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ABSTRACT

Deep energy-based models (EBMs), which use deep neural networks (DNNs) as
energy functions, are receiving increasing attention due to their ability to learn com-
plex distributions. To train deep EBMs, the maximum likelihood estimation (MLE)
with short-run Langevin Monte Carlo (LMC) is often used. While the MLE with
short-run LMC is computationally efficient compared to an MLE with full Markov
Chain Monte Carlo (MCMC), it often assigns high density to out-of-distribution
(OOD) data. To address this issue, here we systematically investigate why the
MLE with short-run LMC can converge to EBMs with wrong density estimates,
and reveal that the heuristic modifications to LMC introduced by previous works
were the main problem. We then propose a Uniform Support Partitioning (USP)
scheme that optimizes a set of points to evenly partition the support of the EBM
and then uses the resulting points to approximate the EBM-MLE loss gradient. We
empirically demonstrate that USP avoids the pitfalls of short-run LMC, leading to
significantly improved OOD data detection performance on Fashion-MNIST.

1 INTRODUCTION

For unsupervised learning, it is often of great interest to approximate a given data distribution using
a generative model. Applications of generative models are abundant, ranging from data generation
(Kingma & Welling, 2013; Goodfellow et al., 2014) to out-of-distribution (OOD) data detection
(Choi et al., 2018; Nalisnick et al., 2019b; Ren et al., 2019; Hendrycks et al., 2019; Serrà et al., 2020),
improving calibration and robustness of classifiers (Du & Mordatch, 2019), etc. Among the wide
variety of generative models, Energy-Based Models (EBMs) (LeCun et al., 2006) parametrized by
deep neural networks (DNNs) have recently gained attention thanks to their flexibility in modeling
complex distributions.

There are multiple ways of training EBMs, and the two most studied methods are maximum likelihood
estimation (MLE) with Markov Chain Monte Carlo (MCMC) and Score Matching (SM) (Song &
Kingma, 2021). Both methods have undergone appropriate modifications for training deep EBMs,
i.e., EBMs parametrized by DNNs. For instance, in the case of SM, Song & Ermon (2019) proposed
the estimation of gradients, not density, of the data distribution to bypass calculation of the Hessian.
For MLE with MCMC, Du & Mordatch (2019) replaced MCMC, which often requires thousands of
iterations until convergence, with short-run Langevin Monte Carlo (LMC) and a replay buffer.

Despite such developments, EBMs suffer from the problem of density overestimation on OOD data
(Elflein et al., 2021). Concretely, given an EBM trained by an MLE with short-run LMC (SRLMC),
OOD data often have density values similar to or higher than that of training data. This does not make
sense, since by the definition of OOD data, the supports of training data distribution and OOD data
distribution do not intersect. Mahmood et al. (2021) attempted to use score functions to detect OOD
data, but they provided little insights into the density overestimation problem, since score functions
model the gradient, not the density.

In this paper, we approach this problem in two ways. First, we rigorously investigate why and how
the MLE with SRLMC can yield EBMs with wrong density estimates. Based on the observations, we
then propose a novel technique, called Uniform Support Partitioning (USP), to solve the MLE for
EBMs. In contrast to LMC which uses a stochastic process to sample from the EBM, USP solves a
deterministic optimization problem to find points which uniformly partition the support of the EBM.
USP then uses those points to approximate the MLE objective gradient through numerical integration.
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We also introduce a practical version of USP, called Persistent Stochastic USP (PS-USP) and
demonstrate on the problem of learning a mixture of Gaussians that PS-USP is capable of crossing
low-density regions. On the Fashion-MNIST dataset, we show deep EBM trained with PS-USP
shows significantly better OOD data detection performance than deep EBM trained with SRLMC.

Our contributions can be summarized as follows:

• Through theoretical analysis and experiments, we rigorously investigate why MLE with
SRLMC could converge to an EBM with wrong density estimates, and reveal that it is
caused by a combination of two heuristic modifications to LMC introduced by previous
works: (a) early termination of LMC in short-run LMC and (b) using incorrect learning rate
and noise scale ratio in LMC.

• To avoid the pitfalls of MLE with SRLMC, we propose a novel technique, USP, to solve
MLE for EBMs. USP solves an optimization problem to find a set of points which uniformly
partition the support of EBMs. Then, it uses the points to approximate the MLE objective
through numerical integration. We also introduce a practical version of USP for training
deep EBMs.

• We demonstrate on a toy example that USP is capable of accurately learning a distribution
with multiple separated modes. We also show on the Fashion-MNIST dataset (Xiao et al.,
2017) that deep EBMs trained with USP attain significantly better OOD data detection
performance than deep EBMs trained with SRLMC.

