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ABSTRACT

Compression techniques have been crucial in advancing machine learning by en-
abling efficient training and deployment of large-scale language models. However,
these techniques have received limited attention in the context of low-resource
language models, which are trained on even smaller amounts of data and under
computational constraints, a scenario known as the "low-resource double-bind."
This paper investigates the effectiveness of pruning, knowledge distillation, and
quantization on an exclusively low-resourced, small-data language model, AfriB-
ERTa. Through a battery of experiments, we assess the effects of compression on
performance across several metrics beyond accuracy. Our study provides evidence
that compression techniques significantly improve the efficiency and effectiveness
of small-data language models, confirming that the prevailing beliefs regarding
the effects of compression on large, heavily parameterized models hold true for
less-parameterized, small-data models.

1 INTRODUCTION

One of the most challenging aspects of working with large language models (LLMs) is their com-
putational complexity (Zhang et al., 2021). With 340M parameters, even the BERT-large model is
impractical for deployment on low-end devices with inadequate computational power (Treviso et al.,
2022). Several architectural changes to make the BERT model more efficient have been made (Jiao
et al., 2019; Sanh et al., 2019; Lan et al., 2019). However, to achieve adequate performance on down-
stream tasks, LLMs require huge training corpora (billions of tokens), which are unavailable for most
African languages (Nekoto et al., 2020). The omission of African languages from the pre-training
phase of LLMs results in low performance in these languages, making NLP tasks participatory diffi-
cult (Kreutzer et al., 2022). Ahia et al. (2021) termed this situation the "low-resource double-bind" to
describe the coexistence of data and computation limitations on resources. This is a popular NLP
setting for low-resource languages, although the performance trade-offs are understudied.

One of the most promising attempts to mitigate the sparse presence of low-resource African languages
in model training is the creation of AfriBERTa, the first multilingual language model trained purely
and from scratch on African languages with < 1GB of data. AfriBERTa (Ogueji et al., 2021)
beats competitive models like mBERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020) on
text categorization and NER tasks. Instead of depending on high-resource languages for transfer
learning, AfriBERTa takes advantage of linguistic similarities between languages from low-resource
environments to yield promising results, which is critical in determining the sustainability of language
models trained on small datasets. However, with 126M parameters, the AfriBERTa-large model is
still impractical for deployment on low-end devices with inadequate computational power. Moreover,
little is known about the ability of a small-data, low-resource-focused model like AfriBERTa to
generalize to unseen-before languages, considering its small size, and its ability to get "smaller" for
efficient usage by resource-constrained users.
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This research attempts to bridge the gap between a low-resource, small-data, high-performance
multilingual language model and an ultra-efficient, deployable model for double-bind users. Our
experimental results demonstrate that pruning achieves ≈ 60% reduction in model size with a minimal
performance drop. Furthermore, generalization tests reveal varied outcomes, with some languages
surpassing dense models even with extreme pruning. Distillation achieves compression rates between
22% and 33% with comparable performances. Additionally, quantization reduces the model size
by 64.08%, inference time by 52.3%, and even outperforms the baseline model in the F1 score for
certain languages. Our contributions address the following questions:

1. How tiny can we construct a small-data model using the knowledge distillation framework?

2. What are the efficiency and generalization limits of pruning on a small-data model?

3. What are the optimal reductions we can achieve in size and latency utilizing quantization?

Related work First introduced by Hinton et al. (2015), Sanh et al. (2019) demonstrated similar
performances on downstream tasks with smaller language models pre-trained using distillation,
which is faster at inference and suitable for edge devices. Jiao et al. (2019) proposed a transformer-
specific distillation method, employing a two-stage learning framework with general and task-specific
distillation using BERT. Han et al. (2015) reintroduced modern pruning as "network pruning." and
the spotlight intensified with Frankle and Carbin (2019) suggesting the existence of subnetworks
within a dense neural network that matches or surpass the dense model’s performance—termed
"winning tickets." Yu et al. (2019) and Renda et al. (2020) also found winning tickets early in
training for Transformers and LSTMs. Chen et al. (2020) and Prasanna et al. (2020) also explored
trainable subnetworks in pre-trained BERT models, locating matching subnetworks at 40% to 90%
sparsity across various applications. Li et al. (2020) demonstrated that heavily compressing large
models resulted in higher accuracy than lightly compressing small models. Bai et al. (2022) also
introduced post-training quantization for language models, minimizing training time, memory, and
data consumption, while Wang et al. (2022) achieved 16× compression by quantizing transformer
backbones to 4-bit and applying 50% fine-grained structural sparsity. Additionally, Xiao et al. (2022)
enabled 8-bit weight, 8-bit activation quantization for large language models, addressing activation
outliers, and Dettmers et al. (2022) used LLM.int8() on transformers with 16 or 32-bit weights for
immediate inference using vector-wise quantization and mixed-precision decomposition. As far as
we know, our work is the first to explore these techniques’ efficacy in a low-resource double-bind
setting.

2 APPROACH

This section details our experimental settings for the compression techniques we used to evaluate
efficiency in our small-data, pre-trained model of choice. Further details on our training setup can be
found in Appendix A, and all settings stay consistent for all our experiments.

Data We use the AfriBERTa corpus for distillation; it comprises 11 African languages. We use
the MasakhaNER dataset (Adelani et al., 2021), a Named Entity Recognition dataset that spans 10
African languages, for task-specific compression evaluation.

