

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING THE PERFORMANCE GAP IN PREFERENCE LEARNING: A DICHOTOMY OF RLHF AND DPO

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a fine-grained theoretical analysis of the performance gap between reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) under a representation gap. Our study decomposes this gap into two sources: an explicit representation gap under exact optimization and an implicit representation gap under finite samples. In the exact optimization setting, we characterize how the relative capacities of the reward and policy model classes influence the final policy qualities. We show that RLHF, DPO, or online DPO can outperform one another depending on type of model mis-specifications. Notably, online DPO can outperform both RLHF and standard DPO when the reward and policy model classes are isomorphic and both mis-specified. In the approximate optimization setting, we provide a concrete construction where the ground-truth reward is implicitly sparse and show that RLHF requires significantly fewer samples than DPO to recover an effective reward model—highlighting a statistical advantage of two-stage learning. Together, these results provide a comprehensive understanding of the performance gap between RLHF and DPO under various settings, and offer practical insights into when each method is preferred.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF, [Christiano et al. \(2017\)](#); [Ziegler et al. \(2019\)](#)) is an important paradigm improving the natural language understanding and generation capabilities of large language models (LLMs). The core idea of RLHF is to utilize pair-wise comparison between responses from human annotators, as directly collecting absolute reward signals is hard. There are two stages in RLHF: the reward modeling stage and the policy optimization stage. The reward modeling stage assumes human preferences follow the Bradley-Terry (BT) model ([Bradley and Terry, 1952](#)), allowing a prompt-response pair to be assigned a scalar reward. Thus, a reward model r_ϕ could be trained using negative log-likelihood loss function from human preferences. In the policy optimization stage, the base LM is “online” fine-tuned with RL algorithms such as proximal policy optimization (PPO, [Schulman et al. \(2017\)](#)), based on r_ϕ under a Kullback-Leibler (KL) divergence-regularized bandit setting. And the key assumption behind this two-stage pipeline is the *realizability* of the ground-truth reward.

The above RLHF paradigm falls inside a broader problem, preference-based policy learning ([Wirth et al., 2017](#)). Another popular algorithm in this area is direct preference optimization (DPO, [Rafailov et al. \(2023\)](#)), which utilizes the closed-form solution (assuming *realizability* as well) for the policy optimization stage to bypass the reward modeling stage and directly fine-tune the base LM as a policy model π_θ using the preference dataset. Due to its inherent supervised learning (offline and RL-free) nature, DPO training is more stable than RLHF. And its iterative online version ([Guo et al., 2024](#); [Dong et al., 2024](#)) has been shown to have better convergence rates ([Shi et al., 2025](#)), and milder coverage conditions ([Song et al., 2024](#); [Xiong et al., 2024](#)), than vanilla DPO. The key assumption behind DPO’s design is the *realizability* of the closed-form solution of the optimal policy.

Notably, in the foundational work of preference learning ([Zhu et al., 2023](#)), the ground-truth reward is assumed to lie in a linear model class; and in [Rafailov et al. \(2023\)](#), both the reward class and policy class are *tabular parameterized*, making their optimal solutions realizable. The *realizability*

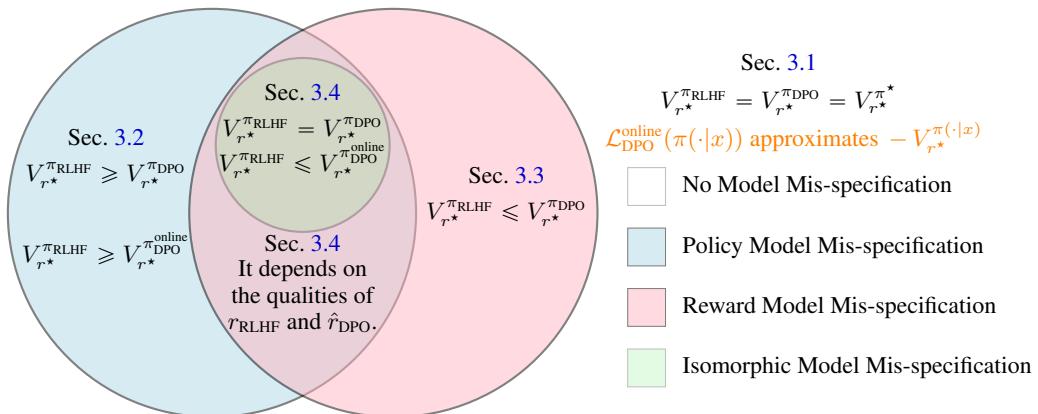
054 condition is commonly assumed in theoretical studies of preference learning (Xiong et al., 2024; Shi
 055 et al., 2025; Feng et al., 2025; Yao et al., 2025; Swamy et al., 2025), or DPO-style algorithm designs
 056 to derive the loss functions for neural policy classes (Azar et al., 2023; Zhou et al., 2024; Liu et al.,
 057 2024b; Xu et al., 2024a). Importantly, under the *realizability* assumption, it is straightforward to
 058 derive the equivalence between the ideal performances of RLHF and DPO (Swamy et al., 2025).

059 However, the assumptions of *tabular parameterization* and *realizability* often do not hold in prac-
 060 tice, particularly when the reward model is significantly smaller than the policy model (e.g., 6B vs.
 061 175B in Ouyang et al. (2022), indicating a clear disparity in representational capacity), when the
 062 policy model class is heavily restricted due to limited computational resources, or when the reward
 063 model is sub-optimal owing to limited preference data. These situations are examples of *model mis-
 064 specification*, a common issue in practice due to limitations in model capacity or data. Consequently,
 065 one should not expect DPO to perform identically to RLHF under model mis-specifications. This
 066 motivates the central question of our investigation:

067 *Under what conditions is DPO equivalent, superior, or inferior to RLHF in performance?*

069 To quantify the problem, we choose the performance metric as the expected value of the original
 070 regularized bandit problem using the ground-truth reward r^* (x is a prompt, and y is a response):
 071 $V_{r^*}^\pi := \mathbb{E}_{x \sim \rho} [\mathbb{E}_{y \sim \pi(\cdot|x)} [r^*(x, y)] - \beta \text{KL}(\pi(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x))]$, where ρ is a pre-fixed distribution
 072 over prompts, π is a distribution over responses **given prompts**, and π_{ref} is a **fixed reference policy**.
 073 Let $\pi^* := \arg\max_\pi V_{r^*}^\pi$ be the ideal optimal policy.

074 **Our contributions.** We study the performance differences between two-stage RLHF and DPO
 075 under a representation gap, from an optimization perspective. Our contributions are listed as follows:



092 Figure 1: Main results on performance gap induced by model mis-specification scenarios.

- 095 • When assuming *exact optimization*, i.e., optimization with infinite data, we study the *fine-grained*
 096 *representation gap* under different settings of *reward and policy class mis-specifications* in Sec-
 097 tion 3. Main results are visualized in Figure 1.
 - 098 ① *No model mis-specification*: We show that the RLHF and DPO policies both achieve the per-
 099 formance of π^* , and online DPO can further close the gap between optimization paths.
 - 100 ② *Policy model mis-specification*: We show that the RLHF policy is still optimal under the model
 101 class, while the DPO policy can be sub-optimal, and online DPO cannot bridge the gap.
 - 102 ③ *Reward model mis-specification*: We show that the DPO policy is still optimal, while the RLHF
 103 policy can be sub-optimal due to learning based on a sub-optimal reward model.
 - 104 ④ *Double model mis-specification*: When policy and reward model classes are isomorphic, then they
 105 should have identical performance, while online DPO can outperform both of them. Otherwise, there
 106 is no consistent performance gap, and the comparison result depends on the qualities of (surrogate)
 107 reward models. We also give a preliminary guide for reward learning under mis-specifications.

108 • For **approximate optimization**, *i.e.*, the finite-sample regime, we study the **implicit representation**
 109 **gap** incurred by **statistical efficiencies** in Section 4. We construct a simple task where the ground-
 110 truth reward to is a dual-token linear function with feature dimension d and implicit sparsity k ,
 111 and the total number of samples is n . Even without mis-specifications, we can reveal a separation
 112 between RLHF and DPO under this setting: the estimation error of DPO is $\Omega(d/n)$, while reward
 113 learning in RLHF can effectively leverage sparsity, decreasing the error to $\tilde{\mathcal{O}}(\sqrt{k \log d/n})$. This
 114 result indicates that DPO is less data-efficient than RLHF, leading to inferior performance.

115 Finally, we conduct numerical experiments to corroborate these theoretical findings in Section 5.

118 2 PRELIMINARIES

120 **Notation.** Let $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ be the sigmoid function, where $\sigma(x) = 1/(1 + \exp(-x))$. For any set \mathcal{X} ,
 121 $\Delta(\mathcal{X})$ represents the set of probability distributions over \mathcal{X} . $\text{sg}()$ is the stopping-gradient operator,
 122 where $\nabla_\theta[\text{sg}(f(\theta))] = \mathbf{0}$. Let e_k be a one-hot vector with 1 on its k^{th} entry and 0 on other entries.
 123 For any vector x , let x_k be its k^{th} entry. We use $f(\theta) \stackrel{\nabla}{=} g(\theta)$ to indicate $\nabla_\theta f(\theta) = \nabla_\theta g(\theta)$.

124 **Bandits and Policies.** A bandit is defined by a state space \mathcal{X} , an action space \mathcal{Y} , and a reward
 125 function $r : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$. A policy $\pi : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ represents a probability distribution over actions
 126 given a state. Note that, we sometimes omit the prompt x for simplicity, so that $\pi \in \Delta(\mathcal{Y})$.

127 **Model class and value function.** Let $\mathcal{F} = \{r_\phi : \phi \in \mathbb{R}^{d_R}\}$ denote the reward model class, and
 128 $\Pi = \{\pi_\theta : \theta \in \mathbb{R}^{d_P}\}$ denote the policy model class, where $d_R, d_P \in \mathbb{N}$. For a reward function r and
 129 policy π , we define the regularized value function as:

$$131 \quad V_r^{\pi(\cdot|x)} := \left[\mathbb{E}_{y \sim \pi(\cdot|x)} [r(x, y)] - \beta \text{KL}(\pi(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x)) \right], \quad V_r^\pi := \mathbb{E}_{x \sim \rho} V_r^{\pi(\cdot|x)},$$

134 where $\beta > 0$ is the regularization coefficient, $\rho \in \Delta(\mathcal{X})$ is a pre-fixed distribution over prompts,
 135 and π_{ref} is a fixed reference policy. Let r^* denote the ground-truth reward function, and π^* de-
 136 note the optimal policy for $V_{r^*}^\pi$. A well-known fact (Rafailov et al., 2023) is that $\pi^*(y|x) = \pi_{\text{ref}}(y|x) \exp(r^*(x, y)/\beta)/Z(x)$, where $Z(x) := \sum_{y \in \mathcal{Y}} \pi_{\text{ref}}(y|x) \exp(r^*(x, y)/\beta)$ is the partition
 137 function. The goal of preference-based policy learning is to find a policy $\pi_\theta \in \Pi$ that maximizes
 138 $V_{r^*}^{\pi_\theta}$. We define the oracle value as $V_{r^*}^\Pi := \max_{\pi \in \Pi} V_{r^*}^\pi$.

140 **Bradley-Terry (BT) model.** Given an implicit reward oracle $r : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, Bradley and Terry
 141 (1952) assume that human preference distribution $p^* : \mathcal{X} \times \mathcal{Y} \times \mathcal{Y} \rightarrow \Delta(\{0, 1\})$ satisfies:

$$142 \quad p^*(y_1 > y_2|x) = \sigma(r^*(x, y_1) - r^*(x, y_2)).$$

144 This means response y_1 is favored over y_2 with probability $p^*(y_1 > y_2|x)$ by human annotators.

145 **Human preference dataset.** In practice, people first collect a pair dataset $\mathcal{D}^\dagger = \{x^{(i)}, y_1^{(i)}, y_2^{(i)}\}_{i=1}^n$,
 146 and then ask human annotators to label these pairs to get a human preference dataset $\mathcal{D} =$
 147 $\{x^{(i)}, y_w^{(i)}, y_l^{(i)}\}_{i=1}^n$. Following BT model, $y_1^{(i)}$ is preferred over $y_2^{(i)}$ given prompt $x^{(i)}$, *i.e.* $y_w = y_1$
 148 and $y_l = y_2$, w.p. $p^*(y_1^{(i)} > y_2^{(i)}|x^{(i)})$.

150 **Two-stage approach of RLHF.** RLHF proceeds in two stages. First, the reward learning stage finds
 151 a reward model $r_{\text{RLHF}} \in \mathcal{F}$ by maximizing the population MLE objective:

$$153 \quad r_{\text{RLHF}} = \underset{r_\phi \in \mathcal{F}}{\text{argmax}} \mathbb{E}_{x \sim \rho; y, y' \sim \pi_{\text{ref}}(\cdot|x)} \sum_{\{y_1, y_2\} = \{y, y'\}} p^*(y_1 > y_2|x) \log \sigma(r_\phi(x, y_1) - r_\phi(x, y_2)).$$

155 And for approximate optimization, r_{RLHF} is estimated from a finite human preference dataset. Then
 156 using the reward model r_{RLHF} , the policy learning stage returns $\pi_{\text{RLHF}} = \underset{\pi \in \Pi}{\text{argmax}} V_{r_{\text{RLHF}}}^\pi$.

158 **Direct approach of DPO.** By leveraging the surrogate reward $\hat{r}_\theta(x, y) := \beta \log \frac{\pi_\theta(x, y)}{\pi_{\text{ref}}(x, y)}$, DPO
 159 bypasses reward learning and directly learns the policy from preference data:

$$161 \quad \pi_{\text{DPO}} = \underset{\pi_\theta \in \Pi}{\text{argmax}} \mathbb{E}_{x \sim \rho; y, y' \sim \pi_{\text{ref}}(\cdot|x)} \sum_{\{y_1, y_2\} = \{y, y'\}} p^*(y_1 > y_2|x) \log \sigma(\hat{r}_\theta(x, y_1) - \hat{r}_\theta(x, y_2)).$$

162 For approximate optimization, π_{DPO} is estimated from a finite human preference dataset. We also
 163 consider an online variant of DPO (Xiong et al., 2024), where the pairwise data are sampled from a
 164 distribution π^s which could depend on the current policy. It then minimizes the modified loss:

$$165 \quad \mathcal{L}_{\text{DPO}}^{\text{online}}(\pi_{\theta}(\cdot|x)) = - \mathbb{E}_{y, y' \sim \text{sg}(\pi^s(\cdot|x))} \sum_{\{y_1, y_2\} = \{y, y'\}} p^*(y_1 > y_2|x) \log \sigma(\hat{r}_{\theta}(x, y_1) - \hat{r}_{\theta}(x, y_2)).$$

168 3 EXACT OPTIMIZATION: FINE-GRAINED PERFORMANCE GAP INDUCED BY 169 MODEL MIS-SPECIFICATION

172 We analyze the behavior of RLHF and DPO in the idealized setting of exact optimization, where
 173 both methods have access to infinite preference data and can optimize their respective objectives
 174 without statistical or computational error. Recall that $r_{\text{RLHF}} \in \mathcal{F}$ is the solution computed by exact
 175 optimization of reward learning, $\pi_{\text{RLHF}} \in \Pi$ is the solution computed by exact optimization of policy
 176 learning given r_{RLHF} , and $\pi_{\text{DPO}} \in \Pi$ is the solution computed by exact optimization of DPO. We can
 177 bound the sub-optimality of each algorithm using the mis-specification error (see calculations in
 178 Appendix C.11), but in this section our focus is on the performance gap induced by model mis-
 179 specification, that is, the difference between the best policy each method can produce, as determined
 180 by the expressiveness of the reward and policy model classes.

181 3.1 NO MODEL MIS-SPECIFICATION

183 We begin with the fully realizable setting, where both the ground-truth reward function and the
 184 optimal policy lie within their respective model classes. While this assumption is often unrealistic
 185 in practice, it serves as a clean baseline and has been the main focus of most prior theoretical
 186 analyses (Xiong et al., 2024; Shi et al., 2025; Feng et al., 2025; Swamy et al., 2025).

187 **Condition 1** (Strong Reward Model, Strong Policy Model). $r^* \in \mathcal{F}, \pi^* \in \Pi$.

189 Both RLHF and DPO are capable of recovering the true optimal policy under ideal conditions. In this
 190 regime, RLHF directly optimizes $V_{r^*}^{\pi_{\text{RLHF}}}$ in the policy learning stage. Proof deferred to Appendix C.1.

191 **Proposition 1.** Under Condition 1, $V_{r^*}^{\pi_{\text{RLHF}}} = V_{r^*}^{\pi_{\text{DPO}}} = V_{r^*}^{\Pi}$.

192 Although RLHF and DPO share a same solution, they differ in optimization trajectories and convergence
 193 rates. Shi et al. (2025) propose a sampling strategy to accelerate convergence in online DPO,
 194 and Feng et al. (2025) further refine this approach, showing its connection to the RLHF objective
 195 from a gradient-based perspective. Below, we show a result which is analogous to Theorem 4.1 in
 196 (Feng et al., 2025), but from the objective perspective rather than the gradient perspective.

197 **Definition 1** (PILAF Sampler (Shi et al., 2025; Feng et al., 2025)). PILAF Sampler is a probabilistic
 198 mixture of two sampler pairs:

$$200 \quad \textcircled{1} \left\{ \begin{array}{l} \pi^{s1}(y|x) = \pi_{\theta}(y|x), \\ \pi^{s2}(y|x) = \pi_{\theta}(y|x) \end{array} \right. \quad \textcircled{2} \left\{ \begin{array}{l} \pi^{s1}(y|x) \propto \pi_{\theta}^{1+\beta}(y|x) \pi_{\text{ref}}^{-\beta}(y|x), \\ \pi^{s2}(y|x) \propto \pi_{\theta}^{1-\beta}(y|x) \pi_{\text{ref}}^{\beta}(y|x), \end{array} \right.$$

202 with a ratio $\alpha_1 = 1$ and $\alpha_2 = \mathbb{E}_{y, y' \sim \pi_{\theta}} \exp(\hat{r}_{\theta}(x, y) - \hat{r}_{\theta}(x, y'))$.

204 **Remark 1.** Given a prompt x , we first randomly choose a sampler pair: select sampler ① w.p.
 205 $\alpha_1/(\alpha_1 + \alpha_2)$ and sampler ② otherwise. Then sample $y_1 \sim \pi^{s1}(\cdot|x)$ and $y_2 \sim \pi^{s2}(\cdot|x)$.