2 RELATED WORKS

2.1 EBM TRAINING VIA MLE WITH MCMC

One of the most popular ways of training deep EBMs is maximizing the expected log-likelihood
of the EBM via gradient ascent (Song & Kingma, 2021). However, calculating the gradient of the
log-likelihood of the EBM requires computing the expectation of the energy gradient on the current
EBM distribution. A straightforward way to achieve this is to run MCMC on the EBM distribution
and use the samples to approximate the energy gradient expectation. A popular choice of MCMC
is Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011), a stochastic variant of
LMC.

Recent works have taken further steps to make training deep EBMs efficient. Specifically, Du &
Mordatch (2019) have proposed using non-convergent SRLMC (or short-run SGLD) with a replay
buffer instead of LMC, which usually requires thousands of iterations until convergence, to sample
from the EBM distribution. Latter works use the same technique as well (Nijkamp et al., 2019;
Grathwohl et al., 2020). Furthermore, Yang & Ji (2021) combine short-run LMC with Pontryagin’s
Maximum Principle to reduce the number of forward and backward propagations.

The works by Nijkamp et al. (2019) and Nijkamp et al. (2020) perform an analysis of MLE with
SRLMC and find that MLE with SRLMC trains EBMs to be data generators rather than density
estimators. However, they do not explain how this leads to density overestimation for OOD data.

2.2 OOD DATA DETECTION WITH EBMS

With the development of efficient deep EBM training methods, OOD data detection with EBMs
also gained interest. Du & Mordatch (2019) discovered that an EBM trained by MLE with MCMC
has slightly better OOD data detection performance than other deep density models such as Glow
(Kingma & Dhariwal, 2018) and PixelCNN++ (Salimans et al., 2017). Grathwohl et al. (2020)
incorporate label information into training EBMs and find that the EBM also outperforms Glow
at OOD data detection. Finally, Elflein et al. (2021) discover that using supervision such as labels
improves OOD detection on natural data and architectural modifications such as bottlenecks can also
improve OOD detection.
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3 PRELIMINARIES

Given an energy function Eθ : Rd → R parametrized by θ, an EBM is defined as

qθ(x) =
1

Z(θ)
exp{−Eθ(x)} (1)

where Z(θ) is the partition function, which ensures qθ integrates to 1. Given a data distribution p, the
EBM can be trained to approximate p by MLE

max
θ

Ep[log qθ(x)] (2)

with gradient ascent. The gradient of the MLE objective can be decomposed into two terms:

∇θEp[log qθ(x)] = Eqθ [∇Eθ(x)]− Ep[∇Eθ(x)]. (3)

While we can easily calculate the second term since we have access to samples from p (the training
data), it is not the case for the first term. Previous works rely on LMC or its stochastic variant, SGLD,
to sample from qθ and calculate the first term. Given x0 ∼ q0(x) for some proposal distribution q0,
LMC iterates

xt+1 = xt −
ηt
2
∇xEθ(x) +

√
ηtϵt, t = 0, 1, 2, . . . , T (4)

where ϵt are i.i.d. standard normal Gaussian noises. For an appropriate choice of the sequence {ηt},
the sequence {xt} converges to a sample from qθ as T →∞ (Welling & Teh, 2011; Dalalyan, 2017).

3.1 MLE WITH SHORT-RUN LMC (SRLMC)

A problem with MCMC is that it usually requires large number of iterations, i.e., large T in Eq. (4),
until convergence. This becomes problematic when we train deep EBMs, as forward and backward
propagations of DNNs are expensive. In an attempt to alleviate this issue, Du & Mordatch (2019)
propose three heuristic modifications to the EBM training procedure. These modifications have been
adopted by latter works (Nijkamp et al., 2019; Grathwohl et al., 2020; Yang & Ji, 2021) for training
EBMs as well. We now describe the modifications.

Short-run LMC (SRLMC). The first modification is using extremely small T . While conventional
LMC can require thousands of iterations until convergence, Du & Mordatch (2019) propose using
T ≤ 100. Then, SRLMC samples are used to calculate the first term in Eq. (3).

Decoupling step size and noise scale. The second modification is decoupling the gradient coefficient
and noise coefficient in Eq. (4):

xt+1 = xt −
αt

2
∇xEθ(x) +

√
βtϵt, t = 0, 1, 2, . . . , T (5)

where αt is called the step size and βt is called the noise scale. Since T is set to be small, (Du &
Mordatch, 2019) set αt ≫ βt to accelerate the convergence of SRLMC.