Model Training This study uses the AfriBERTa models, Base and Large, which are based on the
XLM-R architecture. For the different compression strategies we explore, we use either or both the
large variant and base variant for our study. The final results were averaged over three training runs
with different training seeds for all reported results. We notice an insignificant standard deviation and
distribution between the results of the different seeds.

Tasks Evaluation The evaluation of the compressed models in this study focuses on the NER
task due to its significant relevance in downstream applications such as question answering and
information extraction (Tjong Kim Sang and De Meulder, 2003). We adopt the F1 score as our
primary evaluation metric, and the evaluation dataset is the MasakhaNER dataset (Adelani et al.,
2021).
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Table 1: Average results for the distilled models on NER task across 10 languages. The best
student variant for each teacher is highlighted, and the best variant for each strategy is underlined.

Distillation strategy Teacher #Layers #Att. Heads #Params amh hau ibo kin lug luo pcm swa wol yor avg

Task-agnostic AfriBERTa-base 4 4 83M 64.96 87.28 83.58 68.15 74.57 63.02 78.92 83.89 55.46 73.62 73.35
4 6 83M 64.23 87.34 83.84 67.59 74.60 60.00 79.40 84.00 57.21 73.38 73.16
6 4 97M 65.96 87.60 85.55 70.16 75.90 64.61 81.65 85.48 57.70 74.82 74.94
6 6 97M 66.92 87.91 85.28 69.81 77.19 68.40 81.72 85.08 60.28 75.47 75.81

AfriBERTa-large 4 4 83M 65.28 87.28 84.15 68.83 73.82 63.79 79.80 84.13 56.30 73.43 73.68
4 6 83M 65.25 87.62 84.28 68.82 74.66 62.60 78.88 84.07 55.11 73.85 73.51
6 4 97M 69.38 88.25 85.08 69.49 75.44 63.87 82.71 85.87 56.42 73.89 75.04
6 6 97M 71.98 88.72 85.76 71.76 78.30 68.10 84.24 87.07 61.45 77.61 77.50

Task-specific AfriBERTa-base 4 4 83M 65.04 87.12 83.13 67.62 75.01 62.90 78.19 83.96 54.04 69.22 72.62
4 6 83M 65.52 87.27 83.93 68.18 75.56 63.78 79.03 83.70 57.46 69.98 73.44
6 4 97M 67.28 87.27 85.72 71.68 77.18 66.58 81.85 84.92 60.20 74.78 75.75
6 6 97M 69.45 88.23 85.47 69.88 74.90 65.79 82.27 85.36 59.12 76.25 75.67

AfriBERTa-large 4 4 83M 65.66 87.60 83.42 67.38 74.28 62.37 79.62 83.78 55.72 72.89 73.27
4 6 83M 71.20 88.27 84.66 70.70 77.11 65.58 82.09 86.06 58.00 76.21 75.99
6 4 97M 69.38 88.25 85.08 69.49 75.44 63.87 82.71 85.87 56.42 73.89 75.04
6 6 97M 72.58 88.33 86.05 71.16 78.56 69.87 84.03 86.32 61.49 76.66 77.51

2.1 EFFICIENCY EVALUATION

Distillation We apply both task-agnostic and task-specific distillation approaches on the base
and large variants of the AfriBERTa model. We distil knowledge from the pre-trained AfriBERTa
model into relatively smaller models for task-agnostic distillation and evaluate them for the NER
downstream task. For the task-specific distillation, we distil knowledge from a model fine-tuned for
the NER downstream task into smaller models.

Pruning Our pruning experiments at various sparsity levels range from 10% to 95%. We prune the
model before, after, and during fine-tuning to examine the impact of pruning at each phase of the
training process. We also examine the computational efficiency of the pruned models by measuring
their inference time on the test data at all sparsity levels. Furthermore, we evaluate the generalization
capabilities of the pruned models by fine-tuning and testing them on out-of-distribution (OOD)
data. We compare the performance of the pruned models to the original dense model to assess any
influence of pruning on cross-lingual knowledge transfer and the model’s level of generalizability,
using MasakhaNER 2.0 (Adelani et al., 2022) and MSRA NER (Feng et al., 2006) dataset.

Quantization We examine the effects of quantization on the large AfriBERTa model, which has
been fine-tuned for Named Entity Recognition (NER) tasks. Our study utilizes two quantization
approaches. The first is the LLM.int8() method, which uniformly converts the model’s weights,
activations, and attention mechanisms to an 8-bit integer (int8) format. The second approach is
dynamic quantization, which dynamically converts the weights of linear layers from floating-point
to integer data types at runtime and quantizes the activation layers during CPU-based inference.

Table 2: Comparison of NER results between the teachers and the best students. The underlined
scores are instances where the distilled model outperformed any of the teacher models.