206 **Theorem 2.** Given $R_{\text{max}}, \delta \in \mathbb{R}_+, x \in \mathcal{X}$, s.t. $0 \leq r^*(x, y) \leq R_{\text{max}}$, $\forall y \in \mathcal{Y}$, and $|(r^*(x, y) -$
 207 $r^*(x, y')) - (\hat{r}_{\theta}(x, y) - \hat{r}_{\theta}(x, y'))| \leq \delta$, $y, y' \in \mathcal{Y}$, then with π^s defined in Definition 1, we have:

$$208 \quad \mathcal{L}_{\text{DPO}}^{\text{online}}(\pi_{\theta}(\cdot|x)) \stackrel{\nabla}{=} \frac{2\beta}{\text{sg}(Z_{\theta}(x))} \left\{ - \left[\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} [r(x, y)] - \beta \text{KL}(\pi_{\theta}(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x)) \right] \right. \\ 209 \quad \left. + \frac{1}{4\beta} \mathbb{E}_{y, y' \sim \text{sg}(\pi_{\theta}(\cdot|x))} \left[\epsilon_{y, y'} \cdot [(r^*(x, y) - r^*(x, y')) - (\hat{r}_{\theta}(x, y) - \hat{r}_{\theta}(x, y'))]^2 \right] \right\},$$

214 where $\epsilon_{y, y'} \in \mathbb{R}$ are noises s.t. $|\epsilon_{y, y'}| \leq \frac{\delta}{6\sqrt{3}\sigma'(R_{\text{max}} + \delta)}$ and $Z_{\theta}(x) := \mathbb{E}_{y, y' \sim \pi_{\theta}(\cdot|x)} 1/\sigma'(\hat{r}_{\theta}(x, y) -$
 215 $\hat{r}_{\theta}(x, y'))$ can be viewed as adaptive step sizes for different prompts.

216 **Remark 2.** This result indicates that, with an appropriate sampler, the objective of online DPO can
 217 approximate the true value function in prompt level. However, the second-order deviation can be-
 218 come substantial when R_{\max} is large, or the ground-truth reward is poorly fitted. In such scenarios,
 219 the objective of online DPO may significantly deviate from the value function, leading to degraded
 220 convergence or even divergence. Proof deferred to Appendix C.2.

222 **3.2 POLICY MODEL MIS-SPECIFICATION**
 223

224 We now examine the setting where the ground-truth reward function is realizable ($r^* \in \mathcal{F}$), but the
 225 optimal policy is non-realizable by the policy class ($\pi^* \notin \Pi$). This case can be referred to [Nika et al.](#)
 226 ([2024](#)), who point out that the optimal policy could be more complicated than the optimal reward,
 227 and [Swamy et al.](#) ([2025](#)), who attribute this scenario to generation-verification gaps in fine-tuning.

228 **Condition 2** (Strong Reward Model, Weak Policy Model). $r^* \in \mathcal{F}, \pi^* \notin \Pi$.
 229

230 In this case, RLHF has a structural advantage: it can recover the exact reward and then compute
 231 the best possible policy within Π . In contrast, DPO bypasses reward modeling and directly learns
 232 a policy from preferences, which may lead to sub-optimal behavior due to mismatches between
 233 preference-based objectives and reward-based value functions. The following proposition provides
 234 a concrete example where DPO fails to recover the best achievable policy, even under exact opti-
 235 mization. Proof deferred to Appendix C.3.

236 **Proposition 3.** *Under Condition 2, $V_{r^*}^{\Pi} = V_{r^*}^{\pi_{\text{RLHF}}} \geq V_{r^*}^{\pi_{\text{DPO}}}$, and there exists an environment s.t.*
 237 $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$.

238 Furthermore, we show that online DPO cannot close this gap, even when equipped with PILAF
 239 sampler. A numerical proof is deferred to Appendix C.8.

240 **Proposition 4.** *Under Condition 2, $V_{r^*}^{\pi_{\text{RLHF}}} \geq V_{r^*}^{\pi_{\text{DPO}}^{\text{online}}}$, and there exists an environment s.t. $V_{r^*}^{\pi_{\text{RLHF}}} >$*
 241 $V_{r^*}^{\pi_{\text{DPO}}^{\text{online}}} = V_{r^*}^{\pi_{\text{DPO}}}$ *where the online sampler is PILAF sampler (Definition 1).*

242 **Remark 3.** Our key insight is that a strict performance gap between RLHF and DPO can exist under
 243 policy model mis-specification, and importantly, even sophisticated samplers like PILAF may fail
 244 to close the gap, an important nuance that, to our knowledge, has been overlooked in prior studies.

245 **3.3 REWARD MODEL MIS-SPECIFICATION**
 246

247 We now consider the setting where the ground-truth reward function r^* is not realizable by the
 248 reward model class \mathcal{F} , while the optimal policy π^* lies within the policy class Π . As discussed in
 249 [Swamy et al.](#) ([2024](#)), two-stage RLHF can only lose information during reward learning, which will
 250 be highlighted under reward model mis-specification.

251 **Condition 3** (Weak Reward Model, Strong Policy Model). $r^* \notin \mathcal{F}, \pi^* \in \Pi$.
 252

253 In this setting, RLHF is vulnerable to reward mis-specification: the learned mis-specified reward
 254 model r_{RLHF} could significantly deviate from the ground-truth reward r^* , causing the subsequent
 255 policy optimization to yield a sub-optimal solution even though $\pi^* \in \Pi$. Conversely, DPO has
 256 a clear advantage: it can directly fit a policy to the observed preference data and thus recover π^*
 257 without incurring reward modeling error. Proof deferred to Appendix C.4.

258 **Proposition 5.** *Under Condition 3, $V_{r^*}^{\pi_{\text{RLHF}}} \leq V_{r^*}^{\pi_{\text{DPO}}} = V_{r^*}^{\Pi}$, and there exists an environment s.t.*
 259 $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$.

260 **Observation under token-level parameterization.** To assess the practicality of Condition 3 for
 261 auto-regressive language models, we specialize our general bandit model to the token-level param-
 262 eterization. In this setting, the optimal policy admits the closed-form characterization of [Rafailov](#)
 263 et al. ([2024](#)), which we restate with an explicit separation between π_{ref} and the q^* function (see
 264 Appendix C.11 for details):

$$\pi^*(y_t|x, y_{0 \dots t-1}) \propto \pi_{\text{ref}}(y_t|x, y_{0 \dots t-1}) \exp\left(\frac{q^*(y_t|x, y_{0 \dots t-1})}{\beta}\right), \quad (1)$$

270 where the q^* function is determined in a recursive way:
 271

$$272 \quad q^*(y_t|x, y_{0...t-1}) = \begin{cases} \beta \log \sum_{s \in \mathcal{V}} \pi_{\text{ref}}(s|x, y_{0...t}) \exp(q^*(s|x, y_{0...t})/\beta) & y_t \text{ is not the terminal token;} \\ r^*(x, y_{0...t}) & y_t \text{ is the terminal token,} \end{cases}$$

273 \mathcal{V} is the vocabulary, and $s \in \mathcal{V}$ is the token. This observation shows that while the reward model
 274 in RLHF only needs to approximate r^* , the policy model in DPO must capture the token-level q^*
 275 function, which recursively entangles the reward signal with the base model π_{ref} . As a result, the
 276 policy model faces a substantially more demanding learning objective, making it more prone to mis-
 277 specification than the reward model of the same scale. and suggesting that the “weak reward, strong
 278 policy model” regime may be less common in practice.
 279

280
 281 **3.4 DOUBLE MODEL MIS-SPECIFICATION**
 282

283 We now consider the most challenging setting, where neither the ground-truth reward function nor
 284 the optimal policy is realizable by their respective model classes.
 285

286 **Condition 4** (Weak Reward Model, Weak Policy Model). $r^* \notin \mathcal{F}, \pi^* \notin \Pi$.
 287

288 To enable a fine-grained comparison between RLHF and DPO under this double mis-specified
 289 regime, we introduce the surrogate reward model class induced by the policy class as $\mathcal{F}_{\Pi} = \{\hat{r}_{\theta} : \theta \in \mathbb{R}^{d_P}, \hat{r}_{\theta}(x, y) = \beta \log \frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}, \forall x \in \mathcal{X}, y \in \mathcal{Y}\}$. Pairwise preferences depend only on reward
 290 differences, so reward functions are equivalent if they differ by a constant. We compare the expres-
 291 siveness of the original reward model class \mathcal{F} and the surrogate class \mathcal{F}_{Π} , modulo constant shifts,
 292 and analyze three representative regimes characterizing their relative capacities:
 293

294 **Condition 5** (Isomorphism). $r^* \notin \mathcal{F}, \pi^* \notin \Pi. \mathcal{F} = \mathcal{F}_{\Pi}$.
 295

296 **Condition 6** (Policy Model Class Is Relatively Stronger). $r^* \notin \mathcal{F}, \pi^* \notin \Pi. \mathcal{F} \subset \mathcal{F}_{\Pi}$.
 297

298 **Condition 7** (Reward Model Class Is Relatively Stronger). $r^* \notin \mathcal{F}, \pi^* \notin \Pi. \mathcal{F} \supset \mathcal{F}_{\Pi}$.
 299

300 **Remark 4.** Note that certain cases involve partially overlapping model classes. However, we do not
 301 consider these intermediate regimes for the sake of a principled analysis.
 302

303 **Analysis of the isomorphic case.** Condition 5 indicates the scenario when the reward model class
 304 and policy model class are *isomorphic*—meaning there exists a shared parameterization or a deter-
 305 ministic mapping between rewards and policies. This structure allows us to directly compare RLHF
 306 and DPO when both operate under the same representational constraints, and to investigate whether
 307 bypassing reward modeling, as in DPO, provides any advantage. In RLHF, reward learning is decou-
 308 pled from the current policy, and thus lacks access to its distributional information; while DPO can
 309 mitigate this limitation through online sampling. Therefore, RLHF under Condition 5 is comparable
 310 to offline DPO, but could underperform online DPO. Proofs deferred to Appendices C.5 and C.9.
 311

312 **Proposition 6.** Under Condition 5, $V_{r^*}^{\pi_{\text{RLHF}}} = V_{r^*}^{\pi_{\text{DPO}}}$.
 313

314 **Proposition 7.** Under Condition 5, there exists an environment where online DPO can produce a
 315 solution $\pi_{\text{DPO}}^{\text{online}}$, s.t. $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}^{\text{online}}}$.
 316

317 On the other hand, under Conditions 6 and 7, either method may outperform the other depending on
 318 the environment. Proofs deferred to Appendices C.6 and C.7.
 319

320 **Proposition 8.** Under Condition 6, there exists an environment s.t. $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$, and another
 321 environment s.t. $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$.
 322

323 **Proposition 9.** Under Condition 7, there exists an environment s.t. $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$, and another
 324 environment s.t. $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$.
 325

326 Though there is no consistent performance gap between RLHF and DPO in certain settings, revisiting
 327 the framework can reveal a structural parallel: RLHF can yield the best policy given the learned
 328 reward model r_{RLHF} , and the DPO policy is directly the optimal one given the surrogate reward
 329 model \hat{r}_{DPO} . And online DPO serves to enhance the quality of \hat{r}_{DPO} (Xiong et al., 2024). Formally,
 330

$$331 \quad \pi_{\text{RLHF}} = \underset{\pi \in \Pi}{\text{argmax}} V_{r_{\text{RLHF}}}^{\pi}, \quad \pi_{\text{DPO}} = \underset{\pi \in \Pi}{\text{argmax}} V_{\hat{r}_{\text{DPO}}}^{\pi}. \quad (2)$$

This result implies a general principle: the performance gap is reflected in the quality gap between the (surrogate) reward models: r_{RLHF} and \hat{r}_{DPO} . Better reward learning yields higher expected value.

As revealed in Appendix C of [Ouyang et al. \(2022\)](#) and Section 3.3 of [Swamy et al. \(2025\)](#), it is uncommon to deploy a reward model with a larger scale than the policy model. And thus to ensure practical relevance, we focus on the regime $\mathcal{F} \subseteq \mathcal{F}_{\Pi}$, and pose the following relevant question:

What key property enables a (surrogate) reward model to subsequently help learn good policies?

As an answer to this question, we note that in the context of preference learning, the reward model quality can be measured using an ℓ_2 distance of pairwise difference, derived by simple calculations:

$$V_{r_{\phi}}^{\pi_{\theta^*}(r_{\phi})} \text{ can be measured by } -\mathbb{E}_{y, y' \sim \text{sg}(\pi_{\theta^*}(r_{\phi}))} [(r^*(y) - r^*(y')) - (r_{\phi}(y) - r_{\phi}(y'))]^2, \quad (3)$$

where $\pi_{\theta^*}(r_{\phi}) := \text{argmax}_{\pi \in \Pi} V_{r_{\phi}}^{\pi}$ and we omit prompts for simplicity. Detailed calculations and further discussions deferred to Appendix B. Using this metric, we can further establish a separation.

Concluding remarks. Although we adopt relatively simple techniques, these results can provide valuable insights for the fundamental differences between RLHF and DPO. In the next section, we demonstrate that these insights extend naturally to more practical and realistic scenarios.

4 APPROXIMATE OPTIMIZATION: PERFORMANCE GAP INDUCED BY STATISTICAL EFFICIENCY DIFFERENCES IN REWARD LEARNING

With limited preference data, we are not able to directly compute exact solutions, and thus obtain weaker reward models and policy models due to estimation error. This scenario can be viewed as inducing an implicit model mis-specification, whose effects have been widely discussed in Section 3.4. And since we can only lose information in reward learning ([Swamy et al., 2025](#)), Equation (2) still holds asymptotically with on-policy sampling. Thus by assuming $F \subseteq \mathcal{F}_{\Pi}$, we only need to compare the reward model quality measure shown in Equation (3). We adopt an empirical proxy for this notion, data-induced semi-norm (details in Definition 2 in Appendix C.10, see also [Zhu et al. \(2023\)](#)): $\frac{1}{n} \sum_{i=1}^n [(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (r_{\phi}(y_w^{(i)}) - r_{\phi}(y_l^{(i)}))]^2$, where $\mathcal{D} = \{(y_w^{(i)}, y_l^{(i)})\}_{i=1}^n$ is an empirical preference dataset and we omit prompts from now on.

Difference in token-level linear parameterization. In this section, to rigorously establish a separation, we focus on a specific token-level linear parameterization, which is a special case of the general bandit model; therefore, previous results continue to hold. The common reward model shares the same architecture with LM but replaces the last layer with a linear head, *i.e.*, it takes the whole prompt-response pair as the input and predicts one value. Therefore, if we view the last-layer hidden state as the feature vector, it is natural to assume the reward model to be parameterized as a linear MDP model¹: $r_{\theta_r}(y) = \beta \sum_{t=0}^{|y|-1} \theta_{r,t}^{\top} \psi(y_{0 \dots t})$, where $\theta_{r,t}, \psi(y_{0 \dots t}) \in \mathbb{R}^d$. While for the policy model, one needs to go through the softmax results of all tokens and multiply them²:

$$\pi_{\theta_p}(y) = \prod_{t=0}^{|y|-1} \pi_{\theta_{p,t}}(y_t | y_{0 \dots t-1}) = \prod_{t=0}^{|y|-1} \frac{\pi_{\text{ref}}(y_t | y_{0 \dots t-1}) \exp(\theta_{p,t}^{\top} \psi(y_{0 \dots t}))}{\sum_{s \in \mathcal{V}} \pi_{\text{ref}}(s | y_{0 \dots t-1}) \exp(\theta_{p,t}^{\top} \psi(y_{0 \dots t-1}, s))},$$

where $\theta_{p,t} \in \mathbb{R}^d$, and the surrogate reward model is $\hat{r}_{\theta_p}(y) = \beta \sum_{t=0}^{|y|-1} \log \pi_{\theta_{p,t}}(y_t | y_{0 \dots t-1})$. Let the ground truth reward be $r^*(y) = \beta \sum_{t=0}^{|y|-1} (\theta_t^*)^{\top} \psi(y_{0 \dots t})$, then the optimal solution for the reward model is $\theta_{r,t}^* = \theta_t^*$. And recall Equation (1), the optimal solution for the policy model is:

$$\pi_{\theta_{p,t}^*}(y_t | y_{0 \dots t-1}) \propto \pi_{\text{ref}}(y_t | y_{0 \dots t-1}) \exp\left(\frac{q^*(y_t | y_{0 \dots t-1})}{\beta}\right).$$

¹It is also common to assume the reward model to be a linear bandit model ([Zhu et al., 2023](#)), while the stronger linear MDP model assumption here is for fair comparison with the following policy model.

²Our parameterization assumption on the token-level policy model is different from [Razin et al. \(2025a\)](#), which utilizes a form of token matrix, since we intend to ensure that $d_P = d_R$.

378 Benefiting from the token-level q^* function, models trained in this way can simulate a process reward
 379 model to provide fine-grained information (Yuan et al., 2024; Cui et al., 2025; Shi et al., 2024; Xu
 380 et al., 2025). However, simultaneously, learning the q^* function sacrifices statistical efficiency due
 381 to the need to model the complicated structure. Next, we will present a concrete example to illustrate
 382 the statistical gap between pure reward learning and surrogate reward learning.

384 **Dual-token sparse prediction (DTSP) task.** Let \mathcal{V} be the vocabulary, and $\mathcal{Y} = \mathcal{V}^2$. The
 385 policy model is required to sequentially output two tokens a, b , and the ground-truth reward is:

$$386 \quad r^*(a, b) = \beta \mathbf{r}_{\text{sparse}}^\top \psi(a) + \beta e_1^\top \psi(a, b) ,$$

388 where $a, b \in \mathcal{V}$, $\psi(a), \psi(a, b) \in \mathbb{R}^d$, $\mathbf{r}_{\text{sparse}} \in \mathbb{R}^d$, $\|\mathbf{r}_{\text{sparse}}\|_0 = k$, and $k \ll d$.

390 We let θ_r^* denote the optimal solution for pure reward learning, and θ_p^* the optimal solution for
 391 surrogate reward learning. Note that for the second token, θ_r^* and θ_p^* share the same optimal solution:

$$393 \quad (\theta_{r,1}^*)^\top \psi(a, b) = e_1^\top \psi(a, b) + C_1 , \quad (\theta_{p,1}^*)^\top \psi(a, b) = e_1^\top \psi(a, b) + C_2 ,$$

394 where $C_1, C_2 \in \mathbb{R}$ are offsets. And for the first token a , there is a distinction:

$$396 \quad (\theta_{r,0}^*)^\top \psi(a) = \mathbf{r}_{\text{sparse}}^\top \psi(a) + C_3 ,$$

$$397 \quad (\theta_{p,0}^*)^\top \psi(a) = \log \mathbb{E}_{w \sim \pi_{\text{ref}}(\cdot|a)} \exp(r^*(a, b)/\beta) + C_4$$

$$399 \quad = \mathbf{r}_{\text{sparse}}^\top \psi(a) + \log \mathbb{E}_{w \sim \pi_{\text{ref}}(\cdot|a)} \exp(\psi(a, b)_1) + C_4 ,$$

401 where $\mathbf{r}_{\text{sparse}}$ gets entangled with π_{ref} in $\theta_{p,0}^*$. Note that if $\log \mathbb{E}_{w \sim \pi_{\text{ref}}(\cdot|a)} \exp(\psi(a, b)_1)$ can be
 402 mapped to certain non-linear function of $\psi(a)$, then the policy model is mis-specified while the
 403 reward model is not, as in Condition 2. And even without explicit model mis-specification, we can
 404 establish a separation in (surrogate) reward model qualities due to statistical efficiency differences.