Replay buffer. The third modification is to maintain a replay buffer of SRLMC samples. Specifically,
instead of using random noise to initialize SRLMC at each iteration of EBM update, Du & Mordatch
(2019) maintain a replay buffer which stores past SRLMC samples. A mixture of replay buffer
samples and random noise is used to initialize SRLMC at each iteration of EBM training, and the
outputs are used to update the replay buffer.

In the next section, we demonstrate that the first and second modifications can lead to EBMs with
incorrect density, and the third modification does not alleviate the issue.

4 A SOLUTION TO MLE WITH SRLMC CAN OVERESTIMATE OOD DATA
DENSITY

From here on, we will refer to the EBM training procedure described in Section 3.1 as MLE with
SRLMC. For the moment, let us assume we do not use a replay buffer. Let q0 be some proposal
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(a) Training via SRLMC with no replay buffer.

(b) Training via SRLMC with replay buffer.

(c) Training via self-normalized importance sampling / Riemann sum.

Figure 1: Comparison of methods for solving EBM MLE. The first column shows the evolution of θ
gradient norm throughout the training process. The second column displays the trained EBM log
density on the data distribution support and OOD regions. The third column shows densities and
histograms of relevant distributions. The final column plots the negative energy for the trained EBM.
Note that the density plots for qθ(x) in (a) and (b) are unnormalized.

distribution, e.g., a uniform distribution, and let q̃θ be the distribution of x̃ produced by running
SRLMC on x ∼ q0

1. Then, EBM gradient update with MLE with SRLMC becomes

θ ← θ + Eq̃θ [∇θEθ(x)]− Ep[∇θEθ(x)] (6)

and thus stationarity is achieved when

q̃θ = p (7)

for then the expectations in Eq. (6) will cancel out and no update to θ is made. We now demonstrate
that a stationary point of Eq. (6) can assign high density to OOD regions. To this end, we consider
the problem of training a deep EBM to approximate the mixture of two Gaussians N (−0.5, 0.052)
and N (0.5, 0.052). The Gaussians are given equal weights. Also, αt = 10βt and T = 40.

Figure 1a shows the result of training an EBM with MLE with SRLMC and no replay buffer. The
proposal distribution q0 is the uniform distribution on (−1, 1). The leftmost θ gradient norm plot
indeed shows the EBM has nearly converged to some stationary point2. However, contrary to our
hopes, the second figure shows that a significant portion of the OOD region is assigned higher density
than half of the data distribution support. The third and fourth figures indicate this is because the
EBM has learned a density with wide modes at x = ±0.5, and the second mode is much lower than
the first mode. Yet, despite the discrepancy between the EBM density and the data density, q̃θ is
identical to p. In particular, q̃θ has two modes of equal height although the heights of modes of the
EBM differ significantly.

So far, we have experimentally shown the existence of a stationary point of Eq. (6) which exhibits
density overestimation and that a deep EBM can converge to this undesirable point. We now explain

1We remark q̃θ will generally not be equal to qθ since SRLMC does not run LMC until convergence.
2The gradient norm does not become exactly zero due to the stochasticity in LMC and finite number of

samples used to approximate expectations. This causes oscillation of the gradient norm.
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Figure 2: Effect of SRLMC. Left: histograms of SRLMC samples on the EBM of Figure 1a with
q0 = uniform distribution on (−1, 0) and q0 = uniform distribution on (0, 1). Middle: histograms of
SRLMC samples with q0 = uniform distribution on (−1, 1) and various ρ. Right: EBMs trained to
approximate p via MLE with SRLMC with various ρ. We remark that for each EBM, q̃θ = p when
the same ρ is used for training and sample generation. Also, each EBM has a slight bump, i.e, a
mode, at x = −0.5, so SRLMC samples form the mode at x = −0.5.

why the EBM of Figure 1a is a stationary point of Eq. (6). According to Eq. (7), this amounts to
explaining how SRLMC can generate training data with this wrong EBM. Two factors play a role:
poor mixing of SRLMC and incorrect step size and noise scale ratio.

Poor mixing of SRLMC. In general, LMC itself mixes very slowly. This issue was previously
pointed out by Song and Ermon Song & Ermon (2019). As LMC uses the gradient information, it
will initially tend to follow the steepest path of ascent of −Eθ(x). Theoretically, LMC Eq. (4) will
converge in the limit T →∞, but SRLMC terminates with a very small T . So, an SRLMC sample
will typically end up in the mode whose basin of attraction contained its initialization point.