Language AfriBERTa-base AfriBERTA-large Distiled AfriBERTa-base Distiled AfriBERTa-base Distiled AfriBERTa-large Distiled AfriBERTa-large
(Teacher) (Teacher) (Task agnostic) (Task specific) (Task agnostic) (Task Specific)

<111M <126M> <97M> <97M> <97M> <97M>

amh 71.8 73.28 69.45 66.92 71.98 72.58
hau 90.01 90.17 88.23 87.91 88.72 88.33
ibo 86.63 87.38 85.47 85.28 85.76 86.05
kin 69.91 73.78 69.88 69.81 71.76 71.16
lug 76.44 78.85 74.9 77.19 78.3 78.56
luo 67.31 70.23 65.79 68.4 68.1 69.87
pcm 82.92 85.7 82.27 81.72 84.24 84.03
swa 85.68 87.96 85.36 85.08 87.07 86.32
wol 60.1 61.81 59.12 60.28 61.45 61.49
yor 76.08 81.32 76.25 75.47 77.61 76.66

avg 76.688 79.048 75.672 75.806 77.499 77.505

3 RESULTS AND DISCUSSION

3.1 HOW SMALL CAN WE MAKE THESE LANGUAGE MODELS?

Using our distillation methods, we achieve up to 31% compression while maintaining competitive
results, with only a 7% performance drop for our least-performing model and only a 1.9% decline
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(a) Pruning before fine-tuning (b) Pruning after fine-tuning

Figure 1: Pruning before vs after fine-tuning: F1 score of sparsified models, averaged across
languages.

compared to the best-performing AfriBERTa model at 22% compression, as shown in table 2. We
notice only marginal differences between the teachers’ and students’ performances in some languages.
We also see the student model trained by the large teacher outperform the base teacher in specific
languages. Additionally, our task-agnostic models outperform the task-specific models in terms of F1
score, but with relatively minimal differences.

3.2 WHICH IS THE BEST TEACHER: BASE VS LARGE?

Although there is a performance decline of roughly 1.9% from the AfriBERTa-large baseline, we
discover that the AfriBERTa-large model produced the student with the best grade. However, the
best-performing student by the base model only showed a performance decline of 1.3% between the
original scores of the base model and the student scores (see Table 2). According to the results, the
base model is comparatively better at imparting most of its knowledge to its students, even though
the larger model creates the best overall student. Additionally, as the attention head and layer ratio
reduce, the students being taught using the base model catch up to those taught by the larger model
with no discernible difference in performance, as seen in Table 1. Our results suggest that the selected
instructor model significantly influences the performance of student models.

3.3 HOW DOES PRUNING BEFORE AND AFTER FINE-TUNING AFFECT MODEL PERFORMANCE?

As seen in Figure 1, our results show that pruning before fine-tuning produces fairly consistent
performance with the dense model up to a sparsity level of 60%. However, above this threshold, the
model’s performance gradually declines. Still, it remains competitive even at 80% sparsity, with an
average F1 score of over 70% (detailed tables and charts in Appendix D.1). When fine-tuning is
performed before pruning, however, our results demonstrate that the model’s performance stays firmly
on par with, and even exceeds, the performance of the dense model up to 50% sparsity. However,
when the sparsity level increases, especially from the 70% sparsity, we find a dramatic deterioration in
performance. It is worth mentioning that both methods have advantages and disadvantages. Pruning
before fine-tuning results in more stable and predictable performance at greater sparsity levels, making
it a feasible alternative for applications requiring high sparsity levels. On the other hand, pruning
after fine-tuning can greatly improve the model’s performance at lower sparsity levels, making it a
better technique for applications that emphasize high accuracy.

3.4 EXPLORING THE LIMITS OF PRUNING FOR SMALL-DATA PRE-TRAINED MODELS

In our findings (see Appendix D.1), we notice that despite the limitations of AfriBERTa’s training
data and architecture, we find constant performance up to 50% and 60% sparsity. Notably, certain
languages maintain a moderate degree of performance even at 95% sparsity, suggesting that the model
might have a certain level of robustness to pruning. Nonetheless, we notice dramatic reductions
in performance for several languages, such as Yoruba and Luganda, at this level. This might be
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Table 3: F1 Scores by Language and
Quantization Methods.

Language Baseline Dynamic LLM.int8()
Amh 73.36 68.02 73.28
Hau 89.93 85.35 89.95
Ibo 86.96 82.21 86.88
Kin 73.98 61.58 73.91
Lug 79.78 68.94 79.83
Luo 70.04 42.40 69.77
Pcm 85.23 74.37 85.18
Swa 87.89 84.58 87.93
Wol 61.73 47.36 61.71
Yor 80.76 65.10 80.74

Table 4: Inference Time Comparison (ms) for the
quantization Methods and the baseline model.

Language Baseline Dynamic LLM.int8()
amh 26.01 12.78 13.27
hau 31.08 19.99 13.31
ibo 31.84 21.67 15.03
kin 27.19 20.95 16.85
lug 21.10 12.35 10.62
luo 22.40 5.53 5.47
pcm 41.70 17.96 16.34
swa 35.50 20.14 17.37
wol 25.38 20.95 14.78
yor 34.45 23.14 18.36

attributable to these languages’ particular characteristics, such as their high inflectional complexity
and the sparse nature of their datasets, which may make them more prone to pruning-induced
degeneration. To confirm the robustness of our results, we also explored cross-lingual transfer on
AfriBERTa leveraging pruning, as detailed in Appendix D.2. While our results show that aggressive
pruning is possible for small-data pre-trained models, it is also critical to take into account the unique
qualities of each language and dataset when calculating the ideal sparsity level for pruning.