405 **Theorem 10 (Informal).** *Under token-level linear parameterization and mild assumptions, there
 406 exists an environment for DTSP task, s.t. by estimating from a preference dataset \mathcal{D} with n sam-
 407 ples under $\theta_1 = e_1$ constraint, the estimation error of the reward model $\hat{\theta}_r$ can be reduced to
 408 $\tilde{\mathcal{O}}(\sqrt{k \log d/n})$ using a (computationally efficient) ℓ_1 -regularized estimator, i.e., w.p. $1 - \delta$,*

$$410 \quad \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (r_{\hat{\theta}_r}(y_w^{(i)}) - r_{\hat{\theta}_r}(y_l^{(i)})) \right]^2 = \mathcal{O} \left(\sqrt{\frac{k \log(d) + k \log(1/\delta)}{n}} \right) ,$$

413 while the estimation error of the DPO model $\hat{\theta}_p$ is lower bounded by $\Omega(d/n)$:

$$415 \quad \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (\hat{r}_{\hat{\theta}_p}(y_w^{(i)}) - \hat{r}_{\hat{\theta}_p}(y_l^{(i)})) \right]^2 = \Omega \left(\frac{d}{n} \right) .$$

418 **Remark 5.** By fixing the optimal θ_1 , which is relatively easier to estimate, we can reduce the dual-
 419 token prediction problem to a single-token prediction problem, where $\theta_{r,0}^*$ is sparse while $\theta_{p,0}^*$ is
 420 dense. Leveraging the results of Yao et al. (2025) then yields the separation. Formal statement and
 421 detailed proof deferred to Appendix C.10.

422 **Theorem 11 (informal).** *Based on Theorem 10, there exists an environment for DTSP task, s.t. we
 423 have a separation on the sub-optimality of RLHF and DPO:*

$$425 \quad V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{RLHF}}} = \tilde{\mathcal{O}} \left(\sqrt{\frac{k \log d}{n}} \cdot \sqrt{\Lambda_1} \right) ,$$

$$428 \quad V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{DPO}}} = \Omega \left(\frac{d}{n} \cdot \Lambda_2 \right) ,$$

430 where $\pi_{\text{RLHF}} = \arg\max_{\pi \in \Pi} V_{r_{\theta_r}}^{\pi}$, $\pi_{\text{DPO}} = \pi_{\hat{\theta}_p}$, and Λ_1, Λ_2 are geometric quantities of data. Formal
 431 statement and detailed proof deferred to Appendix C.10.5.

432 **Concluding remarks.** This section shows that the estimation error can also induce an implicit model
 433 mis-specification. From the perspective of sparse recovery, we can see that the DPO could suffer
 434 from severe statistical inefficiency compared with pure reward learning, even with the same model
 435 scale. Although our task construction is specific, it reveals a general phenomenon: DPO can distort
 436 the intrinsic structure of the true reward function. For general policy model class beyond log-linear
 437 model class, Equation (1) still holds. This observation shows that the policy model must learn the q^*
 438 function, while the reward model only needs to learn the reward. Because q^* mixes both r^* and π_{ref} ,
 439 the policy model faces a more complex target, making it more vulnerable to model mis-specification
 440 and sample inefficiency. And to prevent policy model mis-specification, d_P is often required to be
 441 larger than d_R , which further leads to increased sample complexity. Given the insight that real-world
 442 rewards are often sparse and simple (Yao et al., 2025), we can infer that the reward model’s quality
 443 typically surpasses that of the surrogate reward model. This further explains why two-stage RLHF
 444 is empirically observed to outperform DPO (Ivison et al., 2024; Xu et al., 2024b).
 445

5 EXPERIMENTAL VERIFICATIONS

446 **Experiment setup.** We now verify our analysis in practical settings. We consider one common
 447 dataset, PKU-SafeRLHF (Ji et al., 2023). We first fine-tune a **GPT-2-LARGE-774M** model (Rad-
 448 ford et al., 2019) on 5k samples of PKU-SafeRLHF-QA, and obtain the **SFT** model. We adopt
 449 the **GPT2-LARGE-HARMLESS** model (Yang et al., 2024) as the ground-truth reward oracle. All
 450 experiments are repeated for 3 seeds. Please see Appendix D for more details.
 451

452 **Implementation details.** For exact optimization, we compute the exact BT loss using the ground-
 453 truth reward oracle for each pair in the DPO training dataset. For approximate optimization, we
 454 instead compute the empirical BT loss. We adopt a pairwise regression surrogate instead of PPO to
 455 improve training stability: $\mathcal{L}_{\text{RL}}(\theta) = \mathbb{E}_{y_1, y_2 \sim \text{sg}(\pi_\theta)} [(r(y_1) - r(y_2)) - (\hat{r}_\theta(y_1) - \hat{r}_\theta(y_2))]^2$. During
 456 deployment, the reward score will be scaled by a coefficient r_{margin} . Besides, since PILAF
 457 sampler (see Definition 1) is very close to purely online sampler when $\beta = 0.1$, we directly sample
 458 $y_1, y_2 \sim \pi_\theta$ in the implementation of online DPO.
 459

460 **Verifications of Section 3.** We train online DPO and RLHF on PKU-SafeRLHF-Prompt, fol-
 461 lowing the practice of Dong et al. (2024); Shi et al. (2025). For the strong reward condition, we
 462 directly adopt the **GPT2-LARGE-HARMLESS** model as a perfectly-learned reward model. For the
 463 weak reward condition, we train the **SFT** model on PKU-SafeRLHF-safer by replacing the
 464 projection matrix with a linear head, freezing all layers except the linear head and the last block. For
 465 the strong policy condition, we fully train the **SFT** model, while for the weak policy condition, we
 466 freeze the first half of the blocks of the **SFT** model. Results are shown in Figures 2 and 3. The
 467 empirical findings align closely with our theoretical predictions:
 468

- 469 • Figure 2 (Condition 1) aligns with Proposition 1 and theorem 2: increasing the reward scale
 470 amplifies the second-order deviation in online DPO’s objective, causing larger deviation
 471 from the RLHF optimum, as our theory predicts.
- 472 • Figure 3 (left, Condition 2) confirms Propositions 3 and 4: with a realizable reward model
 473 but restricted policy class, RLHF outperforms DPO.
- 474 • Figure 3 (middle, Condition 3) confirms Proposition 5: with a mis-specified reward model
 475 but realizable policy class, DPO outperforms RLHF.
- 476 • Figure 3 (right, Condition 4) exhibits behavior consistent with our double-mis-specification
 477 analysis: relative performance can depend on the comparative expressive power of \mathcal{F} versus
 \mathcal{F}_{Π} . In our setup, the reward model is less expressive, leading RLHF to underperform.

478 **Verifications of Section 4.** We train DPO and reward learning on PKU-SafeRLHF, following the
 479 practice of Zhou et al. (2024). We train on two types of preference: “better” and “safer”, and down-
 480 sample the corresponding training datasets to 1k-9k samples. For DPO training, we directly train
 481 the **SFT** model using DPO; while for pure reward learning, we replace the projection matrix of the
 482 **SFT** model with a linear head. The models are trained under the same setting, and all achieve at
 483 least 85% training accuracy. Results are shown in Figure 4, demonstrating that as the number of
 484 samples decreases, reward learning outperforms surrogate reward learning across two tasks. This
 485 corroborates our theoretical separation result in Theorem 10: pure reward learning is statistically
 486 more sample-efficient than the surrogate reward learning performed by DPO.
 487

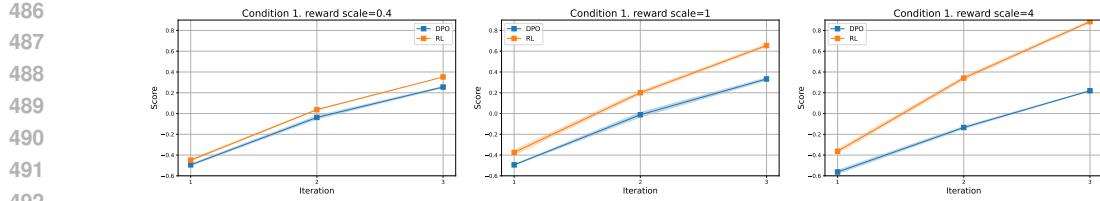


Figure 2: **Experimental Results for Condition 1.** Experiments with different reward scales $\{0.4, 1, 4\}$ align with Theorem 2: as the reward scale increases, the second-order deviation in the online DPO objective grows, giving RLHF a clear advantage.

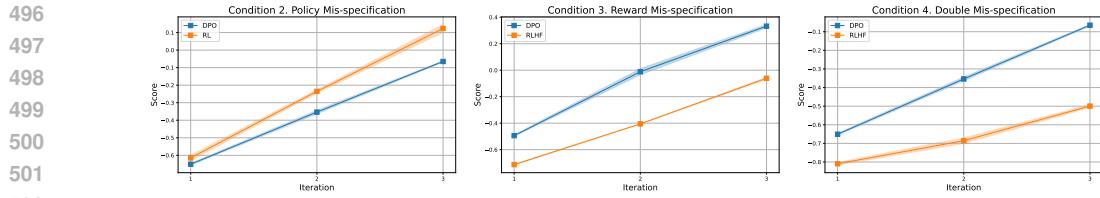


Figure 3: **Experimental Results for Conditions 2 to 4.** The first two plots (Conditions 2 and 3) are consistent with Propositions 3 and 5. The gap in the last plot can be attributed to the mis-specified reward model being too weak.

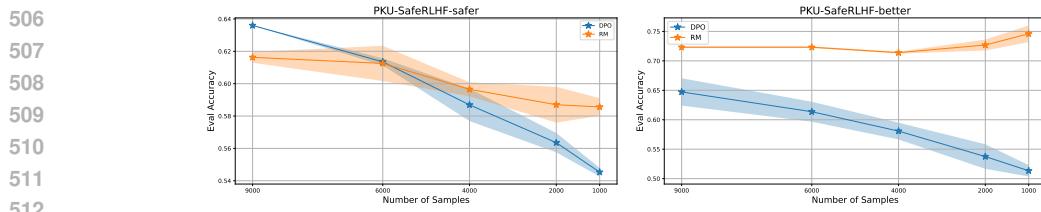


Figure 4: **Experimental Results on Statistical Efficiency.** We experiment on two preference types. Pure reward learning is shown to be more data-efficient than surrogate reward learning.

6 RELATED WORK

Due to page limit, a comprehensive review of related work is deferred to Appendix A. Here, we focus on comparing with the most relevant prior study, Nika et al. (2024). First, unlike Nika et al. (2024) which chooses the un-regularized value function as the performance metric, we adopt the regularized version for two reasons: 1) it is the shared original optimization goal of RLHF and DPO, so our choice is to ensure fairness; 2) it can help circumvent the unavoidable upper bound of policy bias in the unregularized version. Second, we provide a fine-grained analysis of different model mis-specifications under exact optimization, *i.e.*, more detailed comparative analysis on reward approximation error and $\mathcal{O}(\text{KL}(\pi_{\theta_{\text{DPO}}} \parallel \pi^*))$ when $n \rightarrow +\infty$, and our results are not limited to linear reward and log-linear policy model classes. Third, we improve the statistical analysis of Nika et al. (2024) on DPO ($\Theta(d_P/n)$) and RLHF ($\Theta(\sqrt{d_R/n})$), and show that even when $d_P = d_R = d$ and under realizability assumption, there can still be a large gap between DPO ($\Omega(d/n)$) and RLHF ($\tilde{\mathcal{O}}(\sqrt{k \log d/n})$) where $k \ll d$ is the parameter sparsity.

7 CONCLUSION

This paper provides a fine-grained analysis of the performance gap between two-stage and direct approaches to preference-based policy learning. We theoretically demonstrate a dichotomy of RLHF and DPO under different mis-specification scenarios, and further reveal an implicit representation gap induced by statistical efficiency. Our claims are supported by empirical experiments on LMs.

It is also important to acknowledge our limitations. 1) While we identify a limitation of training reward models based on BT model, we do not provide a theoretically grounded and practically effective alternative. 2) Due to computational constraints, our experiments are limited to small-scale models. We hope our insights can motivate the community to further investigate these directions.

540 REFERENCES

541

542 Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
543 Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
544 preferences. *ArXiv*, abs/2310.12036, 2023.

545 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn
546 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John
547 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
548 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
549 Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, Benjamin Mann, and
550 Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human
551 feedback. *ArXiv*, abs/2204.05862, 2022.

552 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
553 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952. ISSN 00063444.

554

555 Daniele Calandriello, Zhaohan Daniel Guo, Rémi Munos, Mark Rowland, Yunhao Tang, Bernardo
556 Ávila Pires, Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, Rishabh
557 Joshi, Zeyu Zheng, and Bilal Piot. Human alignment of large language models through online
558 preference optimisation. In *ICML*, 2024. URL <https://openreview.net/forum?id=2RQqg2Y7Y6>.

559

560 Emmanuel J. Candes, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete
561 and inaccurate measurements. *Communications on Pure and Applied Mathematics*, 59:1207–
562 1223, 2006.

563

564 Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schu-
565 urmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified approach
566 to online and offline rlhf. *arXiv preprint arXiv:2405.19320*, 2024.

567

568 Mingyu Chen, Yiding Chen, Wen Sun, and Xuezhou Zhang. Avoiding $\exp(r_{\max})$ scaling in rlhf
569 through preference-based exploration. *arXiv preprint arXiv:2502.00666*, 2025.

570

571 Paul Francis Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. *ArXiv*, abs/1706.03741, 2017.

572

573 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
574 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
575 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards. *ArXiv*, abs/2502.01456, 2025.

576

577 Mucong Ding, Souradip Chakraborty, Vibhu Agrawal, Zora Che, Alec Koppel, Mengdi Wang, A. S.
578 Bedi, and Furong Huang. Sail: Self-improving efficient online alignment of large language mod-
579 els. *ArXiv*, abs/2406.15567, 2024.

580

581 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
582 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf,
2024.

583

584 Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang, and Wenqiang Lei. Towards analyzing and
585 understanding the limitations of dpo: A theoretical perspective. *arXiv preprint arXiv:2404.04626*,
2024.

586

587 Yunzhen Feng, Ariel Kwiatkowski, Kunhao Zheng, Julia Kempe, and Yaqi Duan. Pilaf: Optimal
588 human preference sampling for reward modeling. *arXiv preprint arXiv:2502.04270*, 2025.

589

590 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
591 Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
592 online ai feedback. *arXiv preprint arXiv:2402.04792*, 2024.

593

Jiawei Huang, Bingcong Li, Christoph Dann, and Niao He. Can rlhf be more efficient with imperfect
reward models? a policy coverage perspective. *arXiv preprint arXiv:2502.19255*, 2025.

594 Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
 595 Noah A. Smith, Yejin Choi, and Hannaneh Hajishirzi. Unpacking DPO and PPO: Disentangling
 596 best practices for learning from preference feedback. In *The Thirty-eighth Annual Conference on*
 597 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=JMBWTlazjW>.

598

599 Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Ruiyang Sun, Yizhou Wang,
 600 and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a human-
 601 preference dataset. *ArXiv*, abs/2307.04657, 2023.

602

603 Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
 604 sampling and direct preference optimization method for alignment of large language models.
 605 *ArXiv*, abs/2402.10038, 2024.

606

607 Jie Liu, Zhanhui Zhou, Jiaheng Liu, Xingyuan Bu, Chao Yang, Han-Sen Zhong, and Wanli Ouyang.
 608 Iterative length-regularized direct preference optimization: A case study on improving 7b lan-
 609 guage models to gpt-4 level. *arXiv preprint arXiv:2406.11817*, 2024a.

610

611 Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu
 612 Liu. Statistical rejection sampling improves preference optimization. In *The Twelfth International*
 613 *Conference on Learning Representations*, 2024b.

614

615 Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and
 616 Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an adver-
 617 sarial regularizer. *ArXiv*, abs/2405.16436, 2024c.

618

619 Debmalya Mandal, Paulius Sasnauskas, and Goran Radanovic. Distributionally robust reinforce-
 620 ment learning with human feedback. *arXiv preprint arXiv:2503.00539*, 2025.

621

622 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 623 reference-free reward. *ArXiv*, abs/2405.14734, 2024.

624

625 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
 626 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 627 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

628

629 Andi Nika, Debmalya Mandal, Parameswaran Kamalaruban, Georgios Tzannetos, Goran
 630 Radanovic, and Adish Singla. Reward model learning vs. direct policy optimization: A com-
 631 parative analysis of learning from human preferences. In *Forty-first International Conference on*
 632 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=JQ1EUfzhuA>.

633

634 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 635 Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kel-
 636 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 637 and Ryan Lowe. Training language models to follow instructions with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neu-
 638 ral Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=TG8KACxEON>.

639

640 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 641 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

642

643 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 644 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-
 645 seventh Conference on Neural Information Processing Systems*, 2023.

646

647 Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From \$r\$ to \$q^*\$: Your language model
 648 is secretly a q-function. In *First Conference on Language Modeling*, 2024.

649

650 Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin.
 651 Unintentional unalignment: Likelihood displacement in direct preference optimization. In *Inter-
 652 national Conference on Learning Representations*, 2025a.

648 Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D. Lee, and Sanjeev Arora. What
 649 makes a reward model a good teacher? an optimization perspective, 2025b. URL <https://arxiv.org/abs/2503.15477>.
 650

651 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 652 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

653 Nihar Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran, and
 654 Martin Wainwright. Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topol-
 655 ogy Dependence. In *Proceedings of International Conference on Artificial Intelligence and Statistics*,
 656 volume 38 of *Proceedings of Machine Learning Research*, pages 856–865, San Diego, Cali-
 657 fornia, USA, May 2015.

658 Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hannaneh Hajishirzi, Noah A. Smith, and Simon S.
 659 Du. Decoding-time language model alignment with multiple objectives. *The Thirty-eighth Annual
 660 Conference on Neural Information Processing Systems*, 2024.

661 Ruizhe Shi, Runlong Zhou, and Simon Shaolei Du. The crucial role of samplers in online direct pref-
 662 erence optimization. In *The Thirteenth International Conference on Learning Representations*,
 663 2025. URL <https://openreview.net/forum?id=F6z3utfcYw>.

664 Yuda Song, Gokul Swamy, Aarti Singh, J. Andrew Bagnell, and Wen Sun. The importance of online
 665 data: Understanding preference fine-tuning via coverage, 2024.

666 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 667 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances
 668 in neural information processing systems*, 33:3008–3021, 2020.

669 Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking reward modeling in preference-based
 670 large language model alignment. In *The Thirteenth International Conference on Learning Repre-
 671 sentations*, 2025. URL <https://openreview.net/forum?id=rfdb1E10qm>.

672 Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy gradient meth-
 673 ods for reinforcement learning with function approximation. In *Neural Information Processing
 674 Systems*, 1999.

675 Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
 676 minimaximalist approach to reinforcement learning from human feedback. *arXiv preprint
 677 arXiv:2401.04056*, 2024.

678 Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J. Andrew Bagnell. All roads
 679 lead to likelihood: The value of reinforcement learning in fine-tuning. *ArXiv*, abs/2503.01067,
 680 2025.

681 Fahim Tajwar, Anika Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
 682 fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
 683 suboptimal, on-policy data. *ArXiv*, abs/2404.14367, 2024.

684 Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
 685 Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
 686 *arXiv preprint arXiv:2401.06080*, 2024.

687 Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
 688 based reinforcement learning methods. *J. Mach. Learn. Res.*, 18:136:1–136:46, 2017.

689 Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
 690 Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q^* -approximation
 691 for sample-efficient rlhf. *arXiv preprint arXiv:2405.21046*, 2024.