The EBM can exploit this pathology of SRLMC and learn a density with modes of incorrect probability
mass. Specifically, let us consider a mode of an EBM, denoted mq, and its basin of attraction Bq.
We denote the probability mass contained in the corresponding data mode mp as Mp. Now, due
to poor mixing of SRLMC, most points initialized in Bq will end up in mq. So, if we denote the
probability measure of q0 as Q0, the ratio of proposal samples that will be placed in mq by SRLMC
will be approximately Q0(Bq). Since the EBM learns to match the distribution of generated data
with training data (c.f. Eq. Eq. (7)), at convergence of the EBM, we must have Q0(Bq) ≈ Mp.
As Bq is generally unrelated to the probability mass of mq, the modes of EBM can have incorrect
probability mass. The left panel of Figure 2 confirms this: SRLMC samples initialized on (−1, 0)
mostly converge to the left mode, and samples initialized on (1, 0) mostly converge to the right mode.

The above observations have serious implications in high dimensions. In high dimensions, samples
from q0 can come from a very small subset of the support of q0. As the following proposition shows,
this phenomenon holds for a wide variety of q0.

Proposition 1. Suppose X is a d-dimensional random vector whose components are i.i.d. with mean
µ, variance σ2, and finite fourth moment. Then, for any ϵ > 0,

lim
d→∞

P
{
(1− ϵ)

√
d(σ2 + µ2) < ∥X∥2 < (1 + ϵ)

√
d(σ2 + µ2)

}
= 1.

Proposition 1 claims that if the components of a high-dimensional vector is i.i.d. with finite variance,
almost all samples come from a thin shell. This result is applicable to high-dimensional Gaussian
distributions3 and uniform distributions on [−1, 1]d, which are common choices of q0 (Nijkamp et al.,
2019; Grathwohl et al., 2020; Yang & Ji, 2021).

Let us call this thin shell S. Then, just like the case of Figure 1a, the EBM can learn a path of ascent
from S to the data support. Moreover, the EBM is free to assign arbitrary density to OOD regions
which do not intersect S, the data support, and the path of ascent. Since S is very small and natural
data lies on low-dimensional manifolds (if we adopt the manifold hypothesis), the volume of such
OOD region can be very large in high dimensions. The poor OOD data detection performance of
EBMs trained with SRLMC observed by Elflein et al. (2021) provides evidence for this claim.

3If the Gaussian distribution has a non-identity covariance matrix, Proposition 1 can be easily extended to
show that samples will lie around the boundary of an ellipsoid with high probability.
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(a) Replay buffer evolution (b) SRLMC initialized from buffer (data)

Figure 3: Analysis of MLE with SRLMC and replay buffer.

Incorrect step size and noise scale ratio. The first factor, poor mixing of SRLMC, explains how
the wrong EBM in Fig 1a can generate two modes, each of which has same probability mass as
the corresponding data mode. But, it does not explain how the EBM, which has wide modes, can
generate data, which has narrow modes. Incorrect step size and noise scale ratio in Eq. (5) is to
blame.

Proposition 2. Assume the sequences {αt} and {βt} in Eq. (5) satisfy αt/βt = ρ for some ρ > 0 for
all t. Also, assume the sequence generated by Eq. (5) converges. Then {xt} converges in distribution
to

qρθ (x) :=
1

Z(θ, ρ)
exp {−ρEθ(x)} . (8)

Proposition 2 tells us that ρ controls the sharpness of the sampled distribution. LMC with large ρ will
sample from a sharpened version of qθ, and LMC with small ρ will sample from a wide version of qθ.
The middle panel of Figure 2 illustrates this fact. Together with the observation that SRLMC does
not mix well, we can explain how the EBM of Figure 1a can generate training data with SRLMC.

Since SRLMC does not mix well, without loss of generality, we can focus on one mode of the EBM.
As mentioned in Section 3.1, MLE with SRLMC uses large ρ to accelerate convergence. So, SRLMC
samples from a sharpened version of qθ. Hence, though the EBM has wide modes, q̃θ has sharp
modes which match the training data distribution. Furthermore, Proposition 2 can be used to prove:

Proposition 3. Assume the EBM qθ is trained via MLE with convergent modified LMC Eq. (5) with
αt/βt = ρ > 0. Then, θ such that

qθ(x) ∝ p(x)1/ρ. (9)

is a stationary point of MLE with gradient ascent.

Indeed, the third panel of Figure 2 shows smaller ρ leads to sharper modes and larger ρ leads to even
wider modes. So, combined with incorrect probability mass within modes due to poor mixing of
SRLMC, larger ρ exacerbates OOD data density overestimation.