3.5 HOW DOES PRUNING AFFECT OUT-OF-DOMAIN GENERALIZATION?

Our findings (Figure 7) reveal that pruning can positively impact OOD generalization for some
languages, while for others, the benefits are limited. Surprisingly, for many languages, including
Swahili, the performance of the pruned models remains consistent with or surpasses that of the
original dense model up to a sparsity level of 60%, with ≈ 90% for Swahili. However, for languages
such as Yoruba, which exhibit a higher level of linguistic complexity, the performance is lower even
for the dense model, with an F1 score of around 60%, highlighting the challenge of compressing
models with complex linguistic structures.

3.6 EFFECTIVENESS OF QUANTIZATION ON MODEL EFFICIENCY

Our results, as shown in Table 3, show that the LLM.int8() quantization method generally outper-
formed the dynamic quantization method across all languages, with an average decrease in the
F1-score of just 4.7%. Moreover, our findings suggest that for some languages, such as Swahili,
Luganda, and Hausa, LLM.int8() may be preferable to the original dense model.

Model size reduced varyingly across languages, with dynamic quantization resulting in a 42.44%
reduction and LLM.int8() resulting in a 64.08% reduction. There is no one-size-fits-all solution when
it comes to quantization. The performance of quantized models depends on various factors, such as
the language, the type of data being processed, and the adapted quantization technique.

Table 4 shows that quantization can significantly reduce inference time for all languages. For example,
in the case of Amharic, quantization lead to a 50% reduction in inference time compared to the
baseline model. Similarly, for Hausa and Swahili, quantization resulted in a 35% and 40% reduction
in inference time, respectively. An average reduction of 40.9% for dynamic quantization and 52.3%
for LLM.int8() was observed. These findings suggest that quantization effectively optimises small
data-pre-trained models for deployment on devices with limited resources.

4 CONCLUSION AND FUTURE WORK

This study investigates the effectiveness of pruning, knowledge distillation, and quantization on a
small-data language model, AfriBERTa, trained on low-resource languages. Our findings indicate
that compression techniques can significantly improve the efficiency and effectiveness of small-data
language models. Also, we identify the importance of balancing the attention head and hidden layers
when using knowledge distillation to compress small-data language models. Additionally, further
experiments with different variations of quantization strategies yield results comparable to the original
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models. Our study balances compressed small-data language models’ efficiency-accuracy tradeoff
and generalization capabilities.

However, our work’s novelty lies in applying existing compression techniques to a low-resource
setting. We do not introduce new techniques or approaches but adapt and evaluate existing methods.
Moreover, while NER is a crucial NLP task, a focus for future work is to explore the applicability of
our findings to other NLP tasks.
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A TRAINING SETUP

A.1 DATA

The AfriBERTa corpus is a multilingual dataset comprising 11 African languages. The data was
primarily sourced from the BBC news1 and the Common Crawl Corpus (Conneau et al., 2020).
Although relatively small at 0.91 GB, it was specifically engineered to present a first-of-its-kind
attempt to train a multilingual language model exclusively on low-resource languages. Table 5 shows
language-specific information and token details.

The MasakhaNER dataset (Adelani et al., 2021) is used for task-specific compression and evaluation.
It is a Named Entity ecognition dataset comprising PER, ORG, LOC, and DATE entities annotated
for the 10 African languages. It was used to evaluate the original AfriBERTa model. The languages
contained in the dataset are Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Luo, Nigerian Pidgin,
Swahili, Wolof, and Yorùbá. Table 7 summarizes the dataset’s details, including the languages
included in the dataset.

1https://www.bbc.co.uk/ws/languages (scraped up to January 17, 2021)
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Table 5: AfriBERTa corpus (Ogueji et al., 2021): Size of each language in the dataset covering
numbers of sentences, tokens, and uncompressed disk size.

Language # Sent. # Tok. Size (GB)
Afaan Oromoo 410,840 6,870,959 0.051
Amharic 525,024 1,303,086 0.213
Gahuza 131,952 3,669,538 0.026
Hausa 1,282,996 27,889,299 0.150
Igbo 337,081 6,853,500 0.042
Nigerian Pidgin 161,842 8,709,498 0.048
Somali 995,043 27,332,348 0.170
Swahili 1,442,911 30,053,834 0.185
Tigrinya 12,075 280,397 0.027
Yorùbá 149,147 4,385,797 0.027
Total 5,448,911 108,800,600 0.939

Table 6: Model architecture details for AfriBERTa-base and AfriBERTa-large.
Model #Params #Layers #Att. Heads
AfriBERTa-base 111M 8 6
AfriBERTa-large 126M 10 6

A.2 DATA PREPROCESSING

Similar to the original preprocessing step for the AfriBERTa model (Ogueji et al., 2021), we use the
AfriBERTa tokenizer. We also remove lines that are empty or contain only punctuations to ensure that
the dataset is clean and contains meaningful text. We also enforce a minimum length restriction by
retaining sentences with more than 11 tokens. This step helps to filter out concise sentences that may
not provide enough context for the model to learn effectively. Furthermore, we take preprocessing
steps significant to the performance of the AfriBERTa model and DistilBERT (Sanh et al., 2019). We
use the entire pre-training corpus since it’s already a small amount of data of 1GB in size.