692 Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
 693 Iterative preference learning from human feedback: Bridging theory and practice for RLHF under
 694 KL-constraint. In *Forty-first International Conference on Machine Learning*, 2024.

702 Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
 703 Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
 704 performance in machine translation. *ArXiv*, abs/2401.08417, 2024a.

705 Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
 706 and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. *arXiv preprint*
 707 *arXiv:2404.10719*, 2024b.

709 Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
 710 and Sumitra Ganesh. GenARM: Reward guided generation with autoregressive reward model for
 711 test-time alignment. In *The Thirteenth International Conference on Learning Representations*,
 712 2025. URL <https://openreview.net/forum?id=J0qTpmbSbh>.

713 Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
 714 in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
 715 *International Conference on Machine Learning*, 2024.

717 Yunzhen Yao, Lie He, and Michael Gastpar. Leveraging sparsity for sample-efficient preference
 718 learning: A theoretical perspective. *ArXiv*, abs/2501.18282, 2025.

719 Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
 720 Liu, and Hao Peng. Free process rewards without process labels. *ArXiv*, abs/2412.01981, 2024.

722 Runlong Zhou, Maryam Fazel, and Simon S. Du. Extragradient preference optimization (EGPO):
 723 Beyond last-iterate convergence for nash learning from human feedback. *ArXiv*, abs/2503.08942,
 724 2025.

725 Zhanhui Zhou, Jie Liu, Jing Shao, Xiangyu Yue, Chao Yang, Wanli Ouyang, and Yu Qiao. Beyond
 726 one-preference-fits-all alignment: Multi-objective direct preference optimization. In *Findings of*
 727 *the Association for Computational Linguistics ACL 2024*, pages 10586–10613, 2024.

729 Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
 730 feedback from pairwise or k-wise comparisons. In Andreas Krause, Emma Brunskill, Kyunghyun
 731 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th*
 732 *International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*
 733 *Research*, pages 43037–43067. PMLR, 23–29 Jul 2023.

734 Banghua Zhu, Michael I Jordan, and Jiantao Jiao. Iterative data smoothing: Mitigating reward
 735 overfitting and overoptimization in rlhf. *arXiv preprint arXiv:2401.16335*, 2024.

736 Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
 737 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *ArXiv*,
 738 abs/1909.08593, 2019.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

Appendix

760

761

Table of Contents

762

763

A Supplementary Related Works	16
B Bonus: How Can We Better Model Reward From Preference Signals?	17
C Omitted Proofs	18
C.1 Proof of Proposition 1	18
C.2 Proof of Theorem 2	18
C.3 Proof of Proposition 3	19
C.4 Proof of Proposition 5	19
C.5 Proof of Proposition 6	20
C.6 Proof of Proposition 8	20
C.7 Proof of Proposition 9	21
C.8 Numerical Proof of Proposition 4	23
C.9 Numerical Proof of Proposition 7	23
C.10 Formal Statement of Theorems 10 and 11 and Proofs	23
C.11 Omitted Calculations	29
D Implementation Details	33

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811 A SUPPLEMENTARY RELATED WORKS812
813 **Reinforcement learning from human feedback (RLHF).** Seminal contributions that showcased
814 RLHF’s applicability to LLMs include foundational work by Christiano et al. (2017), and subse-
815 quent research focusing on tasks such as summarization (Stiennon et al., 2020), instruction following
816 (Ouyang et al., 2022), question answering using web-retrieved information (Nakano et al., 2021),
817 and broader AI alignment objectives (Bai et al., 2022). Theoretical studies of RLHF include pes-
818 simism in policy learning (Zhu et al., 2023), overoptimization (Zhu et al., 2024; Liu et al., 2024c),
819 online RLHF (Xiong et al., 2024; Song et al., 2024), robustness (Mandal et al., 2025), and reward
models (Wang et al., 2024; Razin et al., 2025b; Huang et al., 2025; Yao et al., 2025).820
821 **Direct preference optimization (DPO).** There is a rich literature studying offline (Rafailov et al.,
822 2024; Feng et al., 2024), iterative (Dong et al., 2024; Liu et al., 2024a), and online (Guo et al., 2024;
823 Tajwar et al., 2024; Ding et al., 2024; Shi et al., 2025; Chen et al., 2025; Feng et al., 2025) DPO.
824 There are other DPO-style algorithms to directly optimize the policy model from preference signals,
825 such as Ψ -PO (Azar et al., 2023), RSO (Liu et al., 2024b), RS-DPO (Khaki et al., 2024), CPO (Xu
826 et al., 2024a), SimPO (Meng et al., 2024), XPO (Xie et al., 2024), VPO (Cen et al., 2024), and OAIF
827 (Guo et al., 2024).828
829 **Performance gap between RLHF and DPO.** Recently, there have been works investigating the
830 performance gap between RLHF and DPO policies. Xu et al. (2024b) found that DPO might find
831 biased solutions that exploit out-of-distribution responses, and iterative DPO might be a better ap-
832 proach; meanwhile, PPO with advantage normalization, large batch-size, and exponential moving
833 update of the reference model can consistently outperform DPO on benchmarks.834
835 **Swamy et al. (2025)** first showed that when the reward class and policy class are isomorphic, RLHF
836 and DPO output policies with equal performances. Then, they proposed a hypothesis that when
837 the ground-truth reward is simpler than the soft optimal policies, and the reward class reduces the
838 sample complexity to learn such a reward, then reward modeling essentially reduces the policy
839 search space. This hypothesis is supported by their experiments. In our work, we comprehensively
840 extend upon their first class isomorphic result by studying model mis-specification (Section 3), and
841 we construct concrete examples to further support the existence of the “simpler ground-truth reward”
842 and “reduced sample complexity” (Section 4).843
844 **Nika et al. (2024)** provided sub-optimality upper bounds for RLHF and DPO when assuming lin-
845 ear reward class and log-linear policy class, with the *un-regularized* value as performance metric.
846 Three cases were studied: 1) realizable ground-truth reward and exact optimization, 2) realizable
847 ground-truth reward but approximate optimization, as well as 3) non-realizable reward and exact
848 optimization. Let n be the size of the fixed dataset and d be the feature dimension. For case 1,
849 both algorithms have a policy bias due to the un-regularized metric, while RLHF has an additional
850 $\Theta(\sqrt{d/n})$ statistical error and that for DPO is $\Theta(d/(\beta n))$. For case 2, RLHF and DPO both obey
851 a linear convergence to statistical errors and policy biases when using projected gradient descent.
852 For case 3, aside from statistical errors and policy biases, RLHF has an extra approximation error
853 between the ground-truth reward and best achievable reward, while DPO has an extra bias between
854 the optimal regularized policy and the ideal optimal regularized policy.

864 **B BONUS: HOW CAN WE BETTER MODEL REWARD FROM PREFERENCE
865 SIGNALS?**
866

867 As motivated by Equation (2), a reward model r_ϕ can be mapped to a policy via:

$$\pi_{\theta^*(r_\phi)} := \operatorname{argmax}_{\pi \in \Pi} V_{r_\phi}^\pi = \operatorname{argmax}_{\pi \in \Pi} \mathbb{E}_{y \sim \pi} [r_\phi(y)] - \beta \operatorname{KL}(\pi \| \pi_{\text{ref}}) .$$

870 If $\mathcal{F} \subseteq \mathcal{F}_\Pi$, this solution further admits the closed form $\pi_{\theta^*(r_\phi)}(y) = \pi_{\text{ref}}(y) \exp(r_\phi(y)/\beta) / Z(\phi)$,
871 where $Z(\phi) := \sum_{y \in \mathcal{Y}} \pi_{\text{ref}}(y) \exp(r_\phi(y)/\beta)$ is the partition function. If the goal is to output a policy
872 that performs well under the ground-truth reward r^* , then reward learning should aim to find a model
873 r_ϕ such that the resulting policy $\pi_{\theta^*(r_\phi)}$ maximizes the underlying “real” objective:
874

$$r_{\phi^*} = \operatorname{argmax}_{r_\phi \in \mathcal{F}} V_{r^*}^{\pi_{\theta^*(r_\phi)}} = \operatorname{argmin}_{r_\phi \in \mathcal{F}} \underbrace{-\beta \log Z(\phi) - \mathbb{E}_{y \sim \pi_{\theta^*(r_\phi)}} [r^*(y) - r_\phi(y)]}_{=: \mathcal{L}_{\text{new}}(\phi)} .$$

875 Following the policy gradient theorem (Sutton et al., 1999), the gradient of this new objective is (see
876 detailed calculations in Appendix C.11):
877

$$\nabla_\phi \mathcal{L}_{\text{new}}(\phi) = -\frac{1}{2} \mathbb{E}_{y, y' \sim \pi_{\theta^*(r_\phi)}} [\nabla_\phi r_\phi(y) - \nabla_\phi r_\phi(y')] [(r^*(y) - r^*(y')) - (r_\phi(y) - r_\phi(y'))] , \quad (4)$$

878 which corresponds to the gradient of an ℓ_2 distance of pairwise difference:
879

$$\mathcal{L}_{\text{new}}(\phi) \stackrel{\nabla}{=} \frac{1}{4} \mathbb{E}_{y, y' \sim \text{sg}(\pi_{\theta^*(r_\phi)})} [(r^*(y) - r^*(y')) - (r_\phi(y) - r_\phi(y'))]^2 . \quad (5)$$

880 **Comparison with MLE.** The reward model r_ϕ are typically learned via MLE from preference data,
881 which does not consider the fact that the learned reward will ultimately be used to induce a policy.
882 **Let the distribution of the preference data be μ (by default μ is π_{ref} , but can be any distribution here).**
883 Now revisit the MLE objective:
884

$$\mathcal{L}_{\text{MLE}}(\phi) = -\mathbb{E}_{y, y' \sim \mu} [\sigma(r^*(y) - r^*(y')) \log \sigma(r_\phi(y) - r_\phi(y')) + \sigma(r^*(y') - r^*(y)) \log \sigma(r_\phi(y') - r_\phi(y))] ,$$

885 whose gradient is (see detailed calculations in Appendix C.11):
886

$$\nabla_\phi \mathcal{L}_{\text{MLE}}(\phi) = -\mathbb{E}_{y, y' \sim \mu} [\nabla_\phi r_\phi(y) - \nabla_\phi r_\phi(y')] [\sigma(r^*(y) - r^*(y')) - \sigma(r_\phi(y) - r_\phi(y'))] . \quad (6)$$

887 Following Equation (6), we can see that the gradient of DPO is
888

$$\nabla_\theta \mathcal{L}_{\text{DPO}}(\theta) \propto -\mathbb{E}_{y, y' \sim \mu} [\sigma(r^*(y) - r^*(y')) - \sigma(\hat{r}_\theta(y) - \hat{r}_\theta(y'))] [\nabla(\hat{r}_\theta(y) - \hat{r}_\theta(y'))] ,$$

889 and the gradient of reward modeling is
890

$$\nabla_\phi \mathcal{L}_{\text{RM}}(\phi) \propto -\mathbb{E}_{y, y' \sim \mu} [\sigma(r^*(y) - r^*(y')) - \sigma(r_\phi(y) - r_\phi(y'))] [\nabla(r_\phi(y) - r_\phi(y'))] .$$

891 Comparing Equation (4) with Equation (6), a natural idea is to apply Taylor’s expansion to extract
892 the $\sigma(\cdot)$ in Equation (6) to further align it with Equation (4). And this will induce an additional
893 coefficient $\sigma'(r_\phi(y) - r_\phi(y'))$ on the data distribution $\mu(y, y')$. And this by-product explains why
894 is PILAF sampler (a variant of online sampler, see Definition 1) introduced to align the distorted
895 distribution $\hat{\mu}(y, y') \propto \mu(y, y') \cdot \sigma'(r_\phi(y) - r_\phi(y'))$ with $\pi_{\theta^*(r_\phi)}$. If the reward model is a surrogate
896 reward model, then we can directly deploy PILAF sampler or online sampler; while if it is a pure
897 reward model, then we can implement PILAF sampler or online sampler through logit mixing (Shi
898 et al., 2024; Xu et al., 2025) only when it can provide token-level reward information. However,
899 it is worth noting that model mis-specification can lead the second-order Taylor remainder to be
900 extremely large, as shown in Theorem 2. Therefore, when faced with a representation gap, it could
901 be beneficial to train the (surrogate) reward model on a distribution close to PILAF sampler but is
902 still limited.

903 To alleviate this issue, we could learn the preference with alternative modeling approaches to cir-
904 cumvent the BT model setting, which has already shown success in Sun et al. (2025); Calandriello
905 et al. (2024). For example, we can look into the training objective of online IPO (Calandriello et al.,
906 2024; Zhou et al., 2025) (see detailed calculations in Appendix C.11):
907

$$\mathcal{L}_{\text{IPO}}^{\text{online}}(\theta) \stackrel{\nabla}{=} \mathbb{E}_{(y_1, y_2) \sim \text{sg}(\rho_\theta)} \left[(\hat{r}_\theta(y_1) - \hat{r}_\theta(y_2)) - \frac{p^*(y_1 > y_2) - p^*(y_2 > y_1)}{2} \right]^2 ,$$

908 where $\rho(\theta)$ is an online sampling distribution, and it thus can optimize an ℓ_2 distance in an on-
909 line way. The classification model deployed in Sun et al. (2025) is also promising. We leave this
910 interesting direction for future exploration.

918 **C OMITTED PROOFS**
919

920 Note that in this section, we omit all prompts without loss of generality. For the constructive proof,
921 we can set the number of states to 1; for the other proofs, we can simply sum over different prompts
922 to extend them to the general case.

924 **C.1 PROOF OF PROPOSITION 1**
925

926 Since $r^* \in \mathcal{F}$, RLHF exactly recovers r^* during reward learning. The policy optimization stage then
927 solves $\pi_{\text{RLHF}} = \underset{\pi \in \Pi}{\text{argmax}} V_{r^*}^\pi$, so by definition, $V_{r^*}^{\pi_{\text{RLHF}}} = V_{r^*}^\Pi$.

928 On the other hand, DPO is trained on preferences induced by r^* . When $\pi^* \in \Pi$, the preference
929 structure is realizable, and the DPO loss is minimized by π^* . Hence, $\pi_{\text{DPO}} = \pi^*$, which achieves
930 the maximum of $V_{r^*}^\pi$ over Π .

932 **C.2 PROOF OF THEOREM 2**
933

934 By Taylor's expansion, we have that:

935

$$\begin{aligned} & \nabla_\theta \mathcal{L}_{\text{DPO}}^{\text{online}}(\pi_\theta) \\ &= -\beta \mathbb{E}_{y, y' \sim \pi^s} [\nabla_\theta \log \pi_\theta(y) - \nabla_\theta \log \pi_\theta(y')] \cdot \sigma'(\hat{r}_\theta(y) - \hat{r}_\theta(y')) \cdot [(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))] \\ & \quad - \beta \mathbb{E}_{y, y' \sim \pi^s} [\nabla_\theta \log \pi_\theta(y) - \nabla_\theta \log \pi_\theta(y')] \cdot \sigma''(\xi_{y, y'}) \cdot [(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))]^2, \end{aligned}$$

941 where $\xi_{y, y'}$ is an intermediate value between $r^*(y) - r^*(y')$ and $\hat{r}_\theta(y) - \hat{r}_\theta(y')$.

942 Therefore, if we have:

943

- $0 \leq r(y) \leq R_{\max}, \forall y \in \mathcal{Y}$;
- $|(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))| \leq \delta, \forall y, y' \in \mathcal{Y}$;
- $\pi^s(y, y') \propto \pi_\theta(y)\pi_\theta(y')/\sigma'(\hat{r}_\theta(y) - \hat{r}_\theta(y'))$, i.e., π^s is PILAF sampler,

948 then the formula can be rewritten as:

949

$$\mathcal{L}_{\text{DPO}}^{\text{online}}(\pi_\theta) \stackrel{\nabla}{=} \frac{1}{2\text{sg}(Z_\theta)} \mathbb{E}_{y, y' \sim \pi_\theta} (1 + \epsilon_{y, y'}) \cdot [(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))]^2,$$

950 where

951

$$|\epsilon_{y, y'}| = \left| \frac{\sigma''(\xi_{y, y'})}{\sigma'(\hat{r}_\theta(y) - \hat{r}_\theta(y'))} \right| \cdot |(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))| \leq \frac{\delta}{6\sqrt{3}\sigma'(R_{\max} + \delta)},$$

952 and

953

$$Z_\theta := \sum_{y, y' \in \mathcal{Y}} \pi_\theta(y)\pi_\theta(y')/\sigma'(\hat{r}_\theta(y) - \hat{r}_\theta(y')).$$

954 Note that:

955

$$\begin{aligned} & \nabla_\theta \left[\mathbb{E}_{y \sim \pi_\theta} [r^*(x, y)] - \beta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}}) \right] \\ &= \nabla_\theta \mathbb{E}_{y \sim \pi_\theta} [r^*(y) - \hat{r}_\theta(y)] \\ &= \mathbb{E}_{y \sim \pi_\theta} \nabla_\theta \log \pi_\theta(y) [r^*(y) - \hat{r}_\theta(y)] \quad (\text{policy gradient theorem}) \\ &= \mathbb{E}_{y, y' \sim \pi_\theta} \nabla_\theta \log \pi_\theta(y) [(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))] \quad (\text{policy gradient theorem}) \\ &= \frac{1}{2} \mathbb{E}_{y, y' \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(y) - \nabla_\theta \log \pi_\theta(y')] [(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))], \quad (\text{symmetry}) \end{aligned} \tag{7}$$

956 thus

957

$$\mathbb{E}_{y \sim \pi_\theta} [r^*(x, y)] - \beta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}}) \stackrel{\nabla}{=} -\frac{1}{4\beta} \mathbb{E}_{y, y' \sim \pi_\theta} [(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y'))]^2.$$

972 Therefore we have:
 973

$$\begin{aligned} 974 \quad \mathcal{L}_{\text{DPO}}^{\text{online}}(\pi_\theta) &\stackrel{\nabla}{=} \frac{2\beta}{\text{sg}(Z_\theta)} \left\{ - \left[\mathbb{E}_{y \sim \pi_\theta} [r^*(x, y)] - \beta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}}) \right] \right. \\ 975 \quad &\left. + \frac{1}{4\beta} \mathbb{E}_{y, y' \sim \text{sg}(\pi_\theta)} \left[\epsilon_{y, y'} \cdot \left[(r^*(y) - r^*(y')) - (\hat{r}_\theta(y) - \hat{r}_\theta(y')) \right]^2 \right] \right\}. \\ 976 \end{aligned}$$

980 C.3 PROOF OF PROPOSITION 3

982 Since $r^* \in \mathcal{F}$, RLHF recovers r^* exactly and then solves $\pi_{\text{RLHF}} = \arg\max_{\pi \in \Pi} V_{r^*}^\pi$, by definition
 983 achieving $V_{r^*}^{\pi_{\text{RLHF}}} = V_{r^*}^\Pi$. DPO, instead, minimizes a proxy loss defined over pairwise preferences.
 984 Since $\pi_{\text{DPO}} \in \Pi$, we have $V_{r^*}^{\pi_{\text{DPO}}} \leq \max_{\pi \in \Pi} V_{r^*}^\pi = V_{r^*}^\Pi = V_{r^*}^{\pi_{\text{RLHF}}}$, which proves the first claim.