A replay buffer does not help. Let us now consider the scenario where we use a replay buffer as
well. Figure 1b shows that MLE with SRLMC and a buffer has converged to essentially the same
solution (up to reflection w.r.t. the y-axis) as SRLMC without the buffer. This implies that the buffer
does not alleviate OOD data overestimation.

In fact, Figure 3a shows that as the EBM converges to the same solution as that of Figure 1b, the
buffer sample distribution converges to the data distribution. Next, as illustrated in Figure 3b, even if
SRLMC is initialized from buffer samples (which are now equal to data samples), SRLMC still does
not mix well: SRLMC initialized from the left mode stays at the left mode, and SRLMC initialized
from the right mode stays at the right mode. Thus, a replay buffer does not help mixing of SRLMC,
so SRLMC with replay buffer suffers from the same problems as MLE with SRLMC without buffer.

4.1 A SIMPLE METHOD THAT AVOIDS THE PITFALLS OF SRLMC ON LOW DIMENSIONS

So far, we have shown the heuristic modifications of SRLMC in Section 3.1 admits stationary points
to the MLE problem which exhibit OOD data density overestimation. Several factors, poor mixing
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of SRLMC and incorrect step size and noise scale ratio, play a role in this. Furthermore, we have
provided experimental and theoretical evidence that these factors could cause an EBM to converge
to that problematic point. So, to train EBMs with correct density estimates, we need a method to
estimate integral w.r.t. qθ which is resilient to getting trapped in modes and accurate at estimating
probability mass within each mode.

In low dimensions, there is a method which meets these desiderata: self-normalized importance
sampling with the importance distribution as the uniform distribution on Ω, or equivalently, Riemann
sum as an approximation to the integral. Concretely, let us assume qθ is supported on a subset of
a compact domain Ω. Then, given a set of points {ui}ni=1 which are uniformly sampled from Ω or
form a partition of Ω, we can approximate the expectation of a function f with respect to qθ as

Eqθ [f(x)] =

∫
Ω

f(x)qθ(x) dx =

∫
Ω
f(x) exp{−Eθ(x)} dx∫
Ω
exp{−Eθ(x)} dx

≈
1
n

∑n
i=1 f(ui) exp{−Eθ(ui)}

1
n

∑n
j=1 exp{−Eθ(uj)}

which can be concisely written as

Eqθ [f(x)] ≈
n∑

i=1

wif(ui), wi :=
exp{−Eθ(ui)}∑n
j=1 exp{−Eθ(uj)}

. (10)

In the perspective of self-normalized importance sampling, the approximation Eq. (10) converges to
the expectation as the size of uniform distribution samples n→∞. In the perspective of Riemann
sum, the approximation converges to the true value as n→∞ and the norm of the partition, i.e., the
maximum distance between two points in {ui}ni=1, converges to zero.

According to Figure 1c, using the MLE gradient Eq. (3) approximated by this method shows excellent
performance on the problem of learning the mixture of two Gaussians. Contrary to SRLMC, this
method is not affected by the fact that the two Gaussians have approximately disjoint support. So, the
EBM trained by self-normalized importance sampling / Riemann sum places correct probability mass
within each mode.

Unfortunately, in general, this method is not applicable to learning high-dimensional distributions.
Suppose p is the distribution of natural images, where we set Ω = [0, 1]d. Also, assume {un}ni=1 in
Eq. (10) is distributed uniformly on Ω, and d is the dimension of images, where d is generally very
large. By Proposition 1, most samples from the uniform distribution on Ω lie on a thin shell S. The
volume of S compared to the volume of Ω is vanishingly small, so {ui}ni=1 is unlikely to come from
the high-density regions of qθ. Thus, the approximation Eq. (10) becomes increasingly inaccurate
with larger d. Hence, in the next section, we propose a way to make self-normalized importance
sampling / Riemann sum work in high dimensions.

5 UNIFORM SUPPORT PARTITIONING (USP)

To overcome the curse of dimensionality described in Section 4.1, we propose finding {ui}ni=1 which
lie uniformly on the support of qθ. To this end, we solve the following optimization problem:

max
ui∈Ω

n∑
i=1

log qθ(ui) subject to ∥ui − uj∥2 ≥ ϵ for all i ̸= j. (11)

Here, ϵ is a parameter which controls the fineness of the partition4. Intuitively, the above problem
fills up the support of qθ with ϵ-balls centered at {ui}ni=1 with priority on high density regions. The
points {ui}ni=1 are then used to approximate Eqθ [∇θEθ(x)] in the MLE gradient Eq. (3) using the
formula Eq. (10).