A.3 NER

Adapted from the AfriBERTa experiment setup

learning rate: 5e-5

max sequence length: 164

batch size: 16

num‘ epochs:50

Tokenizer: ‘afriberta original tokenizer‘ (Ogueji et al., 2021)

optimizer: Adam (Kingma and Ba, 2014)

training seeds: [1, 3, 5]

B DISTILLATION

We experiment using task-agnostic and task-specific distillation approaches on both the base and
significant variants of the AfriBERTa model.

Task-Agnostic Distillation Task-agnostic distillation involves distilling a large pre-trained language
model into a smaller model that is not optimized for any specific downstream task. Knowledge
from the teacher model was used to pretrain the student model which is then further fine-tuned on a
downstream task, in our case here, the NER downstream task.

Task-Specific Distillation The already fine-tuned teacher model was used to teach the already
distilled student model on a downstream task. Task-specific distillation involves fine-tuning the
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Table 7: Statistics of MasakhaNER datasets Adelani et al. (2021) including their source, number of
sentences in each split, number of annotators, and number of entities of each label type, combined
with information on language, family, number of speakers (Eberhard et al., 2019), and African regions.
Adapted from (Adelani et al., 2021)

Language Family Speakers Region Data Source Train/Dev/Test #
Anno

PER ORG LOC DATE

Amharic Afro-Asiatic-Ethio-Semitic 33M East DW & BBC 1750/250/500 4 730 403 1,420 580
Hausa Afro-Asiatic-Chadic 63M West VOA Hausa 1903/272/545 3 1,490 766 2,779 922
Igbo Niger-Congo-Volta-Niger 27M West BBC Igbo 2233/319/638 6 1,603 1,292 1,677 690
Kinyarwanda Niger-Congo-Bantu 12M East IGIHE news 2110/301/604 2 1,366 1,038 2,096 792
Luganda Niger-Congo-Bantu 7M East BUKEDDE news 2003/200/401 3 1,868 838 943 574
Luo Nilo Saharan 4M East Ramogi FM news 644/92/185 2 557 286 666 343
Nigerian-Pidgin English Creole 75M West BBC Pidgin 2100/300/600 5 2,602 1,042 1,317 1,242
Swahili Niger-Congo-Bantu 98M Central & East VOA Swahili 2104/300/602 6 1,702 960 2,842 940
Wolof Niger-Congo-Senegambia 5M West & NW Lu Defu Waxu & Saabal 1871/267/536 2 731 245 836 206
Yorùbá Niger-Congo-Volta-Niger 42M West GV & VON news 2124/303/608 5 1,039 835 1,627 853

pre-trained model on the target task and distilling knowledge from the fine-tuned model into the
already distilled pretrained student model.

B.0.1 TASK AGNOSTIC

Adapted from HuggingFace distillation

temperature: [2, 3, 6]

B.0.2 TASK SPECIFIC

Adapted from TextBrewer.

temperature: 8

C ADDITIONAL RESULTS REFERENCES FOR DISTILLATION

See table 1 and figures 3 & 4 for references.

D PRUNING

Unstructured magnitude pruning involves setting a binary mask, M , that determines which weights
in the network are pruned based on their magnitude relative to a pruning threshold, t. Specifically, we
define the mask M as:

Mij =

{
1 if |Wij | ≥ t

0 otherwise

where Wi,j is the weight at position (i, j) in the weight matrix, and t is a threshold determined by
the desired sparsity level.

D.1 AVERAGE PERFORMANCES BEFORE AND AFTER FINE-TUNING

This section details the performance scores of all language tasks on all sparsity levels, before and
after fine-tuning. See Tables 8 & 9 and Figures 5 & 6 for references.

D.2 THE IMPACT OF PRUNING ON CROSS-LINGUAL TRANSFER

This section analyses the impact of pruning on the cross-lingual transfer learning capabilities of the
AfriBERTa model.

Few-shot learning To evaluate the effectiveness of the AfriBERTa model in capturing linguistic
intricacies in "unknown" languages, we fine-tuned it on two low-resource African languages - Fon
and Bambara - from MasakhaNER 2.0. Results show that the performances when pruning after
fine-tuning were comparable to the performances of the known languages. However, we observed
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Table 8: Pruning before Finetuning: Performance metrics of each language at all sparsity levels
loss precision recall f1 inference_time pruned_params

prune_rate lang
0.10 amh 0.38 0.71 0.76 0.74 1.36 7078579

hau 0.15 0.88 0.93 0.90 1.83 7078579
ibo 0.20 0.86 0.88 0.87 1.85 7078579
kin 0.35 0.72 0.78 0.75 1.73 7078579
lug 0.29 0.78 0.82 0.80 1.24 7078579
luo 0.44 0.70 0.73 0.71 0.57 7078579
pcm 0.15 0.84 0.87 0.86 1.76 7078579
swa 0.20 0.86 0.90 0.88 1.76 7078579
wol 0.37 0.66 0.60 0.63 1.52 7078579
yor 0.24 0.78 0.83 0.81 2.01 7078579

0.20 amh 0.37 0.71 0.76 0.73 1.25 14157158
hau 0.16 0.87 0.93 0.90 1.56 14157158
ibo 0.20 0.85 0.89 0.87 1.80 14157158
kin 0.34 0.70 0.78 0.74 1.73 14157158
lug 0.29 0.78 0.82 0.80 1.12 14157158
luo 0.46 0.67 0.72 0.69 0.58 14157158
pcm 0.16 0.83 0.87 0.85 1.62 14157158
swa 0.21 0.86 0.90 0.88 1.61 14157158
wol 0.37 0.63 0.60 0.61 1.41 14157158
yor 0.26 0.78 0.83 0.81 1.79 14157158