985 For the strict gap, we consider a multi-armed bandit setting with the action space $\mathcal{Y} = \{a_1, a_2, a_3\}$.
 986 Let the ground-truth reward function satisfy:

$$987 \quad r = r^*(a_1) = r^*(a_2) \geq r^*(a_3) = 0. \\ 988$$

989 Assume the linear feature mapping $\psi : \mathcal{Y} \rightarrow \mathbb{R}^d$ satisfies:

$$990 \quad \psi(a_1) \neq \psi(a_2), \quad \psi(a_3) = \frac{1}{2}\psi(a_1) + \frac{1}{2}\psi(a_2). \\ 991$$

992 Define the log-linear policy class $\Pi = \{\pi_\theta : \theta \in \mathbb{R}^d\}$ by $\pi_\theta(a) \propto \pi_{\text{ref}}(a) \exp(\theta^\top \psi(a))$, where
 993 $\pi_{\text{ref}} = \text{Unif}(\mathcal{Y})$. Since r^* is realizable, RLHF exactly recovers it and solves:
 994

$$995 \quad \pi_{\text{RLHF}} = \arg\max_{\pi_\theta \in \Pi} V_{r^*}^{\pi_\theta} = \arg\max_{\pi_\theta \in \Pi} \sum_{a \in \mathcal{Y}} \pi_\theta(a) r^*(a) - \beta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}}).$$

997 For a fixed $r > 0$, as the regularization parameter $\beta \rightarrow 0$, the optimal policy under RLHF places
 998 vanishing probability on a_3 : $\pi_{\text{RLHF}}(a_3) \rightarrow 0$. In contrast, as $\beta \rightarrow \infty$, the regularization dominates
 999 and the optimal policy converges to the uniform reference policy: $\pi_{\text{RLHF}} \rightarrow \pi_{\text{ref}}$.

1000 Now consider the DPO objective, which relies on pairwise preference probabilities and directly
 1001 optimizes over the policy class:
 1002

$$\begin{aligned} 1003 \quad \mathcal{L}_{\text{DPO}}(\pi_\theta) &= - \sum_{a \neq a'} [\sigma(r^*(a) - r^*(a')) \log \sigma(\beta \theta^\top (\psi(a) - \psi(a')))] \\ 1004 \quad &= -\frac{1}{2} \log \sigma(\beta \Delta^\top \theta) - \frac{1}{2} \log \sigma(-\beta \Delta^\top \theta) - \log \sigma(\frac{1}{2} \beta \Delta^\top \theta) - \log \sigma(-\frac{1}{2} \beta \Delta^\top \theta), \\ 1005 \end{aligned}$$

1006 where $\Delta := \psi(a_1) - \psi(a_2)$. This expression is always minimized when $\Delta^\top \theta = 0$, which corre-
 1007 sponds to a uniform distribution.
 1008

1009 Thus, unlike RLHF, the DPO solution remains fixed at uniform distribution, independent of the
 1010 reward magnitude r and the regularization parameter β , and fails to suppress the sub-optimal action
 1011 a_3 even when β is sufficiently small.

1012 C.4 PROOF OF PROPOSITION 5

1013 Since $r^* \notin \mathcal{F}$, RLHF recovers an approximation $\hat{r} \in \mathcal{F}$ via reward learning. It then computes
 1014 a policy π_{RLHF} that maximizes $V_{\hat{r}}^\pi$ over Π . In general, this policy is sub-optimal under r^* (see
 1015 Proposition 3), and thus $V_{r^*}^{\pi_{\text{RLHF}}} \leq \max_{\pi \in \Pi} V_{r^*}^\pi = V_{r^*}^\Pi$.

1016 DPO directly optimizes a preference-based loss over Π . Since $\pi^* \in \Pi$ and DPO is given access to
 1017 exact preference data consistent with r^* , it can recover π^* , and hence $V_{r^*}^{\pi_{\text{DPO}}} = V_{r^*}^{\pi^*} = V_{r^*}^\Pi$.

1018 For the strict gap, consider a multi-armed bandit setting analogous to Appendix C.3: first, define the
 1019 action space $\mathcal{Y} = \{a_1, a_2, a_3\}$. Let the ground-truth reward function satisfy:

$$1020 \quad r = r^*(a_1) = r^*(a_2) \geq r^*(a_3) = 0. \\ 1021$$

1022 Assume the linear feature mapping $\psi : \mathcal{Y} \rightarrow \mathbb{R}^d$ satisfies:

$$1023 \quad \psi(a_1) \neq \psi(a_2), \quad \psi(a_3) = \frac{1}{2}\psi(a_1) + \frac{1}{2}\psi(a_2). \\ 1024$$

1026 The key difference from the earlier construction lies in the choice of model classes. We define: the
 1027 linear reward class $\mathcal{F} = \{r_\phi : \phi \in \mathbb{R}^d\}$ by $r_\phi(a) := \phi^\top \psi(a)$, and the policy class $\Pi = \Delta(\mathcal{Y})$ with
 1028 reference policy $\pi_{\text{ref}} = \text{Unif}(\mathcal{Y})$. This setup satisfies Condition 3 because $r^* \notin \mathcal{F}$: for any ϕ , the
 1029 constraint on ψ implies $r_\phi(a_3) = \frac{1}{2}(r_\phi(a_1) + r_\phi(a_2))$ so $r_\phi(a_3) = r$ whenever $r_\phi(a_1) = r_\phi(a_2) = r$,
 1030 contradicting the ground-truth reward $r^*(a_3) = 0$.

1031 In RLHF, the reward model is learned by solving the population MLE objective:
 1032

$$\begin{aligned} r_{\text{RLHF}} &= \underset{r_\phi \in \mathcal{F}}{\text{argmax}} \sum_{a \neq a'} [\sigma(r^*(a) - r^*(a')) \log \sigma(\beta \phi^\top (\psi(a) - \psi(a')))] \\ &= \underset{r_\phi \in \mathcal{F}}{\text{argmax}} -\frac{1}{2} \log \sigma(\beta \Delta^\top \phi) - \frac{1}{2} \log \sigma(-\beta \Delta^\top \phi) - \log \sigma(\frac{1}{2} \beta \Delta^\top \phi) - \log \sigma(-\frac{1}{2} \beta \Delta^\top \phi), \end{aligned}$$

1033 where $\Delta := \psi(a_1) - \psi(a_2)$. This expression is minimized maximized at $\Delta^\top \phi = 0$, which implies
 1034 $r_\phi(a_1) = r_\phi(a_2)$ and $r_\phi(a_3) = r_\phi(a_1)$, i.e., the learned reward is constant: $r_{\text{RLHF}}(a) = C$ for all
 1035 $a \in \mathcal{Y}$.

1036 The policy learning stage then solves:
 1037

$$\pi_{\text{RLHF}} = \underset{\pi \in \Delta(\mathcal{Y})}{\text{argmax}} \mathbb{E}_{a \sim \pi} [C] - \beta \text{KL}(\pi \| \pi_{\text{ref}}),$$

1038 whose solution is simply $\pi_{\text{RLHF}} = \pi_{\text{ref}}$, independent of r and β .
 1039

1040 In contrast, DPO directly optimizes the policy using preference comparisons. Since $\Pi = \Delta(\mathcal{Y})$
 1041 and the preferences are consistent with the ground-truth reward r^* , DPO can recover the optimal
 1042 policy $\pi^* \propto \exp(r^*/\beta)$, which is not uniform. Therefore, DPO achieves the optimal regularized
 1043 value $V_{\Pi}^* = V_{r^*}^*$, while RLHF only returns the uniform policy. This yields a strict gap:
 1044

$$V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}} = V_{r^*}^{\Pi}.$$

1052 C.5 PROOF OF PROPOSITION 6

1053 By definition, the reward learned by RLHF and the surrogate reward learned by DPO are obtained
 1054 by solving the following population objectives:
 1055

$$\begin{aligned} r_{\text{RLHF}} &= \underset{r_\phi \in \mathcal{F}}{\text{argmax}} \mathbb{E}_{y, y' \sim \pi_{\text{ref}}} [p^*(y > y') \log \sigma(r_\phi(y) - r_\phi(y')) + p^*(y' > y) \log \sigma(r_\phi(y') - r_\phi(y))] , \\ \hat{r}_{\text{DPO}} &= \underset{\hat{r}_\theta \in \mathcal{F}_{\Pi}}{\text{argmax}} \mathbb{E}_{y, y' \sim \pi_{\text{ref}}} [p^*(y > y') \log \sigma(\hat{r}_\theta(y) - \hat{r}_\theta(y')) + p^*(y' > y) \log \sigma(\hat{r}_\theta(y') - \hat{r}_\theta(y))] , \end{aligned}$$

1056 Under Condition 5, we have $\mathcal{F} = \mathcal{F}_{\Pi}$, so both objectives are optimized over the same function
 1057 class. Hence, it follows that: $r_{\text{RLHF}} = \hat{r}_{\text{DPO}}$.
 1058

1059 Recalling from Equation (2):
 1060

$$\pi_{\text{RLHF}} = \underset{\pi \in \Pi}{\text{argmax}} V_{r_{\text{RLHF}}}^\pi, \quad \pi_{\text{DPO}} = \underset{\pi \in \Pi}{\text{argmax}} V_{\hat{r}_{\text{DPO}}}^\pi.$$

1061 and substituting $r_{\text{RLHF}} = \hat{r}_{\text{DPO}}$, we can conclude that
 1062

$$\pi_{\text{RLHF}} = \pi_{\text{DPO}} \quad \text{and hence} \quad V_{r^*}^{\pi_{\text{RLHF}}} = V_{r^*}^{\pi_{\text{DPO}}}.$$

1069 C.6 PROOF OF PROPOSITION 8

1070 **Construction 1:** $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$. We first construct an environment satisfying Condition 6 such
 1071 that $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$. Consider the same setup as in Appendix C.4, but define the policy class as
 1072 $\Pi = \Delta(\mathcal{Y}) \setminus \{\pi^*\}$, where π^* is the optimal policy under r^* . This ensures that $\pi^* \notin \Pi$, while $\mathcal{F} \subset \mathcal{F}_{\Pi}$,
 1073 satisfying Condition 6.

1074 As shown in Appendix C.4, RLHF learns a constant reward model and returns the uniform policy
 1075 $\pi_{\text{RLHF}} = \pi_{\text{ref}}$, independent of r and β . In contrast, DPO directly optimizes policy parameters from
 1076 preference data and can converge to a policy arbitrarily close to π^* , which lies on the boundary of
 1077 Π . This yields a strict sub-optimality gap:
 1078

$$V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}.$$

1080
Construction 2: $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$. Next, we construct an environment satisfying Condition 6 such
1081 that $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$. Consider a multi-armed bandit with action space $\mathcal{Y} = \{a_1, a_2, a_3\}$ and
1082 ground-truth reward:

$$1083 \quad r^*(a_1) = r^*(a_2) = 1, \quad r^*(a_3) = 0.$$

1084 Let the linear feature mapping $\psi : \mathcal{Y} \rightarrow \mathbb{R}^2$ be:

$$1085 \quad \psi(a_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \psi(a_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \psi(a_3) = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}.$$

1086 Define the log-linear policy class $\Pi = \{\pi_\theta : \theta \in \mathbb{R}^2\}$ with

$$1087 \quad \pi_\theta(a) \propto \pi_{\text{ref}}(a) \exp(\theta^\top \psi(a)), \quad \pi_{\text{ref}} = \text{Unif}(\mathcal{Y}).$$

1088 The corresponding surrogate reward class is $\mathcal{F}_\Pi = \{\hat{r}_\theta : \hat{r}_\theta(a) = \beta \theta^\top \psi(a), \theta \in \mathbb{R}^2\}$. We now
1089 define a strictly smaller reward model class $\mathcal{F} = \{\hat{r}_{\theta_R}\}$ where

$$1090 \quad \theta_R = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

1091 We set the regularization parameter to $\beta = 0.1$. Then, $\mathcal{F} \subset \mathcal{F}_\Pi$ and Condition 6 holds.

1092 Under this setup, RLHF learns the fixed reward \hat{r}_{θ_R} and optimizes:

$$1093 \quad \pi_{\text{RLHF}} = \pi_{\theta_R}, \quad \text{where } \pi_{\theta_R}(a) \propto \exp(\theta_R^\top \psi(a)).$$

1094 Concretely:

$$1095 \quad \pi_{\theta_R}(a_1) = \frac{\exp(1)}{Z}, \quad \pi_{\theta_R}(a_2) = \frac{\exp(-1)}{Z}, \quad \pi_{\theta_R}(a_3) = \frac{1}{Z}, \quad Z = \exp(1) + \exp(-1) + 1.$$

1096 The value of this policy under r^* is:

$$1097 \quad V_{r^*}^{\pi_{\text{RLHF}}} = \pi_{\theta_R}(a_1) + \pi_{\theta_R}(a_2) - \beta \text{KL}(\pi_{\theta_R} \| \pi_{\text{ref}}) \approx 0.729.$$

1098 In contrast, DPO learns the uniform policy $\pi_{\text{DPO}} = \pi_{\text{ref}}$, as shown in Appendix C.3. Its value is:

$$1099 \quad V_{r^*}^{\pi_{\text{DPO}}} = \frac{2}{3}.$$

1100 This results in a strict sub-optimality gap in the opposite direction:

$$1101 \quad V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}.$$

1102 C.7 PROOF OF PROPOSITION 9

1103
Construction 1: $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$. We construct an environment satisfying Condition 7 such that
1104 $V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}$. Consider a multi-armed bandit with action space $\mathcal{Y} = \{a_1, a_2, a_3\}$ and ground-
1105 truth reward function:

$$1106 \quad r^*(a_1) = r^*(a_2) = 1, \quad r^*(a_3) = 0.$$

1107 Let the linear feature mapping $\psi : \mathcal{Y} \rightarrow \mathbb{R}^2$ be:

$$1108 \quad \psi(a_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \psi(a_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \psi(a_3) = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}.$$

1109 Define the log-linear policy class $\Pi = \{\pi_\theta : \theta \in \mathbb{R}^2\}$ with:

$$1110 \quad \pi_\theta(a) \propto \pi_{\text{ref}}(a) \exp(\theta^\top \psi(a)), \quad \pi_{\text{ref}} = \text{Unif}(\mathcal{Y}).$$

1111 The corresponding surrogate reward class is $\mathcal{F}_\Pi = \{\hat{r}_\theta : \hat{r}_\theta(a) = \beta \theta^\top \psi(a), \theta \in \mathbb{R}^2\}$. Now define a
1112 strictly larger reward model class:

$$1113 \quad \mathcal{F} = \mathcal{F}_\Pi \cup \{\bar{r}\}, \quad \text{where } \bar{r}(a_1) = \bar{r}(a_2) = 2, \quad \bar{r}(a_3) = 0.$$

1114 Then $\mathcal{F}_\Pi \subset \mathcal{F}$, and thus Condition 7 holds.

From Appendix C.3, we know that DPO learns a constant reward model under this feature structure and returns the uniform policy $\pi_{\text{DPO}} = \pi_{\text{ref}}$, independent of r and β .

RLHF, on the other hand, optimizes the MLE objective over the larger class \mathcal{F} and selects \bar{r} , which achieves a higher likelihood than any function in \mathcal{F}_{Π} . Then, the learned policy is:

$$\pi_{\text{RLHF}} = \underset{\pi_{\theta} \in \Pi}{\operatorname{argmax}} V_{\bar{r}}^{\pi_{\theta}}.$$

As $\beta \rightarrow 0$, the optimal policy π_{RLHF} places vanishing mass on a_3 , since $\bar{r}(a_3) = 0$ while $\bar{r}(a_1) = \bar{r}(a_2) = 2$. Hence, $\pi_{\text{RLHF}}(a_3) \rightarrow 0$.

This leads to a strictly better policy under r^* than the uniform policy returned by DPO. Thus:

$$V_{r^*}^{\pi_{\text{RLHF}}} > V_{r^*}^{\pi_{\text{DPO}}}.$$

Construction 2: $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$. We now construct an environment satisfying Condition 7 such that $V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}}$. Consider a multi-armed bandit with action space $\mathcal{Y} = \{a_1, a_2, a_3\}$ and ground-truth reward function:

$$r^*(a_1) = r^*(a_2) = 1, \quad r^*(a_3) = 0.$$

Let the linear feature mapping $\psi: \mathcal{Y} \rightarrow \mathbb{R}^2$ be:

$$\psi(a_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \psi(a_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \psi(a_3) = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}.$$

We define a constrained log-linear policy class:

$$\Pi = \left\{ \pi_{\theta} : \theta \in \mathbb{R}^2, \theta^{\top} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \geq 20 \right\}, \quad \pi_{\theta}(a) \propto \pi_{\text{ref}}(a) \exp(\theta^{\top} \psi(a)),$$

where $\pi_{\text{ref}} = \text{Unif}(\mathcal{Y})$. The corresponding surrogate reward class is:

$$\mathcal{F}_{\Pi} = \left\{ \hat{r}_{\theta} : \hat{r}_{\theta}(a) = \beta \theta^{\top} \psi(a), \theta^{\top} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \geq 20 \right\}.$$

Now define a strictly larger reward model class:

$$\mathcal{F} = \mathcal{F}_{\Pi} \cup \{\bar{r}\}, \quad \text{where } \bar{r}(a_1) = \bar{r}(a_2) = 2, \quad \bar{r}(a_3) = 0.$$

We set the regularization parameter to $\beta = 0.1$. Since $\bar{r} \notin \mathcal{F}_{\Pi}$, we have $\mathcal{F}_{\Pi} \subset \mathcal{F}$, and thus Condition 7 holds.

Under this setup, RLHF first learns the reward model by optimizing the MLE objective over the larger class \mathcal{F} and selects \bar{r} , which achieves strictly higher likelihood than any element in \mathcal{F}_{Π} . In the policy learning stage, RLHF computes the policy $\pi_{\text{RLHF}} = \pi_{\theta_{\text{RLHF}}}$ by solving:

$$\pi_{\theta_{\text{RLHF}}} = \underset{\pi_{\theta} \in \Pi}{\operatorname{argmax}} V_{\bar{r}}^{\pi_{\theta}} = \underset{\pi_{\theta} \in \Pi}{\operatorname{argmax}} \{2(\pi_{\theta}(a_1) + \pi_{\theta}(a_2)) - \beta \text{KL}(\pi_{\theta} \parallel \pi_{\text{ref}})\}.$$

In contrast, DPO directly optimizes the reward via MLE:

$$\hat{r}_{\text{DPO}} = \underset{\hat{r}_{\theta} \in \mathcal{F}_{\Pi}}{\operatorname{argmax}} \mathbb{E}_{y, y' \sim \pi_{\text{ref}}} [p^*(y > y') \log \sigma(\hat{r}_{\theta}(y) - \hat{r}_{\theta}(y')) + p^*(y' > y) \log \sigma(\hat{r}_{\theta}(y') - \hat{r}_{\theta}(y))],$$

whose optimal solution corresponds to θ satisfying $\theta^{\top} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 20$. Therefore, the learned policy is

$$\pi_{\text{DPO}} = \pi_{\theta_{\text{DPO}}} \text{ with } \theta_{\text{DPO}}^{\top} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 20.$$

To compare the values $V_{r^*}^{\pi_{\text{RLHF}}}$ and $V_{r^*}^{\pi_{\text{DPO}}}$, we rewrite the value function for any π_{θ} as:

$$\begin{aligned} V_{r^*}^{\pi_{\theta}} &= \pi_{\theta}(a_1) + \pi_{\theta}(a_2) - \beta \text{KL}(\pi_{\theta} \parallel \pi_{\text{ref}}) \\ &= \frac{e^{x/2} + e^{-x/2}}{Z(x)} - \beta \left[\frac{e^{x/2}}{Z(x)} \log \left(\frac{e^{x/2}}{Z(x)} \right) + \frac{e^{-x/2}}{Z(x)} \log \left(\frac{e^{-x/2}}{Z(x)} \right) + \frac{1}{Z(x)} \log \left(\frac{1}{Z(x)} \right) \right] + (\text{constant}), \end{aligned}$$

where $x := \theta^{\top} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $Z(x) := e^{x/2} + e^{-x/2} + 1$.