To solve Eq. (11), we take motivation from projected gradient ascent (PGA). Specifically, we iterate
between a maximization step and a projection step. In the maximization step, we locally push each
ui in the direction which maximizes the density. In the projection step, we perturb each ui such that
the pairwise distance between points in {ui}ni=1 is ≥ ϵ. In the following paragraph, we give the full
detail of our algorithm, which we call Uniform Support Partitioning (USP).

4If the Lebesgue measure of Ω is positive, the feasible set of Eq. (11) will be nonempty for sufficiently small
ϵ.
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(a) MoG density (b) SRLMC result (c) PS-USP results

Figure 4: Comparison of MLE with SRLMC and PS-USP on a 2D MoG.

USP proceeds by iterating two steps. Suppose {ui}ni=1 is the set of points produced by USP in the
previous iteration. The first step, called the maximization step, seeks new points u′

i in the proximity
of ui which maximize the log-density. Specifically, we solve

max
u′
i∈Ω

n∑
i=1

log qθ(u
′
i) (12)

via projected gradient ascent (PGA). The second step, called the repulsion step, repels the points
{ui}ni=1 apart so the constraint of Eq. (11) is satisfied. Since there is no closed form formula for
projecting an arbitrary set of points on the constraint set of Eq. (11), we use the gradient method to
repel points from one another. Concretely, we solve

max
ui∈Ω

∑
i̸=j

min{∥ui − uj∥2, ϵ} (13)

again via PGA. In practice, there is no guarantee that particles {ui}ni=1 converge to the solution of
Eq. (11), since we do not use an exact projection step. Nonetheless, as we will show in Section 6, we
find this poses no problem in learning EBMs.

5.1 PERSISTENT STOCHASTIC USP (PS-USP) FOR TRAINING DEEP EBMS

If we are to train a deep EBM with USP, we face two problems: (a) if n is large, each evaluation of
the objective of Eq. (12) and Eq. (13) can be expensive, and (b) running USP until convergence at
each iteration of EBM gradient update can be computation costly. We introduce two modifications to
USP which address these problems.

Stochastic updates. Suppose we wish to run USP on {ui}ni=1 where n is very large. At each
iteration of USP, we randomly choose Λ ⊊ [n] and optimize {ui}i∈Λ. The maximization step with
{ui}i∈Λ poses no problem, as the objective of Eq. (12) is separable. However, naively applying the
repulsion step Eq. (13) to only {ui}i∈Λ can cause {ui}i∈Λ to collapse into the same configuration as
{uj}j∈[n]−Λ. So, to alleviate this issue, at each iteration of PGA of the repulsion step, we solve

max
{ui}i∈Λ∈Ω|Λ|

∑
i∈Λ

∑
j∈Λ∪Γ

1i ̸=j ·min{∥ui − uj∥2, ϵ}. (14)

where Γ ⊂ [n]− Λ is sampled uniformly at random.

Persistent USP. In the spirit of persistent contrastive divergence (Tieleman, 2008), we only run a
small number of USP iterations before each gradient update of the EBM. While we have no theoretical
justification for this choice, experiments that follow show persistent USP performs sufficiently well.

USP with the above modifications is called Persistent Stochastic USP (PS-USP). One iteration of
EBM parameter θ update with PS-USP proceeds as follows: (a) sample Λ ⊊ [n], (b) apply the
maximization step to {ui}i∈Λ via nm steps of PGA, (d) apply the repulsion step with Eq. (14) with
nr steps of PGA, (e) repeat steps (b) to (d) N times, (e) choose ns points from {ui}ni=1 and calculate
Eqθ [∇xEθ(x)] via Eq. (10), (f) calculate the MLE gradient Eq. (3) and update θ via gradient ascent.
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OOD Data MNIST KMNIST NotMNIST Constant Noise
Statistic FPR95 ↓ AUPR ↑ FPR95 ↓ AUPR ↑ FPR95 ↓ AUPR ↑ FPR95 ↓ AUPR ↑ FPR95 ↓ AUPR ↑
SRLMC 97.73±0.76 86.01±4.94 50.56±6.02 90.57±3.13 12.27±3.06 99.05±0.21 20.03±12.47 99.89±0.10 0.0±0.0 100.0±0.0

PS-USP 2.18±1.03 99.15±0.29 1.84±1.01 99.32±0.12 7.04±0.57 99.07±0.27 0.97±0.78 99.99±0.00 0.0±0.0 100.0±0.0

Table 1: Comparison of OOD data detection performances on FMNIST. ↓ indicates lower is better,
and ↑ means higher is better. We report the mean and standard deviation over three trials.