0.30 amh 0.37 0.69 0.76 0.72 1.24 21235738
hau 0.16 0.88 0.93 0.90 1.57 21235738
ibo 0.19 0.86 0.89 0.87 1.68 21235738
kin 0.35 0.70 0.78 0.74 1.62 21235738
lug 0.29 0.77 0.82 0.79 1.14 21235738
luo 0.46 0.69 0.72 0.70 0.60 21235738
pcm 0.15 0.83 0.86 0.85 1.62 21235738
swa 0.21 0.86 0.90 0.88 1.80 21235738
wol 0.36 0.64 0.60 0.62 1.38 21235738
yor 0.25 0.79 0.83 0.81 1.80 21235738

0.40 amh 0.38 0.70 0.76 0.73 1.27 28314317
hau 0.16 0.86 0.93 0.90 1.69 28314317
ibo 0.19 0.86 0.89 0.87 1.66 28314317
kin 0.35 0.70 0.78 0.73 1.63 28314317
lug 0.28 0.77 0.82 0.79 1.12 28314317
luo 0.44 0.68 0.71 0.70 0.53 28314317
pcm 0.15 0.84 0.87 0.85 1.73 28314317
swa 0.21 0.85 0.89 0.87 1.61 28314317
wol 0.37 0.65 0.59 0.62 1.38 28314317
yor 0.26 0.78 0.82 0.80 1.80 28314317

0.50 amh 0.37 0.69 0.76 0.72 1.36 35392896
hau 0.17 0.87 0.93 0.90 1.56 35392896
ibo 0.21 0.85 0.88 0.87 1.67 35392896
kin 0.34 0.70 0.78 0.74 1.65 35392896
lug 0.29 0.76 0.81 0.78 1.30 35392896
luo 0.44 0.68 0.71 0.70 0.52 35392896
pcm 0.16 0.82 0.86 0.84 1.74 35392896
swa 0.22 0.84 0.89 0.86 1.63 35392896
wol 0.37 0.64 0.59 0.61 1.38 35392896
yor 0.26 0.78 0.82 0.80 1.79 35392896
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prune_rate lang loss precision recall f1 inference_time pruned_params
0.60 amh 0.39 0.68 0.75 0.71 1.25 42471475

hau 0.18 0.86 0.92 0.89 1.57 42471475
ibo 0.19 0.85 0.88 0.87 1.63 42471475
kin 0.36 0.69 0.78 0.73 1.60 42471475
lug 0.29 0.76 0.81 0.78 1.20 42471475
luo 0.43 0.68 0.70 0.69 0.58 42471475
pcm 0.16 0.82 0.85 0.84 1.75 42471475
swa 0.21 0.84 0.89 0.86 1.67 42471475
wol 0.37 0.62 0.59 0.61 1.41 42471475
yor 0.28 0.78 0.81 0.80 1.78 42471475

0.70 amh 0.40 0.66 0.73 0.69 1.30 49550054
hau 0.19 0.85 0.92 0.88 1.55 49550054
ibo 0.20 0.83 0.87 0.85 1.69 49550054
kin 0.37 0.68 0.76 0.71 1.59 49550054
lug 0.29 0.73 0.80 0.76 1.14 49550054
luo 0.44 0.65 0.69 0.67 0.52 49550054
pcm 0.17 0.80 0.85 0.83 1.76 49550054
swa 0.21 0.83 0.88 0.86 1.77 49550054
wol 0.38 0.57 0.56 0.56 1.43 49550054
yor 0.29 0.76 0.79 0.77 1.85 49550054

0.80 amh 0.43 0.62 0.70 0.66 1.25 56628634
hau 0.20 0.83 0.90 0.87 1.55 56628634
ibo 0.21 0.81 0.84 0.83 1.67 56628634
kin 0.41 0.62 0.71 0.66 1.63 56628634
lug 0.32 0.69 0.76 0.72 1.14 56628634
luo 0.47 0.58 0.63 0.60 0.59 56628634
pcm 0.19 0.76 0.82 0.79 1.60 56628634
swa 0.22 0.80 0.87 0.83 1.66 56628634
wol 0.39 0.53 0.53 0.53 1.38 56628634
yor 0.32 0.72 0.76 0.74 1.78 56628634

0.90 amh 0.50 0.55 0.64 0.59 1.24 63707213
hau 0.22 0.80 0.88 0.84 1.61 63707213
ibo 0.24 0.79 0.83 0.81 1.71 63707213
kin 0.45 0.57 0.68 0.62 1.61 63707213
lug 0.36 0.63 0.72 0.67 1.20 63707213
luo 0.53 0.50 0.58 0.53 0.52 63707213
pcm 0.24 0.69 0.77 0.73 1.76 63707213
swa 0.24 0.77 0.85 0.81 1.70 63707213
wol 0.44 0.43 0.46 0.45 1.50 63707213
yor 0.39 0.62 0.70 0.66 1.96 63707213