It can be verified that $V_{r^*}^{\pi_{\theta}}$ is strictly decreasing in x for $x \geq 20$. Since RLHF learns $x_{\text{RLHF}} \approx 40$ and DPO learns $x_{\text{DPO}} = 20$, we conclude that

$$V_{r^*}^{\pi_{\text{RLHF}}} < V_{r^*}^{\pi_{\text{DPO}}},$$

demonstrating that a more expressive reward model class may lead RLHF to overfitting in the presence of a constrained policy class, resulting in inferior performance compared to DPO.

1188 C.8 NUMERICAL PROOF OF PROPOSITION 4
1189

1190 Since the exact solution for online DPO is hard to compute, we didn't find elegant proofs for these
1191 two propositions. They are examined correct numerically.

1192 By Proposition 3, we have $V_{r^*}^{\pi_{RLHF}} = V_{r^*}^{\Pi} = \max_{\pi \in \Pi} V_{r^*}^{\pi} \geq V_{r^*}^{\pi_{DPO}^{\text{online}}}$. Now we construct an environment
1193 under Condition 2, such that online DPO cannot outperform DPO, even with PILAF sampler.
1194 Consider a multi-armed bandit with action space $\mathcal{Y} = \{a_1, a_2, a_3\}$ and ground-truth reward:
1195

$$1196 r^*(a_1) = 12, r^*(a_2) = 12, r^*(a_3) = 0.$$

1197 Let the linear feature mapping $\psi: \mathcal{Y} \rightarrow \mathbb{R}^d$ satisfies:

$$1198 \psi(a_1) \neq \psi(a_2), \psi(a_3) = \frac{1}{2}\psi(a_1) + \frac{1}{2}\phi(a_2).$$

1200 Taking $\beta = 1$, let $x(\theta)$ denote $\log \frac{\pi_\theta(a_1)}{\pi_{\text{ref}}(a_1)} - \log \frac{\pi_\theta(a_2)}{\pi_{\text{ref}}(a_2)}$. Define the bounded log-linear policy class
1201 $\Pi = \{\pi_\theta: \theta \in \mathbb{R}^d, |x(\theta)| \leq 4\}$ with
1202

$$1203 \pi_\theta(a) \propto \pi_{\text{ref}}(a) \exp(\theta^\top \psi(a)), \pi_{\text{ref}} = \text{Unif}(\mathcal{Y}).$$

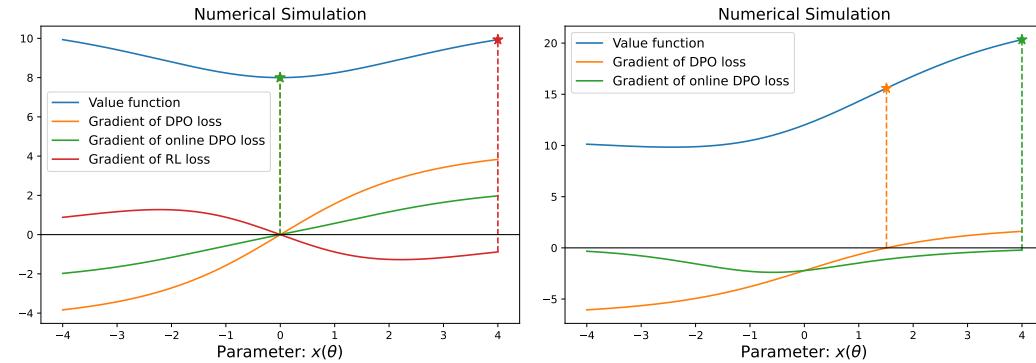
1204 Note that we can use $x(\theta)$ to represent the whole distribution thanks to the feature mapping. Now we
1205 numerically compute the gradients of the loss functions of RL, DPO, and online DPO with PILAF
1206 sampler, in the interval $x(\theta) \in [-4, 4]$. And the curves along with respective solutions are shown in
1207 the left panel of Figure 5, where the gradient values are rescaled for clarity of presentation. We find
1208 that both DPO and online DPO will converge to the same sub-optimal solution, while RL can obtain
1209 an optimal solution.
1210

1211 C.9 NUMERICAL PROOF OF PROPOSITION 7
1212

1213 By Proposition 6, we have $\pi_{RLHF} = \pi_{DPO}$. Now we only need to construct an environment under
1214 Condition 5, such that online DPO can outperform offline DPO. We can borrow the whole setting in
1215 Appendix C.8, while resetting the ground-truth reward as:

$$1216 r^*(a_1) = 24, r^*(a_2) = 12, r^*(a_3) = 0.$$

1217 Now we numerically compute the gradients of the loss functions of DPO and online DPO with a
1218 pure online sampler, in the interval $x(\theta) \in [-4, 4]$. And the curves along with respective solutions
1219 are shown in the right panel of Figure 5, where the gradient values are rescaled for clarity of pre-
1220 sentation. We find that online DPO can help obtain better solution than DPO, which indicates that
1221 under Condition 5, online DPO can produce a solution $\pi_{DPO}^{\text{online}}$, such that $V_{r^*}^{\pi_{RLHF}} < V_{r^*}^{\pi_{DPO}^{\text{online}}}$.
1222



1235
1236 Figure 5: Numerically Computed Curves of Gradient Functions and Value Functions.
1237

1238 C.10 FORMAL STATEMENT OF THEOREMS 10 AND 11 AND PROOFS
12391240 C.10.1 PRELIMINARIES OF SINGLE-TOKEN PREDICTION
1241

Before proceeding, we first prepare some ingredients for the single-token prediction task.

1242 **Basic setting.** Recall that to train a (surrogate) reward model, people first collect a dataset $\mathcal{D}^\dagger =$
 1243 $\{y_1^{(i)}, y_2^{(i)}\}_{i=1}^n$, and then ask human annotators to label these pairs to get a human preference dataset
 1244 $\mathcal{D} = \{y_w^{(i)}, y_l^{(i)}\}_{i=1}^n$. Following BT model, y_1 is preferred over y_2 , (i.e. $y_w = y_1$ and $y_l = y_2$), w.p.
 1245 $\sigma(r^*(y_1) - r^*(y_2))$, where $r^*(y) = (\theta^*)^\top \psi(y)$, $\theta^* \in \mathbb{R}_+$ is the ground-truth reward vector, $\psi(y)$ is
 1246 the feature vector satisfying $\|\psi(y)\|_2 \leq L$, and $L \in \mathbb{R}_+$. The MLE estimator is defined as:
 1247

$$\hat{\theta}_{\text{MLE}} \in \operatorname{argmin}_{\theta \in \Theta_B} -\frac{1}{n} \sum_{i=1}^n \log \sigma(\theta^\top (\psi(y_w^{(i)}) - \psi(y_l^{(i)}))) , \quad (8)$$

1250 where $\Theta_B = \{\theta \in \mathbb{R}_d : \|\theta\|_2 \leq B\}$, $B \in \mathbb{R}_+$. And we assume $\theta^* \in \Theta_B$. The empirical performance
 1251 measure is the data-induced semi-norm (see, e.g., (Zhu et al., 2023)), defined as:

1252 **Definition 2** (Data-induced semi-norm). *The empirical error of an estimate $\hat{\theta}$ is defined as:*

$$\|\hat{\theta} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 := \frac{1}{n} \sum_{i=1}^n \left[(r_{\hat{\theta}}(y_w^{(i)}) - r_{\hat{\theta}}(y_l^{(i)})) - (r^*(y_w^{(i)}) - r^*(y_l^{(i)})) \right]^2 ,$$

1256 where $\Sigma_{\mathcal{D}}$ is the Gram matrix:

$$\Sigma_{\mathcal{D}} := \frac{1}{n} \sum_{i=1}^n (\psi(y_w^{(i)}) - \psi(y_l^{(i)})) (\psi(y_w^{(i)}) - \psi(y_l^{(i)}))^\top .$$

1260 And we assume $\Sigma_{\mathcal{D}}$ to be non-singular.

1261 Note that the lemmas below only work for the single-token scenario, and we will adopt them in the
 1262 dual-token prediction task later. The results quoted below from (Yao et al., 2025) follow directly
 1263 from a long line of work on compressed sensing and sparse recovery based on restricted isometry
 1264 (or restricted eigenvalue) properties (Candes et al., 2006), recast for the preference learning setting.

1265 **Lemma 1** (Theorem 1.a of Shah et al. (2015)). *For a sample size $n \geq c_1 \operatorname{tr}(\Sigma_{\mathcal{D}}^{-1})$, any estimator $\hat{\theta}$
 1266 based on n samples has a lower bound as:*

$$\sup_{\theta^* \in \Theta_B} \mathbb{E} \left[\|\hat{\theta} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 \right] = \Omega \left(\frac{d}{n} \right) .$$

1270 **Remark 6.** Here c_1 is a constant independent of data. This lemma is to establish an information-
 1271 theoretical lower bound for single-token reward learning.

1272 **Lemma 2** (Lemma 3.1 of Zhu et al. (2023); see also Shah et al. (2015)). *W.p. at least $1 - \delta$, the
 1273 estimation error of the MLE estimator $\hat{\theta}_{\text{MLE}}$ has an upper bound:*

$$\|\hat{\theta}_{\text{MLE}} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 = \mathcal{O} \left(\frac{d + \log(1/\delta)}{n} \right) .$$

1276 **Definition 3** (ℓ_1 -regularized estimator).

$$\hat{\theta}_{\ell_1} \in \operatorname{argmin}_{\theta \in \Theta_B} \mathcal{L}_{\text{MLE}}(\theta) + \gamma \|\theta\|_1 .$$

1279 **Lemma 3** (Theorem 3.3 of Yao et al. (2025)). *Consider $\|\theta^*\|_0 = k$, then w.p. at least $1 - \delta$, the
 1280 ℓ_1 -regularized estimator $\hat{\theta}_{\ell_1}$ with an appropriate $\gamma = \Theta \left(\sqrt{\frac{\log(d) + \log(1/\delta)}{n}} \right)$ has an upper bound:*

$$\|\hat{\theta}_{\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 = \mathcal{O} \left(\sqrt{\frac{k \log(d) + k \log(1/\delta)}{n}} \right) .$$

1285 **Definition 4** (Relative ℓ_1 -regularized estimator). *Given $\tau \in \Theta_B$, the relative ℓ_1 -regularized estimator
 1286 is defined as:*

$$\hat{\theta}_{\text{rel}\ell_1} \in \operatorname{argmin}_{\theta \in \Theta_B} \mathcal{L}_{\text{MLE}}(\theta) + \gamma \|\theta - \tau\|_1 .$$

1289 **Lemma 4** (Generalized version of Lemma 3). *Consider $\tau \in \Theta_B$, $\|\theta^* - \tau\|_0 = k$, then w.p. at least
 1290 $1 - \delta$, the relative ℓ_1 -regularized estimator $\hat{\theta}_{\text{rel}\ell_1}$ with an appropriate $\gamma = \Theta \left(\frac{\log(d) + \log(1/\delta)}{n} \right)$ has
 1291 an upper bound:*

$$\|\hat{\theta}_{\text{rel}\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 = \mathcal{O} \left(\sqrt{\frac{k \log(d) + k \log(1/\delta)}{n}} \right) .$$

1293 Proof of this lemma is given in Appendix C.10.4.

1296

C.10.2 FORMAL STATEMENT OF THEOREM 10

1297

1298 **Assumption 12** (Task configuration). *Recall that in DTSP task, we have $r^*(a, b) = \beta \mathbf{r}_{\text{sparse}}^\top \psi(a) + \beta e_1^\top \psi(a, b)$, where $a, b \in \mathcal{V}$, $\psi(a), \psi(a, b), \mathbf{r}_{\text{sparse}} \in \mathbb{R}_d$, and $\|\mathbf{r}_{\text{sparse}}\|_0 = k$, $k \ll d$. We further assume*

1299 *$B, L \in \mathbb{R}_+$, $\Theta_B := \{\theta \in \mathbb{R}_d : \|\theta\|_2 \leq B\}$, $\mathbf{r}_{\text{dense}}, \mathbf{r}_{\text{sparse}}, e_1 + \mathbf{r}_{\text{dense}} + \mathbf{r}_{\text{sparse}} \in \Theta_B$, $\|\psi(a)\|_2 \leq L$, and*

1300 *$\psi(a, b) = \psi(b) + (\mathbf{r}_{\text{dense}}^\top \psi(a))e_1$.*

1301

1302 **Assumption 13** (Preference data collection). *For DTSP task, we first collect a single-token dataset*

1303 *$\mathcal{D}^\dagger = \{a_1^{(i)}, a_2^{(i)}\}_{i=1}^n$, and then duplicate it as $\mathcal{D}^\ddagger = \{a_1^{(i)} a_1^{(i)}, a_2^{(i)} a_2^{(i)}\}_{i=1}^n$, and ask human anno-*

1304 *tators to label these pairs. Now we have collected a dual-token preference dataset $\mathcal{D} = \{y_w^{(i)}, y_l^{(i)}\}_{i=1}^n$,*

1305 *where $y_w^{(i)} = a_1^{(i)} a_1^{(i)}$ and $y_l^{(i)} = a_2^{(i)} a_2^{(i)}$ w.p. $\sigma(r^*(a_1^{(i)}, a_1^{(i)}) - r^*(a_2^{(i)}, a_2^{(i)}))$. And we further as-*

1306 *sume that the Gram matrix $\Sigma_{\mathcal{D}} := \frac{1}{n} \sum_{i=1}^n (\psi(a_w^{(i)}) - \psi(a_l^{(i)}))(\psi(a_w^{(i)}) - \psi(a_l^{(i)}))^\top$ is non-singular,*

1307 *$\text{tr}(\Sigma_{\mathcal{D}}^{-1}) = \mathcal{O}(d)$, and $n \geq c_1 \text{tr}(\Sigma_{\mathcal{D}}^{-1})$, where c_1 is the constant in Lemma 1.*

1308

1309 **Theorem 14** (Formal separation theorem). *Under token-level linear parameterization and Assump-*

1310 *tions 12 and 13, there exists an environment for DTSP task, s.t. by estimating from a preference*

1311 *dataset \mathcal{D} with n samples under $\theta_1 = e_1$ constraint, the estimation error of the reward model $\hat{\theta}_r$ can*

1312 *be reduced to $\tilde{\mathcal{O}}(\sqrt{k \log d / n})$ using a (computationally efficient) ℓ_1 -regularized estimator:*

1313

$$1314 \hat{\theta}_{r, \text{rel}\ell_1} \in \underset{\theta_0 + e_1 + \mathbf{r}_{\text{dense}} \in \Theta_B, \theta_1 = e_1}{\text{argmin}} -\frac{1}{n} \sum_{i=1}^n \log \sigma(r_\theta(y_w^{(i)}) - r_\theta(y_l^{(i)})) + \gamma \|\theta_0\|_1 ,$$

1315

1316 *i.e., w.p. $1 - \delta$,*

$$1317 \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (r_{\hat{\theta}_{r, \text{rel}\ell_1}}(y_w^{(i)}) - r_{\hat{\theta}_{r, \text{rel}\ell_1}}(y_l^{(i)})) \right]^2 = \mathcal{O} \left(\sqrt{\frac{k \log(d) + k \log(1/\delta)}{n}} \right) ,$$

1318

1319 *while the estimation error of any estimator for the DPO model $\hat{\theta}_p$ is lower bounded by $\Omega(d/n)$:*

1320

$$1321 \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (r_{\hat{\theta}_p}(y_w^{(i)}) - r_{\hat{\theta}_p}(y_l^{(i)})) \right]^2 = \Omega \left(\frac{d}{n} \right) .$$

1322

C.10.3 PROOF OF THEOREM 14

1323

1324 Let $\pi_{\text{ref}}(\cdot | a)$ be identical for all a , then we have

1325

$$1326 \log \underset{\omega \sim \pi_{\text{ref}}(\cdot | a)}{\mathbb{E}} \exp(\psi(a, b)_1) = \mathbf{r}_{\text{dense}}^\top \psi(a) + C_5 ,$$

1327

1328

1329 for $\forall a \in \mathcal{V}$, where $C_5 \in \mathbb{R}$ is an offset.

1330

1331 Recall that:

1332

1333

$$1334 (\theta_{r,0}^*)^\top \psi(a) = \mathbf{r}_{\text{sparse}}^\top \psi(a) + C_3 ,$$

1335

1336

$$1337 (\theta_{p,0}^*)^\top \psi(a) = \log \underset{\omega \sim \pi_{\text{ref}}(\cdot | a)}{\mathbb{E}} \exp(r^*(a, b)/\beta) + C_4 = \mathbf{r}_{\text{sparse}}^\top \psi(a) + \log \underset{\omega \sim \pi_{\text{ref}}(\cdot | a)}{\mathbb{E}} \exp(\psi(a, b)_1) + C_4 ,$$

1338

1339 we thus have $\theta_{r,0}^* = \mathbf{r}_{\text{sparse}}$ and $\theta_{p,0}^* = \mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}$, due to the non-singularity of the Gram matrix.