6 NUMERICAL EXPERIMENTS

6.1 2 DIMENSIONAL MIXTURE OF GAUSSIANS (2D MOG)

We first consider the problem of learning a deep EBM on a 2D mixture of Gaussians (MoG) with six
modes (Figure 4a). To check the robustness SRLMC and PS-USP to separated modes, for SRLMC,
we set q0 as the rightmost mode of the MoG, and for PS-USP, we initialize {ui}ni=1 as samples from
the rightmost mode of the MoG. Each method was run until the EBM converged.

Figure 4b shows the result of using SRLMC to train a deep EBM to approximate the MoG. We
again observe that the EBM exhibits incorrect probability mass ratio of the modes due to poor
mixing of SRLMC. Also, the EBM density is blurry due to the wrong step size and noise scale ratio.
Consequently, some OOD regions have higher density than the rightmost mode.

On the other hand, according to Figure 4c, the EBM trained by PS-USP has accurately learned the
MoG. Moreover, the partition points are almost uniformly distributed on the support of the EBM.
Thus, PS-USP mitigates the pitfalls of SRLMC .

6.2 FASHION-MNIST

We now turn to the more challenging task of training deep EBMs on Fashion-MNIST (Xiao et al.,
2017) and using the EBM for OOD data detection. We use a simple CNN-based discriminative model
as the energy function, without any special structure such as bottlenecks. After training, we evaluate
the OOD data detection performances of EBMs using density values only. Evaluation metrics are
false positive rate at true positive rate 95% (FPR95) and the area under the precision-recall curve
(AUPR). OOD data are MNIST (LeCun et al., 1998), KMNIST (Clanuwat et al., 2018), NotMNIST
(Bulatov, 2011), Constant which consists of constant-valued images whose values are sampled from
the uniform distribution on [0, 1], and Noise which consists of a mixture of uniform noise and standard
Gaussian noise.

Table 1 compares the OOD data detection performances. We observe that except in the case of Noise,
which is an easy OOD data to detect, EBMs trained with PS-USP beat EBMs trained with SRLMC
by a nontrivial margin. In particular, FPR95 scores show significant gaps. This provides concrete
evidence that USP can avoid the pitfalls of SRLMC in training deep EBMs.

7 CONCLUSIONS

In this work, we investigated why EBMs assign high density to OOD regions. We found that poor
mixing of SRLMC and incorrect step size and noise scale ratio were the causes. Motivated by these
observations, we proposed a novel numerical integration method, USP which finds a uniform partition
of the EBM support and uses the partition points to calculate the MLE gradient. We demonstrated on
a MoG data that USP overcomes the pitfalls of SRLMC. Further, we showed that EBMs trained by
USP has significantly better OOD data detection performance on FMNIST. We believe a theoretical
analysis of USP could lead to better EBM training algorithms, and leave this for future work.
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A MISSING PROOFS

Proposition 1. Suppose X is a d-dimensional random vector whose components are i.i.d. with mean
µ, variance σ2, and finite fourth moment. Then, for any ϵ > 0,

lim
d→∞

P
{
(1− ϵ)

√
d(σ2 + µ2) < ∥X∥2 < (1 + ϵ)

√
d(σ2 + µ2)

}
= 1.

Proof. We observe that

var(X2
i ) ≤ E[X4

i ] <∞ (15)

by assumption. So, by the L2 weak law of large numbers,

1

d
∥X∥22 =

1

d

d∑
i=1

X2
i → E[X2

i ] = σ2 + µ2 (16)

in probability as d→∞. This implies the claim of the proposition.

Proposition 2. Assume the sequences {αt} and {βt} in Eq. (5) satisfy αt/βt = ρ for some ρ > 0 for
all t. Also, assume the sequence generated by Eq. (5) converges. Then {xt} converges in distribution
to

qρθ (x) :=
1

Z(θ, ρ)
exp {−ρEθ(x)} .