0.95 amh 0.51 0.50 0.61 0.55 1.24 67246502
hau 0.23 0.77 0.86 0.81 1.56 67246502
ibo 0.25 0.75 0.81 0.78 1.66 67246502
kin 0.44 0.53 0.65 0.59 1.62 67246502
lug 0.37 0.58 0.69 0.63 1.15 67246502
luo 0.54 0.42 0.52 0.47 0.53 67246502
pcm 0.27 0.64 0.74 0.69 1.66 67246502
swa 0.90 0.50 0.59 0.53 1.65 67246502
wol 1.05 0.28 0.32 0.29 1.42 67246502
yor 1.02 0.37 0.46 0.40 1.82 67246502
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Table 9: Pruning after Finetuning: Performance metrics of each language at all sparsity levels
loss precision recall f1 inference_time pruned_params

prune_rate lang
0.10 amh 0.37 0.72 0.76 0.74 1.88 7078579

hau 0.17 0.87 0.93 0.90 1.93 7078579
ibo 0.19 0.85 0.88 0.87 2.96 7078579
kin 0.34 0.70 0.79 0.74 4.01 7078579
lug 0.28 0.78 0.82 0.80 1.18 7078579
luo 0.45 0.69 0.71 0.70 0.69 7078579
pcm 0.15 0.84 0.87 0.85 1.76 7078579
swa 0.20 0.86 0.90 0.88 1.76 7078579
wol 0.36 0.63 0.60 0.61 1.64 7078579
yor 0.25 0.78 0.83 0.80 2.35 7078579

0.20 amh 0.35 0.71 0.76 0.74 1.21 14157158
hau 0.16 0.87 0.93 0.90 1.65 14157158
ibo 0.19 0.85 0.88 0.87 1.75 14157158
kin 0.32 0.70 0.79 0.74 1.71 14157158
lug 0.27 0.77 0.82 0.80 1.18 14157158
luo 0.43 0.68 0.71 0.69 0.55 14157158
pcm 0.14 0.83 0.86 0.85 1.73 14157158
swa 0.19 0.86 0.90 0.88 1.60 14157158
wol 0.34 0.63 0.60 0.61 1.45 14157158
yor 0.24 0.78 0.83 0.80 1.94 14157158

0.30 amh 0.32 0.72 0.76 0.73 1.21 21235738
hau 0.14 0.87 0.93 0.90 1.66 21235738
ibo 0.17 0.85 0.88 0.87 1.90 21235738
kin 0.30 0.70 0.79 0.74 1.58 21235738
lug 0.25 0.77 0.82 0.79 1.15 21235738
luo 0.40 0.68 0.70 0.69 0.56 21235738
pcm 0.13 0.82 0.86 0.84 1.58 21235738
swa 0.18 0.85 0.90 0.88 1.73 21235738
wol 0.32 0.63 0.59 0.61 1.51 21235738
yor 0.22 0.78 0.83 0.81 2.04 21235738

0.40 amh 0.29 0.72 0.75 0.74 1.21 28314317
hau 0.12 0.87 0.93 0.90 1.80 28314317
ibo 0.15 0.85 0.88 0.87 1.62 28314317
kin 0.26 0.69 0.78 0.74 1.57 28314317
lug 0.22 0.77 0.81 0.79 1.18 28314317
luo 0.36 0.69 0.69 0.69 0.51 28314317
pcm 0.12 0.82 0.85 0.84 1.77 28314317
swa 0.15 0.86 0.89 0.87 1.60 28314317
wol 0.29 0.64 0.58 0.61 1.50 28314317
yor 0.19 0.78 0.82 0.80 2.12 28314317

0.50 amh 0.23 0.71 0.74 0.72 1.32 35392896
hau 0.10 0.86 0.93 0.89 1.51 35392896
ibo 0.12 0.85 0.88 0.86 1.73 35392896
kin 0.21 0.68 0.77 0.72 1.58 35392896
lug 0.18 0.77 0.78 0.78 1.06 35392896
luo 0.31 0.67 0.67 0.67 0.55 35392896
pcm 0.11 0.81 0.83 0.82 1.68 35392896
swa 0.12 0.85 0.89 0.87 1.66 35392896
wol 0.25 0.64 0.55 0.59 1.49 35392896
yor 0.17 0.79 0.80 0.79 1.95 35392896
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prune_rate lang loss precision recall f1 inference_time pruned_params
0.60 amh 0.19 0.71 0.66 0.68 1.32 42471475

hau 0.09 0.83 0.88 0.86 1.70 42471475
ibo 0.10 0.84 0.84 0.84 1.75 42471475
kin 0.19 0.67 0.65 0.66 1.72 42471475
lug 0.21 0.72 0.60 0.66 1.08 42471475
luo 0.36 0.52 0.47 0.49 0.50 42471475
pcm 0.11 0.77 0.76 0.76 1.60 42471475
swa 0.10 0.84 0.85 0.84 1.63 42471475
wol 0.23 0.64 0.42 0.50 1.49 42471475
yor 0.18 0.76 0.66 0.71 1.94 42471475

0.70 amh 0.38 0.45 0.23 0.30 1.35 49550054
hau 0.30 0.66 0.58 0.62 1.71 49550054
ibo 0.31 0.66 0.50 0.57 1.73 49550054
kin 0.38 0.63 0.22 0.32 1.60 49550054
lug 0.47 0.48 0.11 0.18 1.13 49550054
luo 0.63 0.23 0.09 0.12 0.58 49550054
pcm 0.31 0.49 0.27 0.35 1.60 49550054
swa 0.32 0.64 0.50 0.56 1.77 49550054
wol 0.30 0.59 0.13 0.21 1.53 49550054
yor 0.42 0.57 0.20 0.29 1.89 49550054