1340

1341 We can have a ℓ_1 -regularized estimator for the reward model:

1342

1343

1344

1345

1346

1347

$$1348 \hat{\theta}_{r, \text{rel}\ell_1} \in \underset{\theta_0 + \tau_1 \in \Theta_B, \theta_1 = e_1}{\text{argmin}} -\frac{1}{n} \sum_{i=1}^n \log \sigma(r_\theta(a_w^{(i)} a_w^{(i)}) - r_\theta(a_l^{(i)} a_l^{(i)})) + \gamma \|\theta_0\|_1 ,$$

1348

1349

$$1349 \implies \hat{\theta}_{r, \text{rel}\ell_1, 0} \in \underset{\theta_0 + \tau_1 \in \Theta_B}{\text{argmin}} -\frac{1}{n} \sum_{i=1}^n \log \sigma(\beta(\theta_0 + \tau_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) + \gamma \|\theta_0 + \tau_1\|_1 ,$$

1349

1350 where $\tau_1 := e_1 + \mathbf{r}_{\text{dense}}$. Then Lemma 4 implies there exists appropriate γ , such that w.p. $1 - \delta$,

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1350 and thus w.p. $1 - \delta$,

$$\begin{aligned}
 1352 & \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (r_{\hat{\theta}_{r,\text{rel}\ell_1}}(y_w^{(i)}) - r_{\hat{\theta}_{r,\text{rel}\ell_1}}(y_l^{(i)})) \right]^2 \\
 1353 & = \frac{\beta^2}{n} \sum_{i=1}^n \left[(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}} + e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) - (\hat{\theta}_{r,\text{rel}\ell_1,0} + \mathbf{r}_{\text{dense}} + e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) \right]^2 \\
 1354 & = \frac{\beta^2}{n} \sum_{i=1}^n \left[(\mathbf{r}_{\text{sparse}} - \hat{\theta}_{r,\text{rel}\ell_1,0})^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) \right]^2 \\
 1355 & = \mathcal{O} \left(\sqrt{\frac{k \log(d) + k \log(1/\delta)}{n}} \right).
 \end{aligned}$$

1363 Note that

$$1365 \log \sigma(\hat{r}_{\theta_p}(a_w^{(i)} a_w^{(i)}) - \hat{r}_{\theta_p}(a_l^{(i)} a_l^{(i)})) = \log \sigma(\beta(\theta_{p,0} + e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)}))) ,$$

1366 then Lemma 1 implies that for any estimator $\hat{\theta}_p$, we have

$$1368 \sup_{e_1 + \mathbf{r}_{\text{dense}} + \mathbf{r}_{\text{sparse}} \in \Theta_B} \frac{1}{n} \sum_{i=1}^n \left[(\hat{\theta}_{p,0} + e_1 - \mathbf{r}_{\text{sparse}} - \mathbf{r}_{\text{dense}} - e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) \right]^2 = \Omega \left(\frac{d}{n} \right) .$$

1371 Now observe the data-induced semi-norm of surrogate reward learning:

$$\begin{aligned}
 1373 & \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (\hat{r}_{\theta_p}(y_w^{(i)}) - \hat{r}_{\theta_p}(y_l^{(i)})) \right]^2 \\
 1374 & = \frac{\beta^2}{n} \sum_{i=1}^n \left[(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}} + e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) - (\hat{\theta}_p + e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) \right]^2 \\
 1375 & = \frac{\beta^2}{n} \sum_{i=1}^n \left[(\hat{\theta}_{p,0} + e_1 - \mathbf{r}_{\text{sparse}} - \mathbf{r}_{\text{dense}} - e_1)^\top (\psi(a_w^{(i)}) - \psi(a_l^{(i)})) \right]^2 .
 \end{aligned}$$

1381 And thus there exists an environment for DTSP, s.t.

$$1383 \frac{1}{n} \sum_{i=1}^n \left[(r^*(y_w^{(i)}) - r^*(y_l^{(i)})) - (\hat{r}_{\theta_p}(y_w^{(i)}) - \hat{r}_{\theta_p}(y_l^{(i)})) \right]^2 = \Omega \left(\frac{d}{n} \right) .$$

1386 C.10.4 PROOF OF LEMMA 4

1387 **Lemma 5** (Lemma D.4 of Yao et al. (2025)).

$$1389 \mathcal{L}_{\text{MLE}}(\theta^* + \theta') - \mathcal{L}_{\text{MLE}}(\theta^*) - \nabla \mathcal{L}_{\text{MLE}}(\theta^*)^\top \theta' \geq \Theta(\|\theta'\|_{\Sigma_{\mathcal{D}}}^2) ,$$

1390 for $\forall \theta' \in \mathbb{R}^d$ s.t. $\theta' + \theta^* \in \Theta_B$.

1392 We take $\gamma = \Theta \left(\sqrt{\frac{\log(d) + \log(1/\delta)}{n}} \right)$, where the specific value of γ is determined in Theorem 3.3 of
1393 Yao et al. (2025). By the definition of the relative ℓ_1 -regularized estimator, we have:

$$\begin{aligned}
 1396 & \mathcal{L}_{\text{MLE}}(\hat{\theta}_{\text{rel}\ell_1}) + \gamma \|\hat{\theta}_{\text{rel}\ell_1} - \tau\|_1 \leq \mathcal{L}_{\text{MLE}}(\theta^*) + \gamma \|\theta^* - \tau\|_1 \\
 1397 & \iff \gamma \|\theta^* - \tau\|_1 - \gamma \|\hat{\theta}_{\text{rel}\ell_1} - \tau\|_1 \geq \mathcal{L}_{\text{MLE}}(\hat{\theta}_{\text{rel}\ell_1}) - \mathcal{L}_{\text{MLE}}(\theta^*) .
 \end{aligned}$$

1399 By Lemma 5, we have:

$$1400 \mathcal{L}_{\text{MLE}}(\hat{\theta}_{\text{rel}\ell_1}) - \mathcal{L}_{\text{MLE}}(\theta^*) - \nabla \mathcal{L}_{\text{MLE}}(\theta^*)^\top (\hat{\theta}_{\text{rel}\ell_1} - \theta^*) \geq \Theta(\|\hat{\theta}_{\text{rel}\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2) .$$

1402 Thus

$$1403 \Theta(\|\hat{\theta}_{\text{rel}\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2) \leq \gamma \|\theta^* - \tau\|_1 - \gamma \|\hat{\theta}_{\text{rel}\ell_1} - \tau\|_1 - \nabla \mathcal{L}_{\text{MLE}}(\theta^*)^\top [(\hat{\theta}_{\text{rel}\ell_1} - \tau) - (\theta^* - \tau)]$$

1404 $\leq \gamma \|\theta^* - \tau\|_1 - \gamma \|\hat{\theta}_{\text{rel}\ell_1} - \tau\|_1 + \|\nabla \mathcal{L}_{\text{MLE}}(\theta^*)\|_\infty \|\hat{\theta}_{\text{rel}\ell_1} - \tau\|_1 + \|\nabla \mathcal{L}_{\text{MLE}}(\theta^*)\|_\infty \|(\theta^* - \tau)\|_1$,
 1405 where the second inequality is by Hölder's inequality. Next, we upper bound $\|\nabla \mathcal{L}_{\text{MLE}}(\theta^*)\|_\infty$. As
 1406 shown in Appendix D.3 of [Yao et al. \(2025\)](#), w.p. $1 - \delta$, we have $\|\nabla \mathcal{L}_{\text{MLE}}(\theta^*)\|_\infty \leq \gamma$. Thus, w.p.
 1407 $1 - \delta$, we have:
 1408

$$\Theta(\|\hat{\theta}_{\text{rel}\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2) \leq (\|\nabla \mathcal{L}_{\text{MLE}}(\theta^*)\|_\infty + \gamma) \|\theta^* - \tau\|_1 + (\|\nabla \mathcal{L}_{\text{MLE}}(\theta^*)\|_\infty - \gamma) \|\hat{\theta}_{\text{rel}\ell_1} - \tau\|_1$$

$$\leq 2\gamma \|\theta^* - \tau\|_1,$$

$$\implies \|\hat{\theta}_{\text{rel}\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 = \mathcal{O}(\gamma \|\theta^* - \tau\|_1).$$

1413 Note that $\theta^*, \tau \in \Theta_B$, thus $\|\theta^* - \tau\|_2 = \mathcal{O}(1)$. Then by Cauchy-Schwartz inequality and the fact
 1414 that $\|\theta^* - \tau\|_0 = k$, we have $\|\theta^* - \tau\|_1 = \mathcal{O}(\sqrt{k})$, and finally:
 1415

$$\|\hat{\theta}_{\text{rel}\ell_1} - \theta^*\|_{\Sigma_{\mathcal{D}}}^2 = \mathcal{O}\left(\sqrt{\frac{k \log(d) + k \log(1/\delta)}{n}}\right).$$

C.10.5 FORMAL STATEMENT OF THEOREM 11 AND PROOF

1421 **Lemma 6** (Lemma J.5 of [Nika et al. \(2024\)](#)). *If the features $\psi(a)$ are sampled from a 0-mean
 1422 distribution and span \mathbb{R}^d , then $\log \sum_a \exp(\theta^\top \psi(a))$ is κ -strongly convex w.r.t. $\theta \in \Theta_B$, where κ is
 1423 an $\mathcal{O}(1)$ constant determined by β, B, L and $|\mathcal{V}|$.*

1424 **Theorem 15** (Formal sub-optimality separation theorem). *Under the same setting as Theorem 14,
 1425 there exists an environment for DTSP task, s.t. the sub-optimality of the RLHF policy model $\pi_{\text{RLHF}} =$
 1426 $\underset{\pi \in \Pi}{\text{argmax}} V_{r_{\hat{\theta}_r}}^\pi$ can be reduced to $\mathcal{O}\left(\sqrt{\frac{4 \log d + k \log(1/\delta)}{n}} \cdot \|\Sigma_{\mathcal{D}}^{-1/2}\|_2\right)$, i.e. w.p. $1 - \delta$,*

$$V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{RLHF}}} = \mathcal{O}\left(\sqrt{\frac{4 \log d + k \log(1/\delta)}{n}} \cdot \|\Sigma_{\mathcal{D}}^{-1/2}\|_2\right),$$

1431 while the sub-optimality of the DPO policy model $\pi_{\text{DPO}} = \pi_{\hat{\theta}_p}$ is lower bounded:

$$V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{DPO}}} = \Omega\left(\frac{d}{n} \cdot \frac{1}{\|\Sigma_{\mathcal{D}}\|_2}\right).$$

1436 *Proof.* The proof follows the ideas of Theorem 3.2 of [Zhu et al. \(2023\)](#) and Theorem 4.2 of [Nika
 1437 et al. \(2024\)](#), with appropriate adaptations to our setting.
 1438

$$\begin{aligned} V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{RLHF}}} &\leq \mathbb{E}_{\substack{a_1 \sim \pi^*, b_1 \sim \pi^*(\cdot | a_1), \\ a_2 \sim \pi_{\text{RLHF}}, b_2 \sim \pi_{\text{RLHF}}(\cdot | a_2)}} \left[(r^*(a_1, b_1) - r^*(a_2, b_2)) - \left(\beta \log \frac{\pi_{\text{RLHF}}(a_1, b_1)}{\pi_{\text{ref}}(a_1, b_1)} - \beta \log \frac{\pi_{\text{RLHF}}(a_2, b_2)}{\pi_{\text{ref}}(a_2, b_2)} \right) \right] \\ &= \mathbb{E}_{\substack{a_1 \sim \pi^*, b_1 \sim \pi^*(\cdot | a_1), \\ a_2 \sim \pi_{\text{RLHF}}, b_2 \sim \pi_{\text{RLHF}}(\cdot | a_2)}} \left[(r^*(a_1, b_1) - r^*(a_2, b_2)) - (r_{\hat{\theta}_r}(a_1, b_1) - r_{\hat{\theta}_r}(a_2, b_2)) \right] \\ &= \mathbb{E}_{\substack{a_1 \sim \pi^*, \\ a_2 \sim \pi_{\text{RLHF}}}} \left[\beta (\mathbf{r}_{\text{sparse}} - \hat{\theta}_{r,0})^\top (\psi(a_1) - \psi(a_2)) \right] \\ &= \beta (\mathbf{r}_{\text{sparse}} - \hat{\theta}_{r,0})^\top \mathbb{E}_{\substack{a_1 \sim \pi^*, \\ a_2 \sim \pi_{\text{RLHF}}}} (\psi(a_1) - \psi(a_2)) \\ &\leq \beta \|\Sigma_{\mathcal{D}}^{1/2} (\mathbf{r}_{\text{sparse}} - \hat{\theta}_{r,0})\|_2 \|\Sigma_{\mathcal{D}}^{-1/2} \mathbb{E}_{\substack{a_1 \sim \pi^*, \\ a_2 \sim \pi_{\text{RLHF}}}} (\psi(a_1) - \psi(a_2))\|_2 \\ &= \beta \|\mathbf{r}_{\text{sparse}} - \hat{\theta}_{r,0}\|_{\Sigma_{\mathcal{D}}} \cdot \mathcal{O}\left(\|\Sigma_{\mathcal{D}}^{-1/2}\|_2\right) \\ &= \mathcal{O}\left(\sqrt{\frac{4 \log d + k \log(1/\delta)}{n}} \cdot \|\Sigma_{\mathcal{D}}^{-1/2}\|_2\right). \end{aligned}$$

1457 The first inequality comes from performance difference lemma (see Appendix C.11); the second
 1458 equality comes from the observation that all r_{θ_r} with $\theta_{r,1} = e_1$ can be fitted by the log-linear policy
 1459

model; the third and fourth equalities come from simple calculations under our setting; the fifth inequality comes from Cauchy-Schwarz inequality; the sixth equality comes from the fact that $\psi(a)$ is bounded; and the last equation comes from Theorem 14.

Since the optimal policy satisfies $\pi^*(a, b) = \pi_{\text{ref}}(a, b) \exp(r(a, b)/\beta)/Z$, we have:

$$\begin{aligned} V_{r^*}^{\pi^*} &= \mathbb{E}_{a \sim \pi^*, b \sim \pi^*(\cdot|a)} \left[r^*(a, b) - \beta \log \frac{\pi^*(a, b)}{\pi_{\text{ref}}(a, b)} \right] \\ &= \beta \log Z \\ &= r^*(a', b') - \beta \log \frac{\pi^*(a', b')}{\pi_{\text{ref}}(a', b')} , \quad \forall a', b' \in \mathcal{V} . \end{aligned}$$

Then we have:

$$\begin{aligned} V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{DPO}}} &= \mathbb{E}_{a \sim \pi_{\text{DPO}}, b \sim \pi_{\text{DPO}}(\cdot|a)} \left[\beta \log \frac{\pi_{\text{DPO}}(a, b)}{\pi_{\text{ref}}(a, b)} - r^*(a, b) + V_{r^*}^{\pi^*} \right] \\ &= \mathbb{E}_{a \sim \pi_{\text{DPO}}, b \sim \pi_{\text{DPO}}(\cdot|a)} [\beta \log \pi_{\text{DPO}}(a, b) - \beta \log \pi^*(a, b)] \\ &= \beta \mathbb{E}_{a \sim \pi_{\text{DPO}}} \left[(\hat{\theta}_{p,0} - \mathbf{r}_{\text{sparse}} - \mathbf{r}_{\text{dense}})^\top (\psi(a) - v) \right] + \beta \log \frac{\mathbb{E}_{a \sim \pi_{\text{ref}}} \exp((\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}})^\top (\psi(a) - v))}{\mathbb{E}_{a \sim \pi_{\text{ref}}} \exp((\hat{\theta}_{p,0})^\top (\psi(a) - v))} , \end{aligned}$$

where v can be any vector in \mathbb{R}^d . Recall that we require $\pi_{\text{ref}}(\cdot|a)$ to be identical for all $a \in \mathcal{V}$ in the proof of Theorem 14. Here we further construct π_{ref} to be uniform on the first token. Now observe

$$\log \frac{\mathbb{E}_{a \sim \pi_{\text{ref}}} \exp((\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}})^\top (\psi(a) - v))}{\mathbb{E}_{a \sim \pi_{\text{ref}}} \exp((\hat{\theta}_{p,0})^\top (\psi(a) - v))} = \log \frac{\sum_{a \in \mathcal{V}} \exp((\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}})^\top (\psi(a) - v))}{\sum_{a \in \mathcal{V}} \exp((\hat{\theta}_{p,0})^\top (\psi(a) - v))} .$$

Set v to be $\frac{1}{|\mathcal{V}|} \sum_{a \in \mathcal{V}} \psi(a)$, then we have $\sum_{a \in \mathcal{V}} (\psi(a) - v) = 0$. Since $\Sigma_{\mathcal{D}}$ is already non-singular, we have that $\{\psi(a) - v\}_{a \in \mathcal{V}}$ can span \mathbb{R}^d . So we can directly apply Lemma 6, and get

$$\begin{aligned} &\log \sum_{a \in \mathcal{V}} \exp((\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}})^\top (\psi(a) - v)) - \log \sum_{a \in \mathcal{V}} \exp((\hat{\theta}_{p,0})^\top (\psi(a) - v)) \\ &\geq \langle (\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}, \nabla_{\theta} \log \sum_{a \in \mathcal{V}} \exp(\theta^\top (\psi(a) - v)) |_{\theta=\hat{\theta}_{p,0}} \rangle + \frac{\kappa}{2} \|(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}\|_2^2 \\ &= - \mathbb{E}_{a \sim \pi_{\text{DPO}}} \left[(\hat{\theta}_{p,0} - (\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}))^\top (\psi(a) - v) \right] + \frac{\kappa}{2} \|(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}\|_2^2 . \end{aligned}$$

Therefore, we have

$$\begin{aligned} V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{DPO}}} &\geq \frac{\kappa}{2} \|(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}\|_2^2 \\ &= \frac{\kappa}{2} \|(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}\|_2^2 \|\Sigma_{\mathcal{D}}\|_2 \cdot \frac{1}{\|\Sigma_{\mathcal{D}}\|_2} \\ &\geq \frac{\kappa}{2} \|(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}\|_2 \|\Sigma_{\mathcal{D}}((\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0})\|_2 \cdot \frac{1}{\|\Sigma_{\mathcal{D}}\|_2} \\ &\geq \frac{\kappa}{2} \langle (\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}, \Sigma_{\mathcal{D}}((\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}) \rangle \cdot \frac{1}{\|\Sigma_{\mathcal{D}}\|_2} \\ &= \frac{\kappa}{2} \|(\mathbf{r}_{\text{sparse}} + \mathbf{r}_{\text{dense}}) - \hat{\theta}_{p,0}\|_{\Sigma_{\mathcal{D}}}^2 \cdot \frac{1}{\|\Sigma_{\mathcal{D}}\|_2} \\ &= \Omega\left(\frac{d}{n} \cdot \frac{1}{\|\Sigma_{\mathcal{D}}\|_2}\right) . \end{aligned}$$

The first inequality comes from Lemma 6; the second equality comes from the non-singularity of $\Sigma_{\mathcal{D}}$; the third inequality comes from a standard property of the spectral norm; the fourth inequality comes from Cauchy-Schwarz inequality; the fifth equality is a simple algebraic equality; and the last equation comes from Theorem 14.