Proof. It is known that with the LMC iteration

xt+1 = xt −
ηt
2
∇xEθ(x) +

√
ηtϵt, t = 0, 1, 2, . . . , T, (17)

the sequence {xt} converges to

qθ(x) =
1

Z(θ)
exp{−Eθ(x)} (18)

in distribution for an appropriate choice of {ηt}Welling & Teh (2011); Dalalyan (2017). We now
consider the modified iteration

xt+1 = xt −
αt

2
∇xEθ(x) +

√
βtϵt, t = 0, 1, 2, . . . , T. (19)

By the assumption αt = ρβt, the modified iteration is equivalent to

xt+1 = xt −
ρβt

2
∇xEθ(x) +

√
βtϵt, t = 0, 1, 2, . . . , T (20)

= xt −
βt

2
∇x(ρEθ(x)) +

√
βtϵt, t = 0, 1, 2, . . . , T. (21)

Since we have assumed the sequence generated by Eq. (5) converges, by comparing Eq. (21) with Eq.
(17), we conclude that the sequence {xt} generated by Eq. (20) must converge to

qρθ (x) :=
1

Z(θ, ρ)
exp {−ρEθ(x)} (22)

in distribution.

Proposition 3. Assume the EBM qθ is trained via MLE with convergent modified LMC Eq. (5) with
αt/βt = ρ > 0. Then, θ such that

qθ(x) ∝ p(x)1/ρ.

is a stationary point of MLE with gradient ascent.

12



Under review as a conference paper at ICLR 2023

Proof. Let q̂θ be the distribution of x̂ produced by running convergent modified LMC Eq. (5) with
αt/βt = ρ > 0 on some proposal sample x ∼ q0. Then, EBM gradient update with MLE with Eq.
(5) becomes

θ ← θ + Eq̂θ [∇θEθ(x)]− Ep[∇θEθ(x)] (23)

and thus stationarity is achieved when

q̂θ = p. (24)

By Proposition 2, we have

qρθ = q̂θ,

so if qθ(x) ∝ p(x)1/ρ, Eq. (24) is satisfied.
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B EXPERIMENT DETAILS

B.1 EXPERIMENTS IN SECTION 4

To learn the one-dimensional mixture of Gaussians, we use EBMs whose energy function is the
squared distance bewteen input and output of a multi-layer perceptron (MLP) with four layers,
each with 512 hidden units and leaky-ReLU activations with negative slope 0.2. For SRLMC, we
set T = 40, αt = 0.001, and βt = 0.0001. The replay buffer size is 50k and SRLMC chain
reinitialization rate is 0.05. For all methods, batch size is 1k and the optimizer is SGD with no
momentum and learning rate 0.01. Each EBM was trained for 5k iterations on a single GTX 1080
GPU.

B.2 EXPERIMENTS IN SECTION 6

2D MoG. MoG consists of six Gaussians, whose means are (cos θ, sin θ) for θ ∈ {nπ/3 : n =
0, 1, . . . , 5} and covariance matrices are σ2I for σ = 0.1. We use EBMs whose energy function is
the output of a MLP with four layers, each with 512 hidden units and leaky-ReLU activations with
negative slope 0.2. For SRLMC, we set T = 40 and αt = 0.001, and βt = 0.0001. The replay
buffer size is 50k, SRLMC chain reinitialization rate is 0.05, and batch size is 1k. For PS-USP, we
set nm = 1 and nr = 1 so we can combine maximization and repulsion into a single iteration (if
ui does not violate constraint, apply maximization, otherwise, apply repulsion), and N = 50. We
set ϵ = 0.05, n = 5k, |Λ| = 1k, and ns = 5k. For all methods, the optimizer is SGD with no
momentum and learning rate 0.001. Each EBM was trained until convergence with a single GTX
1080 GPU.

FMNIST. The FMNIST dataset was scaled into the range [−1, 1]. For SRLMC, we also added
Gaussian noise of standard deviation 0.1 following the recommendation of previous works Nijkamp
et al. (2019); Grathwohl et al. (2020); Yang & Ji (2021). We use EBMs whose energy function is
the output of a CNN with three convolution layers followed by two fully-connected layers. We use
the leaky-ReLU activation with negative slope 0.4. Each convolution layer has number of filters
∈ {32, 64, 128} with filter size 3 and stride 1. Each convolution layer activation is followed by an
average pooling layer with kernel size 2 and stride 2. For SRLMC, we set T = 20 and αt = 2.0 and
βt = 0.01. The replay buffer size is 50k, SRLMC chain reinitialization rate is 0.05, and batch size is
125. For PS-USP, we proceed similar to the case of 2D MoG. We set nm = 1, nr = 1, N = 100,
ϵ = 10, n ∈ {10k, 25k, 50k}, |Λ| = 125, and ns = 625. For all methods, the optimizer is Adam
with learning rate 0.001. Each EBM was trained for at most 50 epochs with a single GTX 1080
GPU. We choose models based on FPR95 on the OOD validation datasets of MNIST and KMNIST
following Elflein et. al Elflein et al. (2021).
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