0.80 amh 1.25 0.23 0.04 0.06 1.27 56628634
hau 1.39 0.48 0.33 0.35 1.54 56628634
ibo 1.29 0.64 0.18 0.28 1.78 56628634
kin 1.31 0.59 0.13 0.21 1.71 56628634
lug 1.25 0.35 0.02 0.04 1.20 56628634
luo 1.57 0.15 0.05 0.05 0.57 56628634
pcm 1.22 0.37 0.05 0.09 1.75 56628634
swa 1.35 0.54 0.25 0.31 1.72 56628634
wol 1.13 0.05 0.01 0.01 1.40 56628634
yor 1.09 0.59 0.04 0.06 1.77 56628634

0.90 amh 2.02 0.01 0.02 0.06 1.24 63707213
hau 2.02 0.03 0.05 0.18 1.75 63707213
ibo 2.01 0.03 0.04 0.12 1.81 63707213
kin 2.04 0.02 0.02 0.08 1.76 63707213
lug 2.05 0.01 0.02 0.08 1.23 63707213
luo 2.07 0.01 0.01 0.04 0.52 63707213
pcm 2.04 0.02 0.03 0.11 1.65 63707213
swa 2.02 0.03 0.04 0.14 1.82 63707213
wol 2.01 0.01 0.02 0.07 1.43 63707213
yor 1.96 0.02 0.02 0.06 1.99 63707213

0.95 amh 2.19 0.01 0.09 0.02 1.37 67246502
hau 2.19 0.01 0.12 0.02 1.62 67246502
ibo 2.19 0.01 0.13 0.03 2.02 67246502
kin 2.19 0.01 0.15 0.02 1.80 67246502
lug 2.20 0.01 0.13 0.02 1.13 67246502
luo 2.21 0.01 0.10 0.01 0.60 67246502
pcm 2.20 0.01 0.10 0.01 1.69 67246502
swa 2.18 0.01 0.13 0.02 1.88 67246502
wol 2.19 0.00 0.08 0.01 1.61 67246502
yor 2.19 0.01 0.10 0.01 1.90 67246502
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Figure 2: A chart of the F1 scores for the best-performing student models and the teacher models
across each language in the NER task.

Figure 3: Performance (F1 score) during task agnostic and task-specific distillation across different
languages in the NER task.

(a) Task agnostic (b) Task specific

that inference time increased by 2 to 3 times the usual inference time, and performances deteriorated
rapidly from 70% sparsity downwards. These observations suggest that the AfriBERTa model might
have leveraged linguistic similarities and relationships inherent in languages sharing geographical
regions.

Knowledge transfer from low-resource to high-resource Our results show that AfriBERTa
leverages the linguistic similarities and relationships inherent in languages that share geographical
regions (Ogueji et al., 2021). To test this assumption, we performed downstream on a high-resource
language, Chinese, from the MSRA NER dataset (Feng et al., 2006). Surprisingly, AfriBERTa
performed very strongly, implying that cross-lingual transfer is possible even between languages with

15



AfricaNLP workshop at ICLR 2024

(c) Base teacher vs Students (d) Large teacher vs Students

Figure 4: Performance comparison between students and teachers (distillation).

(a) Pruning before fine-tuning (b) Pruning after fine-tuning

Figure 5: Pruning before vs after fine-tuning: F1 scores averaged across the performances of each
language.

(a) Inference Time wrt Sparsity Level (b) Inference Time wrt Language Groups

Figure 6: Comparison of how Sparsity Level and Language Groups affect Inference Time.

no known affiliation. However, inference time is about four times (5–7 sec) the usual time it takes to
perform inference on familiar language data.

Zero-shot learning We further explored the zero-shot transferability of AfriBERTa on an unseen-
before language at different levels of sparsity. Our findings reveal that F1 scores ranging between 40%
and 60% remain competitive with MasakhaNER 2.0’s zero-shot experiments on Afro-XLMR(Alabi
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(a) Mean F1 scores of languages over sparsity levels (b) Distribution of the languages F1-scores over
sparsity levels

Figure 7: OOD Generalization: Performances stay consistent with dense models up till 50% sparsity.

et al., 2022), even at 50% sparsity. Predicting on a new language from models trained on languages
from the same geographical region seems to perform zero-shot more confidently, consistent with
findings in MasakhaNER 2.0’s experiments (Adelani et al., 2022). However, we observed a consider-
able drop in performance at 70% sparsity, indicating that pruning might not be suitable for zero-shot
learning in low-resource settings beyond a certain threshold.

D.3 IMPACT OF PRUNING ON INFERENCE TIME

The effect of pruning on inference time is a significant component of our research, and we discovered
that when the sparsity level grows, inference time decreases noticeably. However, our investigation
in Figure 6 indicated a wide range of inference time disparities, which might be related to variables
other than the pruning rate itself. Our findings indicate that language-specific characteristics may
have a considerable impact on inference time, as performance indicators showed no true connection
with inference time. Further investigation is needed to study the language-specific aspects influencing
inference time and to establish the ideal sparsity values for each language, taking both performance
metrics and inference time into account.
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