1512 C.11 OMITTED CALCULATIONS
15131514 **Calculation of the sub-optimality with respect to the mis-specification error.**
15151516 First, note that for any $\pi \in \Delta(\mathcal{Y})$, we have:
1517

$$\begin{aligned}
V_{r^*}^{\pi^*} - V_{r^*}^{\pi} &= \mathbb{E}_{y \sim \pi^*} \left[r^*(y) - \beta \log \frac{\pi^*(y)}{\pi_{\text{ref}}(y)} \right] - \mathbb{E}_{y \sim \pi} \left[r^*(y) - \beta \log \frac{\pi(y)}{\pi_{\text{ref}}(y)} \right], \\
&= \mathbb{E}_{y \sim \pi^*} \left[r^*(y) - \beta \log \frac{\pi^*(y)}{\pi(y)} - \beta \log \frac{\pi(y)}{\pi_{\text{ref}}(y)} \right] - \mathbb{E}_{y \sim \pi} \left[r^*(y) - \beta \log \frac{\pi(y)}{\pi_{\text{ref}}(y)} \right] \\
&= -\text{KL}(\pi^* \parallel \pi) + \mathbb{E}_{y \sim \pi^*, y' \sim \pi} \left[(r^*(y) - r^*(y')) - \left(\beta \log \frac{\pi(y)}{\pi_{\text{ref}}(y)} - \beta \log \frac{\pi(y')}{\pi_{\text{ref}}(y')} \right) \right] \\
&\leq \mathbb{E}_{y \sim \pi^*, y' \sim \pi} \left[(r^*(y) - r^*(y')) - \left(\beta \log \frac{\pi(y)}{\pi_{\text{ref}}(y)} - \beta \log \frac{\pi(y')}{\pi_{\text{ref}}(y')} \right) \right].
\end{aligned}$$

1518 We call it the performance difference lemma (Lemma 1 of Shi et al. (2025)).
15191520 For RLHF, we have:
1521

$$\begin{aligned}
V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{RLHF}}} &\leq \mathbb{E}_{y \sim \pi^*, y' \sim \pi_{\text{RLHF}}} \left[(r^*(y) - r^*(y')) - \left(\beta \log \frac{\pi_{\text{RLHF}}(y)}{\pi_{\text{ref}}(y)} - \beta \log \frac{\pi_{\text{RLHF}}(y')}{\pi_{\text{ref}}(y')} \right) \right] \\
&\leq \max_{y, y' \in \mathcal{Y}} \left[(r^*(y) - r^*(y')) - \left(\beta \log \frac{\pi_{\text{RLHF}}(y)}{\pi_{\text{ref}}(y)} - \beta \log \frac{\pi_{\text{RLHF}}(y')}{\pi_{\text{ref}}(y')} \right) \right] \\
&\leq \max_{y, y' \in \mathcal{Y}} \underbrace{[(r^*(y) - r^*(y')) - (r_{\phi}(y) - r_{\phi}(y'))]}_{\text{reward model mis-specification error}} \\
&\quad + \underbrace{\max_{y, y' \in \mathcal{Y}} \left[(r_{\phi}(x, y) - r_{\phi}(x, y')) - \left(\beta \log \frac{\pi_{\text{RLHF}}(y|x)}{\pi_{\text{ref}}(y|x)} - \beta \log \frac{\pi_{\text{RLHF}}(y'|x)}{\pi_{\text{ref}}(y'|x)} \right) \right]}_{\text{policy model mis-specification error}},
\end{aligned}$$

1522 where the first inequality is by performance difference lemma, and the last two inequalities are by
1523 symmetry and the properties of max. And if $\mathcal{F} \subseteq \mathcal{F}_{\Pi}$, by the definition of π_{RLHF} , we have
1524

$$V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{RLHF}}} \leq \underbrace{\max_{y, y' \in \mathcal{Y}} [(r^*(y) - r^*(y')) - (r_{\phi}(y) - r_{\phi}(y'))]}_{\text{reward model mis-specification error}}.$$

1525 For DPO, by performance difference lemma, we have:
1526

$$\begin{aligned}
V_{r^*}^{\pi^*} - V_{r^*}^{\pi_{\text{DPO}}} &\leq \mathbb{E}_{y \sim \pi^*, y' \sim \pi_{\text{DPO}}} \left[(r^*(y) - r^*(y')) - \left(\beta \log \frac{\pi_{\text{DPO}}(y)}{\pi_{\text{ref}}(y)} - \beta \log \frac{\pi_{\text{DPO}}(y')}{\pi_{\text{ref}}(y')} \right) \right] \\
&\leq \max_{y, y' \in \mathcal{Y}} \underbrace{\left[(r^*(y) - r^*(y')) - \left(\beta \log \frac{\pi_{\text{DPO}}(y)}{\pi_{\text{ref}}(y)} - \beta \log \frac{\pi_{\text{DPO}}(y')}{\pi_{\text{ref}}(y')} \right) \right]}_{\text{policy model mis-specification error}} \\
&= \max_{y, y' \in \mathcal{Y}} \underbrace{[(r^*(y) - r^*(y')) - (\hat{r}_{\text{DPO}}(y) - \hat{r}_{\text{DPO}}(y'))]}_{\text{surrogate reward model mis-specification error}}.
\end{aligned}$$

1527 The first inequality is by performance difference lemma, the second inequality is by symmetry and
1528 the property of max, and the last equality is just another interpretation.
15291530 Therefore, we can see that the sub-optimality of each algorithm can be upper bounded by the linear
1531 model mis-specification error.
15321533 **Calculation of token-level structure of the optimal solution for DPO.** As motivated by Rafailov
1534 et al. (2024), we show the token-level structure of the optimal solution for DPO as:
1535

$$\pi^*(y_t | y_{0 \dots t-1}) = \pi_{\text{ref}}(y_t | y_{0 \dots t-1}) \exp \left(\frac{q^*(y_t | y_{0 \dots t-1}) - q^*(y_{t-1} | y_{0 \dots t-2})}{\beta} \right),$$

1566
1567
1568

$$\pi^*(y_0) = \pi_{\text{ref}}(y_0) \exp \left(\frac{q^*(y_0) - \beta \log Z}{\beta} \right) ,$$

1569 where $Z := \sum_y \pi_{\text{ref}}(y) \exp(r^*(y)/\beta)$, and the q^* function is determined in a recursive way:

1570
1571
1572

$$q^*(y_t | y_{0 \dots t-1}) = \begin{cases} \beta \log \sum_{s \in \mathcal{V}} \pi_{\text{ref}}(s | y_{0 \dots t}) \exp(q^*(s | y_{0 \dots t}) / \beta) & y_t \text{ is not the terminal token;} \\ r^*(y_{0 \dots t}) & y_t \text{ is the terminal token.} \end{cases}$$

1573 To prove this, we define a q' function as:

1574
1575
1576

$$q'(y_0) = \beta \log Z + \beta \log \frac{\pi^*(y_0)}{\pi_{\text{ref}}(y_0)} , \quad q'(y_t | y_{0 \dots t-1}) = q'(y_{t-1} | y_{0 \dots t-2}) + \beta \log \frac{\pi^*(y_t | y_{0 \dots t-1})}{\pi_{\text{ref}}(y_t | y_{0 \dots t-1})} .$$

1577 For the initial token, by definition we have:

1578
1579
1580

$$\pi^*(y_0) = \pi_{\text{ref}}(y_0) \exp \left(\frac{q'(y_0) - \beta \log Z}{\beta} \right) . \quad (9)$$

1581 And then for a y with y_N as the terminal token, we have:

1582
1583
1584
1585
1586
1587
1588
1589

$$\begin{aligned} \beta \log \frac{\pi^*(y)}{\pi_{\text{ref}}(y)} &= \sum_{t=0}^N \beta \log \frac{\pi^*(y_t | y_{0 \dots t-1})}{\pi_{\text{ref}}(y_t | y_{0 \dots t-1})} \\ &= q'(y_0) - \beta \log Z + \sum_{t=1}^N q'(y_t | y_{0 \dots t-1}) - q'(y_{t-1} | y_{0 \dots t-2}) \\ &= -\beta \log Z + q'(y_N | y_{0 \dots N-1}) . \end{aligned}$$

1590 Note that $\pi^*(y) = \pi_{\text{ref}}(y) \exp(r^*(y)/\beta)/Z$, we have:

1591
1592
1593

$$\beta \log \frac{\pi^*(y)}{\pi_{\text{ref}}(y)} = -\beta \log Z + r^*(y) ,$$

1594 thus

1595
1596

$$q'(y_N | y_{0 \dots N-1}) = r^*(y) . \quad (10)$$

1597 Then by definition:

1598
1599
1600
1601

$$q'(y_t | y_{0 \dots t-1}) = q'(y_{t-1} | y_{0 \dots t-2}) + \beta \log \frac{\pi^*(y_t | y_{0 \dots t-1})}{\pi_{\text{ref}}(y_t | y_{0 \dots t-1})} ,$$

1602 we have:

1603
1604
1605

$$\pi_{\text{ref}}(y_t | y_{0 \dots t-1}) \exp \left(\frac{q'(y_t | y_{0 \dots t-1}) - q'(y_{t-1} | y_{0 \dots t-2})}{\beta} \right) = \pi^*(y_t | y_{0 \dots t-1}) , \quad (11)$$

1606 and thus

1607
1608
1609

$$\sum_s \pi_{\text{ref}}(s | y_{0 \dots t-1}) \exp \left(\frac{q'(s | y_{0 \dots t-1}) - q'(y_{t-1} | y_{0 \dots t-2})}{\beta} \right) = 1 ,$$

1610 which yields:

1611
1612
1613

$$q'(y_{t-1} | y_{0 \dots t-2}) = \beta \log \sum_{s \in \mathcal{V}} \pi_{\text{ref}}(s | y_{0 \dots t-1}) \exp(q'(s | y_{0 \dots t-1}) / \beta) . \quad (12)$$

1614 Combining Equations (9) to (12), we show that q^* exists and is equivalent to q' .

1615 **Calculation of the underlying “real” objective.** When ground-truth reward is non-realizable for
1616 the reward model, while the reward model is realizable for the policy model, for a given reward
1617 model r_ϕ , the policy model outputs the policy $\pi_{\theta^*(r_\phi)}$ which satisfies:

1618
1619

$$\pi_{\theta^*(r_\phi)} := \operatorname{argmax}_{\pi_\theta \in \Pi} V_{r_\phi}^{\pi_\theta} = \operatorname{argmax}_{\pi_\theta \in \Pi} \mathbb{E}_{y \sim \pi_\theta} r_\phi(y) - \beta \text{KL}(\pi_\theta \| \pi_{\text{ref}}) .$$

1620 The solution is given by:
 1621

$$1622 \pi_{\theta^*}(r_\phi)(y) = \frac{1}{Z(\phi)} \pi_{\text{ref}}(y) \exp\left(\frac{1}{\beta} r_\phi(y)\right),$$

1624 where $Z(\phi) := \sum_{y \in \mathcal{Y}} \pi_{\text{ref}}(y) \exp(r_\phi(y)/\beta)$ is the partition function.
 1625

1626 The goal of preference-based policy learning is to find a policy π_θ that maximizes $V_{r^*}^{\pi_\theta}$. Thus, the
 1627 reward learning should aim to find r_ϕ that maximizes:

$$1628 V_{r^*}^{\pi_{\theta^*}(r_\phi)} = \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \left[r^*(y) - \beta \log \frac{\pi_{\theta^*}(r_\phi)(y)}{\pi_{\text{ref}}(y)} \right] \\ 1629 = \beta \log Z(\phi) + \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} [r^*(y) - r_\phi(y)],$$

1633 which does not align with maximizing MLE.
 1634

1635 Note that

$$1636 \nabla_\phi \left\{ \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} [r^*(y) - r_\phi(y)] \right\} = \underbrace{\mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \nabla_\phi \log \pi_{\theta^*}(r_\phi) [r^*(y) - r_\phi(y)]}_{\text{term 1}} - \underbrace{\mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \nabla r_\phi(y)}_{\text{term 2}}.$$

1640 And we have:
 1641

$$1642 \text{term 1} \\ 1643 = \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \nabla_\phi \log \pi_{\theta^*}(r_\phi)(y) [r^*(y) - r_\phi(y)] \\ 1644 = \mathbb{E}_{y, y' \sim \pi_{\theta^*}(r_\phi)} \nabla_\phi \log \pi_{\theta^*}(r_\phi)(y) [r^*(y) - r^*(y') - r_\phi(y) + r_\phi(y')] \quad (\text{policy gradient theorem}) \\ 1645 = \frac{1}{2} \mathbb{E}_{y, y' \sim \pi_{\theta^*}(r_\phi)} [\nabla_\phi \log \pi_{\theta^*}(r_\phi)(y) - \nabla_\phi \log \pi_{\theta^*}(r_\phi)(y')] [r^*(y) - r^*(y') - r_\phi(y) + r_\phi(y')],$$

1649 and

$$1651 \text{term 2} \\ 1652 = \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \nabla r_\phi(y) \\ 1653 = \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \beta \nabla_\phi [\log \pi_{\text{ref}}(y) + \log \exp(r_\phi(y)/\beta)] \\ 1654 = \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \beta \nabla_\phi [\log \pi_{\text{ref}}(y) + \log \exp(r_\phi(y)/\beta) - \log Z(\phi)] + \beta \nabla_\phi \log Z(\phi) \\ 1655 = \mathbb{E}_{y \sim \pi_{\theta^*}(r_\phi)} \beta \nabla_\phi \log \pi_{\theta^*}(r_\phi)(y) + \beta \nabla_\phi \log Z(\phi) \\ 1656 = \beta \nabla_\phi \log Z(\phi). \quad (\text{policy gradient theorem})$$

1661 By combining them, we obtain Equation (4) and Equation (5).
 1662

1663 Note that

$$1664 \mathcal{L}_{\text{MLE}}(\phi) = - \mathbb{E}_{y, y' \sim \mu} [\sigma(r^*(y) - r^*(y')) \log \sigma(r_\phi(y) - r_\phi(y')) + \sigma(r^*(y') - r^*(y)) \log \sigma(r_\phi(y') - r_\phi(y))],$$

1666 and

$$1668 \nabla_q [\sigma(p) \log \sigma(q) + \sigma(-p) \log \sigma(-q)] = \sigma(p) \sigma(-q) - \sigma(-p) \sigma(q) \\ 1669 = \sigma(p)(1 - \sigma(q)) - (1 - \sigma(p)) \sigma(q) \\ 1670 = \sigma(p) - \sigma(q),$$

1671 we have:
 1672

$$1673 \nabla_\phi \mathcal{L}_{\text{MLE}}(\phi) = - \mathbb{E}_{y, y' \sim \mu} [\nabla_\phi r_\phi(y) - \nabla_\phi r_\phi(y')] [\sigma(r^*(y) - r^*(y')) - \sigma(r_\phi(y) - r_\phi(y'))],$$

1674 which is Equation (6).
 1675
 1676 To further align the MLE objective with the underlying “real” objective, we can have:
 1677 $\nabla_\phi \mathcal{L}_{\text{MLE}}(\phi) \approx - \mathbb{E}_{y, y' \sim \mu} [\nabla_\phi r_\phi(y) - \nabla_\phi r_\phi(y')] \sigma'(r_\phi(y) - r_\phi(y')) [(r^*(y) - r^*(y')) - (r_\phi(y) - r_\phi(y'))]$,
 1678
 1679 and we can assign the value of $\sigma'(r_\phi(y) - r_\phi(y'))$ to the sampling probability $\mu(y, y')$. Thus we
 1680 expect $\mu(y, y') \propto \pi_{\theta^*(r_\phi)}/\sigma'(r_\phi(y) - r_\phi(y'))$. And under the context of DPO, we have $\pi_{\theta^*(r_\phi)} = \pi_\theta$
 1681 and $r_\phi = \hat{r}_\theta$, and thus $\mu \propto \pi_{\theta^*(r_\phi)}/\sigma'(\hat{r}_\theta(y) - \hat{r}_\theta(y'))$, which is exactly PILAF sampler.
 1682
 1683 **Calculation of online IPO.** For online IPO, let’s observe its objective function:
 1684
 1685 $\mathcal{L}_{\text{IPO}}^{\text{online}}(\pi_\theta) = \mathbb{E}_{(y, y') \sim \text{sg}(\rho_\theta)} p^*(y > y') \left[(r_\theta(y) - r_\theta(y')) - \frac{1}{2} \right]^2 + p^*(y' > y) \left[(r_\theta(y') - r_\theta(y)) - \frac{1}{2} \right]^2$,
 1686
 1687 and its gradient is:
 1688
 1689
$$\begin{aligned} \nabla_\theta \mathcal{L}_{\text{IPO}}^{\text{online}}(\pi_\theta) &= 2 \mathbb{E}_{(y, y') \sim \text{sg}(\rho_\theta)} \left\{ p^*(y > y') \left[(r_\theta(y) - r_\theta(y')) - \frac{1}{2} \right] + p^*(y' > y) \left[(r_\theta(y') - r_\theta(y)) - \frac{1}{2} \right] \right\} \nabla_\theta (r_\theta(y) - r_\theta(y')) \\ &= 2 \mathbb{E}_{(y, y') \sim \text{sg}(\rho_\theta)} \left[(r_\theta(y) - r_\theta(y')) - \frac{p^*(y > y') - p^*(y' > y)}{2} \right] \nabla_\theta (r_\theta(y) - r_\theta(y')) , \end{aligned}$$

 1690
 1691 thus we have:
 1692
 1693
$$\mathcal{L}_{\text{IPO}}^{\text{online}}(\pi_\theta) \stackrel{\nabla}{=} \mathbb{E}_{(y, y') \sim \text{sg}(\rho_\theta)} \left[(r_\theta(y) - r_\theta(y')) - \frac{p^*(y > y') - p^*(y' > y)}{2} \right]^2 .$$

 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728 **D IMPLEMENTATION DETAILS**
17291730 **Codebases.** Our codebase is mainly based on MODPO (Zhou et al., 2024) (<https://github.com/ZHZisZZ/modpo>), Online-RLHF (Dong et al., 2024; Xiong et al., 2024)
1731 (<https://github.com/RLHFlow/Online-RLHF>), Samplers-in-Online-DPO (Shi et al.,
1732 2025) (<https://github.com/srzer/Samplers-in-Online-DPO>). We are committed
1733 to releasing the codes.
17341735 **Datasets.** We adopt one common training dataset, PKU-SafeRLHF (Ji et al., 2023) (<https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF>). *SFT*: We train
1736 our initial model on 5k samples of PKU-SafeRLHF-QA (<https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-QA>). *Online training*: We use 10k samples of
1737 PKU-SafeRLHF-Prompt (<https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-prompt>) for training, and 2k samples for evaluation. *Offline training*: We
1738 adopt two preference datasets, PKU-SafeRLHF-safer and PKU-SafeRLHF-better, each
1739 composed of 9k training samples and 2k evaluation samples, following the practice of Zhou et al.
1740 (2024).
17411742 **Models.** Limited by computation resources, our base model is **GPT-2-LARGE-774M** (Rad-
1743 ford et al., 2019) (<https://huggingface.co/openai-community/gpt2-large>). Our reward model is **GPT2-LARGE-HARMLESS** model (Yang et al., 2024) (https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model).
17441745 **Hyper-parameters.** The maximum length is set as 256. The prompt template is “**BEGINNING OF**
1746 **CONVERSATION: USER: [prompt] ASSISTANT: [response]**”. *SFT*: The hyper-parameter setting
1747 is based on Dong et al. (2024). We use a batch size 32. *Online training*: The hyper-parameter setting
1748 is based on Dong et al. (2024). We use a batch size 32, a learning rate $5e-7$, and a gradient
1749 accumulation step 2. We train for 3 iterations, each for 2 epochs. We set $r_{\text{margin}} = 0.4, 1, 4$ for
1750 verifications of Condition 1, and set $r_{\text{margin}} = 1$ for verifications of Conditions 2 to 4. *Offline*
1751 *training*: The hyper-parameter setting is based on Zhou et al. (2024). We use a batch size 4, a
1752 learning rate $1e-4$, and a gradient accumulation step 2. We train for 3 epochs (when training reward
1753 model on 9k data of PKU-SafeRLHF-safer, we train 6 epochs for higher training accuracy). We
1754 haven’t extensively tuned these hyper-parameters.
17551756 **Computation resources.** Our experiments are conducted on NVIDIA RTX A6000. *SFT and Online*
1757 *training*: We adopt 4 workers, each taking up 35,000M of memory, running for 2-3 hours. *Offline*
1758 *training*: We adopt 1 worker, which takes up 25,000M of memory and runs for up to 40 minutes.
1759
17601761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781