 iterations, each for 2 epochs. We set rmargin “ 0.4, 1, 4 for
verifications of Condition 1, and set rmargin “ 1 for verifications of Conditions 2 to 4. Offline
training: The hyper-parameter setting is based on Zhou et al. (2024). We use a batch size 4, a
learning rate 1e´4, and a gradient accumulation step 2. We train for 3 epochs (when training reward
model on 9k data of PKU-SafeRLHF-safer, we train 6 epochs for higher training accuracy). We
haven’t extensively tuned these hyper-parameters.

Computation resources. Our experiments are conducted on NVIDIA RTX A6000. SFT and Online
training: We adopt 4 workers, each taking up 35, 000M of memory, running for 2-3 hours. Offline
training: We adopt 1 worker, which takes up 25, 000M of memory and runs for up to 40 minutes.
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